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The flow-induced vibrations (FIVs) of two identical tandem square cylinders with mass
ratio m* = 3.5 at Reynolds number Re = 150 are investigated through two-dimensional
direct numerical simulation (DNS) and linear stability analysis over a parameter range
of spacing ratio 1.5 ≤ L* ≤ 5 and reduced velocity 3 ≤ Ur ≤ 34. Three kinds of FIV
responses, namely vortex-induced vibration (VIV), biased oscillation (BO) and galloping
(GA), are identified. The FIVs are then further classified into the branches of initial VIV
(IV), resonant VIV (RV and RV′), flutter-induced VIV (FV), desynchronized VIV (DV),
VIV developing from GA (GV), transitional state between VIV and GA (TR), BO and GA
based on the characteristics of the vibration responses. The transitions among different
FIV branches are examined by combining the DNS with linear stability analysis, where the
transition boundaries among the VIV, BO and GA branches over the concerned parameters
are identified on the branch maps. The transition from IV to RV or RV′ is found to be
related to the unstable wake mode, while the FV, transiting from RV or RV′, is induced
by the unstable structural factor in the wake-structure mode. The structural instability is
considered as the physical origin of GA, whereas the mode competition between unstable
wake and structure leads to DV, GV and TR, and thus delays the appearance of GA. The
transition from DV to BO with biased equilibrium position, accompanied by the even-order
harmonic frequencies, is essentially induced by the symmetry breaking bifurcation.
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1. Introduction

Flow-induced vibrations (FIVs) of flexibly mounted cylinders, such as vortex-induced
vibrations (VIVs), galloping and wave-induced vibrations, have attracted growing research
interests due to their relevance in practical engineering applications (Naudascher &
Rockwell 1994; Nepali et al. 2020). FIVs can be either hazardous or beneficial. For
example, FIVs can induce fatigue damage to flexible slender structures on one hand and
they can be used to harvest wave energy on the other. Therefore, a sound understanding of
FIVs of various structures is important for engineering applications. Significant research
efforts have been devoted to revealing the physics behind various types of FIVs of a single
cylinder (Sarpkaya 2004; Williamson & Govardhan 2004; Singh & Mittal 2005; Sumer
2006; Bearman 2011; Griffith et al. 2017).

Two particular FIV phenomena, vortex-induced vibration (VIV) and galloping, have
received considerable attention for their ubiquity in fluid flows around elastically mounted
structures. The VIV is a phenomenon where the vibration is induced by vortex shedding
from the structure. The galloping refers to a phenomenon where the structure undergoes
vibrations in the direction of hydrodynamic forces acting on it. Galloping vibrations often
arise under the conditions where flow asymmetry occurs either due to cross-section shape
of the structure or multiple structures in close proximity. Galloping is characterized by
significantly larger amplitude and smaller frequency than their VIV counterparts (Blevins
1990; Zhao et al. 2014). The vibration responses and flow patterns of VIV and galloping
of a single cylinder are primarily governed by Reynolds number (Re = UD/ν), mass ratio
(m* = ms/mw) and reduced velocity (Ur = U/fnD), where U is the incoming flow velocity,
ν is the kinematic viscosity of the fluid, D is the characteristic scale of the cylinder (e.g.
the diameter for a circular cylinder or the edge length for a square cylinder), ms is the mass
per unit length of the cylinder, mw is the corresponding mass of displaced fluid and fn is
the natural frequency of the structure.

Flow around multiple cylinders is more complex than its single-cylinder counterpart,
where the wakes of the cylinders interfere with each other and induce abundant FIV
responses, such as wake-induced galloping and wake-induced vibration, as well as
combined VIV-galloping and biased oscillation with a deflected equilibrium position (Assi
et al. 2006; Papaioannou et al. 2008; Carmo et al. 2011; Zhao 2013; Qin, Alam & Zhou
2017). The configuration of two tandem cylinders in the flow direction is considered as
the simplest configuration of the multiple cylindrical structures. Apart from the governing
parameters for FIV of a single cylinder described above, the flow around two tandem
cylinders is also dependent on the spacing ratio (L* = L/D), where L is the centre-to-centre
spacing between the two cylinders.

Substantial insights into FIVs of two tandem circular cylinders have been achieved,
which are helpful to revel the vibration mechanism of tandem square cylinders. Borazjani
& Sotiropoulos (2009) classified the FIVs of two tandem circular cylinders into two
regimes at Re = 200 with a critical Ur value of 5 that separates the two regimes. In Regime
1 (Ur < 5), the front cylinder oscillates with a larger amplitude than that of the rear one,
while the opposite is true in Regime 2. Lin, Jiang & Ku (2014) numerically studied the
VIV of two elastically mounted circular cylinders in tandem at Re = 5–100, Ur = 4–10,
L* = 1.1–4 and m* = 0.5–4. They found a biased and asymmetric oscillation regime with
the mean position of the downstream cylinder shifting from zero to either the positive
side or negative side randomly, mainly occurring in the region of subcritical Re (Re ≤ 47)
and large Ur with a low m*. Such biased oscillation was also reported by Zhao et al.
(2016) in the study on VIV of four rigidly connected cylinders and Lu et al. (2016) for
the flow-induced rotary oscillation of a circular cylinder with a rigid splitter plate. They
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Setup Reference Re L* Ur m* Method

Tandem Zhao et al. (2015) 200 4.0 3.0–40.0 5.0 Num.
Jaiman et al. (2016) 200 4.0 2.0–40.0 5.0 Num.
Bhatt & Alam (2018) 100, 200 2.0, 6.0 1.0–30.0 3.0 Num.
Han et al. (2018) 40–200 5.0 3.0–18.0 2.0 Num.
Yao & Jaiman (2019) 60, 120 2.0–6.0 2.0–20.0 2.0, 20.0 Num, SA.
Tamimi et al. (2020) 2000–48 000 2.8–11.0 1.0–23.0 1.69 Exp.
Nepali et al. (2020) 40–200 5.0 3.0–13.0 2.0 Num.
Kumar & Sen (2021) 100 5.0 3.0–15.0 10.0 Num.
Qiu et al. (2021a) 150 2.0–6.0 3.0–12.0 10.0 Num.
Qiu et al. (2021b) 150 4.0 1.0–12.0 3.0, 10.0, 20.0 Num.

Staggered Kumar & Gowda
(2006)

3000–11 000 — 10.0 434 Exp.

Gowda & Kumar
(2006)

3000–11 000 — ≈3.0–20.5 434 Exp.

Kumar, Gowda &
Sohn (2008)

3000–11 000 — ≈3.0–20.5 434 Exp.

Wang et al. (2022) — 9.0 4.0–14.0 — Exp.

Side-by-side Guan et al. (2016) 200 1.1–7.0 1.0–50.0 10.0 Num.
Guan & Jaiman (2017) 200 1.1–7.0 1.0–50.0 10.0 Num.

Table 1. Summary of the studies on FIV of two tandem square cylinders. Exp., experiment; Num., numerical
simulation; SA., stability analysis.

attributed the occurrence of the biased oscillation to the symmetry breaking of the wake
flow evolution.

Studies on FIVs of two tandem square cylinders have gained momentum in recent years.
The existing studies on FIVs of two tandem square cylinders are summarized in table 1. So
far, most of the existing studies on FIVs of two tandem cylinders have been concerned with
the scenario where the upstream cylinder is fixed (Zhao et al. 2015; Jaiman, Pillalamarri
& Zhao 2016; Bhatt & Alam 2018; Han et al. 2018; Yao & Jaiman 2019; Tamimi et al.
2020). It was found that the wake of the upstream cylinder has a significant effect on the
response of the downstream cylinder. For example, Zhao et al. (2015) found that the shift
of the stagnation point on the downstream cylinder, induced by the vortex shedding from
the upstream cylinder, is responsible for the large-amplitude vibration of the downstream
cylinder. Bhatt & Alam (2018) affirmed the significant role that the gap flow played in
the vibration response of the downstream cylinder. The effect of Re on the wake-induced
vibration of downstream square cylinder was examined by Han et al. (2018), who observed
that the wake behind an upstream square cylinder induces the dual-resonance phenomenon
on the downstream square cylinder, appearing as two amplitude peaks versus Ur, when Re
is larger than 120. Yao & Jaiman (2019), through both direct numerical simulation (DNS)
and stability analysis, found that the sharp corner of square cylinder has a stabilizing effect
on the vibration of downstream cylinder.

The FIV response of two flexibly mounted tandem square cylinders is expected to be
more complex than its counterpart with a fixed upstream square cylinder, due to the
coupled interaction of two vibrating cylinders. It has not been studied as extensively as
its counterpart with a fixed upstream square cylinder. By considering the vibration of
upstream cylinder, Nepali et al. (2020) numerically investigated the effects of Re and Ur on
the VIV of two tandem square cylinders. They found that while low-frequency oscillation
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is a feature response of the downstream cylinder over a wider range of Ur, it only becomes
obvious at large values of Re and Ur for the upstream cylinder. Kumar & Sen (2021)
investigated the response branches and the hysteresis of lock-in response of two vibrating
tandem square cylinders in the co-shedding flow regime. They found that the response
comprises a desynchronization branch and a lower branch, and the downstream cylinder
undergoes high-amplitude vibrations over the entire lower branch due to the excitation of
vortex shedding from the upstream cylinder. The vibrations of the two tandem cylinders
are observed to be hysteretic at the lower and upper lock-in boundaries, whereas for a single
square cylinder, hysteresis is identified only near the onset of lock-in. Notably, depending
on the L*, the flow around two cylinders is basically classified into three regimes
(Zdravkovich 1987): (i) the overshoot flow regime that occurred at L* = 1.0–1.5, where
the shear layers of the upstream cylinder overshoot past the downstream cylinder; (ii) the
reattachment flow regime that appeared at L* = 1.5–4.0 with the separated shear layers
reattaching on the downstream cylinder; (iii) the co-shedding flow regime at L* > 4.0,
where the vortex streets appeared behind both upstream and downstream cylinders. Apart
from the work of Kumar & Sen (2021) in the co-shedding flow regime, the understanding
of the FIV mechanisms and responses of two tandem square cylinders in other flow
regimes remains insufficient.

Despite of the considerable insights into the FIV responses of two flexibly mounted
tandem square cylinders achieved so far, the topic has not been systematically studied. The
studies reported so far were mainly concerned with conditions where Ur is less than 15.0.
Based on the knowledge gained through studies on two flexibly mounted tandem circular
cylinders, diverse FIV response branches were found at Ur > 15.0. For example, the FIV
response at Ur < 15.0 for tandem circular cylinders is mainly dominated by VIV, whereas
galloping response dominates at Ur > 15.0. Lin et al. (2014) found a biased oscillation
branch at large Ur values within certain Re, L* and m* ranges for two elastically mounted
circular cylinders in tandem. It is unclear if our understanding gained through two flexibly
mounted tandem circular cylinders is applicable to its square cylinder counterpart. There
remain many uncovered issues for two flexibly mounted tandem square cylinders, such
as the following. (i) What are the characteristics of FIV responses over a wide range of
governing parameters? (ii) Would the biased oscillation occur for tandem square cylinders?
(iii) What would be the features of transition between different response branches and their
dependence on Ur and L*? (iv) What are the physical mechanisms behind different types
of FIV responses?

In addition to the physical experiments and computational fluid dynamics (CFD),
stability analysis has been demonstrated to be a powerful method to uncover physics behind
complex physical processes. A limited number of studies (Crouch, Garbaruk & Magidov
2007; Leontini, Thompson & Hourigan 2010) conducted global linear stability analysis
to determine the critical Re for the onset of VIV. More recently, system identification
methods have been employed to establish reduced-order models (ROMs) for unsteady
flows. When a ROM is coupled with structural motion equations, we can get an efficient
flow–structure interaction (FSI) model to investigate fundamental physics behind complex
physical systems. For example, Li et al. (2019) uncovered the unstable flow modes that lead
to VIV and galloping responses through ROM-based linear stability analysis. Zhang et al.
(2015) classified the VIV ‘lock-in’ of a circular cylinder into ‘resonance-induced lock-in’
and ‘flutter-induced lock-in’, and explained their physical origins at Re = 60 by discussing
the wake mode and structure mode through ROM-based linear stability analysis. Li et al.
(2019) further investigated the mode competition between wake mode and structure mode
in the galloping response branch of a square cylinder through ROM-based linear stability
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analysis and numerical simulations. They found that the instability of the structure mode
is the primary cause of galloping phenomenon, and the critical Ur for galloping obtained
by linear stability analysis is significantly lower than that obtained through numerical
simulations due to the competition between wake mode and structure mode. In terms of the
VIV of the downstream cylinder, Yao & Jaiman (2019) compared the stability mechanisms
of wake-induced vibration between circular and square cylinders by employing the
linear stability analysis based on the ROM and eigensystem realization algorithm. They
concluded that a persistently unstable eigenvalue branch sustains wake-induced vibration,
which confirms the linear origin of a highly nonlinear wake-induced vibration. The critical
Ur to excite the large-amplitude vibration of a downstream square cylinder is found to be
larger than its circular cylinder counterpart, and the cross-flow response and force of the
square cylinder are smaller than their counterparts of the circular cylinder. The above
studies have affirmed that the evolution mechanisms and origins of different types of FIVs
could be better examined through the ROM-based linear stability analysis. It would be
highly beneficial to the FSI community to explore if ROM-based linear stability analysis
would also be a useful quantitative method to uncover physics behind two flexibly mounted
tandem square cylinders.

The present study aims to reveal the underlying physics behind FIV responses of
two identical tandem square cylinders vibrating in the cross-flow direction at Re = 150
and m* = 3.5 through DNS and ROM-based linear stability analysis. Particularly, a
detailed discussion on diversified results involving vibration amplitudes, frequencies,
phase differences, eigenvalues etc., over a wide range of Ur = 3.0–34.0 and L* = 1.5–5.0
is performed to provide clear insights on the response branches, transition mechanisms
and physical origins of VIV, biased oscillation and galloping. The remainder of the paper
is organized as following. The governing equations, problem description and numerical
verification are presented in § 2. The ROM-based linear stability analysis and its validation
are briefly described in § 3. Results are presented and discussed in § 4, where the FIV
responses and branch transitions at L* = 5 and 2.5 are discussed first, followed by
discussions on the response distribution and branch map over full parameter space. Finally,
major conclusions are drawn in § 5.

2. Numerical method for CFD simulation

2.1. Governing equations
The numerical simulations for two elastically mounted tandem square cylinders are
carried out by solving the dimensionless continuity and the Navier–Stokes equations for
incompressible flow from the arbitrary Lagrangian–Eulerian (ALE) point of view, which
means all of the variables in the present study are in normalized forms. The governing
equations for the flow are expressed as

∂ui

∂xi
= 0, (2.1a)

∂ui

∂t
+ (uj − um

j )
∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂

∂xj

∂ui

∂xj
, (i, j = 1, 2), (2.1b)

where xi = (x1, x2) = (x, y) are the Cartesian coordinates, ui is the ith velocity component
corresponding to the coordinate xi, um

j is the advection velocity due to mesh deformation
in the ALE method, p is the pressure and t is the time. The Navier–Stokes equations
are discretized and solved by the characteristic-based-split (CBS) finite-element method
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(Zienkiewicz & Codina 1995),

un+1
i − un

i = Δt
(

−cj
∂ui

∂xj
+ 1

Re
∂2ui

∂xj2

)n

− Δt
∂pn+θ2

∂xi
+ Δt2

2
cn

k
∂

∂xk

(
cj

∂ui

∂xj
− 1

Re
∂2ui

∂xj2

)n

+Δt2

2
un

k
∂

∂xk

(
∂pn+θ2

∂xi

)
,

(2.2)
where �t = tn+1 − tn is the time increment, n denotes the step number, cj = uj − um

j and
the subscript k denotes the Einstein notation. The pressure is calculated by

∂pn+θ2

∂xi
= (1 − θ2)

∂pn

∂xi
+ θ2

∂pn+1

∂xi
, (2.3)

where 0 ≤ θ2 ≤ 1 is the control factor for the explicit and implicit algorithms. Equation
(2.2) is processed separately by Zienkiewicz et al. (1999):

�u∗
i = u∗

i − un
i = �t

(
−cj

∂ui

∂xj
+ 1

Re
∂2ui

∂xj2

)n

+ �t2

2
cn

k
∂

∂xk

(
cj

∂ui

∂xj

)n

, (2.4a)

θ1

[
(1 − θ2)

∂pn

∂xi
+ θ2

∂pn+1

∂xi

]
= − 1

Δt

(
∂un

i
∂xi

+ θ1
∂Δu∗

i
∂xi

)
, (2.4b)

Δu∗∗
i = −Δt

∂pn+θ2

∂xi
+ Δt2

2
un

k
∂2pn

∂xk∂xi
, (2.4c)

where u∗
i and u∗∗

i are the intermediate velocities, and θ1 is the stability factor with a range
of 0.5–1 (Zienkiewicz et al. 1999). The fluid velocity at the (n + 1)th time step can be
obtained

un+1
i = un

i + Δu∗
i + Δu∗∗

i . (2.5)

The spatial discretization for (2.1) is performed by using the standard Galerkin
finite-element method, and the details can be found from Sun et al. (2012).

The horizontal and vertical fluid forces on a square cylinder, denoted by Fx(t) and Fy(t),
are obtained by integrating the instantaneous pressure and shear stress along the surface
of the square cylinder. The corresponding drag and lift coefficients, represented by CD(t)
and CL(t), respectively, for each square cylinder are defined as

CD(t) = 2Fx(t)
ρDU2 and CL(t) = 2Fy(t)

ρDU2 , (2.6a,b)

where ρ is the fluid density.
The tandem square cylinders are allowed to oscillate independently and only in the

cross-flow direction. The governing equation for each oscillating square cylinder is
described by

Ÿ + 4πξ

Ur
Ẏ +

(
2π

Ur

)2

Y = 2CL

πm∗ , (2.7)

where Y, Ẏ and Ÿ are the dimensionless displacement, velocity and acceleration of
the square cylinder, respectively, and ξ = 0.5cs/(ksms)1/2 is the structural damping ratio,
where cs and ks denote damping coefficient and spring stiffness, respectively. The natural
frequency for each square cylinder is defined as fn = (ks/ms)1/2/(2π), which is related to
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Figure 1. A sketch of computational domain and boundary conditions.

the reduced velocity Ur. The governing equation for the motion of each square cylinder is
solved by the Newmark-β method.

Under the ALE description, the nodal coordinates inside the computational domain are
updated to reflect the vibrations of the square cylinders after each computational time step.
The mesh update in the present study is achieved by employing the edge spring method
introduced by Hwang et al. (2003), which has been applied and validated in our previous
study (Lu et al. 2016). In the computations, the displacements and velocities of the grids
on the surface of the square cylinders are obtained from the solutions of (2.7) while the
grids are kept fixed on the outer boundaries of the computational domain.

2.2. Problem description, mesh dependency check and numerical validation

2.2.1. Problem description
The computational domain and the setup of the tandem square cylinders, together with
the boundary conditions, are shown in figure 1. In the following discussion, UC and
DC are used to denote the upstream and downstream square cylinders, respectively. The
computational domain, whose coordinate origin locates at the centre of UC, is 90D in
the in-line direction and 60D in the cross-flow direction. This leads to a blockage ratio
of 0.017, defined as the ratio of the side length of the square cylinder to the width of
the computational domain. Prasanth & Mittal (2008) suggested that the effects of the
side boundary on the numerical results are notable only if the blockage ratio is larger
than 0.05. Hence, the present blockage ratio is believed to be small enough to ensure a
weak influence on the numerical results, which will be demonstrated quantitively in the
further mesh dependency study. On the inlet boundary, the velocity is set to (u, v) = (U, 0).
A no-slip boundary condition is specified on the surface of the square cylinders. At the
outlet, the pressure is set to zero and the gradient of the velocity in the flow direction is
zero. The gradient of the pressure and the velocity in the transverse direction are zero for
the two lateral boundaries. All the computations are initiated with u = v = 0 and p = 0.

The range of spacing ratio L* is set to be 1.5–5 in the present study, mainly covering the
reattachment and co-shedding flow branches reported by Zdravkovich (1987). The Re is
fixed at 150 since the galloping for a square cylinder in the two-dimensional laminar flow
could be excited in this scenario (Sen & Mittal 2015). The m* and ξ for both the square
cylinders are 3.5 and 0, respectively, to obtain notable vibrations. The reduced velocity Ur
ranges from 3 to 34.
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Figure 2. Mesh distribution of the computational domain and a close-up view near two tandem square

cylinders at L∗ = 5.

2.2.2. Mesh dependency check
The mesh convergence tests were carried out for the flow over the two tandem square
cylinders vibrating in the cross-flow direction at Re = 150, where Ur = 5.5 and 34 are
chosen at L* = 5 and 2.5, respectively. The block ratio B* defined as the ratio of D to inlet
length of computational domain, the number of nodes around each square cylinder Ns, the
height of the first layer of meshes next to the cylinder surface Hf and the time step �t are
set to different values to construct 18 meshes. Figure 2 illustrates a typical medium mesh
with B* = 0.017, Ns = 200, Hf = 0.008 D and �t = 0.001, and a close-up view of the mesh
around the square cylinders at L* = 5. The detailed parameters for different mesh schemes
and the calculated vibration responses as well as hydrodynamic coefficients at L* = 5 and
2.5 are listed in table 2.

The results of the mesh-dependence check in table 2 show that the response amplitudes
Ay1 and Ay2 are the most sensitive physical quantities to the variations of B*, Ns, Hf and
�t. The largest differences of Ay1 and Ay2 induced by the variations of B*, Ns, Hf and
�t are 4.49 % and 3.43 %, respectively. The results obtained by employing the medium
meshes are very close to those of the finest mesh. The maximum relative difference
between the results generated by the medium and fine meshes is 1.5 %. Given the large
number of simulations to be performed in the present study, the meshes, shown in bold in
table 2, are used for the remaining simulations presented in this study.

2.2.3. Numerical validation
The present DNS model is benchmarked first against available results reported in the
literature for a single square cylinder undergoing two-degree-of-freedom VIV with m* = 3
and ξ = 0 at Re = 100 and Ur = 3–16. The calculated results versus Ur, involving the
cross-flow amplitude and frequency, are compared with those from Zhao, Cheng & Zhou
(2013), Jaiman et al. (2016) and Qiu et al. (2021b), as shown in figure 3.

The predicted values of Ay and fy by the present DNS are in good agreement with the
results reported in the literature, as shown in figure 3, demonstrating the good accuracy of
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Mesh parameters Vibration responses and hydrodynamic coefficients

L* Nel B* Ns Hf �t Ay1 Ay2 fy1 fy2 Crms
L1 Crms

L2

5 71 212 0.025 200 0.008 0.001 0.551 0.372 0.107 0.107 1.822 1.214
5 81 656 0.017 200 0.008 0.001 0.538 0.360 0.107 0.107 1.772 1.192
5 97 826 0.013 200 0.008 0.001 0.535 0.356 0.107 0.107 1.762 1.184
5 67 468 0.017 160 0.008 0.001 0.531 0.352 0.107 0.107 1.757 1.167
5 91 908 0.017 240 0.008 0.001 0.543 0.364 0.107 0.107 1.778 1.198
5 76 764 0.017 200 0.010 0.001 0.530 0.352 0.107 0.107 1.756 1.170
5 88 604 0.017 200 0.006 0.001 0.538 0.360 0.107 0.107 1.773 1.193
5 81 656 0.017 200 0.008 0.0005 0.537 0.360 0.107 0.107 1.769 1.191
5 81 656 0.017 200 0.008 0.002 0.539 0.361 0.107 0.107 1.776 1.195
2.5 66 324 0.025 200 0.008 0.001 1.246 1.424 0.0208 0.0208 0.233 0.128
2.5 79 842 0.017 200 0.008 0.001 1.231 1.414 0.0202 0.0202 0.228 0.127
2.5 91 648 0.013 200 0.008 0.001 1.228 1.410 0.0201 0.0201 0.226 0.127
2.5 63 356 0.017 160 0.008 0.001 1.224 1.400 0.0206 0.0206 0.225 0.127
2.5 88 214 0.017 240 0.008 0.001 1.233 1.416 0.0202 0.0202 0.233 0.127
2.5 71 026 0.017 200 0.010 0.001 1.223 1.398 0.0207 0.0207 0.225 0.126
2.5 84 114 0.017 200 0.006 0.001 1.235 1.417 0.0201 0.0201 0.230 0.128
2.5 79 842 0.017 200 0.008 0.0005 1.233 1.413 0.0203 0.0203 0.231 0.128
2.5 79 842 0.017 200 0.008 0.002 1.226 1.403 0.0203 0.0203 0.224 0.126

Table 2. Influence of the mesh parameters on vibration responses and hydrodynamic coefficients of the
tandem square cylinders with L* = 5 and 2.5 at Re = 150: Nel represents the element number; Ay1 and Ay2,
normalized by dividing D, are maximum vibration amplitudes of DC and UC, respectively; fy1 and fy2
are the corresponding normalized primary frequencies by U/D; and Crms

L1 and Crms
L2 are the corresponding

root-mean-square (r.m.s.) lift coefficients.

0.4

IB LB DB

Zhao et al. (2013)

Jaiman et al. (2016)

Qiu et al. (2021b)

Present

0.3

0.2

0.1

0

0.18

0.15

f0

0.12
4 6 8 10 12 14 16

Ur

fy

Ay

Figure 3. Comparison of the VIV results of a square cylinder with m* = 3 and ξ = 0 at Re = 100. The upper
and lower subgraphs are the dimensionless cross-flow amplitude and frequency, respectively.
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Figure 4. Comparison of the cross-flow and in-line maximum vibration amplitudes versus Ur at Re = 160 and
L* = 2.5 and 5: (a,b) cross-flow and in-line vibration amplitudes of downstream circular cylinder, respectively;
(c,d) counterparts of upstream circular cylinder.

the present DNS. The maximum response amplitude occurs at Ur ≈ 5, where the largest
deviation of the response frequency f 0 from the vortex shedding frequency fst occurs. The
three response branches labelled in different colours in figure 3, namely initial branch (IB),
lower branch (LB) and desynchronized branch (DB), are identified through comparing fst
and f 0 with the criteria of fst < f 0 corresponding to IB, fst > f 0 corresponding to LB, and
fst ≈ f 0 corresponding to DB. The same classification criteria are used for two tandem
cylinders in the present study.

The present DNS model is further validated via the cross-flow and in-line FIVs of two
identical tandem circular cylinders with m* = 10, ξ = 0.01, L* = 2.5 and 5, Re = 160, and
Ur = 3.3–10. The predicted maximum vibration amplitudes in the cross-flow and in-line
directions Ur = 3.3–10 are compared with the results reported by Papaioannou et al.
(2008) in figure 4. Excellent agreements between the present results and those reported
by Papaioannou et al. (2008) are observed, demonstrating the validity of the present DNS
model.

3. Linear stability analysis method based on reduced-order model

3.1. Reduced-order model for the unsteady flow
The ROMs have been demonstrated to be effective and efficient in understanding the
physics involved in the FSI system. The ROM for steady approaching flow past two tandem
square cylinders under forced vibrations in the cross-flow direction is developed here.
A system identification method, applying the autoregressive exogenous model (ARX) to
train the transformation matrix for generating the targeted lift coefficient via the input
displacement, is adopted for the reduced-order model (Zhang et al. 2015; Li et al. 2019).
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The ARX based on a linear input-output system is described by

yF(h) =
na∑

i=1

AiyF(h − i) +
nb−1∑
i=0

BiuF(h − i), (3.1)

where yF = [CL1 CL2]T is the output vector of the system, uF = [Y1 Y2]T is the input
counterpart, h denotes the number of the discrete time step, Ai and Bi are the coefficient
matrices to be estimated, and na and nb are the model delay orders, respectively. The
subscripts 1 and 2 represent the DC and UC, respectively, in CL1 and CL2 as well as Y1
and Y2.

A state vector xF(h) with 2(na + nb − 1) dimensions is defined as

xF(h) = [yF(h − 1), . . . , yF(h − na), uF(h − 1), . . . , uF(h − nb + 1)]T. (3.2)

By combining (3.2) with (3.1), the state-space equation in the discrete-time form can be
written as (Zhang & Ye 2007; Zhang et al. 2015)

xF(h + 1) = ÃFxF(h) + B̃FuF(h), (3.3a)

yF(h) = C̃FxF(h) + D̃FuF(h), (3.3b)

where the coefficient matrices read:

ÃF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1
I 0 · · · 0 0 0 0 · · · 0 0
... I · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · I 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 I 0 · · · 0 0
0 0 · · · 0 0 0 I · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.4a)

B̃F = [B̃0 0 0 · · · 0 I 0 0 · · · 0]T (3.4b)

C̃F = [A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1], (3.4c)

D̃F = [B0]. (3.4d)

The sub-coefficient matrices in (3.4) can be obtained by solving (3.3) based on the least
square method when the training data of the forced displacements and lift coefficients are
provided. Then the discrete-time state-space equation is converted into a continuous-time
form:

ẋF(t) = AFxF(t) + BFuF(t), (3.5a)

yF(t) = CFxF(t) + DFuF(t), (3.5b)

where AF, BF, CF and DF are the coefficient matrices in continuous-time forms. The ROM
of (3.5) characterizes the variation of the concerned fluid force when the steady base flow
is perturbed by a small structural motion. Therefore, the stability characteristics of the flow
can be evaluated by analysing the eigenvalues of AF in the state-space equation, namely
(3.5) (Li et al. 2019).
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3.2. Reduced-order model for FSI
To establish the state-space equilibrium equations for the tandem identical square
cylinders vibrating in the cross-flow direction, a structure state vector xS = [Y1, Ẏ1, Y2,
Ẏ2] is defined and then combined with (2.7), which yields

ẋS(t) = ASxS(t) + qBSyF(t), (3.6a)

uF(t) = CSxS(t) + qDSyF(t), (3.6b)

where q = 2/πm∗ and the structural coefficient matrices are

AS =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−4π2

U2
r

−4πξ

Ur
0 0

0 0 0 1

0 0 −4π2

U2
r

−4πξ

Ur

⎤
⎥⎥⎥⎥⎥⎥⎦

, BS =

⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦ ,

CS =
[

1 0 0 0
0 0 1 0

]
, DS =

[
0 0
0 0

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

By coupling (3.5) and (3.6), the ROM for FSI of the two vibrating tandem square
cylinders can be obtained:

ẋFS(t) =
[

AS + qBSDFCS qBSCF
BFCS AF

]
xFS(t) = AFSxFS(t), (3.8a)

uF(t) = [CS 0]xFS(t), (3.8b)

where xFS = [xS xF]T denotes the FSI variables. Similar to the analysing process of
fluid stability, the stability issues of the FSI system can be qualitatively described by the
eigenvalues of AFS. The eigenvalues are commonly composed of the real part λr and the
imaginary part λi that represent the growth rate and angular frequency of the eigenmodes,
respectively. The system is unstable if λr > 0.

3.3. Validation on the reduced-order model
The flow past two vibrating tandem square cylinders with L* = 5 at Re = 150 are chosen
as an example to validate the ROM and the ROM-based linear stability analysis. The
coefficient matrices of fluid, namely AF, BF, CF and DF, are obtained through the training
for the input of displacements and output of lift coefficients in the steady base flow. The
steady base flow represents the linearized flow field in linear stability analysis, while
the input displacements are regarded as small perturbations. To generate the steady base
flow, DNS of flow past two stationary tandem square cylinders is carried out by setting
a symmetry boundary at the central line (y = 0) across the computational domain. The
vorticity and pressure of the base flow is shown in figure 5.

The input of the training signal is the designed cross-flow displacements of the two
square cylinders, given as

uF(t) = Ay0 sin(2πω0(1 − ea0t)t), (3.9)

where Ay0 is the amplitude of forced displacements with a value of 10−5, ω0 = 0.2
is the designed frequency of forced displacements and a0 = [−0.01 −0.012]T is the
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Figure 5. Base flow of two stationary tandem cylinders (L* = 5 and Re = 150): (a) vorticity and (b) pressure.
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Figure 6. Time-history curves of input and output signals at L* = 5 and Re = 150: (a) forced displacements
of two tandem square cylinders; (b) lift coefficients of two tandem square cylinders obtained from DNS and
ROM, where the subscripts 1 and 2 denote upstream and downstream cylinders, respectively.

coefficient vector for the time varying frequency, as shown in (3.9). The small magnitude
of Ay0 ensures small perturbations in the linear stability analysis. The time-varying forced
frequency is used to roughly cover the range of the possible frequencies of the vibrating
square cylinders, while the different values of time-varying coefficient for UC and DC are
designed to consider the phase difference between the displacements of the two square
cylinders. The output lift coefficients used for training are obtained through the DNS for
flow past the square cylinders forced to vibrate in the form of (3.9), as depicted in figure 6,
together with the input displacement signals.

The approach to construct the ROM has been validated for the cases of unsteady flows
past a circular cylinder (Zhang et al. 2015), a square cylinder (Li et al. 2019) and two
tandem circular cylinders (Li, Zhang & Gao 2018). To further validate its application for
flow past two tandem square cylinders, the identification parameters na and nb for the
ROM are chosen as 90 to ensure high resolution, and the ROM-predicted lift coefficients
are compared with those from the DNS, as shown in figure 6(b). It is found that the
ROM-predicted results agree well with those obtained from DNS, demonstrating the
validity of the present ROM in predicting the dominant characteristics of flow past two
tandem square cylinders.

The linear stability analysis based on the ROM for the FSI system, focusing on the
eigenvalue analysis of AFS in (3.8), is further validated by considering two tandem square
cylinders vibrating in the cross-flow direction with m* = 3.5 and ξ = 0. The real and
imaginary parts of the eigenvalues for two leading modes of AFS at Ur = 0–20 are plotted
as the root loci in figure 7(a), where Ur = 0 represents the case of two stationary tandem
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Figure 7. Stability analysis for the FSI system of two tandem square cylinders with m* = 3.5 and ξ = 0 at
L* = 5 and Re = 150: (a) root loci of the coupled system at Ur = 0–20; (b–e) DNS-computed cross-flow
displacements of the two square cylinders subjected to an impulse velocity response at Ur = 2.5, 4, 6 and
10, respectively.

square cylinders. The two leading modes of two stationary tandem square cylinders are
marked as ST I and ST II in figure 7(a). Li et al. (2019) defined the root loci as the
wake mode (WM) when the imaginary part of the leading eigenvalue of the FSI system,
representing the leading eigenfrequency, varies around the counterpart of flow past the
stationary structure with increasing Ur, while the structure mode (SM) appears when the
eigenfrequency is close to the structural natural frequency. However, the root loci are more
frequently affected by WM and SM simultaneously for the oscillating system with a lower
mass ratio, classified as the combined mode (CM) or the wake-structure mode (WSM)
(Li et al. 2019, Yao & Jaiman 2019). The WSM is thus introduced to describe the root
loci marked in green in figure 7(a), since their imaginary parts are basically near 0.644i
(ST II) initially, and evolute from the left grey plane with negative real parts to the right
pink plane with positive real parts following the trend of structural natural frequency (see
figure 11b). By contrast, the root loci with blue colour are identified as the WM based
on the semi-circle distribution of their imaginary parts near 0.699i (ST I). Several critical
values of Ur (e.g. 2, 3.4 and 5.6), located at the boundary of pink plane, are observed,
indicating the corresponding mode of the system becomes unstable when the Ur crosses
the border to positive real parts of eigenvalues.

To validate the results of the linear stability analysis, the FIVs of the tandem
square cylinders subjected to an initial small impulse velocity of 10−5 at Ur = 2.5,
4, 6 and 10 are solved through DNS, and the corresponding results are illustrated in
figure 7(b–e), respectively. According to the linear stability analysis, the concerned
system at 2 < Ur < 3.4 is stable since λr < 0, which can be verified by the decaying
displacements of the two square cylinders obtained from DNS at Ur = 2.5. When Ur = 4,
the displacement of UC presents a decaying trend while the DC keeps oscillation, related
to the stable WSM and unstable WM in the stability analysis. When Ur = 6 and 10, the
displacements of both UC and DC grow with the time, matching with the prediction in
linear stability analysis. Meanwhile, it is noted that the displacements become irregular
when the value of Ur is in the vicinity of the critical values (e.g. Ur = 4 and 6), caused
by the competition between the stable and unstable modes. Overall, the ROM-based linear
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Figure 8. Vibration responses of DC and UC with a companion to that of a single square cylinder at L* = 5:
(a) normalized vibration amplitudes; (b) normalized vibration frequencies; and (c) normalized mean positions
in the y-direction.

stability analysis in the present study is effective for laminar flow past two tandem square
cylinders vibrating in the cross-flow directions.

4. Results and discussion

4.1. FIV of the tandem square cylinders at L* = 5

4.1.1. Response and hydrodynamic characteristics
The FIV of the tandem square cylinders at L* = 5 and Ur = 3–34 is first investigated to
examine the characteristics of vibration response and hydrodynamics in the co-shedding
flow regime. The DNS results of the vibration amplitudes, frequency characteristics,
wake patterns, force coefficients and phase lags are presented and discussed herein. The
displacements and their amplitudes are normalized by D, while the time and frequencies
are normalized by D/U and U/D, respectively.

Variations of vibration amplitudes Ay = (Ymax − Ymin)/2, dominant frequencies and
mean displacements of the two tandem square cylinders with Ur are shown in
figure 8(a–c), respectively, where Ymax and Ymin are the maximum and minimum
displacements (Zhao et al. 2013). The corresponding results of a single square cylinder
(SC) are also included for the purpose of comparison.

The vibration response of DC is classified into five branches, marked by different
background colours in figure 8, based on the characteristics of the variations of amplitude,
frequency and mean displacement with Ur. The initial branch of the VIV amplitude,
referred to as IV, is observed in the range of Ur = 3–4.5. The VIV response at the IV
branch is characterized by the gradual increase and decrease of amplitude and dominant

986 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.339


C. Zhang, G. Tang, L. Lu, Y. Jin, H. An and L. Cheng

frequency, respectively, near the critical Ur for the onset of VIV. Two large-amplitude
response branches of DC observed at Ur = 4.5–6 and Ur = 6–10 are referred to as
the resonant VIV (RV) and the flutter-induced VIV (FV) branches, respectively. The
maximum response amplitude of the RV is 0.54D at Ur = 5.5 and that of the EV is 0.62D
at Ur = 7.5. The dominant frequencies of RV at Ur = 4.5–6 are locked in the vicinity of
0.59fn, which deviates substantially from the commonly known lock-in frequency near fn.
Khalak & Williamson (1999) suggested that the lock-in frequency may be much higher
or lower than fn for a smaller m∗ . By assuming the simple harmonic forms of fluid
force and structural motion, Lu et al. (2016) separated the in-phase part of fluid force
with motion and defined the natural frequency of the FSI system by considering the
effect of this part. The dominant vibration frequencies at Ur = 5 and 5.5 in the present
work are found to be equal to the modified natural frequencies of 0.117 and 0.107 by
applying this method. Therefore, the first peak of the DC amplitude is induced by the
resonance affected by the in-phase part of the lift (Sarpkaya 2004). The second interval
of lock-in or near lock-in at Ur = 6–10 with larger vibration amplitude is only observed
for DC. Zhang et al. (2015) divided the general VIV lock-in of a circular cylinder into the
resonance-induced and flutter-induced patterns through stability analysis. The appearance
of the second large-amplitude branch in the present study is also attributed to the flutter
related to structural instability, and it will be further discussed in § 3.1.2.

The desynchronized VIV (DV) is observed at Ur = 10–24 where the vibration frequency
follows the variation trend of Strouhal frequency and deviates significantly from the natural
frequency fn. The biased oscillation (BO) branch, which is characterized by a biased
equilibrium position in either direction y = 0, as shown in figure 8(c), is identified at
Ur > 24. The present finding confirms that the BO branch not only occurs in the flow
past vibrating tandem circular cylinders (Lin et al. 2014), but also arise for tandem square
cylinders with low m* and large Ur. The detailed features of the BO branch will be
discussed in § 4.1.3.

The vibration amplitude of UC shares a similar trend with SC, except that a BO branch
is also observed at the high end of the Ur range investigated in the present study. The
amplitude of the UC reaches a peak of 0.36D at Ur = 5.5, in accordance with the first peak
of DC. By contrast, the occurrence of the resonant peak for the SC is at Ur = 5, with an
amplitude of 0.25D. The overall response amplitudes of both DC and UC are larger than
the SC counterparts, while frequency results exhibit a contrary behaviour. The absence of
an FV branch from the response of UC suggests the FV branch observed for DC is closely
associated with the influence of the wake of UC. This aspect will be elaborated further in
§ 3.1.2.

In addition to the dominant frequencies of vibration displacement shown above, the
other frequency components of vibration displacement and lift coefficient do exist in the
system, and they are invaluable to understand the FIV responses of the system. For this
reason, the fast Fourier transform (FFT) spectra of the lift coefficients and displacement
versus Ur are illustrated in figure 9. At the IV branch, the frequencies of lift coefficient
and displacement are characterized by a single dominant component. When entering the
RV branch, the intense competition between fluid and structure is reflected by the multiple
frequency components of lift coefficient and displacement, especially for DC. The FV
branch is only identified for DC, where the frequencies near fn dominate the lift coefficient
and displacement, and the triple-harmonic frequencies as well as lower fluid-related
modulation frequencies. At the DV branch, the lift coefficient of DC mainly presents
the dominant and triple-harmonic frequencies, while an extra frequency component of
0.081 plays a secondary role for the displacement. By contrast, the harmonic frequency
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Figure 9. FFT spectra of lift coefficients and normalized displacements of the two tandem square cylinders
at Ur = 3–34 and L* = 5: (a) lift coefficient of DC; (b) displacements of DC; (c) lift coefficient of UC; and
(d) displacements of UC.

components are very weak for both the lift coefficient and displacement of UC. Abundant
frequency components are observed at the BO branch of DC, especially for the lift
coefficient. Except for the odd-multiple frequency components of 0.142 and 0.428 at
Ur = 25, the double and quadruple ones of 0.285 and 0.568 are captured for the lift
coefficient. The primary and double secondary frequencies, together with subharmonic
frequency components, are observed for the displacement of DC, whose subharmonics
coalesce to be a half-harmonic component of 0.071 near Ur = 30. The double-harmonic
frequency component also appears in the lift coefficient of UC. The appearances of the
even-multiple frequency components are related to the bifurcation of flow evolution and
structural motion, whose relationship with the BO will be explained in § 3.1.3.

The r.m.s. and mean lift coefficients (CL-rms and C̄L) of the two square cylinders versus
Ur are shown in figure 10(a,b). Several dash lines with different colours are plotted to
emphasize the results corresponding to the IV, RV, FV, DV and BO branches of DC. The
r.m.s. lift coefficients of DC and UC gradually grow with increasing Ur at the IV branch.
When entering the RV branch, the CL-rms of DC experiences a sharp decrease at the onset
of the lock-in and then grows rapidly with increasing Ur to an equilibrium value, which is
different from UC. The multiple-frequency components, as shown in figure 9(a) at Ur = 5,
lead to the reduction of CL-rms of DC. In addition, the CL-rms of both DC and UC at the
IV and RV branches are significantly greater than those at the FV, DV and BO branches.
A slow decline of CL-rms of DC and a slight decrease of the UC counterpart are observed
at Ur > 24, along with the deflections of C̄L to randomly positive or negative directions
in the BO branch in figure 10(b). The mean phase lags between the displacement and lift
coefficient for each square cylinder are shown in figure 10(c). The phase lags are averaged
since diverse temporal variations (e.g. phase trapping, phase drifting, etc.) exist in some
cases. The mean phase lags between the displacements and lift coefficients are 0 for DC
and UC when Ur < 6 in the IV and RV branches, then turn into transitional values near
π at the FV branch, and finally stabilize at π at the DV and BO branches. The reversal
of phase lag from 0 to π with large vibration amplitude marks the end of the resonant
lock-in and the onset of the flutter-induced lock-in. The deviation of phase lag from 0
for DC at Ur = 6 is associated with the transient desynchronization between the lift and
displacement during the transition stage.
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Figure 10. Statistical results and phase characteristics of lift coefficients at Ur = 3–34 and L* = 5: (a) and (b)
r.m.s. and mean lift coefficients of the two square cylinders; and (c) mean phase lags between displacements
and lift coefficients of two square cylinders.
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Figure 11. Stability results of the FSI system of two tandem square cylinders at Ur = 3–34: (a,b) real and
imaginary parts of the eigenvalues corresponding to the first two leading modes, respectively, together with the
corresponding values for the stationary tandem square cylinders.

4.1.2. Transitions among VIV branches
The transitions among the VIV branches identified for the DC are discussed. The linear
stability analysis introduced in § 3 is performed to capture the stability features of the FSI
system at different VIV branches. The real and imaginary parts of the eigenvalues of the
first two leading modes for the FSI system of two tandem square cylinders at L* = 5 versus
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Ur are shown in figure 11, together with those of stationary tandem square cylinders (ST
I and ST II). The root loci of the eigenvalues are not presented here since they have been
depicted in figure 7(a).

The WM of the FSI system becomes unstable when Ur > 3.4, implying that the
vortex shedding from the square cylinder begins to excite the VIV of the cylinders. The
WM instability, inherently related to the vortex evolution in the flow field, continuously
promotes the development of VIV until the occurrence of resonance between the vortex
shedding and the structural vibration near Ur = 5–5.5, namely the transition from IV
to RV. During this process, the eigenfrequency of WM in figure 11(b) increases with
increasing Ur and is greater than the eigenfrequency of ST II over a range of Ur, whereas
the eigenfrequency of WSM varies between ST I and ST II counterparts. When Ur > 5.6,
both the WM and the WSM have positive real eigenvalues, and thus become unstable.
The eigenfrequency of WM gradually returns to the vicinity of ST II with increasing
Ur, indicating that the WM is out of resonance at Ur > 5.6 and is dominated again by
the fluid. The eigenfrequency of WSM begins to jump out of the range of ST I and ST
II for Ur > 5.6, and shows a trend similar to the variation of fn versus Ur even though
the specific values are different due to the linearity assumption of stability analysis.
This observation suggests the structural instability characterizes the WSM, causing the
flutter-induced vibration with large amplitude, and thus appears as the transition from RV
branch to FV branch. In fact, the fluid-elastic instability phenomenon of flutter is also
known as galloping in the studies of flow past cylinders (Blevins 1990). Therefore, the
second amplitude peak of DC is inherently related to the galloping-type motion. However,
the obvious galloping branch of DC is absent with increasing Ur at L* = 5. Li et al. (2019)
attributed the absence of large-amplitude galloping at the stage of structural instability
to the competition between the unstable WM and the unstable structure component in
WSM, and defined the VIV-type motion as pre-galloping when the wake is the winner.
The eigenfrequency of WM in the present study is completely captured by the ST I and
ST II for Ur > 10.3, whose competition with structure-dominated WSM reflects the roles
of wake and structure. The wining of WM in the mode competition with WSM causes the
FV or DV. Once the structure component in WSM is too weak to affect the dominant WM,
the transition from FV to DV occurs. The BO is not captured by linear stability analysis
since it is induced by the nonlinearity, which will be discussed in the next subsection.

More detailed DNS results of DC at different VIV branches, involving the time-history
curves and FFT amplitude spectra of y-displacement and lift coefficient as well as the
phase diagram of vibration, are illustrated in figure 12. The Poincaré mapping of the
y-displacements and y-velocity of DC is constructed based on the dominant vibration
frequency, marked as blue points in figure 12, to classify the vibration behaviours.
The vibration is identified as the periodic mode when only one fixed mapping point is
captured on the phase diagram, while multiple points correspond to a periodic mode of
multiple frequency components. A closed curve comprising mapping points and a patch
of dense points with fractal structures on the phase diagram are typical characteristics of
quasiperiodic and chaotic vibration modes, respectively.

Figure 12(a) shows that the YDC and CL-DC are in phase at Ur = 3 at the IV branch, both
dominated by a primary frequency f 0 = 0.125 and accompanied by a tiny triple-harmonic
frequency. The periodic oscillation of displacement is relatively limited even though the
lift coefficient is large enough at the IV branch. The amplitude of the YDC rises to a level
near 0.55 at Ur = 5.5 at the RV branch while the CL-DC is almost consistent with the case
of Ur = 3. The resonance promotes the system to achieve larger vibration amplitude at
Ur = 5.5. The vibration of DC at Ur = 7.5 at the FV branch becomes more complex in
comparison with its counterpart at Ur = 5.5, characterized by a hybrid state of 7-periodic
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Figure 12. DNS results of the DC at different VIV branches: (a–d) time-history y-displacements and lift
coefficients; (e–h) FFT amplitude spectra of y-displacements and lift coefficients; and (i–l) phase diagrams
of y-displacements and y-velocities at Ur = 3, 5.5, 7.5 and 16, respectively.

and quasiperiodic modes. In addition to the primary frequency of 0.156, two obvious
lower-order and two higher-order harmonics are observed for both the YDC and CL-DC.
The irregularity of the vibration is caused by the unstable structural factor in the WSM
since the unstable WM mainly affects the regular parts of vibration as evidenced in the
results of Ur = 5.5 and 16. The mode competition is reflected in the frequency results at
Ur = 16 at the DV branch as well, where unstable WM dictates the vibration again and
unstable WSM plays a minor disturbing role, resulting in the weak quasiperiodic feature
observed in the phase diagram.

The vorticity fields at Ur = 3, 5.5, 7.5 and 16 are further examined in figure 13.
A regular two-raw parallel vortex street is observed at Ur = 3 in figure 13(a), representing
the wake pattern of IV. The gap vortices periodically interact with and impinge on the
DC, increasing the vibration amplitude of DC. At Ur = 5.5, the wake of the square
cylinders at the RV branch is still characterized by the parallel vortex street, while
the vortex street tends to be unstable in the far-wake region. The ‘P + S’ wake mode,
appearing as the combination of a pair of vortices and a single vortex during a vibration
cycle, is observed in the near-wake region at Ur = 7.5. The unstable WM and WSM in
FV intensify the interaction and coalescence among vortices, and induce the multiple
frequency components in the lift spectrum. The wake re-appears as the two-raw parallel
vortex street in near-wake field and the coalesced secondary vortex street in the far-wake
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Figure 13. Vorticity fields of the two tandem square cylinders at different VIV branches: (a–d) Ur = 3, 5.5,
7.5 and 16, respectively.

field at Ur = 16. The other frequency components, in addition to the primary vortex
shedding frequency, are likely induced by the secondary vortex street.

4.1.3. Transition from VIV to biased oscillation
The transition from VIV to BO, observed when Ur > 24 at L* = 5 in the present study, is
discussed by evaluating the effect of the higher-order harmonics. The case of Ur = 27 is
chosen as an example, whose time-history y-displacement and lift coefficient, FFT spectra
within different time stages, and phase diagram are shown in figure 14.

The evolution processes of y-displacement and lift coefficient in figure 14(a,b) are
classified into four stages, where stage I is in an initially developing state, stage II tends to
be a quasi-stable oscillation with its mean value being around zero, stage III presents the
varying process of gradual deflection and stage IV appears as a final oscillating state at the
biased equilibrium position. Stage II can be regarded as a VIV-type oscillation, developing
through stage III and transforming to be BO at stage IV eventually. The FFT is performed
for both the y-displacement and lift coefficient at the four stages to reveal the variation
of frequency components during the transition from VIV to BO. It is observed that the
primary frequency f 0 = 0.144 dominates the Y and CL at stage II, slightly modulated by
the 3f 0 and 5f 0 for CL and the 3f 0 for Y. When entering stage III, the f 0 changes to be
0.141 and the even-order harmonic frequencies are captured in addition to the odd-order
ones, especially for CL. Alternate odd-order and even-order frequencies appear in stage IV,
with the decreasing amplitudes for the higher orders. It is assumed that the occurrence of
even-order harmonic frequencies is responsible to the deflection of Y and CL, which will
be explained in the following paragraphs. The Poincaré mapping for the vibration of DC is
conducted at stage IV, represented by the blue points in figure 14(a, f ). The mapping points
in the phase diagram are similar to an asymmetric ‘figure-8’-shape, and the trajectory
lines are asymmetric to the equilibrium y-position, indicating the existence of symmetry
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Figure 14. DNS results of the DC at the BO branch when Ur = 27: (a,d) time-history y-displacement and lift
coefficient, respectively; (c–e) FFT amplitude spectra of y-displacement and lift coefficient at Stages II, III and
IV, respectively; and ( f ) phase diagrams of y-displacement and y-velocity at Stage IV.

breaking bifurcation. The bifurcation is a well-known origin to induce multiple frequencies
in vibration, confirmed by the numerous peaks in figure 14(c–e).

To examine the relationship between the even-order harmonic frequencies and the
deflection, the frequencies of f 0, 2f 0, 3f 0 and 4f 0 as well as their initial phases obtained
from FFT at stage IV are used to reconstruct the time-history CL of DC, and the
corresponding results are shown in figure 15. The time-history CL curves reconstructed
by the single frequency in figure 15(a–d) present a decreasing amplitude from f 0 to 4f 0, in
accordance with the FFT amplitudes in figure 14(e). By adding the objective time-history
curves, three combinations of f 0 + 2f 0, f 0 + 3f 0 and f 0 + 4f 0 are compared with the
curve constructed by a single f 0, whose results are illustrated in figure 15( f ) together
with zoom-in details in panels (g) and (h). The mean value of CL is clearly reduced
by 0.099 when superimposing the reconstructed curve of 2f 0, while that is increased
slightly for f 0 + 4f 0, indicating the even-order harmonic frequencies are responsible for the
deflection of lift oscillation. By contrast, the representative odd-order harmonic frequency
of 3f 0 mainly affects the oscillation amplitude. Therefore, even-order harmonic frequency
components, accompanied by proper initial phases, play a promoting role in the deviation
of lift from the zero equilibrium position. The even-order harmonics in lift could be
induced by the symmetry breaking bifurcation of the flow around the structure system,
which has been attributed to the origin of asymmetric deflection of the rotating circular
cylinder attached with a rigid plate (Lācis et al. 2014; Lu et al. 2016). Therefore, the
symmetry breaking bifurcation of the flow around the structure system leads to the biased
oscillation from the source.
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Figure 15. Lift coefficients related to different frequency and phase components at Ur = 27: (a–d) time-history
lift coefficients reconstructed by the single frequency of f 0, 2f 0, 3f 0 and 4f 0 as well as the corresponding
initial phases, respectively; (e) initial phases of f 0, 2f 0, 3f 0 and 4f 0 obtained from FFT; ( f ) time-history
lift coefficients reconstructed by f 0, f 0 + 2f 0, f 0 + 3f 0 and f 0 + 4f 0 as well as the initial phases; (g) and (h)
zoom-in details of panel ( f ).

The symmetry breaking of flow is further discussed by comparing the vorticity features
near DC at stage II (t = 197 and 201) and stage IV (t = 1204 and 1208), as shown in
figure 16. When t = 197, a negative gap vortex generating from UC is impacting on the
surface of DC and splitting into the UN11 and UN12, while the negative shear layer on
DC is developing into DN1, and the positive shear layer DP1 on DC has coalesced with the
UP02 during last half-cycle. When t = 201, the splitting positive vortices UP11 and UP12
are symmetric with the UN12 and UN11 at t = 197, respectively, while newly coalesced
vortex UN11 + DN1 is symmetric with the DP1 + UP02 at t = 197. The symmetric flow
features between t = 201 and 197 induce the symmetric vibration behaviours of the
cylinders at stage II. The splitting of the UC vortex and the shedding of a single DC vortex
during every half-cycle forms three vortices, causing the harmonic frequency of 3f 0. When
t = 1204 and 1208, UP11 and UP12 are split from the UC positive vortex in one half-cycle,
while UN2 only attaches on the top side of the cylinder in another half-cycle, appearing as
the asymmetric pattern. A pair of vortices, namely UP11 and DN1 + UN1 in figure 16(c),
are shed in one half of a cycle, and another pair of vortices, namely UP12 + DP1 and UN2,
are shed in another half of the cycle, leading to the 2f 0 frequency. The asymmetric flow
pattern at stage IV confirms the symmetry breaking of the FSI system.

4.2. FIV of the tandem square cylinders at L* = 2.5

4.2.1. Response and hydrodynamic characteristics
The DNS for the FIV of the tandem square cylinders at L* = 2.5, corresponding to the
reattachment flow regime, is then conducted, followed by a discussion on the vibration
responses and hydrodynamics. The vibration amplitudes and dominant frequencies of
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Figure 16. Vorticity fields near the DC at Ur = 27: (a–d) t = 197, 201, 1204 and 1208, respectively.

DC, UC and SC versus Ur are shown in figure 17(a–c), together with the time-history
displacements of DC and UC in panels (d) and (e) to show the VIV developing from
galloping (GA), which is defined as the GV branch.

The response amplitudes of DC and UC are classified into several branches with
increasing Ur, where the GV and GA branches are observed at large Ur values. An interval
of RV′, representing the resonant lock-in of DC and UC, is identified when Ur = 4–6,
where large and small response amplitudes are observed for DC and UC, respectively.
The lock-in frequency near 0.87fn and the absence of the peak amplitude for UC at the
RV′ branch are the prominent features to differentiate it from the RV branch discussed
in § 3.1.1. The arrangement of L* = 2.5 falls into the reattachment regime for two tandem
cylinders at L* = 1.5–4 identified by Zdravkovich (1987), which means that the vibration
of UC is slightly excited by the far resonant wake while the near reattached shear layer
may be too weak to induce large vibration amplitude at the RV′ branch. An interesting
phenomenon, that the RV and FV appear alternatively with the increasing Ur for DC
and UC, is observed at Ur = 6.5–8, accompanied by multiple frequency jumps. Such RV
interval is near the boundary of the structural instability, which is confirmed to be Ur = 6.9
according to figure 20. The critically unstable wake-structure mode promotes the UC to
achieve large vibration amplitudes at the RV branch. The large vibration amplitude (1.04D)
and low vibration frequency (0.73fn) of UC in the RV branch resemble the behaviours at
the GA branch. However, the vortex shedding frequency in the wake, evaluated by the
lift frequency of DC, is synchronized with the vibration to the natural frequency in RV,
which is a typical resonance phenomenon. The GA presents a desynchronized behaviour
between vibration and vortex shedding. The frequency separation between DC and UC
appears at Ur = 8.5–10. The vibration of DC behaves as FV, while the UC counterpart
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Figure 17. Vibration responses obtained from DNS at L* = 2.5: (a,b) normalized vibration amplitudes of DC
and UC, respectively, together with the SC amplitudes in panel (b); (c) normalized vibration frequencies;
(d,e) time-history displacements of DC and UC at Ur = 22, respectively.

develops into GA even though the vibration amplitude is relatively small. As stated by Li
et al. (2019), the winning of the structural mode in competition induces the GA, otherwise,
the VIV-dominated motion will occur. The transition between FV and GA is induced by
the intense competition between the unstable wake and structure modes. Compared with
DC, the UC presents a stronger relationship with the unstable structure mode, evidenced
by the interval of GA at Ur = 8.5–10. More detailed discussion on the competition between
VIV and GA will be presented in § 4.2.2.

For Ur = 10–26, the GV branch is identified for UC. In contrast, the onset of the
galloping is delayed to Ur = 16 after an interval of DV for DC. The timing span of the
UC galloping in figure 17(e) is longer than the DC counterpart in figure 17(d), indicating
again that the UC is related more to the unstable structure mode and can easily develop
into GA. The unstable wake mode dominates the vibration finally at the GV branch even
though the unstable structure mode has induced a period of GA in evolution. The GA
branch, with particularly large amplitudes and lock-in frequencies near 0.7fn, is observed
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Figure 18. FFT spectra of lift coefficients and normalized displacements of the two tandem square cylinders
at Ur = 3–34 and L* = 2.5: (a) lift coefficient of DC; (b) displacements of DC; (c) lift coefficient of UC; and
(d) displacements of UC.

at Ur = 26–34. The deviation of lock-in frequency from fn for the GA of a square cylinder
is owing to the effect of added mass, confirmed by Li et al. (2019) through the frequency
modification method introduced by Khalak & Williamson (1999). By comparing with
FIV responses of SC, both DC and UC present different amplitude and frequency trends
versus Ur, especially for the FV and GA branches. The variation from L* = 5 to L* = 2.5
strengthens the role of unstable structure mode in competition, promoting the behaviours
related to GA.

The FFT spectra of the lift coefficients, and the displacements of DC and UC versus
Ur are shown in figure 18 to examine more details of the frequency response. The lifts
and vibrations of DC and UC mainly present the primary frequency component in IV
and RV′. When entering the mixing region of RV and FV, the lift and displacement
frequencies are dominated by the wake mode for RV and the structure mode for FV,
where multiple frequency components are observed for FV. The frequency components
of UC at the GA branch of Ur = 8.5–10 indicate that the UC vibration is locked to the
structure mode because of the proximity of the primary vibration frequency to the natural
frequency. The vibration of DC is dominated by the wake mode because the primary
vibration frequency is close to the wake frequency in desynchronized VIV. The frequency
discrepancy of UC vibration and wake variation confirmed the existence of GA for UC at
Ur = 8.5–10. The frequency components of DC and UC at the GV branch are similar to the
DV counterparts, where a third-order harmonic frequency appears in the lift coefficients.
Complex frequency components, irregularly distributed between structure mode and wake
mode, are captured in GA at Ur > 26, especially for the DC and UC displacements. Again,
the dominant frequency of wake (0.113) is different from the lock-in frequency of structural
vibration (0.021), exhibiting the typical behaviours of GA.

The r.m.s. values of lift coefficients as well as the phase features of the FSI system at
L* = 2.5 are shown in figure 19. The results are classified into six regions in accordance
with the FIV branches depicted in figure 17. The r.m.s. lift coefficient of DC jumps to a
large value, while the UC counterpart is relatively small at the IV and RV′ branches, with
a constant value of 0 for phase lags between YDC and CL-DC and between YUC and CL-UC.
The region of 6 < Ur ≤ 8 is basically covered by the mixing of RV and FV, where the
r.m.s. lift coefficients and phase lags in RV share similar trends with those in RV′ except
for the two sharp peaks of r.m.s. CL-UC (1.38 and 1.34 at Ur = 6.5 and 7.5, respectively).
The discrepancy of the phase lags corresponding to DC and UC at 8 < Ur ≤ 11 is related to
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Figure 19. Statistical results and phase characteristics of lift coefficients at Ur = 3–34 and L* = 2.5: (a) r.m.s.
lift coefficients of the two square cylinders; and (b) mean phase lags between displacements and lift coefficients
of two square cylinders.
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Figure 20. Root loci of the coupled system at Ur = 0–34 and L* = 2.5 through stability analysis.

the different vibration branches of FV and GA. The interval of 11 < Ur ≤ 26 corresponds
to the DV and GV branches, which are characterized by the typical features of DV branch
described in § 3.1.1. The final branch at Ur > 26 is the branch of GA, where the small
lift excites particularly large-amplitude vibrations, confirming the weak correlation of
unstable wake mode with GA. The irregular phase lags at the GA branch indicate that
the frequencies of lift and vibrations are desynchronized, which is a primary feature for
galloping.
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Figure 21. Stability results of the FSI system at Ur = 3–34 and L* = 2.5: (a,b) real parts and imaginary parts
of the eigenvalues corresponding to the first two leading modes, respectively, accompanied by the compared
ones of the stationary tandem square cylinders.

4.2.2. Transitions among VIVs and galloping
More abundant VIV and GA branches have been identified for tandem square cylinders
at L* = 2.5 through the above discussion. The transition from RV′ to RV, as well as
the transition from VIV to GA, are examined by conducting linear stability analysis and
interpreting the temporal evolution of the vibration.

The root loci of the two leading modes for the FSI system obtained from linear stability
analysis are shown in figure 20, whose real and imaginary parts versus Ur are provided in
figure 21(a,b), respectively.

The imaginary parts of WM with blue colour mainly distribute around that of ST I, while
the imaginary parts of WSM with green colour are near that of ST II first and approach SM
counterparts gradually in figure 20. The real part of WM, also considered to be the growth
rate, is greater than 0 when Ur ≤ 1.3 and Ur ≥ 3.9 in figure 21(a), revealing the interval
of the unstable WM. In fact, the VIV with recognizable amplitude is observed at Ur ≥ 4
for DNS results in figure 17, consistent with the stability analysis. The WSM is found
to be unstable for Ur ≥ 6.9, entering the SM-dominated branch. The Ur corresponding
to RV′ falls into the region of the unstable WM completely, implying the relationship
of RV′ with unstable WM. The RV is near the boundary of the unstable WSM, whose
eigenfrequencies are near that of the ST II in figure 21(b). This observation suggests that
the WSM is dominated by the wake at the RV branch, and its instability resembles the
unstable WM except for the low eigenfrequencies, thus inducing RV with low lock-in
frequency. The transition from RV′ to RV will be further discussed by combining with
the temporal evolution of vibration. The growth rate λr of WSM continuously increases
from Ur = 6.9 to Ur = 10 while that of WM is at λr = 0.18, where the eigenfrequency of
WM asymptotes to that of ST I and WSM varies with a similar trend to SM ( fn). The
initially growing proportion of the structure component in the unstable WSM leads to the
FV. With the increasing Ur, the structural instability dominates the unstable WSM, and the
competition between unstable WM and SM promotes the appearance of either GV or GA
based on the dominance of either WM or SM, respectively. Behara, Ravikanth & Chandra
(2023) found that the galloping instability begins at a much lower Ur although the overall
vibration is still dominated by the VIV in the FIV of three tandem square cylinders. This
combination of VIV and GA is related to the mode competition.
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Figure 22. DNS results at the RV branch when Ur = 6.5 and L* = 2.5: (a,b) time-history displacement and
lift coefficient of DC, respectively; and (c,d) the UC counterparts; (e, f ) FFT amplitude spectra of DC and UC
displacements and lift coefficients at Stages II; and (g,h) the counterparts at Stages V; (i, j) vorticity fields at
t = 584 and 1210, respectively.

The time history of the displacements and lift coefficients of DC and UC, together with
the FFT spectra and vorticity fields at Ur = 6.5, are illustrated in figure 22 to reveal the
evolution of RV′ and the transition from RV to RV′.

The temporal evolutions of Y and CL in figure 22(a–d) are divided into four stages. Stage
I represents the development process from the initial state, followed by a relatively stable
state of Stage II, where the Y and CL display regular oscillating features. The FFT spectra
at Stage II indicate that the vibration of the system is at the RV′ branch since the primary
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frequency f 0 = 0.145 = 0.943fn and only DC exhibits a large vibration amplitude. A weak
disturbing frequency f 1 = 0.099, matching with the eigenfrequency of ST II, is observed
for UC at Stage II, implying that the transition from RV′ to RV is related to the resonant
wake near UC, defined as the gap vortex by Bhatt & Alam (2018), instead of the far wake.
The low resonant frequency gradually dominates the CL-UC evolution, then the YUC and
finally the CL-DC at Stage III. The first transition for the CL-UC confirms that the RV
originates from the unstable wake, and thus belongs to the resonance phenomenon. The
vibrations and lifts of DC and UC become stable at Stage IV, controlled by the primary
frequency f 0 = 0.105 = 0.683fn and affected by odd-order harmonics. The vorticity fields
at t = 592.9 and 1546.1, corresponding to Stage II and Stage IV, behave as the mode of
two-raw vortices and the ‘2S’ mode, respectively. The gap vortex, inducing large vibration
amplitude for UC, is observed at Stage IV, suggesting that the flow changes from the
reattachment to the co-shedding regime. In addition, the coalescence of the vortices (e.g.
DP1 and DP0) at t = 1546.1 enhance the proportion of high-order harmonics, especially
for DC.

The transition between VIV and GA is further discussed based on the temporal evolution
of Y and CL at Ur = 26, as shown in figure 23. The combination of the intermediate
GA and final VIV, known as the GV branch in the present study, exhibits the transition
between GA and VIV. The characteristics of Y and CL temporal evolutions of DC and
UC feature three stages. Both DC and UC behave as VIV-dominated vibration at Stage I,
whereas the Y of UC first transits to GA near the end of this stage, confirming that the
structural instability of UC leads to GA instead of the unstable wake. At Stage II, the GA
is identified since the low vibration frequency of f 0 = 0.026 = 0.676fn is desynchronized
with the high vortex shedding frequency of f 1 = 0.113 = 2.938fn. The CL values of DC
and UC are stable and regular near the end of Stage II, implying that the wake mode
is gradually suppressing the structure mode. The wake mode finally re-dominates the
vibration at Stage III with a primary frequency of 0.117 and a third-order harmonic
frequency. Although the structural instability promotes the appearance of GA, it is valid
because the structure mode dominates the wake mode in the competition, otherwise, the
VIV will dominate the vibration at the final stable stage. The vorticity fields at t = 352
and 870.6 exhibit the ‘2S’ vortex mode for both GA and VIV at Stage II and Stage III. The
low-frequency characteristics of GA is reflected in the moving trajectory of the ‘2S’ vortex
while the vortex shedding frequency is almost unaffected, supporting the conclusion that
the structure mode controls the vibration at the GA branch.

4.3. FIV response and branch map within L* = 1.5–5 and Ur = 3–34

4.3.1. Effect of L* on FIV response
In addition to the typical FIV characteristics of the two tandem square cylinders at L* = 5
and 2.5 discussed above, the vibration amplitudes and frequencies within L* = 1.5–5,
illustrated in figure 24, are investigated to quantify the effect of L* on FIV responses.

The vibration amplitudes of DC and the corresponding dominant frequency versus Ur
are shown in figure 24(a,b), respectively. The vibration amplitudes are classified into three
regions except for the initial branch with small vibration amplitudes. Region I is mainly
covered by RV′, RV and FV with large vibration amplitudes, which are distinguished by
the different frequency lock-in features described in §§ 3.1 and 3.2. Region II basically
falls into the branches of DV, GV and BO with almost constant or slowly decreasing
vibration amplitude with increasing Ur. Region III shows an overall ascending trend for
the vibration amplitude with increasing Ur, basically covered by the GA branch. The upper
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Figure 23. DNS results at the GV branch when Ur = 26 and L* = 2.5: (a,b) time-history displacement and
lift coefficient of DC, respectively; and (c,d) the UC counterparts; (e, f ) FFT amplitude spectra of DC and UC
displacements and lift coefficients at Stages II; and (g,h) the counterparts at Stages V; (i, j) vorticity fields at
t = 352 and 870.6, respectively.

Ur boundary of Region I is constant at 12 for L* = 5, 4.5 and 4, grows to almost 14 for
L* = 3.5 and 3, and then decreases to the value near 7.5 for the smaller L*. The number of
amplitude peaks varies from two to three when L* is reduced to 3, and then diminishes to
one peak with L* = 1.5. The variation of the amplitude peaks corresponds to the changing
of lock-in frequency in Region I. The vibration amplitude in Region II is amplified with
decreasing L* until approaching the boundary of Region III at L* = 2. Region III occurs
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Figure 24. Amplitude and frequency responses of DC and UC versus Ur at L* = 1.5, 2, 2.5, 3, 3.5, 4, 4.5
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at the amplitude curves of L* ≤ 2.5, whose lower Ur boundary varies from 26 at L* = 2.5
to 7 at L* = 2 and then to 8 at L* = 1.5.

Figure 24(c,d) shows the vibration amplitudes and frequencies for UC. Three regions
are also identified for the vibration amplitude. Different from that of DC, the branch of
RV′ is incorporated in the initial region instead of Region I due to the small vibration
amplitude, resulting in a slender shape of Region I for UC. Meanwhile, the amplitude
peaks in Region I are mainly induced by RV based on the lock-in frequency features. The
amplitude peaks in Region I present an increasing trend from L* = 5 to 2.5 and then exhibit
a sharp decline at L* = 2 and 1.5. The lower and upper Ur boundaries of Region I reach the
maximum values near L* = 2.5–3.5, differing from DC. The vibration amplitudes of UC
in Region II are small at L* = 2.5–5, while those in Region III jump to considerable large
values. Region III of UC locates at the range of small L*, whose largest Ur span appears
at L* = 2.

4.3.2. FIV branch map
The characteristics of vibration amplitude and frequency are associated with diverse FIV
branches. To clarify the distribution of FIV branches in the parameter space of L* = 1.5–5
and Ur = 3–34, the branch maps for both DC and UC are summarized based on the DNS
results and linear stability analysis, shown in figure 25.

The classifications of the vibration states at each branch for DC and UC are primarily
based on the response features of amplitude, frequency and equilibrium position, which
have been presented and interpreted in §§ 4.1 and 4.2. A transitional (TR) branch between
DV and GA branches at large Ur, which has not been discussed so far, is marked in green
in figure 25, and detailed at Ur = 34 and L* = 3 in figure 26. It is observed from figure 26
that the vibration and lift of both DC and UC share the same primary frequency of 0.125.
Their secondary frequencies are different, 0.008 for the vibration and 0.375 for the lift.
Although the vibrations are dominated by VIV, the significant component of the galloping
frequency tends to take over them, especially for UC, and thus defined as TR. The wake of
the system behaves as the ‘C(2S)’ mode, different from the typical ‘2S’ mode of the GA
branch.

The primary distributions of the FIV branches of the two tandem square cylinders are
summarized as follows.

(i) The RV′, RV and FV branches mainly intersperse between the IV and DV branches
or between the IV and GA branches for the two tandem square cylinders, where
the RV′ and RV occur at L* ≤ 4.3 and L* ≥ 2.5, respectively. The FV branch of DC
covers a larger parameter space for both L* and Ur than the UC counterpart, which is
identified at L* ≤ 3.2. The boundary of the structural instability basically separates
the RV′ or RV branch from the FV or DV branch even though local distinctions
between DNS and stability analysis exist near the boundary. The transition from the
IV branch to the RV′ or RV branch is attributed to the unstable wake, while the
transition from the RV′ or RV branch to the FV branch is related to the appearance
of the unstable structure.

(ii) The DV branch occupies the largest area of the branch map for DC and UC. At the
top-right corner of the DV branch, the BO branch caused by symmetry breaking
bifurcation is observed. In terms of the concerned parameters, the critical L* for
the BO branch is near 3.7 at Ur = 34 and the critical Ur (Urc) is evaluated as 24.5
at L* = 4.5. Within the present parameter range, the BO branch shows a gradually
decreasing Urc when L* grows from 3.7 to 4.5 and a stable Urc near 24.5 when

986 A10-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.339


C. Zhang, G. Tang, L. Lu, Y. Jin, H. An and L. Cheng

IV

FV DV BO GA GV TR

RV RV′ Structural stability boundary

IV

FV DV BO GA GV TR

RV RV′ Structural stability boundary

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

3 6 9 12 15 18 21 24 27 30 33

Ur

3 6 9 12 15 18 21 24 27 30 33

Ur

L∗

L∗

(b)

(a)

Figure 25. FIV branch map of two tandem square cylinders with the variation of reduced velocity (Ur) and
spacing ratio (L*): (a,b) DC and UC, respectively.

L* ≥ 4.5. The DC and UC share the same parameter range of L* and Ur for the
appearance of the BO branch.

(iii) The GA branch is located at the bottom-right corner of the branch map for DC and
UC. The GA branch of DC borders with DV while that of UC, excited by smaller Ur,
neighbours on FV, confirmed that the UC is more easily dominated by an unstable
structure mode. Two holes of GV and TR branches are found between the lower
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Figure 26. DNS results for two tandem square cylinders at the TR branch when Ur = 34 and L* = 3:
(a,b) normalized displacements and lift coefficients of DC and UC, respectively; (c,d) amplitude spectra of
normalized displacements and lift coefficients of DC and UC, respectively; (e, f ) vorticity fields at t = 767 and
770.9, respectively.

boundary of the DV branch and the upper boundary of the GA branch, where the GV
branch is within Ur = 11–26 and L* = 2.3–2.5, and the TR branch occurs at larger
Ur and near L* = 2.7–3. Notably, the GV and TR branches still belong to VIV-type
vibration based on the dominant features. The transitional GV and TR branches are
caused by the intense competition between unstable wake and structure modes, and
the dominance of wake or structure determines the transition to VIV or GA.

5. Conclusions

This study performs two-dimensional DNS and ROM-based linear stability analysis on the
cross-flow FIV of two identical square cylinders with m* = 3.5 in tandem arrangement at
Re = 150. The branches of VIV, BO and GA are identified over the range of 1.5 ≤ L* ≤ 5
and 3 ≤ Ur ≤ 34, among which the IV, RV′, RV, FV, DV, GV and TR branches are specified
for VIV. The transitions among different branches are examined. The main conclusions
from this study are summarized below.

Different FIV branches are identified based on the vibration responses of the two square
cylinders. The amplitude response of DC presents two peaks near Ur = 4.5–10 at L* = 5,
which are classified into the RV and FV branches that are inherently induced by the
resonance and flutter, respectively. The BO branch with biased equilibrium position in
randomly positive or negative y-direction appears at Ur > 24 for both DC and UC. With
increasing Ur, the DC experiences the branches of IV, RV, FV, DV and BO sequentially,
while the FV branch is absent for UC at L* = 5. A different resonance branch of RV′,
characterized by large vibration amplitude for DC and rather small vibration amplitude for
UC, is found near Ur = 4–6 at L* = 2.5. The GV branch, which is similar to the DV branch
at the final stage but experiences a period of GA in evolution, is identified at Ur = 4–6 for
DC and at Ur = 4–6 for UC at L* = 2.5. The DC behaves as the IV, RV′, mixing of RV and
FV, DV, GV and GA branches sequentially, while the UC presents a GA interval after the
mixing of RV and FV branches, and then appears as GV and GA branches at L* = 2.5.

The two square cylinders experience several vibration transitions among the VIV, BO
and GA with varying L* and Ur. The transition from IV to RV or RV′ is related to the
unstable WM. The WSM behaves as a wake mode first and then as a structure mode
with the increasing Ur. The critically unstable WSM dominated by the wake promotes
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the transition from RV′ to RV, while that dominated by the structure leads to the transition
from RV or RV′ to FV. The structural instability is the physical origin of the GA, whereas
the mode competition between unstable wake and structure delays the transition from
VIV to GA. The complete dominance of wake mode leads to regular VIV, evidenced
by the transition from FV or RV to DV. The unstable structure mode gradually becomes
prominent at low L* and large Ur, resulting in the GV and TR. Once unstable structure
mode plays the leading role, the GA is excited. The transition from DV to BO occurs
at large L* and Ur values, whose deviation from zero equilibrium position is associated
with the even-order harmonic frequencies. The symmetry breaking bifurcation in the FSI
system induces the biased equilibrium and even-order frequency components.

The transition boundaries among VIV, BO and GA branches within 1.5 ≤ L* ≤ 5 and
3 ≤ Ur ≤ 34 can be clarified through FIV branch maps of DC and UC. The RV′, RV and
FV branches are mainly interspersed between the IV and DV branches or between the IV
and GA branches for both DC and UC, where RV′ and RV occur at L* ≤ 4.3 and L* ≥ 2.5,
respectively. The DV branch locates at the upper central area of branch map for both DC
and UC. The BO branch is near the top-right corner of the DV branch, with the critical
L* of 3.7 at Ur = 34 and the critical Ur of 24.5 at L* = 4.5. The GA branch is mainly at
the bottom-right corner of the branch map. Two holes of GV and TR branches distribute
between the DV lower boundary and the GA upper boundary, where the GV branch is at
Ur = 11–26 and L* = 2.3–2.5, and the TR branch occurs at large Ur and near L* = 2.7–3.
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