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Abstract. A new proof and a generalization of the Osserman-Sarnak estimate for
the measure theoretic entropy of geodesic flows is presented.

In this note we discuss an estimate of Osserman and Sarnak [O-S] for the measure
theoretic entropy of geodesic flows. Let M be a compact Riemannian manifold with
nonpositive sectional curvature and denote by R the curvature tensor of M. Then
for all p€ M and all unit vectors v e TPM, K(v)'-= R(- ,v)v is a nonpositive sym-
metric operator on TPM. The estimate we will obtain is

f
(1)

where h^ is the measure theoretic entropy of the geodesic flow of M, SM is the
unit tangent bundle of M and p denotes the normalized Liouville measure on SM.
Moreover,

r
iff M is locally symmetric. (2)

The results, (1) and (2), were obtained by Osserman and Sarnak in the case that
the sectional curvature of M is strictly negative. We refer the reader to [O-S] for
a formulation and comparison of the estimates which preceded (1) and respective
references.

The measure theoretic entropy of a measure preserving flow is an asymptotic
quantity associated with the flow. In the case under consideration Pesin [P2] showed
that /»„ is given by the average of the mean curvatures of the horospheres. The
significance of (1) lies in the fact that it estimates the asymptotic quantity h^ by an
average of local quantities associated to M.

Our proof of (1) and (2) is a simplification of the proof of Osserman and Sarnak
and it works under the weaker assumption of nonpositive sectional curvature. Note
that this is the weakest assumption under which (1) and (2) make sense. An important
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feature of our approach is that we estimate the exponential rate of growth of certain
volumes along individual but typical geodesies. In the course of the discussion we
will also obtain formulas of Pesin [P2] and Freire and Mane [F-M] for /iM.

1. Multiplicative ergodic theorem and entropy formula
In this section we will state the Oseledets Multiplicative Ergodic Theorem [Os] in
the form in which we will use it. Let {g'} be a smooth flow without fixed points on
a compact manifold X preserving a smooth probability measure /* on X. We are
interested in exponential growth rates associated with dg'.

Let u(x) = (d/dt)g'x\,^0 be the velocity vector of the flow. Then dg'u(x) = u{g'x)
and therefore it is natural to consider, instead of dg', the quotient linear operators

where Qx is the quotient of TXX by the 1-dimensional subspace spanned by u{x).
These operators contain all the information about the exponential growth and decay
under dg' which we need.

Assume || • || is a Riemannian norm on the bundle Q -* X. Then for almost all
x e X, the limit

lim — In ||I4W|| '•= X±(x> w),

exists for all x e <?x\{0} and it is called a Lyapunov exponent. Lyapunov exponents
are independent of the choice of || • ||. We define x^ix, 0) : = ~°°-

For almost every x e X, we obtain subspaces

E"(x) = {we Qx\x~(x, w)<0},

Es(x) = {weQx\x
+(x,w)<0},

By the Oseledets Theorem for almost every xeX these subspaces are linearly
independent and they span Qx. Furthermore for any subspace E such that £ u (x)c
E c E"(x)®E°(x) the exponential rates of volume growth in E, that is the limits

lim — In Idet (Li|E)| = ±^(x) (3)

exist and they differ by the sign alone in the future and in the past (cf. [F-M]).
Also x(x) does not depend on the choice of E as above and x(x)>0 unless
Eu(x) = {0}. In fact x(x) is equal to the sum of the positive Lyapunov exponents
taken with multiplicities but this will not be used in the sequel. By the Pesin Entropy
Formula [PI] the metric entropy /iM of the flow {g'} with respect to the measure /x
is equal to the average exponential rate of volume growth, that is

J X
X(x) dfi(x). (4)

2. The geodesic flow
Let M be a compact Riemannian manifold of dimension n and of nonpositive
sectional curvature. By SM we denote the unit tangent bundle of M and by %,,
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veSM, the geodesic with initial velocity v. The geodesic flow g':SM-*SM, t e i ,
is defined by g'v = yv(t)- The flow g' preserves the normalized Liouville measure
jix. on SM.

Let v6 SM and peM be the footpoint of v. Then TVSM is naturally isomorphic
to TpM® V(v), where V(t>) c TPM is the orthogonal complement of v in TPM. With
this identification the differential dg' of g' at t> is given by

where 7 is the Jacobi field along yv with the initial condition /(0) = x, J'(0) = y.
Since dg'(V(v)@ V(v)) = V(g'v)® V(g'v), the restriction of dg' to V(v)@ V(v) is
a canonical representation of the quotient V discussed in § 1. This corresponds to
considering Jacobi fields perpendicular to yv. Recall that Jacobi fields satisfy the
Jacobi equation, namely

J"+K(g'v)J = 0, (5)

where K(v): V(v)-* V(v) is defined by K(v)x = R(x, v)v and R denotes the cur-
vature tensor. The operator K(v) is symmetric and since the sectional curvature is
nonpositive it is also nonpositive. Noted that this implies that ||/(f)||2 is a convex
function of t. Indeed

(J, J)" = 2(J", J) + 2(J', J') = -2(KJ, J) + 2(J', J') > 0.

It is useful to introduce the symplectic form <o on V(v)® V(v) defined by

w((x,, yt), (x2, y2)) = <x,, y2)-{x2,yx).

By the force of (5) this form is preserved under dg'.
We denote by H(v) the linear subspace of V(v)® V(v) defined by the condition

that (x, y) € H(v) if the Jacobi field / along yv determined by /(0) = x, J'(0)=y is
nondecreasing in norm for all t. By convexity we have

(x,y)eH(v) iff ||/(f)|| remains bounded for t < 0. (6)

It is well known that H(v) is the graph of the second fundamental form U(v): V(v) -*
V(v) of the horosphere determined by —v. The operator U(v)is symmetric nonposi-
tive and since dg'H(v) = H(g'v) it satisfies by the force of (5) the Riccati equation

U'+U2+K(g'v) = 0, (7)

where U' denotes the covariant derivative of U(g'v) along yv. Note that H(v) is
a Lagrangian subspace of V(v)® V(v) since U(v) is symmetric.

For notational simplicity we will sometimes suppress the dependence on v.

PROPOSITION 2.1. E"cHcEu@E°.

Proof. We will first establish the general fact that E" and E"®E° are skeworthogonal
complements of each other. Indeed, if w,e E" and w2e E"®E°, then since ||«|| = 1
we have

lim —Inlcoidg'wt, dg'w2)\<0.
, OO |

The symplectic form w is preserved by dg', so that <o(dg'wi, dg'w2) is constant in
t, and we conclude that (o(wlt w2) = 0. A skeworthogonal complement of a subspace
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has the complementary dimension, hence

dim£" + d i m £ u 0 £ ° < 2 ( n - l ) .

Similarly

dim£s + d i m £ s © £ ° < 2 ( n - l ) .

But because dim £ s + dim £" + dim £ ° = 2 ( I J - 1 ) we conclude that there must be
equalities and hence EU®E° is the skeworthogonal complement of E".

£"<= H by (6). It follows that the skeworthogonal complement of E", which is
E"®E°, must contain the skeworthogonal complement of H, which is H itself
because H is a Lagrangian subspace. •

In the case of negative sectional curvatures E"(v) = H(v). When the sectional
curvature is allowed to vanish E"(v) may be much smaller than H{v). But H(v)
is a more geometric object than Eu(v) is. In particular H{v) is well denned for
every veSM and Eu(v) is defined only almost everywhere.

By (3) and (4) and the above Proposition we can express the metric entropy of
{g'} by the exponential rates of volume growth in H(g'v). However, to be able to
treat the case of nonpositive sectional curvature as opposed to negative sectional
curvature we have to work with a subspace of H{v). Let Va(v) be the orthogonal
complement of ker U(v) in V(v).

LEMMA 2.2. (i) xeker U(v) iff the Jacobi field determined by 7(0) = x, /'(0) = 0
satisfies / ' ( 0 = 0 for all t <0.
(ii) K(v) = 0 on ker U(v) and U(v) and K(v) preserve V0(v).

Proof. Since | |/(0| |2 is convex and nondecreasing and (J'(0), J{0)) = 0 we conclude
that ||J(t)|| = ||7(0)|| for f<0. Thus we get for f <0

o=\{J, jy=</', jy=-<KJ, J)+(j; j').

Since K s 0 we get / ' = 0 and KJ = 0 for t < 0, and (i) follows immediately. Further-
more we see that ker l/(u)<=ker K(v). Since K(v) is symmetric we conclude that
K(v) preserves V0(v). This proves the Lemma. •

It follows from the above Lemma that dim V0(g'v) is nondecreasing in t and that
dg'( V0(v)® V0(»))c V0(g'v)@ V0(g'v) for f >0.

LEMMA 2.3. dim V0(g'v) = constant in t for v from a g'-invariant subset f lc SM of
full measure.

Proof. Any measurable function, which is nondecreasing along the orbits of a
measurable flow preserving a probability measure, is equal on a set of full measure
to a function constant on the orbits. •

Lemma 2.2 implies that V0(g'v) is the parallel translate of V0(v) along yv for all
t e R and ved.

Let us denote by U0(v) and K0(v) the restrictions of U{v) and K(v) to V0(v).
We define

H0(v) := H(v) n (Vo(»)© V0(o)) = graph U0(v).

By Lemmas 2.2 and 2.3 dg'H0(v) = H0(g'v) for veto.
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For v e ft a Jacobi field / along yv splits into / = J, + J2, where /,(;) € ker U(g'v)
and 72(')e V0(g'u) are Jacobi fields since K(g'v) = 0 on ker U(g'v) and ker U(g'v)
is parallel along yt,. We easily conclude that E"(v)a H0(v) for veil.

Note that by construction Uo is an invertible operator.

3. Volume growth and entropy estimate
It is useful to consider different volume elements in H0(v). Since H0(v) =
graph U0(v), we may identify H0(v) with V0(v) by the projection onto the first factor
and thus write a scalar product in H0(v) as (A(v)-, •), where A(v) is a positive
operator on V0(t;). For example the standard scalar product in H0(v) is given by
A{v) = I+ U\. Given scalar products in H0(g'v) let

fl(0 = |det*'|Wo(J (8)
be the Jacobian of dg' restricted to H0(v) with respect to the scalar products. A
classical computation yields

r(t):= —In a(t)=^trA'A'l + trU0. (9)
dt

Note that a(t) is defined along a particular geodesic but r is actually a function on
SM (defined almost everywhere).
PROPOSITION 3.1.

= I
JS
I tr(Uo-Ko U0)(I + Ulr1 dfi.
SM

Proof Applying (9) to the standard scalar product we get by the Riccati equation (7)

A'=U'oUo+UoU'o=-2U3
o-KoUo-UoKo

and

r(t) = tr (Uo- K0U0)(I + U2
0)-\

Furthermore we have
1 l CT

X(v)= lim — lna(7)= lim — r(t) dt
T-+OO T T-.+QO T Jo

and since r is an integrable function on SM we get by the Birkhoff Ergodic Theorem

K=\ x(v)dfi(v)=\ rdfji. •
J SM J SM

For the purpose of proving the above Proposition we could have worked as well
with H, U and K. Anyway, by our construction in § 2, replacing Uo and Ko by U
and K will not change the trace so that we obtain immediately

/ i M = | tr {U - KU){I + U2)-1 dfi.
JSM

This is one of Pesin's formulas for the metric entropy of the geodesic flow, [P2]. It
holds under the assumption that the metric has no conjugate points, if we define
U appropriately and our proof works in that case also, once we establish that
Eu<= graph UcE"®E°.
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Now we will consider three other scalar products, namely
1. A = I,
2. A=Ul,
3. A=U0.
The scalar product 1(2) is the standard scalar product in Vo transported to Ho by
the projection onto the first (second) factor. All three scalar products are smaller
than the standard scalar product. The norm of a nonzero vector in Ho is increasing
under dg' for the scalar products 1 and 3 (but not necessarily so for the scalar
product 2).

Let a, and r,, i = l ,2 ,3, be defined as in (8) and (9) for the respective scalar
products 1, 2, 3 and let c, be the ratio of the standard volume element in Ho and
the volume element determined by the ith scalar product. By straightforward compu-
tations, using (9) and the Riccati equation (7) we get

r,=tr Uo,

r2 = t r(-Ko[/o ' ) ,

We have

0<a,(t)<a(t)c(0) and r,(t)>0 (10)

for all 16 U, i = 1,2,3. The first claim follows from the fact that the volume element
defined by the ith scalar product is smaller than the standard volume element. The
second claim follows from tr (-KoUol) = tr (\f-K0Uo W-Ko)> 0. It follows from
(10) and (3) that

l imsup-
T-«+oo I Jo

\ [ 1 1
limsup- rt{t) dt = \im s up - In at{T)< lim - I n a(T) = x(v),

T I J 1 i

and

I f 0 1 1
liminf— r,(r) df =-limsup —In a , ( T ) s - lim — In a(T) =#(«).

Putting the inequalities together we obtain

1 fr I f 0

limsup— r,-(r) dt<x(v)^ liminf — I r,(f) dt. (11)
T-+0O T Jo T—oo | T| J T

Under the assumption that r, is integrable as a function on SM we obtain from
(11) by the BirkhoS Ergodic Theorem and the equality of time averages in the future
and in the past that

[
JSISM JSM

Integrability of r, follows from the fact that the principal curvatures of horospheres
are bounded, but we do not know how to establish the integrability of r2 (and r3)
by geometric considerations. We will obtain the integrability of r,, i = 1,2,3, from
(11) by a bit of Ergodic Theory.

LEMMA 3.2 Let {g1} be a measure preserving flow on a probability space (X, fx.), and
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letf:X-*R be a measurable nonnegative function. If for almost every xeX
1 fT

Urn sup - f(g 'x) dt < k(x),
T-+00 I Jo

where k: X -»IR is a measurable function, then

\
Jx

< [ k(x)dn(x).
Jx

Proof. Let

(f(x)

We have 0< / N < / a n d / N e V(X, fi). By the Birkhoff Ergodic Theorem, for almost
all*

Hm ^ I fN(g'x)dt=f%(x)
T->+oo 1 J Q

and

[ f%(x)dn(x)=\ fN(x)d»(x).
Jx J x

By assumption /jy(x)< k(x) and so

fN(x) d/j,(x)^ k(x) dfj,(x).
Jx Jx

Hence

f(x) dfj,(x)< \ k(x) du,(x). D
Jx Jx

Applying the above Lemma we get

PROPOSITION 3.3

- [ - f _ -i
J SM J SM

The first formula was obtained by Pesin [P2] in the case of a metric without conjugate
points, see also [F-M]. One formula would follow immediately from the other if
we would have the integrability of lndett/0. Indeed (In det C/0)' = tr U'QUO1 =
t r(£/0-KQUO1). We do not know though how to establish the integrability of
In det Uo by a geometric argument (a priori det Uo may be arbitrarily small). In the
case of a metric without conjugate points the formula AM = JSM tr Udfj, can also be
obtained by our method once Proposition 2.1 is established. In this case r, =tr U
may be negative but it is known to be bounded and hence integrable.

In estimating the entropy from below we will use

hli=\ r3
JSM

and the following general fact.
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LEMMA 3.5. For all linear symmetric operators U, M, N, on a Euclidean space, if
U>0, M > 0 and N > 0, then

tr (MU + NU~') a 2 tr N / W J V

and the equality holds if and only if VM U = T/N.

Proof. Let S = V M V Z J - ^JTF~\ We have tr SS* > 0 and tr SS* = 0 if and only if
S = 0. At the same time

tr SS* = tr ( V W U - \ / N V I T T ) ( % / W M - VZrVJV)

= tr >/M IA/M + tr V771/ " ' VlV - tr SMVN - tr

Hence

tr (Mt/ + NI/"1)

and the equality holds if and only if %/MvT7 = \fN-Ju~1. •

THEOREM 3.6.

v) dfi(v),

and the equality holds if and only if the manifold M is locally symmetric.

Proof. By Lemma 3.5

K J S

The equality holds if and only if U0(v) = T/-K0(V) for almost all v e SM. Then for
almost all veSM, U(v)2 = —K(v). By continuity we have the last equality for all
v € SM. The Riccati equation (7) implies that U' = 0 on SM. Hence U2 and there-
fore also K are parallel along geodesies. But if K is parallel along geodesies the
geodesic reflection in any point of M is a (local) symmetry. Thus M is locally
symmetric. •
Remark 3.7. In the proof we estimate the exponential rate of volume growth
pointwise. With our choice of volume element this rate has by Lemma 3.5 a global
minimum in an open set of Lagrangian subspaces graph U, U>0. So we could
obtain our estimate without the construction of invertible Uo, but then we would
be unable to establish when the equality holds. In [W] such a method was formulated
in the case of discrete time symplectic systems and applied to estimating the measure
theoretic entropy of the gas of hard spheres.
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