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The motion of small non-spherical particles is often studied using the unsteady Stokes
equations. Zhang & Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an
asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity,
i.e. O(ε), where ε quantifies the shape deviation from a sphere. Importantly, key physical
phenomena are absent at O(ε), including (1) coupling between the torque experienced
by the particle and its linear translation, (2) coupling between the force the particle
experiences and its rotation and (3) the effect of non-sphericity on the orientation
averages of these forces and torques. We present an explicit asymptotic theory to
second order in particle non-sphericity, i.e. O(ε2), for the force and torque acting on
a particle in a general unsteady Stokes flow. The derived analytical formulae apply to
particles of arbitrary shape, providing the leading-order asymptotic theory for the three
above-mentioned phenomena. The theory is demonstrated for several example nearly
spherical particles including a spheroid, a ‘pear-shaped’ particle and a simple model
for a SARS-CoV-2 virion. This includes formulae for force and torque as a function of
particle orientation and their corresponding orientation averages. Our study reveals that the
orientation-averaged forces and torques experienced by a nearly spherical particle cannot
be generally represented by a perfect sphere. The reported formulae are validated using
finite-amplitude three-dimensional direct numerical simulations of the Navier–Stokes
equations. A Mathematica notebook is also provided, facilitating implementation of the
theory for particle shapes of the user’s choosing.
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1. Introduction

The time-dependent motion of small particles immersed in viscous fluids has been studied
extensively, providing the foundations for a multitude of applications and technologies.
One prominent application is in microrheology where the characterisation of particle
dynamics forms the basis for measurement (Squires & Mason 2010). Examples include
the optical trapping of small spherical particles (Atakhorrami et al. 2005, 2008) through
to monitoring of the rotational diffusion of highly non-spherical microdisks (Cheng &
Mason 2003). Particle motion in such microrheological measurements can be induced
either passively (e.g. via Brownian fluctuations) or through active forcing (e.g. using an
electric/magnetic field).

Another example where unsteady particle motion can be used to advantage is in the
autonomous propulsion of non-spherical particles in acoustic fields. It is known that when
small particles, with either shape or density asymmetries, are trapped at the pressure node
of an acoustic standing wave, they can undergo autonomous (self-induced) propulsion
(e.g. see Wang et al. 2012; Rao et al. 2015; Ahmed et al. 2016). The primary mechanism
proposed for this experimentally observed propulsion is (nonlinear) acoustic streaming,
driven by (linear) small-amplitude oscillatory motion of the particle itself (Nadal & Lauga
2014; Collis, Chakraborty & Sader 2017; Nadal & Michelin 2020). In this application,
coupling of translational and rotational motion of the particle drives directed streaming,
producing a jet which propels the particle (Collis et al. 2017; Nadal & Michelin 2020;
Collis, Chakraborty & Sader 2022). Interestingly, Lippera et al. (2019) proved that no
propulsion occurs to first order in the radial shape perturbation of nearly spherical
particles. This established that higher-order effects drive propulsion of these particles.

Such applications of unsteady particle motion are not limited to rigid particles. For
example, Pelton et al. (2013) studied the small-amplitude (oscillatory) elastic vibration
of bipyramidal gold nanoparticles that are performing ultra-high-frequency (gigahertz)
elastic vibrations in fluid. The short time scale of the generated unsteady flow (in the
picosecond regime) naturally interrogates molecular relaxation processes in simple liquids
(Slie, Donfor & Litovitz 1966; O’Sullivan et al. 2019). This allows for direct interrogation
of the viscoelastic response of these liquids (Chakraborty et al. 2018), which constitutes an
application of nanorheology (Canale et al. 2019). An understanding of the hydrodynamic
interaction of small particles is essential for interpreting measurements in all of the
applications mentioned above.

Perfect solid spheres are a rare occurrence in nature, yet are used ubiquitously to
model real-world phenomena including some of the applications listed above. A canonical
example in fluid mechanics is the drag experienced by a perfect solid sphere moving
steadily in a viscous fluid at low Reynolds number, i.e. Stokes’ law (Stokes 1851). The
resulting formula, and its variants as a function of geometry, have found broad-ranging
applications that include the sedimentation of dilute particulate suspensions (Richardson
& Zaki 1954) through to the characterisation of optical laser traps (Perkins 2009).

Viscous flows generated by the motion of small particles occur precisely in this
low-Reynolds-number regime. Consequently, they are often treated under the framework
of the unsteady Stokes equations (that naturally encompass the steady case), which neglect
the fluid’s convective inertia while retaining its local inertia. This simplified approach
is justified in a range of applications, including the small-amplitude oscillatory motion
of micro- and nanoparticles. Neglect of the fluid’s convective inertia greatly simplifies
calculation of the flow field, leading to results that are linear in the particle velocity
while generally retaining the dominant physical processes (Batchelor 2000). A well-known
exception is ‘Stokes’ paradox’ for the steady, two-dimensional flow generated by a cylinder
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Unsteady motion of nearly spherical particles in fluids

in an unbounded fluid, where convective inertial effects balance viscous effects in the
particle’s far field. Importantly, such exceptions do not occur in unsteady flows, flows
generated by three-dimensional bodies or in bounded fluid domains.

Because particles are often modelled as perfect spheres, knowledge of the effects of (any
degree of) non-sphericity is important for practical implementation. A key contribution to
this understanding was reported by Zhang & Stone (1998) who developed an analytical
theory that considers the radial degree of non-sphericity to be asymptotically small,
quantified by the small non-dimensional parameter ε. That previous work examined the
effect of non-sphericity on the force and torque experienced by a nearly spherical particle
undergoing arbitrary translational and rotational motion.

The theory of Zhang & Stone (1998) is derived to first order in the non-spherical shape
parameter ε, i.e. it is correct to O(ε). While accounting for much of the fluid physics
of nearly spherical particles, this first-order approach does not capture several phenomena
exhibited by non-spherical particles. For example, non-spherical particles undergoing pure
steady translation experience finite torque. The first-order theory of Zhang & Stone (1998)
predicts that this torque (about the particle’s geometric centre) is identically zero to O(ε),
regardless of the particle’s shape and orientation. A prediction of zero torque does not
coincide with observations of non-spherical particles. For illustrative purposes, consider
the extreme case of a particle consisting of a slender rod attached to a sphere at one of
its ends, moving at finite angle of attack to its principal geometric axis. The particle
naturally experiences a non-zero torque about its geometric centre. This torque–translation
coupling phenomenon is not restricted to highly non-spherical particles (as per this
example). We therefore conclude that any such coupling between translational motion
and (rotation-inducing) torque for nearly spherical particles must occur at higher order
in ε, i.e. O(ε2). Another illustration of this phenomenon is exhibited by the flagellum of
bacteria. Many bacteria swim by rotating a helical flagellum (Berg & Anderson 1973).
This conversion of rotation into linear translation is only possible due to rotation–force
coupling. A nearly spherical analogue of such a particle will exhibit force–rotation and
torque–translation coupling at O(ε2).

Another practical situation arises when examining the orientation-averaged force
experienced by non-spherical particles in flow. For example, Cheng & Mason (2003)
studied the rotational diffusion of highly non-spherical solid microdisks to determine the
shear moduli of a surrounding viscoelastic fluid. This required the orientation average of
the hydrodynamic force/torque experienced by the disks (Hubbard & Douglas 1993). The
above-mentioned O(ε) theory predicts that the orientation average of the force experienced
by a nearly spherical particle in its direction of motion is identical to that of a perfect
sphere. This demonstrates that the existing first-order theory for nearly spherical particles
does not capture the effect of particle non-sphericity in such measurements. A third
phenomena is the non-zero torque experienced by a non-spherical particle undergoing
oscillatory rotation in the (high-frequency) inviscid flow limit, for which the first-order
theory predicts zero torque.

A higher-order theory is required to capture these key phenomena. This forms the
aim of the present work, which develops theory for nearly spherical particles to second
order in the non-spherical shape parameter ε, i.e. to O(ε2). The theory is derived
for nearly spherical particles of arbitrary shape, by performing a regular perturbation
expansion in small ε. The first-order flow field is required for the second-order solution,
which is obtained using a general solution to the unsteady Stokes equations in vector
spherical harmonics. An explicit analytical form for the second-order solution is derived,
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requiring the shape of the particle surface only. The utility of this general theory
is demonstrated through its application to three example nearly spherical particles:
(1) a prolate spheroid, (2) a ‘pear-shaped’ particle that exhibits force–rotation and
torque–translation coupling and (3) a ‘harmonic virion’. The latter particle is a simple
model for a SARS-CoV-2 virion, which is used to study how the number of ‘spiky’
surface protrusions affect the virion’s hydrodynamics. In all cases, formulae are presented
for generally unsteady, non-axisymmetric particle motion. A Mathematica notebook is
provided in the supplementary material available at https://doi.org/10.1017/jfm.2024.1075
(with user notes in Appendix A), facilitating implementation of the derived theory
for particle shapes of the user’s choosing. An additional comparison is made with an
anisotropic Brownian particle studied by Kraft et al. (2013), which demonstrates good
agreement of the developed theory with existing results in the case of translation–rotation
coupling.

We begin in § 2 by deriving the general theoretical framework for an arbitrary
nearly spherical particle immersed in an unbounded and quiescent viscous fluid, to
second order in ε. This gives the force and torque experienced by the particle in
terms of its motion and resulting fluid stress tensors; the latter are specified by the
fluid velocity at the particle surface, via the Lorentz reciprocal theorem. Results of
the implementation of this framework are given in § 3 where general and explicit
analytical expressions for the force and torque, solely in terms of the particle motion,
are reported. The above-mentioned example particles are then studied in § 4 using the
derived general expressions from § 3. This includes analytical formulae for the force and
torque experienced by these example particles, their orientation-averaged expressions and
their limits of zero- and high-frequency motion. To demonstrate the validity of the derived
formulae, their predictions are compared with three-dimensional finite-amplitude direct
numerical simulations (DNS) of the (nonlinear) Navier–Stokes equations in § 5. Details
of the theoretical and numerical calculations are relegated to appendices, which also
contain information on the Mathematica notebook (supplementary material; information
in Appendix A).

2. Theoretical framework

We consider a nearly spherical particle that executes small-amplitude, oscillatory
rigid-body motion at a single angular frequency, ω, and amplitude, a, in a quiescent and
unbounded viscous fluid. The following non-dimensionalisation is performed: all distance
variables are scaled by the radius of an equivalent-volume sphere, Req, time by ω−1,
velocity by ωa, angular velocity by ωa/Req and pressure by ωμa/Req, where μ is the
fluid’s shear viscosity; this specifies the force and torque scales of ωμaReq and ωμaR2

eq,
respectively. Henceforth, all variables refer to their non-dimensional counterparts. The
non-dimensional oscillation amplitude is δ ≡ a/Req, and the governing Navier–Stokes
equations is

β

(
∂u
∂t

+ δu · ∇u
)

= −∇p + ∇2u, ∇ · u = 0, (2.1)

where β = ρR2
eqω/μ is the oscillatory Reynolds number of the flow and ρ is the fluid

density. The fluid boundary conditions are

u = Re[U e−it] + Re[Ω e−it] × r on r ∈ Sp, (2.2a)

u → 0 as |r| → ∞, (2.2b)
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Unsteady motion of nearly spherical particles in fluids
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Figure 1. Examples of three nearly spherical particles generated using the radial coordinate specified by (2.5).
The degree of (infinitesimal) non-sphericity is exaggerated for clarity. (a) Prolate spheroid with a major-axis
length of 1 + ε, with radial shape perturbation functions f and g specified in (4.3). (b) ‘Pear-shaped’ particle,
with f and g specified in (4.11b). (c) ‘Harmonic virion’ where f is specified by a linear combination of (l,m) =
(20,±10) spherical harmonics, see (4.18a) with n = 10, and g is specified in (4.18b).

where Sp is the (time-varying) location of the particle surface, the constant vectors U
and Ω specify the rigid-body (dimensionless) translational and angular velocities of the
particle, respectively, and Re gives the real part of the expression. Figure 1 gives graphical
illustrations of three nearly spherical particles that are studied in § 4 (with exaggerated
shape perturbation, for clarity).

2.1. Small-oscillation-amplitude limit
The nearly spherical particle executes small-amplitude motion such that the scaled
Lagrangian displacements of all material points on its surface are of O(δ). Consequently,
the scaled angular displacements of these material points are also of O(δ).

Expanding (2.1) to linear order in small δ gives the (linear) unsteady Stokes equations.
This has the consequence that all effects due to nonlinear interactions of either fluid or
particle motion (including Lagrangian boundary corrections) are removed, i.e. there are no
time-averaged effects or mixing at different frequencies. Due to this linearity, all dependent
variables (denoted by X) exhibit the explicit time dependence X(r, t) = Re[X̃(r) e−it],
where r is the position vector from the particle’s geometric centre, ‘i’ is the imaginary
unit and t is time. The superfluous ∼ notation is omitted for convenience and henceforth
all dependent variables refer to their quantities in the frequency domain; note that as per
(2.4), U and Ω are both quantities in the frequency domain. The unsteady Stokes equations
are therefore

λ2u = −∇p + ∇2u, ∇ · u = 0, (2.3)

where λ = (1 − i)
√
β/2. In this linear limit, the flow boundary conditions are the velocity

of the particle mapped onto the stationary particle surface, i.e.

u = U + Ω × r on r ∈ S, (2.4)

where S is the (stationary) surface of the nearly spherical particle, together with decay
of the velocity field to zero far from the particle, i.e. (2.2b) holds. Figure 2 shows a
cross-section of the particles defined in figure 1, illustrating the difference between the
nearly spherical surface, S, and the surface of the unit sphere, Ŝ, which is equivalent to
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Figure 2. Cross-sections in the y1–z1, y2–z2 and y3–z3 Cartesian planes of the three particles in figure 1. Solid
lines correspond to S, the surface of the nearly spherical particle (non-dimensionalised by the radius of an
equivalent-volume sphere), and dashed lines correspond to Ŝ, the surface of the unit sphere. See (4.3), (4.11b)
and (4.18), with i = 2, for the shape perturbation functions, f and g, that generate S in (a)–(c), respectively. The
(infinitesimal) degree of non-sphericity is exaggerated for clarity.

the surface of the equivalent-volume sphere after non-dimensionalising by Req. Due to
linearity of the governing equations/boundary conditions, all results in this study can be
trivially extended to arbitrary time-dependent motions of the particle through the use of
Fourier/Laplace transforms.

2.2. Nearly spherical particle
The particle is ‘nearly spherical’ and of arbitrary shape with a surface that is specified by
the dimensionless radial coordinate:

R = 1 + εf (θ, φ)+ ε2g(θ, φ)+ O(ε3). (2.5)

We remind the reader that R and all spatial variables are scaled by the radius of an
equivalent-volume sphere, Req. Equation (2.5) defines the shape of the particle and is
independent of its motion. The O(1) dimensionless functions f (θ, φ) and g(θ, φ) define
the radial shape perturbation correct to O(ε2). The variables θ and φ are the usual polar
and azimuthal angles, respectively, of the particle’s fixed spherical coordinate system
(see figure 1) whose origin is at the particle’s geometric centre. The parameter ε is the
asymptotically small ‘non-spherical parameter’ which is identical to that used by Zhang
& Stone (1998). The relationship between the two radial shape perturbation functions, f
and g, is discussed below. Note that for a particle with an inhomogeneous mass density
distribution, the particle’s geometric centre and centre of mass may not coincide.

The equivalent-volume sphere constraint is∫
Ŝ

∫ R

0
dV = 4π

3
, (2.6)

where R is defined in (2.5). When (2.6) is expanded to first and second order in ε, we
obtain the respective results ∫

Ŝ
f dS = 0, (2.7a)∫

Ŝ
g dS = −

∫
Ŝ

f 2 dS, (2.7b)
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Unsteady motion of nearly spherical particles in fluids

where Ŝ is the surface of the unit sphere; see § 2.1. Requiring that the origin of the
coordinate system is at the particle’s geometric centre provides the additional constraint

∫
Ŝ

∫ R

0
r dV = 0, (2.8)

which when evaluated to first and second order in ε respectively gives

∫
Ŝ

f n dS = 0, (2.9a)∫
Ŝ

gn dS = −3
2

∫
Ŝ

f 2n dS, (2.9b)

where n is the unit normal to Ŝ, directed into the fluid domain. Directives for specifying
the functions f and g to ensure satisfaction of (2.7) and (2.9) are given in Appendix B.

We note that the surface perturbation in (2.5) could alternatively be described using
R(θ, φ) = 1 + f (θ, φ). This would generate a different but equivalent asymptotic theory.
However, the benefit of using (2.5) is that it naturally enables a spherical harmonic
expansion of the surface at each order of ε. This is specifically advantageous for particle
shapes described using a finite number of terms in their spherical harmonic expansion.

Regime of validity: Importantly, the small-oscillation-amplitude asymptotic expansion to
O(δ) is taken before the near-spherical-particle asymptotic expansion to O(ε2). It follows
that the results reported in this study apply rigorously when the oscillation amplitude, δ,
is much smaller than the height of any surface perturbation on the particle, i.e. δ 	 ε.
We note that the opposite limit (δ 
 ε) requires inclusion of nonlinear convective inertial
effects in the flow – it will generate nonlinear flow phenomena such as acoustic streaming –
which is not the focus of this study; a brief illustration of this effect is reported in § 5.

2.3. Flow generated by a nearly spherical particle
We expand the flow variables in the (infinitesimal) non-spherical parameter ε:

(u, p) = (u(0), p(0))+ ε(u(1), p(1))+ ε2(u(2), p(2))+ O(ε3). (2.10)

Substituting (2.10) into (2.4), and performing a Taylor expansion about r = 1, then gives

u(0)|r=1 + ε(u(1)|r=1 + f ∂ru(0)|r=1)

+ ε2
(

u(2)|r=1 + g∂ru(0)|r=1 + f ∂ru(1)|r=1 + f 2

2
∂2

r u(0)|r=1

)
+ O(ε3)

= U + Ω × n + εf Ω × n + ε2gΩ × n + O(ε3), (2.11)

where ∂r and ∂2
r are the first and second partial derivatives with respect to the radial

coordinate, r, respectively. Note that the position vector, r, is identical to the unit normal
vector, n, when evaluation occurs on the surface of the unit sphere, Ŝ. Equation (2.11) then
specifies the required flow boundary conditions on the nearly spherical particle surface

1001 A23-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1075


J.F. Collis, A. Nunn and J.E. Sader

(evaluated at the sphere surface, r = 1), at each order in ε:

u(0)|r=1 = U + Ω × n, (2.12a)

u(1)|r=1 = f Ω × n − f ∂ru(0)|r=1, (2.12b)

u(2)|r=1 = gΩ × n − g∂ru(0)|r=1 − f ∂ru(1)|r=1 − f 2

2
∂2

r u(0)|r=1, (2.12c)

with the individual flows vanishing far from the particle, as per (2.2b).

2.4. Force and torque acting on a nearly spherical particle
For a steady Stokes flow, the resulting force and torque acting on a body can be evaluated
by integrating the stress tensor, σ , on any surface that encloses the body (including any
singular points of the flow), because the stress tensor is divergence free (Brenner 1964a).
The situation is more involved for unsteady Stokes flows where the stress tensor is not
divergence free; the stress tensor must be integrated on the body’s surface. Extending the
approach of Zhang & Stone (1998) to O(ε2) gives the following respective expressions for
the force and torque exerted by the fluid on the nearly spherical particle:

F = F (0) + εF (1) + ε2F (2) + O(ε3), (2.13a)

T = T (0) + εT (1) + ε2T (2) + O(ε3), (2.13b)

with

F (0) =
∫

Ŝ
n · σ (0) dS, (2.14a)

F (1) =
∫

Ŝ
n · σ (1) dS, (2.14b)

F (2) =
∫

Ŝ
n · σ (2) + λ

2f 2

2
(Ω × n − ∂ru(0)) dS, (2.14c)

and

T (0) =
∫

Ŝ
n × (n · σ (0)) dS, (2.14d)

T (1) =
∫

Ŝ
n × (n · σ (1) + λ2f Ω × n) dS, (2.14e)

T (2) =
∫

Ŝ
n ×

(
n · σ (2) + λ2

[(
5
2

f 2 + g
)

Ω × n − f 2

2
∂ru(0)

])
dS, (2.14f )

where the individual stress tensors, σ (0), σ (1), σ (2), are defined by the flows generated
by the boundary conditions in (2.12a), (2.12b), (2.12c), respectively. As required, all the
integrals in (2.14) are specified over Ŝ; see Appendix C for the derivation of the above
results.

In principle, (2.14) requires knowledge of the above-mentioned individual stress
tensors. Use of the Lorentz reciprocal theorem bypasses this requirement by enabling
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Unsteady motion of nearly spherical particles in fluids

determination of the integrals in (2.14) using only their respective velocity fields. For an
arbitrary unsteady Stokes flow, (u′, σ ′), this gives∫

Ŝ
n · σ ′ dS = −1

2

∫
Ŝ

u′ · [3(1 + λ)(I − nn)+ (3 + 3λ+ λ2)nn] dS, (2.15a)

∫
Ŝ

n × (n · σ ′) dS = −3 + 3λ+ λ2

1 + λ
∫

Ŝ
n × u′ dS, (2.15b)

which are derived by substituting this arbitrary flow, and flows generated by the translation
and rotation (of unitary velocity magnitude) of a unit sphere, into the Lorentz reciprocal
theorem.

3. Force and torque in terms of the particle motion

We use the general theoretical framework in § 2 to derive analytical expressions for
the force and torque on an arbitrary nearly spherical particle. The torque is evaluated
with respect to the particle’s geometric centre (about which the angular velocity is also
specified).

3.1. Zeroth-order solution
The zeroth-order solution in ε, i.e. O(1), corresponds to the force and torque experienced
by a perfect sphere (Stokes 1851). The fluid’s velocity field and its radial gradients at the
sphere’s surface, to be used in the subsequent first- and second-order solutions, are

u(0)|r=1 = U + Ω × n, (3.1a)

∂ru(0)|r=1 = −3
2
(1 + λ)(I − nn) · U − 2 + 2λ+ λ2

1 + λ Ω × n, (3.1b)

∂2
r u(0)|r=1 =

(
3
2
(3 + 3λ+ λ2)(I − nn)− 3(1 + λ)nn

)
· U

+ 6 + 6λ+ 3λ2 + λ3

1 + λ Ω × n. (3.1c)

The force and torque are evaluated directly using (2.15) and yield the well known results

F (0) = −6π

(
1 + λ+ λ

2

9

)
U, (3.2a)

T (0) = −8π

⎛
⎜⎜⎝

1 + λ+ λ
2

3
1 + λ

⎞
⎟⎟⎠Ω. (3.2b)

3.2. First-order solution
The first-order velocity boundary condition in ε is obtained by substituting (3.1b) into
(2.12b):

u(1)|r=1 =
(

3
2
(1 + λ)(I − nn) · U + 3 + 3λ+ λ2

1 + λ Ω × n
)

f . (3.3)
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Equations (2.14b), (2.15a) and (3.3) then give

F (1) = 9
4
(1 + λ)2

∫
Ŝ

f nn dS · U, (3.4)

while (2.14e), (2.15b), (3.1a) and (3.3) yield

T (1) = (3 + 2λ)(3 + 4λ+ 2λ2)

(1 + λ)2
∫

Ŝ
f nn dS · Ω. (3.5)

The formulae in (3.4) and (3.5) coincide with those of Zhang & Stone (1998).
Expressing f (θ, φ) generally as a series involving spherical harmonics (see Appendix B)
establishes that only the spherical harmonics of degree l = 2 provide a non-zero
contribution to both (3.4) and (3.5). That is, the force and torque to O(ε) experienced
by a nearly spherical particle are dictated by those of an equivalent ellipsoid (Zhang &
Stone 1998).

Equations (3.4) and (3.5) show that the force and torque (about the particle’s geometric
centre) are decoupled. The particle experiences no drag force due to its rotational motion,
and no torque due to its linear translation. This does not agree with general physical reality
and, as such, coupling between translational and rotational motion/forces must occur at
higher order in ε, as discussed in § 1. Additionally, the λ2 coefficient of T (1) is zero as
|λ| → ∞, again in disagreement with reality, i.e. the high-frequency limit mentioned in
§ 1.

3.3. Second-order solution
We now evaluate the second-order solution in ε for the force and torque, which is the
principal aim of this study. Details of this derivation are relegated to Appendix D. These
solutions are decomposed into two components: (1) a component involving only u(0) and
(2) a component that depends on ∂ru(1) which is expressed as an infinite series involving
the shape perturbation function, f . These two components are denoted by subscripts 1 and
2, respectively:

F (2) = F (2)1 + F (2)2 , T (2) = T (2)1 + T (2)2 , (3.6a,b)

where expressions for each component of F (2) and T (2) follow from (2.12c), (2.14c) and
(2.14f ), and are detailed in (D4a), (D4b), (D5a) and (D5b). The first components, that
involve only u(0), are easily evaluated and give

F (2)1 =
[

3
8
(1 + λ)(9 + 9λ+ 5λ2)

∫
Ŝ

f 2(I − nn) dS

− 3
4
(1 + λ)(3 + 3λ+ λ2)

∫
Ŝ

f 2nn dS − 9
4
(1 + λ)2

∫
Ŝ

g(I − nn) dS
]

· U

− 45 + 90λ+ 69λ2 + 27λ3 + 5λ4

4(1 + λ)
∫

Ŝ
f 2n dS × Ω (3.7)
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and

T (2)1 = 3(3 + 2λ)(6 + 8λ+ 4λ2 + λ3)

4(1 + λ)
∫

Ŝ
f 2n dS × U

+
[

9 + 18λ+ 20λ2 + 16λ3 + 7λ4 + λ5

(1 + λ)2
∫

Ŝ
f 2(I − nn) dS

− (3 + 2λ)(3 + 4λ+ 2λ2)

(1 + λ)2
∫

Ŝ
g(I − nn) dS

]
· Ω. (3.8)

Derivations of the corresponding second components, that depend on ∂ru(1), are more
involved and yield

F (2)2 =
∞∑

l=1

l∑
m=−l

[
κ1κ2γ

(1)
l

∫
Ŝ

f Rlm dS
∫

Ŝ
f Θ∗

lm dS

+ κ2
2γ

(2)
l

∫
Ŝ

f Θ lm dS
∫

Ŝ
f Θ∗

lm dS + κ2
2γ

(3)
l

∫
Ŝ

f Φ lm dS
∫

Ŝ
f Φ∗

lm dS
]

· U

+
[
κ1κ3γ

(1)
l

∫
Ŝ

f Rlm dS
∫

Ŝ
f Φ∗

lm dS + κ2κ3γ
(2)
l

∫
Ŝ

f Θ lm dS
∫

Ŝ
f Φ∗

lm dS

− κ2κ3γ
(3)
l

∫
Ŝ

f Φ lm dS
∫

Ŝ
f Θ∗

lm dS
]

· Ω (3.9)

and

T (2)2 =
∞∑

l=1

l∑
m=−l

[
−κ2κ3γ

(3)
l

∫
Ŝ

f Θ lm dS
∫

Ŝ
f Φ∗

lm dS + κ2κ3γ
(2)
l

∫
Ŝ

f Φ lm dS
∫

Ŝ
f Θ∗

lm dS
]

· U

+
[
κ2

3γ
(3)
l

∫
Ŝ

f Θ lm dS
∫

Ŝ
f Θ∗

lm dS + κ2
3γ

(2)
l

∫
Ŝ

f Φ lm dS
∫

Ŝ
f Φ∗

lm dS
]

· Ω, (3.10)

where Rlm, Θ lm, Φ lm are vector spherical harmonics defined in Appendix D; the outer
product is implied between the pairs of integrals in (3.9) and (3.10); the coefficients are

γ
(1)
l =

√
l(l + 1),

γ
(2)
l = λ2

2l + 1

[
1 + h(1)l+1(iλ)

h(1)l−1(iλ)

]
− 1,

γ
(3)
l = l − iλ

h(1)l+1(iλ)

h(1)l (iλ)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

where h(1)l is the spherical Hankel function of the first kind of degree l; and

κ1 = 1
2
(3 + 3λ+ λ2), κ2 = 3

2
(1 + λ), κ3 = 3 + 3λ+ λ2

1 + λ . (3.12a–c)

The (first) infinite sums in (3.9) and (3.10) begin with l = 1 because the l = 0 terms
are identically zero, due to the respective equivalent-volume and geometric-centre
requirements in (2.7a) and (2.9a). Equations (3.6)–(3.12) specify the complete
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second-order solution and require only the shape perturbation functions, f (θ, φ) and
g(θ, φ). In contrast to the first-order solution in the previous section, where only the l = 2
spherical harmonics of f (θ, φ) contribute, all spherical harmonics with l ≥ 2 can affect
the second-order solution; see § B.1.

3.3.1. Infinite series in (3.9) and (3.10)
The number of non-zero terms in the (first) infinite series, over index l, in (3.9) and (3.10),
is dictated by the nature of the shape perturbation function, f . Suppose, f can be expressed
as a finite linear combination of k spherical harmonics:

f (θ, φ) =
k∑

i=1

flimiYlimi(θ, φ), (3.13)

where li and mi are specified integers, i.e. the number of non-zero terms in (B1a) is finite.
For each i in (3.13), the only terms in (3.9) and (3.10) that may be non-zero are

li − 1 ≤ l ≤ li + 1, (3.14)

with

−|mi| − 1 ≤ m ≤ −|mi| + 1 or |mi| − 1 ≤ m ≤ |mi| + 1. (3.15a,b)

Moreover, let l = lmax be the largest degree, l, in (3.13). It follows from (3.14) that all
terms in (3.9) and (3.10) for l > lmax + 1 are identically zero. The infinite series in (3.9)
and (3.10) then become finite series from l = 1 to lmaxsum (≡ lmax + 1). This property
is used in the Mathematica notebook provided in the supplementary material, with the
notebook variable MAXNUM ≡ lmaxsum; see Appendix A.

3.4. Orientation-averaged solution
It is of practical relevance to study the orientation-averaged force and torque experienced
by nearly spherical particles, i.e. the expected value of the force (or torque) exerted by
the fluid on a particle that is oscillating along (or around) a random axis. This can
arise in experiments when the particle orientation is not controlled, e.g. measurements
of the particle’s Brownian motion, where all particle orientations are sampled equally.
The orientation-averaged force, F̄ , and torque, T̄ , are determined by taking a uniformly
distributed ensemble of all possible orientations, and calculating the average of the
resulting forces and torques, i.e. for given U and Ω ,

F̄ = 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
F |(ψ ′,θ ′,φ′) sin θ ′ dψ ′ dθ ′ dφ′, (3.16a)

T̄ = 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
T |(ψ ′,θ ′,φ′) sin θ ′ dψ ′ dθ ′ dφ′, (3.16b)
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Unsteady motion of nearly spherical particles in fluids

where (ψ ′, θ ′, φ′) are a set of Euler angles with respect to the laboratory frame. It can be
shown that this procedure gives

F̄ =
[
−6π

(
1 + λ+ λ

2

9

)
+ ε2

3
tr A(2)

]
U + O(ε3), (3.17a)

T̄ =

⎡
⎢⎢⎣−8π

⎛
⎜⎜⎝

1 + λ+ λ
2

3
1 + λ

⎞
⎟⎟⎠+ ε2

3
tr C(2)

⎤
⎥⎥⎦Ω + O(ε3), (3.17b)

where tr A(2) and tr C(2) are the trace of the tensorial coefficients of U in (3.6a) and
Ω in (3.6b), respectively. Explicit forms for tr A(2) and tr C(2) are given by (D16a) and
(D16b), respectively; see § D.3. As discussed in § 1, particle non-sphericity enters into the
orientation averages at O(ε2).

4. Application to example nearly spherical particles

In this section, we illustrate the utility of the force and torque formulae in § 3 for three
particle geometries: (a) a prolate spheroid, (b) a ‘pear-shaped’ particle and (c) a ‘harmonic
virion’; see figure 1. These examples serve to demonstrate the emergence of non-zero
orientation-averaged forces and torques, and the coupling between translational/rotational
particle motion and torque/force, the expressions for which may find use in practice.
Analytical formulae for a pear-shaped particle in § 4.2 are compared with independent
DNS of the Navier–Stokes equations in § 5. Additionally, a comparison is made with a
Brownian motion study by Kraft et al. (2013) to examine the validity of the presented
solution for the case of translation–rotation coupling.

4.1. Spheroidal particle
First, we consider a prolate spheroid (illustrated in figures 1a and 2a) with its axis
of rotational symmetry aligned along the Cartesian z axis, with basis vector ẑ. The
dimensionless length of the spheroid’s major axis is chosen to be 1 + ε. Requiring that
its volume is independent of ε and equal to that of an equivalent-volume sphere, i.e. 4π/3
as per (2.5) and (2.7), gives a minor-axis length of 1/

√
1 + ε. The corresponding radial

coordinate, for arbitrary ε, of the spheroid’s surface is then

R = 1 + ε√
cos2 θ + (1 + ε)3 sin2 θ

, (4.1)

which when expanded in small ε gives

R = 1 + εf (θ, φ)+ ε2g(θ, φ)+ O(ε3), (4.2)

with

f (θ, φ) = 2
√

π

5
Y2,0(θ, φ), (4.3a)

g(θ, φ) = −2
√

π

35
(7Y0,0(θ, φ)− 4

√
5Y2,0(θ, φ)+ 9Y4,0(θ, φ)), (4.3b)

where Yl,m(θ, φ) is the scalar spherical harmonic defined in Appendix D. Note that g(θ, φ)
contains an (l,m) = (4, 0) spherical harmonic to exactly represent the spheroid; this does
not affect the force and torque, as discussed in § B.1.
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4.1.1. First-order solution
The leading-order effects of non-sphericity are given by the first-order solutions in ε for
the force and torque, which follow directly from (3.4) and (3.5):

F (1) = −3π

5
(1 + λ)2(I − 3ẑẑ) · U, (4.4a)

T (1) = −4π(3 + 2λ)(3 + 4λ+ 2λ2)

15(1 + λ)2 (I − 3ẑẑ) · Ω. (4.4b)

It is evident that the corresponding orientation-averaged first-order solutions are zero for
both the force and the torque, as expected.

4.1.2. Second-order solution
The two components of the second-order solution in ε (defined in § 3.3), denoted by
subscripts 1 and 2, are now determined. These are evaluated using the Mathematica
notebook (supplementary material and Appendix A), which can be used for particle
geometries of the user’s choosing. Consequently, the results in this section serve as
benchmarks for this future usage.

Force
The first component of the second-order force follows immediately from (3.7):

F (2)1 = π

35
(1 + λ)[(111 + 111λ+ 35λ2)(I − ẑẑ)+ (30 + 30λ+ 14λ2)ẑẑ] · U . (4.5)

The radial shape perturbation function, f , in (4.3) involves spherical harmonics of degree
l ≤ lmax = 2. This facilitates exact evaluation (with lmaxsum ≡ lmax + 1 = 3; see § 3.3.1) of
the second component of the force in (3.9), giving

F (2)2 = − π(1 + λ)
350(3 + 3λ+ λ2)

[(4383 + 8829λ+ 6039λ2 + 2073λ3 + 350λ4)(I − ẑẑ)

+ (2952 + 6156λ+ 4176λ2 + 1272λ3 + 140λ4)ẑẑ] · U . (4.6)

The second-order solution for the force is then obtained by substituting (4.5) and (4.6)
into (3.6), yielding the required result:

F (2) = − 3π(1 + λ)
350(3 + 3λ+ λ2)

[(351 + 723λ+ 183λ2 − 29λ3)(I − ẑẑ)

+ (684 + 1452λ+ 852λ2 + 184λ3)ẑẑ] · U . (4.7)

Equation (4.7) is to be compared with known limiting cases from the literature. Namely,
Chwang & Wu (1975) calculated the second-order force and torque experienced by a
prolate spheroid undergoing steady, but arbitrary, translation and rotation. In the steady
limit, i.e. |λ| → 0, (4.7) coincides with the exact solution of Chwang & Wu (1975).
Moreover, for translational motion of the spheroid along its major axis – which extracts the
ẑẑ component of (4.7) – the solution here agrees with the corresponding result reported by
Lawrence & Weinbaum (1986).
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Torque
Repeating this calculation for the torque in (3.6) gives

T (2) = − 4π

105(1 + λ)3(15 + 15λ+ 6λ2 + λ3)
[(3861 + 15444λ+ 27996λ2 + 29391λ3

+ 19311λ4 + 8107λ5 + 2130λ6 + 321λ7 + 21λ8)(I − ẑẑ)+ 2(1242 + 4968λ

+ 8733λ2 + 8661λ3 + 5196λ4 + 1889λ5 + 390λ6 + 36λ7)ẑẑ] · Ω. (4.8)

We again find that the exact solution of Chwang & Wu (1975) is recovered from (4.8) in
the steady limit, |λ| → 0, as required.

It is notable that the particle’s translation–rotation and its resulting torque–force do not
couple, respectively, at first or second order in ε. That is, the force depends only on the
translational velocity of the particle whereas the torque (about the particle’s geometric
centre) relies only on its angular velocity. Indeed, this special result is true for all orders in
ε, and is due to the particle’s fore–aft geometric symmetry.

4.1.3. Orientation-averaged force and torque
The orientation-averaged force and torque (defined in § 3.4) are calculated using (3.17),
(4.7) and (4.8), giving

F̄ = −6πU
[

1 + λ+ λ
2

9
+ ε2 3(1 + λ)(33 + 69λ+ 29λ2 + 3λ3)

50(3 + 3λ+ λ2)

]
+ O(ε3), (4.9a)

T̄ = −8πΩ

⎡
⎢⎢⎣

1 + λ+ λ
2

3
1 + λ

+ ε2 243 + 972λ+ 1749λ2 + 1812λ3 + 1167λ4 + 476λ5 + 120λ6 + 17λ7 + λ8

15(1 + λ)3(15 + 15λ+ 6λ2 + λ3)

⎤
⎥⎥⎦+ O(ε3).

(4.9b)

Interestingly, we observe that particle non-sphericity increases the magnitude of the
orientation-averaged force and torque.

4.2. ‘Pear-shaped’ particle
Next, we examine a particle that does not possess fore–aft symmetry which, in principle,
enables coupling of the translational force that the particle experiences with its rotational
motion. The shape perturbation function, f , is specified using a linear combination of l = 2
and 3 spherical harmonics, with m = 0 for each harmonic; this produces an axisymmetric
particle. The result is a particle that resembles a pear; see figures 1(b) and 2(b).

The coefficient of the l = 2 spherical harmonic of f is chosen to be identical to that of the
spheroid studied in § 4.1. The first-order forces and torques here are identical between the
two particles and given by (4.4a) and (4.4b), respectively. The corresponding coefficient
of the l = 3 harmonic is then chosen to be equal to that of the l = 2 harmonic. The
second-order shape perturbation function, g, is specified using the result in Appendix B
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with coefficients of the l = 2 components set to zero. This gives the radial coordinate of
the particle’s surface:

R = 1 + εf (θ, φ)+ ε2g(θ, φ)+ O(ε3), (4.10)

with

f (θ, φ) = 2
√

π

5
(Y2,0(θ, φ)+ Y3,0(θ, φ)), (4.11a)

g(θ, φ) = −2
√

π

5

(
2Y0,0(θ, φ)+ 9

√
3
35

Y1,0(θ, φ)

)
, (4.11b)

where the spherical harmonics are defined in Appendix D.

4.2.1. Second-order solution
The second-order contributions to the force and torque are evaluated from (3.6)–(3.12),
again using the Mathematica notebook (supplementary material and Appendix A), giving

F (2) = −π

[
a1(λ)

b1(λ)
(I − ẑẑ)+ a2(λ)

b2(λ)
ẑẑ
]

· U + π
a3(λ)

b3(λ)
( ŷx̂ − x̂ŷ) · Ω, (4.12a)

T (2) = π
a3(λ)

b3(λ)
(x̂ŷ − ŷx̂) · U − π

[
a4(λ)

b4(λ)
(I − ẑẑ)+ a5(λ)

b5(λ)
ẑẑ
]

· Ω, (4.12b)

where a1(λ), . . . , a5(λ), b1(λ), . . . , b5(λ) are polynomials specified in Appendix E. Here,
the maximum degree of spherical harmonics defining the shape perturbation function, f ,
in (4.11b) is lmax = 3. This gives lmaxsum ≡ lmax + 1 = 4, as per § 3.3.1.

Coupling between translational and rotational motion is evident in (4.12) and appears
at O(ε2), as anticipated in § 1. Moreover, the derived solution in (4.12) possesses
the well-known, and required, symmetry relation in the coupling of force/rotation and
torque/translation (Brenner 1964b). Namely, the tensorial coefficient of Ω in (4.12a) is the
transpose of the coefficient of U in (4.12b).

4.2.2. Orientation-averaged force and torque
The orientation-averaged force and torque (§ 3.4) are derived from (3.17), (4.12a) and
(4.12b):

F̄ = −6πU
[

1 + λ+ λ
2

9
+ ε2 a6(λ)

b6(λ)

]
+ O(ε3), (4.13a)

T̄ = −8πΩ

⎡
⎢⎢⎣

1 + λ+ λ
2

3
1 + λ + ε2 a7(λ)

b7(λ)

⎤
⎥⎥⎦+ O(ε3), (4.13b)

where the polynomials a6(λ), b6(λ), a7(λ) and b7(λ) are given in Appendix E. As
for the prolate spheroid studied in § 4.1, non-sphericity enhances the magnitude of the
orientation-averaged force and torque experienced by the particle.

1001 A23-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1075


Unsteady motion of nearly spherical particles in fluids

4.2.3. Steady and high-frequency limits
Due to the complexity of (4.12), we provide its results in the steady and (high-frequency)
inviscid limits, i.e. |λ| → 0 and |λ| → ∞, respectively. These may be useful in practice,
e.g. in applications involving Brownian motion. The force and torque in the steady limit
are

F |λ|→0 = −6π

[
1 + ε

1
10

(
I − 3ẑẑ

)+ ε2
(

501
700

(
I − ẑẑ

)+ 24
35

ẑẑ
)]

· U

+ ε2 162π

5
√

35

(
ŷx̂ − x̂ŷ

) · Ω + O(ε3), (4.14a)

T |λ|→0 = −8π

[
1 + ε

3
10

(
I − 3ẑẑ

)+ ε2
(

541
140

(I − ẑẑ)+ 227
175

ẑẑ
)]

· Ω

+ ε2 162π

5
√

35
(x̂ŷ − ŷx̂) · U + O(ε3), (4.14b)

while the corresponding inviscid results, i.e. |λ| → ∞, are

F |λ|→∞ = −2π

3
λ2
[

1 + ε
9
10
(I − 3ẑẑ)+ ε2

(
111
140

(I − ẑẑ)+ 681
175

ẑẑ
)]

· U

+ ε2λ2 6π√
35
( ŷx̂ − x̂ŷ) · Ω + O(ε3), (4.15a)

T |λ|→∞ = −2πε2λ2(I − ẑẑ) · Ω + ε2λ2 6π√
35
(x̂ŷ − ŷx̂) · U + O(ε3). (4.15b)

The resultant orientation-averaged forces and torques in the steady and inviscid limits,
derived from (4.13), are

F̄ |λ|→0 = −6πU
[

1 + 247
350

ε2 + O(ε3)

]
, (4.16a)

T̄ |λ|→0 = −8πΩ

[
1 + 1053

350
ε2 + O(ε3)

]
, (4.16b)

F̄ |λ|→∞ = −2π

3
λ2U

[
1 + 639

350
ε2 + O(ε3)

]
, (4.16c)

T̄ |λ|→∞ = −4π

3
ε2λ2Ω + O(ε3). (4.16d)

We observe that the O(ε2) term provides the leading-order contribution to the torque in the
inviscid limit, as eluded to in § 1. Again, particle non-sphericity enhances the magnitudes
of the force and torque.

It remains to be established if the above-mentioned enhancements due to particle
non-sphericity, in the magnitude of the orientation-averaged force and torque experienced
by the spheroid and ‘pear-shaped’ particles, hold true for all particle shapes. Note that the
surface area of a nearly spherical particle always exceeds that of its equivalent-volume
sphere, which is consistent with this enhancement.

4.3. ‘Harmonic virion’
Virions are often studied via acoustic techniques (see e.g. Robach et al. 1983; Babincová,
Sourivong & Babinec 2000; Yang et al. 2015), corresponding to the small-amplitude,
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(b)(a) (d )(c)

Figure 3. (a) Illustration of a SARS-CoV-2 virion (Eckert & Higgins 2020). (b–d) ‘Harmonic virions’ which
provide a simple hydrodynamic model for a SARS-CoV-2 virion. The nearly spherical particles are constructed
with linear combinations of (b) (l,m) = (10,±5), (c) (l,m) = (20,±10) and (d) (l,m) = (40,±20) for the
first-order shape perturbation function f in (4.18a).

unsteady Stokes limit in the present study. The following model provides insight into
the hydrodynamics of virions when a spherical geometry cannot be assumed, such as
SARS-CoV-2 virions, which exhibit ‘spiky’ protrusions; see figure 3(a). This model may
also prove useful in studying the hydrodynamics of SARS-CoV-2 virions in aerosols,
which is one of their methods of transmission (Van Doremalen et al. 2020). Rather than
consider the true geometry of the virion, its shape is modelled using a single spherical
harmonic to facilitate analysis and interpretation. This model is also applicable to other
virions and is termed a ‘harmonic virion’; see figure 3(b–d). In this section, we study how
the size and number of ‘spiky’ protrusions of the particles affect their hydrodynamics.

Three different ‘harmonic virions’ are studied, representing a progressively rougher and
‘spikier’ virion. The shape perturbation functions for these particles are

Rn(θ, φ) = 1 + εfn(θ, φ)+ ε2gn(θ, φ), (4.17)

with n ∈ {5, 10, 20}, and

fn(θ, φ) = Y2n,−n(θ, φ)+ (−1)nY2n,n(θ, φ), (4.18a)

gn(θ, φ) = − 1√
π

Y0,0(θ, φ). (4.18b)

We calculate the orientation-averaged forces and torques experienced by these particles,
which may be practically relevant due to the randomising effects of Brownian motion.
The resulting analytical expressions are complicated and in this section we focus on the
(numericised) asymptotic limits of small and large |λ|, reported to three significant figures;
exact formulae for all λ are contained in the Mathematica notebook (supplementary
material). The resulting orientation-averaged force is

F̄ n = F̄ (0) + ε2F̄ (2)n + O(ε3), (4.19)

with the subscript n specified in (4.18), and

F̄ (0) = −U
{

18.8 + 18.8λ, |λ| 	 1
2.09λ2 + 18.8λ, |λ| 
 1, (4.20a)
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F̄ (2)5 = −U
{

37.9 + 75.9λ, |λ| 	 1
12.2λ2 + 174λ, |λ| 
 1, (4.20b)

F̄ (2)10 = −U
{

82.7 + 165λ, |λ| 	 1
27.1λ2 + 654λ, |λ| 
 1, (4.20c)

F̄ (2)20 = −U
{

173 + 345λ, |λ| 	 1
57.1λ2 + 2510λ, |λ| 
 1. (4.20d)

The corresponding formula for the orientation-averaged torque is

T̄ n = T̄ (0) + ε2T̄ (2)n + O(ε3), (4.21)

with

T̄ (0) = −Ω

{
25.1, |λ| 	 1
8.38λ, |λ| 
 1, (4.22a)

T̄ (2)5 = −Ω

{
162, |λ| 	 1
6.67λ2 + 96.0λ, |λ| 
 1, (4.22b)

T̄ (2)10 = −Ω

{
342, |λ| 	 1
13.3λ2 + 323λ, |λ| 
 1, (4.22c)

T̄ (2)20 = −Ω

{
702, |λ| 	 1
26.7λ2 + 1180λ, |λ| 
 1. (4.22d)

Figure 4 gives results for the orientation-averaged forces and torques, as a function
of dimensionless frequency, λ; exact formulae from the Mathematica notebook
(supplementary material) are used. The most pronounced difference between these results
and that for a perfect sphere is observed for the orientation-averaged torque when
|λ| 
 1. The torque experienced by a perfect sphere scales as λ for |λ| 
 1 due to the
vanishingly small influence of the no-slip boundary condition; see (4.22a). In contrast, the
harmonic virion’s orientation-averaged torque varies as λ2 due to its protrusions producing
non-zero added mass in this inviscid limit; see (4.22b)–(4.22d). It is also evident that the
orientation-averaged force and torque magnitudes increase as the degree and order of the
spherical harmonics increase, i.e. the particles become spikier. This is not unexpected due
to the increase in particle surface area.

The ratio of the second-order to leading-order solutions in figure 4(b,d) reveals
intriguing behaviour. This ratio is not constant, as may be naively anticipated,
establishing that no perfect sphere can mimic the frequency-dependent – or equivalently,
time-dependent – orientation-averaged force and torque experienced by a harmonic virion.
Interestingly, this ratio for the force is maximised for intermediate |λ|, the value of which
increases with increasing (l,m). This maximum occurs when the viscous penetration
depth, over which vorticity diffuses, matches the spacing of the protrusions. In this
case, the force becomes sensitively dependent on the precise shape and spacing of the
protrusions. No such maxima occur for the torque due to the different dependencies on λ
in the high-frequency limit discussed above.

4.4. Comparison with the Brownian motion of anisotropic particles studied by
Kraft et al. (2013)

Kraft et al. (2013) studied the motion of anisotropic particles constructed by fusing
together spheres of different radii. They measured the friction tensors of the particles by
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Figure 4. Orientation-averaged force and torque for the three ‘harmonic virions’ in figure 3. Magnitudes of the
second-order orientation-averaged (a) force and (c) torque monotonically increase with |λ|. Also shown is the
ratio of the magnitude of the second-order orientation-averaged (b) force and (d) torque to their leading-order
counterparts (i.e. results for a perfect sphere).

monitoring their Brownian trajectories. For a particle consisting of three fused spheres
of different radii (see figure 5), they observed coupling between the translational and
rotational motion of the Brownian particles in both experiments and numerical simulations
performed in the steady Stokes limit.

We reconstruct this particle using spherical harmonics up to order l ≤ 5, resulting in
the shape given in figure 5(b). Using the force and torque formulae in § 3, and taking
the limit as λ→ 0, we calculate the force and torque reported in figure 5(b). Critically,
the only information used from Kraft et al. (2013) is the radii of the three spheres and
the origin of the coordinate system as approximated from figure 5(a); no other fitting
parameters are used. We observe excellent agreement between our nearly spherical theory
and the numerical results of Kraft et al. (2013). Agreement between the components of
the coupling tensor are particularly relevant because they arise exclusively from the O(ε2)
terms reported in this study.

5. Direct numerical simulations at finite amplitude

In this section, we validate the (infinitesimally) small-amplitude theory reported in § 3 by
comparison with finite-amplitude, time-dependent DNS of the (nonlinear) incompressible
Navier–Stokes equations, (2.1) and (2.2). The DNS are performed using COMSOL
Multiphysics®. Details are reported in Appendix F.
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Figure 5. (a) Geometry and numerical results for the resistance of an anisotropic Brownian particle studied by
Kraft et al. (2013). The Brownian particle is constructed by fusing together three spheres of radii 2.1, 1.7 and
1.3 μm, respectively. The resistance matrix, M , relates the force and torque via (F ,T ) = M ∗ (U,Ω). Note
that the resistance matrix is given in dimensional form where the units of the first, second, third and fourth 3×3
submatrices are μm, μm2, μm2 and μm3, respectively. (b) Present theory. Nearly spherical reconstruction of
the anisotropic Brownian particle using spherical harmonics with l ≤ 5. The radius of the equivalent-volume
sphere is calculated from the combined volumes of the three fused spheres and results in Req = 2.5 μm. The
resistance matrix is constructed from the theory in § 3 in the limit λ→ 0 and then cast into dimensional form
using Req and the dimensions above. This matrix is to be compared with the literature data of Kraft et al. (2013)
reported in (a).

The ‘pear-shaped’ particle described in § 4.2 is used for this validation, together with a
normalised frequency of β = 1; other frequencies lead to similar conclusions (data not
shown). The linear and angular oscillatory velocities are set to U = δẑ and Ω = δŷ,
respectively. The values of δ and ε are varied to examine the combined effects of
non-sphericity and oscillation amplitude, respectively. For each set of these values, time
series of the force and torque experienced by the particle are computed from which their
complex Fourier series are determined. This uses a fundamental angular frequency of
ω = 1, as dictated by the above non-dimensionalisation. All DNS are converged to at
least 98 % with respect to the magnitude of the largest non-zero e−it Fourier coefficient
of the force/torque; this coincides with the particle’s oscillatory motion. Results for this
fundamental Fourier coefficient of the DNS provide the finite-amplitude counterpart to the
small-amplitude theory which is a solution of the (linear) unsteady Stokes equation. This
enables direct comparison between the DNS and the small-amplitude theory. Symmetries
in the ‘pear-shaped’ particle and oscillatory velocities produce non-zero results for
(i) the force in the x direction, denoted Fx, (ii) force in the z direction, denoted Fz, and
(iii) torque about the y axis, denoted Ty. Results for these components from the DNS and
small-amplitude theory are reported in figure 6. Details of the DNS and their convergence,
including validation on a perfect sphere, are relegated to Appendix F.

We first assess the validity of the second-order solution in the developed nearly spherical
theory. For this purpose, the dimensionless oscillation amplitude is set to δ = 0.1 and the
non-spherical parameter ε is varied; note that ε = 0 corresponds to a perfect sphere. It is
evident from figure 6(a) that the DNS and small-amplitude theory agree for smaller values
of ε, i.e. ε � 0.1. This provides independent validation of the nearly spherical theory.
Specifically, the DNS force in the x direction, Fx, coincides precisely with the nearly
spherical theory for smaller values of ε. A quadratic variation in ε is predicted by the
nearly spherical theory and observed in the DNS. A deviation emerges at larger values of ε,
which is not unexpected given the asymptotic nature of the nearly spherical theory. Similar
agreement is observed for Fz and Ty with the second-order solution correctly capturing the
DNS trends as the non-spherical parameter ε is increased. Results for the phase of these
force and torque components exhibit similar agreement (data not shown). Critically, the
DNS shows that the force in the x direction, Fx, is coupled to the particle’s angular velocity
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Figure 6. Force and torque components of the ‘pear-shaped’ particle, with U = δẑ and Ω = δŷ. Nearly
spherical theory (solid lines); DNS (circles). Results for magnitudes of Fx, Fz and Ty, for particle motion
at β = 1. (a) Force/torque components at β = 1 (fundamental frequency), for oscillation amplitude, δ = 0.1,
as non-spherical parameter ε is varied. (b) Force/torque components at β = 1 (fundamental frequency), for
non-spherical parameter, ε = 0.1, as oscillation amplitude δ is varied. (c) Force/torque components at β = 0
(steady streaming), for non-spherical parameter, ε = 0.1, as oscillation amplitude δ is varied.

around the y axis. This behaviour is captured correctly by the second-order solution; the
first-order theory of Zhang & Stone (1998) predicts Fx = 0 + O(ε2).

Next, we investigate the validity of the (leading-order) small-δ expansion employed in
the nearly spherical theory, i.e. its foundational use of the unsteady Stokes equations. As
noted at the end of § 2.2, this theory is expected to be valid provided the dimensionless
oscillation amplitude is much smaller than the non-spherical parameter, i.e. δ 	 ε. For
this purpose, we now fix the non-spherical parameter to be ε = 0.1 and vary the oscillation
amplitude, δ. Results for the magnitude of the force and torque are reported in figure 6(b);
similar results are found for the phase (data not shown). Linear dependence on the
oscillation amplitude, δ, for δ < ε is evident in all results, as required. A deviation from
linearity emerges for δ > ε which is again not unexpected. This is due to the significant
effect of nonlinear convective inertia in this regime (explored below). Note that the force
component in the x direction, Fx, is zero for a perfect sphere and depends quadratically
on the non-spherical parameter ε. The predictions of the nearly spherical theory precisely
coincide with the DNS for this purely non-spherical force component. This comparison
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validates use of the unsteady Stokes equations as the foundation of the nearly spherical
theory, and demonstrates its predicted regime of validity, δ 	 ε, given in § 2.2.

Increasing the oscillation amplitude, δ, is expected to produce non-zero steady
components of the force and torque. This is due to the effect of nonlinear convective
inertia, which is absent from the nearly spherical theory. The DNS data for these steady
components are reported in figure 6(c) and exhibit the expected nonlinear variation in
oscillation amplitude, δ. These steady components are generally much smaller than the
fundamental frequency components reported in figure 6(b). However, we observe that
when the steady component of Fx in figure 6(b) is similar in magnitude to the fundamental
frequency component in figure 6(c), i.e. δ � ε = 0.1, the latter component no longer tracks
linearly with the oscillation amplitude, δ. This confirms that the nearly spherical theory –
based on the (linear) unsteady Stokes equations – is valid provided the effect of nonlinear
convective inertia is negligible. This occurs when δ 	 ε, as predicted in § 2.2. Analytical
calculation of this streaming flow is beyond the scope of this study.

The present theory requires the oscillation amplitude, δ, to be smaller than all other
length scales, including the non-spherical shape parameter, ε. This means that (strictly)
the theory is not valid when ε 	 δ. However, the left-hand panel of figure 6(a) appears to
show agreement in this regime. This is because the force in the x direction is constrained
to (i) zero as ε → 0 (the result for a sphere) and (ii) the derived non-spherical O(ε2) result
for ε 
 δ. The intermediate regime of 0 < δ < ε smoothly connects these two results,
with any deviation from the theory not resolvable with the accuracy of our numerical
simulations.

6. Conclusions

We have examined the force and torque experienced by a nearly spherical particle of
arbitrary shape moving in a quiescent and unbounded viscous fluid. This builds on
the previous work of Zhang & Stone (1998), by providing an asymptotic solution in
the small non-sphericity parameter correct to O(ε2). In so doing, the derived general
formulae enable analytical calculations of important fluid physical phenomena of arbitrary
nearly spherical particles. These include hydrodynamic coupling between the particle’s
translational and rotational motion, and the effect of particle non-sphericity on the
orientation-averaged force and torque that it experiences. General unsteady linear motion
was considered according to the unsteady Stokes equations. Strictly, the derived general
formulae apply when the oscillation amplitude is far smaller than the height of the
particle’s non-sphericity, i.e. δ 	 ε.

To illustrate the utility of these general formulae, we used them to explore the
hydrodynamic forces experienced by three particles: (1) a spheroidal particle that exhibits
fore–aft symmetry, (2) a ‘pear-shaped’ particle that does not possess this high degree of
symmetry and (3) a ‘harmonic virion’ which models the SARS-CoV-2 virion. Closed-form
expressions for the force and torque experienced by these particles were derived correct
to O(ε2), together with their orientation-averaged formulae. This showed that a perfect
sphere cannot be generally used to model the time-dependent, orientation-averaged
forces experienced by a nearly spherical particle. Additionally, it was observed that
non-sphericity enhances the magnitude of the orientation-averaged force and torque
experienced by these three particles, a result whose applicability to general particles is
yet to be established. It is envisaged that the general formulae in § 3 will find utility in the
analytical solution of flow problems that have previously been inaccessible. This may be
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useful, for example, in improving the efficiency of computational simulations of particle
suspensions that may rely on single particle results.

It is anticipated that the present theory will find use in studying the Brownian motion
of nearly spherical particles. Because non-sphericity enters into the orientation-averaged
forces at O(ε2), non-sphericity is also expected to affect orientationally averaged
diffusivities at this order. Unsteady effects may also couple with the effects of
non-sphericity to modify the velocity autocorrelation functions relative to those of a
perfect sphere.

The derived nearly spherical theory was validated against independent finite-amplitude
time-domain simulations of the (nonlinear) Navier–Stokes equations. Agreement with the
DNS was observed when δ � ε, which aligns with the regime of validity of the derived
theory; see above.

A Mathematica notebook is included in the supplementary material, which applies the
general formulae in § 3 to nearly spherical particles with an arbitrary shape perturbation
function. Usage details are discussed in Appendix A.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1075.
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Appendix A. Mathematica notebook for arbitrary particle shapes (supplementary
material)

The Mathematica notebook provided in the supplementary material implements the theory
in § 3 to analytically evaluate the force and torque acting on a nearly spherical particle. This
notebook requires the following inputs:

1. The shape perturbation functions, f and g. These functions must be specified as
linear combinations of spherical harmonics, as per (B1).

2. The positive integer, MAXSUM ≡ lmaxsum. This is the largest (truncation) index, l,
used in evaluation of the infinite series in (3.9) and (3.10).

An exact analytical solution is recovered when MAXSUM = lmax + 1, where lmax is
the highest degree of all spherical harmonics defining f . If f involves an infinite sum of
spherical harmonics (i.e. of all degrees), MAXSUM should be chosen to balance accuracy
with computational expense.

Appendix B. How to choose f (θ, φ) and g(θ, φ)

Here, we describe how to choose the radial shape perturbation functions, f (θ, φ) and
g(θ, φ), to ensure the requirements in (2.7) and (2.9) are satisfied. Consider the general
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Unsteady motion of nearly spherical particles in fluids

spherical harmonic decompositions:

f (θ, φ) =
∞∑

l=0

m=l∑
m=−l

flmYlm(θ, φ), (B1a)

g(θ, φ) =
∞∑

l=0

m=l∑
m=−l

glmYlm(θ, φ), (B1b)

where flm and glm are constants and the scalar spherical harmonic, Ylm(θ, φ), is given in
(D7); the indices l and m of Ylm(θ, φ) are its ‘degree’ and ‘order’, respectively.

Substituting (B1a) into (2.7a) and (2.9a) yields the respective results

f0,0 = 0, (B2a)

f1,−1 = f1,0 = f1,1 = 0, (B2b)

while substituting (B1b) into (2.7b) and (2.9b) respectively gives

g0,0 = − 1
2
√

π

∫
Ŝ

f 2 dS, (B3a)

− 1√
2
(g1,1 − g1,−1)x̂ − i√

2
(g1,1 + g1,−1)ŷ + g1,0ẑ = −3

4

√
3
π

∫
Ŝ

f 2n dS, (B3b)

where x̂, ŷ and ẑ are the usual Cartesian basis vectors. While (B3a) shows that g0,0 is
always negative, it does not reduce the particle size as would usually be the case for the
l = 0, m = 0 spherical harmonic. This is because the effect of f 2 in isolation is to increase
the size of the particle at O(ε2). The negative g0,0 coefficient therefore counteracts the
effect of f 2 to ensure the equivalent-volume sphere constraint is satisfied to O(ε2).

All other coefficients, flm and glm, in (B1) are unconstrained and may be set freely to
achieve the desired nearly spherical particle shape.

B.1. Contributions to the force and torque
Importantly, only components of f (θ, φ) in (B1a) with l = 2 contribute to the force and
torque at O(ε); however, its components with l ≥ 2 must be considered at O(ε2). In
contrast, only components of g with l ≤ 2 contribute to the force and torque at O(ε2).

Appendix C. Derivation of the general formulae in (2.14)

The surfaces of the nearly spherical particle and the corresponding equivalent-volume
sphere are each enclosed by an arbitrary, but identical, reference surface, Sref . The resulting
volumetric fluid region contained between the surface of the nearly spherical particle,
S, and the reference surface, Sref , is denoted Vf ; similarly, the fluid volume for the
corresponding equivalent-volume perfect sphere is V̂f . Note that Vf and V̂f are finite
subsets of the entire (unbounded) fluid domains and Sref must enclose both S and Ŝ. An
example of these regions for the ‘pear-shaped’ particle (figure 1b) studied in § 4 is given
in figure 7.
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Vf
V̂f

S Ŝ

Sref

y y

z z
(a) (b)

Figure 7. Example of the surface and volumetric regions used with the divergence theorem in Appendix C,
for the ‘pear-shaped’ particle defined in § 4.2. The same (arbitrary) surface, Sref , has finite area and encloses
surfaces of the nearly spherical particle, S, and its equivalent-volume sphere, Ŝ; the finite area requirement of
Sref guarantees existence of (C4). (a) Surface S is the surface of the nearly spherical particle and Vf is the
volumetric region between S and Sref . (b) Surface Ŝ is the surface of the equivalent-volume sphere and V̂f is
the region between Ŝ and Sref .

C.1. Force acting on the particle

Applying the divergence theorem to Vf and V̂f gives∫
S

n · σ dS +
∫

Sref

n · σ dS = −
∫

Vf

∇ · σ dV, (C1a)

∫
Ŝ

n · σ dS +
∫

Sref

n · σ dS = −
∫

V̂f

∇ · σ dV, (C1b)

where the same stress tensor, σ , is used in both (C1a) and (C1b), and chosen to be that of
the nearly spherical particle. While the unbounded fluid domain bounded by the surface
at infinity could have been used here, the choice of a finite bounding surface is necessary
for the torque calculation below and so is also used here for consistency; note there are no
restrictions on u or σ over Sref . Formally, the fluid velocity field, u, generated by the nearly
spherical particle may be analytically continued into its solid domain, allowing for use of
the divergence theorem in (C1b). Because ∇ · σ = λ2u, (C1) can then be rearranged to
give the force exerted by the fluid on the nearly spherical particle:

F ≡
∫

S
n · σ dS =

∫
Ŝ

n · σ dS + λ2
∫

V̂f −Vf

u dV. (C2)

Substituting (2.5) and (2.10) into (C2), taking a Taylor expansion about r = 1 (retaining
terms to O(ε2)) and performing the r-integration in the volume integral, gives

λ2
∫

V̂f −Vf

u dV = λ2
∫

Ŝ
εf u(0) + ε2

[
( f 2 + g)u(0) + f u(1) + f 2

2
∂ru(0)

]
dS + O(ε3).

(C3)

Then, substituting (2.12a) and (2.12b) into (C3) and simplifying through use of properties
of the radial shape perturbation functions in (2.7) and (2.9) gives the force acting on the
nearly spherical particle correct to O(ε2), i.e. (2.13a).
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Unsteady motion of nearly spherical particles in fluids

C.2. Torque acting on the particle
A similar calculation follows for the torque. The ‘divergence-like’ relationship relevant for
torque calculations, which invokes symmetry of the stress tensor, σ , is∫

S′
r × (n · σ ) dS = −

∫
V ′

r × (∇ · σ ) dV, (C4)

for some volume, V ′, with bounding surface, S′. Note that, in general, the surface and
volume integrals in (C4) do not exist for an unsteady Stokes flow in an unbounded fluid
domain. Evaluation of (C4) must therefore take place on a bounded domain. Similar to the
force calculation in § C.1, the torque exerted by the fluid on the nearly spherical particle is

T ≡
∫

S
r × (n · σ ) dS =

∫
Ŝ

n × (n · σ ) dS + λ2
∫

V̂f −Vf

r × u dV, (C5)

where σ is the fluid stress tensor generated by the nearly spherical particle, u is its
corresponding velocity field and Sref has been chosen to have finite area in the derivation
of (C5) to ensure existence of the integrals in (C4). Performing the same procedure as the
force calculation in § C.1 gives

λ2
∫

V̂f −Vf

r × u dV = λ2
∫

Ŝ
εf n × u(0)

+ ε2n ×
[(

f 2 + 3
2

g
)

u(0) + f u(1) + f 2

2
∂ru(0)

]
dS + O(ε3),

(C6)

where u is the fluid velocity field due to the nearly spherical particle. Substituting (2.12a)
and (2.12b) into (C6) gives the torque acting on the nearly spherical particle correct to
O(ε2), i.e. (2.13b).

Appendix D. Derivation of the second-order solution in § 3.3

Derivation of the second-order solution in § 3.3 is detailed in this appendix. First, we
decompose the boundary condition in (2.12c) as

u(2)|r=1 = (u(2)1 + u(2)2 )|r=1, (D1)
where

u(2)1 = gΩ × n − g∂ru(0) − f 2

2
∂2

r u(0), (D2a)

u(2)2 = −f ∂ru(1). (D2b)

The stress tensors resulting from the two velocity fields in (D1) are denoted σ
(2)
1 and σ

(2)
2 ,

respectively. Substituting (3.1b) and (3.1c) into (D2a) gives

u(2)1 |r=1 = g
(

3
2
(1 + λ)(I − nn) · U + 3 + 3λ+ λ2

1 + λ Ω × n
)

+ f 2

2

(
3
[
−1

2
(3 + 3λ+ λ2)(I − nn)+ (1 + λ)nn

]
· U

− 6 + 6λ+ 3λ2 + λ3

1 + λ Ω × n
)
. (D3)
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J.F. Collis, A. Nunn and J.E. Sader

From (2.14c) and (2.14f ), it follows that the respective contributions to the force and
torque experienced by the spherical particle are

F (2)1 =
∫

Ŝ
n · σ

(2)
1 + λ

2f 2

2
(Ω × n − ∂ru(0)) dS, (D4a)

F (2)2 =
∫

Ŝ
n · σ

(2)
2 dS (D4b)

and

T (2)1 =
∫

Ŝ
n ×

(
n · σ

(2)
1 + λ2

[(
5
2

f 2 + g
)

Ω × n − f 2

2
∂ru(0)

])
dS, (D5a)

T (2)2 =
∫

Ŝ
n × (n · σ

(2)
2 ) dS. (D5b)

D.1. Solutions for F (2)1 and T (2)1

Equations (D4a) and (D5a) for F (2)1 and T (2)1 , respectively, are evaluated using (2.15)
together with (D3) to bypass direct evaluation of the stress tensor. This leads to the required
results in (3.7) and (3.8).

D.2. Solutions for F (2)2 and T (2)2
Because the radial gradient of the first-order velocity field appears in (D2b), an analytical
solution for u(1) is required to evaluate the second-order force and torque. This is acheived
using a general solution to the unsteady Stokes equations (Miller & Scriven 1968; Lippera
et al. 2019) expressed in terms of vector spherical harmonics (Barrera, Estevez & Giraldo
1985). The vector spherical harmonics are

Rlm(θ, φ) = Ylm(θ, φ)r̂, Θ lm(θ, φ) = r√
l(l + 1)

∇Ylm(θ, φ), (D6a,b)

Φ lm(θ, φ) = r√
l(l + 1)

r̂ × ∇Ylm(θ, φ), (D6c)

where

Ylm(θ, φ) =
√
(2l + 1)

4π

(l − m)!
(l + m)!

Pm
l (cos θ) eimφ (D7)

are the scalar spherical harmonics, with Pm
l the associated Legendre polynomials; the

‘degree’ and ‘order’ of both the vector and scalar spherical harmonics, and associated
Legendre polynomials are l and m, respectively. The first-order velocity field is then

u(1)(r, θ, φ) =
∞∑

l=0

m=l∑
m=−l

ulm(r)Rlm(θ, φ)+ vlm(r)Θ lm(θ, φ)+ wlm(r)Φ lm(θ, φ), (D8)
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Unsteady motion of nearly spherical particles in fluids

where

ulm(r) = αlm
h(1)l−1(iλr)+ h(1)l+1(iλr)

h(1)l−1(iλ)
+ plm

l + 1
λ2rl+2 , (D9a)

vlm(r) = αlm
(l + 1)h(1)l−1(iλr)− l h(1)l+1(iλr)√

l(l + 1) h(1)l−1(iλ)
− plm

√
l(l + 1)
λ2rl+2 , (D9b)

wlm(r) = Wlm
h(1)l (iλr)

h(1)l (iλ)
, (D9c)

where h(1)l is the spherical Hankel function of the first kind (that vanishes as r → ∞),

αlm = lUlm + √
l(l + 1)Vlm

2l + 1
, (D10a)

plm = λ2 ((l + 1)Ulm − √
l(l + 1)Vlm) h(1)l−1(iλ)− (lUlm + √

l(l + 1)Vlm) h(1)l+1(iλ)

(l + 1)(2l + 1)h(1)l−1(iλ)
(D10b)

and

Ulm =
∫

Ŝ
u(1) · R∗

lm dS, Vlm =
∫

Ŝ
u(1) · Θ∗

lm dS, Wlm =
∫

Ŝ
u(1) · Φ∗

lm dS, (D11a–c)

with the superscript * denoting the complex conjugate and u(1)|r=1 defined in (3.3).
The required radial gradient is then

∂ru(1)|r=1 =
∞∑

l=0

l∑
m=−l

√
l(l + 1)VlmRlm +

(
l − iλ

h(1)l+1(iλ)

h(1)l (iλ)

)
WlmΦ lm

+
(
λ2

2l + 1

[
1 + h(1)l+1(iλ)

h(1)l−1(iλ)

]
− 1

)
VlmΘ lm, (D12)

where

Vlm ≡
∫

Ŝ
u(1) · Θ∗

lm dS

= 3
2
(1 + λ)

∫
Ŝ

f Θ∗
lm dS · U + 3 + 3λ+ λ2

1 + λ
∫

Ŝ
f n × Θ∗

lm dS · Ω, (D13a)

Wlm ≡
∫

Ŝ
u(1) · Φ∗

lm dS

= 3
2
(1 + λ)

∫
Ŝ

f Φ∗
lm dS · U + 3 + 3λ+ λ2

1 + λ
∫

Ŝ
f n × Φ∗

lm dS · Ω. (D13b)

The corresponding contribution to the force is

F (2)2 = 1
2

∫
Ŝ

f ∂ru(1) · [3(1 + λ)(I − nn)+ (3 + 3λ+ λ2)nn] dS, (D14)
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while for the torque is

T (2)2 = 3 + 3λ+ λ2

1 + λ
∫

Ŝ
f n × ∂ru(1) dS. (D15)

Substituting (D12) into (D14) and (D15) gives the required expressions in (3.9) and (3.10),
respectively.

D.3. Trace of the second-order tensorial coefficients in § 3.4
The traces of the tensorial coefficients of U and Ω in the second-order solution, as used
in (3.17a) and (3.17b), are

tr A(2) = 3(1 + λ)(3 + 3λ+ λ2)

∫
Ŝ

f 2 dS +
∞∑

l=1

l∑
m=−l

[
κ1κ2γ

(1)
l

∫
Ŝ

f Rlm dS ·
∫

Ŝ
f Θ∗

lm dS

+ κ2
2γ

(2)
l

∫
Ŝ

f Θ lm dS ·
∫

Ŝ
f Θ∗

lm dS + κ2
2γ

(3)
l

∫
Ŝ

f Φ lm dS ·
∫

Ŝ
f Φ∗

lm dS
]
,

(D16a)

tr C(2) = 2(3 + λ)(6 + 10λ+ 8λ2 + 4λ3 + λ5)

(1 + λ)2
∫

Ŝ
f 2 dS

+
∞∑

l=1

l∑
m=−l

[
κ2

3γ
(3)
l

∫
Ŝ

f Θ lm dS ·
∫

Ŝ
f Θ∗

lm dS + κ2
3γ

(2)
l

∫
Ŝ

f Φ lm dS ·
∫

Ŝ
f Φ∗

lm dS
]
,

(D16b)

where the identities tr nn = 1 and tr (I − nn) = 2 and (2.7b) are used to simplify these
results. Contractions arise between pairs of integrals due to taking the trace of the tensorial
quantities.

Appendix E. Polynomials

The following polynomials appear in the second-order solutions for the ‘pear-shaped’
particle in (4.12) and (4.13):

a1(λ) = (1 + λ)(67 635 + 203 850λ+ 224 784λ2 + 124 605λ3 + 36 198λ4

+ 4947λ5 + 185λ6), (E1a)

b1(λ) = 350(3 + 3λ+ λ2)(15 + 15λ+ 6λ2 + λ3), (E1b)

a2(λ) = 2(1 + λ)(16 200 + 49 545λ+ 58 950λ2 + 37 098λ3 + 13 248λ4

+ 2607λ5 + 227λ6), (E1c)

b2(λ) = 175(3 + 3λ+ λ2)(15 + 15λ+ 6λ2 + λ3), (E1d)

a3(λ) = 6(3 + λ)(3 + 3λ2 + λ3)(9 + 15λ+ 6λ2 + λ3), (E1e)
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Unsteady motion of nearly spherical particles in fluids

b3(λ) =
√

35(1 + λ)(15 + 15λ+ 6λ2 + λ3), (E1f )

a4(λ) = 2(38 343 375 + 191 716 875λ+ 441 643 365λ2 + 618 594 525λ3 + 585 998 235λ4

+ 395 720 610λ5 + 195 716 763λ6 + 71 630 007λ7 + 19 312 973λ8 + 3 752 990λ9

+ 500 349λ10 + 41 148λ11 + 1575λ12), (E1g)

b4(λ) = 1575(1 + λ)3(15 + 15λ+ 6λ2 + λ3)(105 + 105λ+ 45λ2 + 10λ3 + λ4), (E1h)

a5(λ) = 8(3 217 725 + 16 088 625λ+ 36 801 855λ2 + 50 712 300λ3 + 46 703 340λ4

+ 30 205 050λ5 + 14 034 816λ6 + 4 703 289λ7 + 1 119 191λ8 + 181 085λ9

+ 18 048λ10 + 846λ11), (E1i)

b5(λ) = 1575(1 + λ)3(15 + 15λ+ 6λ2 + λ3)(105 + 105λ+ 45λ2 + 10λ3 + λ4), (E1j)

a6(λ) = (1 + λ)(11 115 + 33 660λ+ 38 076λ2 + 22 089λ3 + 6966λ4 + 1129λ5 + 71λ6),
(E1k)

b6(λ) = 350(3 + 3λ+ λ2)(15 + 15λ+ 6λ2 + λ3), (E1l)

a7(λ) = 142 155 + 710 775λ+ 1 635 705λ2 + 2 285 775λ3 + 2 156 841λ4 + 1 448 034λ5,

+ 710 433λ6 + 257 259λ7 + 68 417λ8 + 13 064λ9 + 1703λ10 + 136λ11 + 5λ12,
(E1m)

b7(λ) = 30(1 + λ)3(15 + 15λ+ 6λ2 + λ3)(105 + 105λ+ 45λ2 + 10λ3 + λ4). (E1n)

Appendix F. The DNS details and validation study

Finite-amplitude time-domain simulations are performed with the finite-element-analysis
software COMSOL Multiphysics (version 5.6), using the incompressible Navier–Stokes
equations. A three-dimensional domain is used with an inner boundary specified by the
particle shape, i.e. (2.5), and a spherical outer boundary of dimensionless radius R∞ 
 1.
Due to symmetry in the ‘pear-shaped’ particle geometry and its boundary conditions, we
simulate half the flow domain, i.e. y > 0, and apply the appropriate symmetry boundary
condition at y = 0. Details of the ‘pear-shaped’ particle geometry are given in § 4.2.
A translational velocity of δ cos t ẑ and a rotational velocity of δ cos t ŷ are specified for
the particle.

The velocity boundary condition at the particle surface, (2.2a), is rescaled using
uN ≡ uδ; the subscript N refers to the value in COMSOL. This allows the dimensional
Navier–Stokes equations to simulate their corresponding dimensionless form by setting
ρN = β andμN = 1. Thus, velocity fields prescribed at uN = O(δ) in the DNS correspond
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Figure 8. Translating and rotating perfect sphere, with U = δẑ and Ω = δŷ. Magnitudes of Fx, Fz and Ty,
for particle motion at β = 1. The DNS data (circles). (a) Force/torque components at β = 1 (fundamental
frequency), as oscillation amplitude δ is varied. Unsteady Stokes formulae (lines) for force, (3.2a), and torque,
(3.2b). (b) Force/torque components at β = 0 (steady streaming), as oscillation amplitude δ is varied. Analytical
formula for Fx (line) given by (F1).

to u = O(1) in the asymptotic theory. Validity of the asymptotic theory will then produce
an error in the force relative to the DNS of O(δ2), i.e. F N − Fδ = O(δ2).

The numerical procedure is validated for a perfect sphere using the above parameters;
results are given in figure 8. At the fundamental oscillation frequency, the force in the
y direction, and the torque around both the x and z axes, must be zero (by symmetry).
The fundamental frequency component, i.e. at an angular frequency of unity, recovers
the expected results for (i) the force in the z direction and (ii) the torque around the y
axis (Stokes 1851). The force component in the x direction at the fundamental frequency
should be zero to O(δ2), and thus the DNS data in figure 8(a) are representative of the
error in the numerical procedure, which is at the 0.01 % level. The steady component of
the force in the x direction, denoted Fstream, is expected to be non-zero for finite-amplitude
oscillations, due to the combined translational and rotational motion of the perfect sphere;
this produces a streaming flow. Using (1.11) and (1.10) with Uprop = 0 from Collis et al.
(2022), we arrive at

Fstream = −β
4

∫
V̂

u′ · (u(0) · ∇u(0)∗) dV + 1
4

∫
Ŝ
(n · σ ′) · (r1 · ∇u(0)∗)

− i · [n · (r1 · ∇σ (0)∗)+ i(n × Ω) · σ (0)∗] dS + c.c., (F1)

where all symbols are as defined in the main text and additionally V̂ is the (unbounded)
fluid domain outside the unit sphere, (u′, σ ′) are auxiliary fields for the velocity and stress
tensor for a unit sphere translating with unitary velocity in the x direction in a steady
Stokes flow, r1 = i(U + Ω × r), the symbol ∗ denotes the complex conjugate and c.c. is
the complex conjugate of the entire preceding expression. The steady part of the force in
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Unsteady motion of nearly spherical particles in fluids

the x direction is hence δFstream. Equation (F1) is in excellent agreement with the DNS
data; see left-hand panel of figure 8(b). Other components of the force and torque are
expected to be zero by symmetry, and the results in figure 8(b) are due to numerical error;
they are two orders of magnitude smaller and due to the three-dimensional discretisation
of the particle surface.
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