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Coaxial Circles and Conies.

By W. FINLAYSON.

The following notes are intended to introduce a simple method
of treating elementary geometrical conies, and at the same time to
supply a missing link in the chain of continuity between Euclidean
geometry and the modern methods of treating the conies, which at
present are treated more as different subjects than as a continuous
whole.

FIGURE 12.

§ 1. Let Xa; be the line of centres of the coaxial system, whose
common points are S and Su and the radical axis of the system
orthogonal to the first; then S and Sj are common inverse points to
the second system. Let F be the centre of any circle of the second
system, and x the centre of any circle of the first. The tangents to
x, or any circle of the awsystem, from F are then of constant length,
being always equal to the radius, R, of F. Let F/j and F/» be the
two tangents from F to x, QSP and Q'S^' the tangents to a; at
S and Sj, cutting the tangents to x from F in P, Q, P', Q'. Then,
since P/"j and PS are tangents to x from P, P/J = PS. Therefore
PF - Py; = PF - PS = R and QF - QS = R. Hence the locus of P or
Q is a curve the difference of any point on which from two fixed
points, F and S, is constant, that is an hyperbola.

Again, Vj\ and P'S,, being also tangents to x from F , are equal.
Therefore F F + FS = P'F + V'fx = R, and the locus in this case is an
ellipse.

This gives a very simple method of tracing either curve. For x
may be any point on X.r and, x being the centre of the circle to
which SP or S,P' is a tangent, a:SP, or aiSjP', is always a right
angle. Take therefore any point xa ; join xaS ; draw at S a line at
right angles to xji and, with xji as radius, mark fa on the circum-
ference of F ; draw F/o cutting SPU in P,,, and so on.
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FIGURE 12.

§ 2. Let PM be the perpendicular from P on the radical axis, Xx,
of the F-system, and PK a tangent to F from P ; then, by a well-
known property of coaxial circles, we have

2SF.PM = PK 3 -PS 2 - - - - (1)

S being a point circle of the F-system.

Now PK8 = (P/1 + R)2-R2

and P/, =PS.

Putting these values in (1) we get

2SF.PM = R2 + 2PS.R + P S 2 - R 2 - P S 2 ;

therefore SF.PM = PS.R or PM :PS = R:SF.

Hence CA:CS = PM:PS and, R and SF being fixed quantities,
PM: PS is a constant ratio. Thus we see that the radical axis is
also the directrix.

For the ellipse, the proof is slightly different. F being inside
the circle F, take FK ' (not shown in figure) at right angles to F / j ;

then 2S1F.FM' = FK'S + FS1
2. - - - (2)

Now FK'2 = R 2 - ( R - P / 1 ) 2 and F / ^ P ' S , .

Substituting these values in (2), we have

2S,F. FM' = R2 - R + 2FS,. R - FS,2 + FS,°-

or, as before, S,F. FM' = FS , . R, and therefore FM' : FS, = R : S,F
a constant ratio.*

When the two tangents of the F-system are taken parallel to
SS,, the points of contact/! and / 2 will be on xX. But PM will
then be equal to P/, = PS and therefore PM : PS = 1 ; so that in all
cases the radical axis is the directrix. In the last case, that of the
parabola, the orthogonal, or director circle, coincides with the
radical axis, F being at infinity.

FIGURE 12.

§ 3. The line a;P, or xP', from the centre x to the point of contact,
is the tangent to the curve at P, or F . Since it bisects S,/, at

* See the appended proof that 2S,F. FM'=P'K'2+FS,2.
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right angles, it is the locus of points from which equal lines can be
drawn to Sj and fx. Taking, therefore, any point Pj on it, we have
PJSJ = Pi/,. But P,/ , + P,F is greater than R, and therefore greater
than P ^ + P'F. Hence no other point on the line xY, except P',
is on the curve.

A similar proof applies to the hyperbola and the parabola.

FIGURE 12.

§4. The proofs of the following standard propositions become
extremely simple by this method.

(i) The tangent to a conic bisects the angle between the focal
distances of the point of contact. For FP and SP are tangents to x
and therefore a;P bisects the angle between them.

(ii) Tangents at the ends of a focal chord meet on the directrix.
For they both pass through the centre of x which is on the directrix.

(iii) The intercept on the tangent between P and the directrix
subtends a right angle at the focus. For SP is a tangent and xS a
radius at S to x ; hence a;SP is a right angle.

(iv) Perpendiculars on the tangents to a conic from the focus cut
the tangents on a fixed circle. For S/J is always bisected at right
angles by the tangent. The cut a is therefore always the mid-point
of the line from S to the circumference of F, and hence the locus
of a is a circle whose radius is JR and whose centre C is the mid-
point of SF. (See Mackay's Euclid, Appendix I., Prop. 6.)

(v) The normal at P cuts the axis at G so that
SG:SP = SP:PM.

For, since PG is parallel to S/|,
SG:P / = FS:R = SP:PM and P/1 = SP.

Hence SG : SP = SP : PM.

The proofs of many other standard theorems can be much
simplified in the same way.

FIGURE 12.

§ 5. Since P is clearly the pole of S/| to x, the conic is the locus
of the poles of the varying chord S/*of the varying circle a;.
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FIGURE 13.

§6. In figure 12 it is evident that, Si being inside F, S^ ' will
always cut ¥/ internally to F ; hence P' will always be internal to F,
and the curve is therefore closed and finite, lying wholly inside the
circle F. But when S is external to F, the intersection of F/, and
SP will move away from fx as the angle FPS becomes less, i.e., as a;
increases in radius; and when S/i becomes the tangent to F from S,
it is evident that FP and SP, being at opposite ends of the diameter
S/| of the circle x, will be parallel, and therefore xP will also be
parallel to them. The point P will then have no existence or be at
infinity, and, however far xP be produced, it can never meet the
curve; for FP and SP can never meet. It is evident from fig. 12,
however, that P continually approaches the asymptote; for the
point a continually approaches x until it coincides with it, when S/J
becomes the tangent to F. When S/, becomes the tangent to F, it
is bisected by Xa:, and xP^, being parallel to Fflt passes through C,
the mid-point SF; and Cx = JR. Hence the asymptote, directrix,
and auxiliary circle all pass through x. Since a second tangent can
be drawn to F from S, another asymptote exists, equally inclined
to SSi but in an opposite sense of direction. Thus each hyperbola
has two asymptotes symmetrically situated with regard to the axis
and passing through the centre C.

FIGURE 14.

§7. "We might infer from the symmetrical position of the
asymptotes and focal radii in the last note that the curve would
have a corresponding branch on the opposite side of C. But we
have only to continue the process of construction of figure 12 to
arrive at the locus of the second branch. For when x is taken at a
greater distance from X than the cut of the tangent to F from S,
then Pj will fall on the tangent from S on the opposite side of S
from P so that SP, = P , / , ;

whence again P ^ - P,F = F/, = R

and SA'-A'F = F / = R.

From this we derive SA' = SA and C A' = CA;
showing that F has the same relation to the second branch that S
has to the first, and that the asymptotes to the first branch are also
asymptotes to the second.
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§ 8. There being an infinite series of circles orthogonal to the
ai-system on each side of the radical axis, there will therefore be a
double infinite series of conies, related in pairs, corresponding to the
circles similar to the two discussed ; an ellipse in every circle and a
double-branched hyperbola to every two equal circles which have
their centres equidistant from X.

FIGURE 12.

§ 9. The radius of the circle F is cut harmonically by the ellipse
and hyperbola, that is, F P ^ P and FQyjQ are harmonic ranges. For
the two tangents at S and S[ meet on the directrix at Z, and F lies
on the polar of Z to x; therefore Z lies on the polar of F to x; and
hence FS^S is harmonic, ZO, the polar of F, passes through / , and
yj, and, the pencil Z(FSjOS) being harmonic, the ranges FF/JP and
FQ^Q are harmonic. Similarly F(/,O/"2Z) is harmonic, and therefore
ZQ'S,P' and ZQSP are harmonic. Hence any line through F cutting
the ellipse, hyperbola, and circle, is divided harmonically, and the
tangents at 8 and Sj are divided harmonically by the curve, the focus,
and the directrix.

FIGURE 13.

§ 10. The range FPyjP^ being harmonic and P^ being at
infinity, FP" =f1P

> and similarly ZQ = SQ. As commonly put in the
theory of harmonics, this results from the equation

This is, however, not an equality; for the difference of FP^, and
./jP^, is clearly FJ\ = R. But in view of the fact that the harmonic
conjugate to a point in a segment changes its direction when the
point passes from one side of the centre of the segment to the other,
if we take P, x in an opposite sense from P ^ , we have an absolutely
true equation FP':/P'= FPx:/1Plo:i and FP^, =/,Pl0C1. The two
equalities FP'=/,P' and ZQ = SQ can, however, be easily proved
otherwise. For FP' =-/iP', we have, when S/i is the tangent from
the inverse of the focus to the circle F, S ^ is at right angles to the
axis. Therefore xP', which is at right angles to S,_/J through its
mid-point a, bisects FJ\. For ZQ = SQ, we have that x is the mid-
point of S/j and y^Z is parallel to xQ, both being at right angles to
S/2, a n d / Z passes through/2; therefore ZQ = QS.
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FIGURE 13.

§ 12. The following simple relations may be noted.

yj is equal to the minor axis of the ellipse, and F/i, or R, is
equal to the major axis.

S,F, the distance between the foci, forms with Sl4/i and F/i a
right-angled triangle; whence R2 - BBf = S ^ . In the hyperbola
R2 + BB2 = SF2. Halving these lines, we have the usual forms

CA2-CB2 = CS1
2, C

Again FSX. FS = R2. Taking the mid-points of FS, or FS and
SSj, we have CS. CX = CA2. Therefore Xa: is the polar of S or S,
to C the auxiliary circle.

§13. I t is easy to extend these notes to show how the second
focus and directrix can be found and a second coaxial system of
circles along with them. The only other point, however, which
need be noted just now is that there is one, and only one, circle
which belongs to both directrices. Its centre is C, and the radius
evidently is >/CATTCB5 or CR2 = CA2 ± CB2. I t is this circle which
is sometimes called the director circle or orthocycle, and which is
the locus of intersection of tangents at right angles to each other.
It is the doubly orthogonal circle which has the directrices for
radical axis and the foci and their inverses in common with the
director circles F and S, or S and the systems to which they belong.

FIGURE 16.

§ 14. By varying the position of F, we obtain a clear view of
how the curves of the three classes—ellipse, parabola, and hyperbola
—are related to each other, taking two circles of the SB-system and
drawing the tangents to them at S, namely, SZ and SZj. (In the
figure SZ, is taken at right angles to the axis, and therefore deter-
mines the latus rectum in each case.)

The tangents to X and x from F determine points P, P,' P,, P^
on an ellipse greater or less as F is taken further from or nearer to S.
At S we have a point circle as the limit. The ellipse increases as F
is taken further and further from S, until we reach the parallel
position at infinity, when the curve developes into a parabola and
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F changes sides and appears as - F. The tangents from - F then
determine points Q, Q', Qu Q,' on a hyperbola which, when - F is
taken at Sj, has the directrix Xa; for its limit; for then the tangents
at S intersect the tangents at S, on the directrix.

§ 15. The property of the parabola that SA => AX has the corre-
sponding property in the other conies that SA = A/J as Xa; is in the
case of the parabola the limit circle of the orthogonal circles of the
F-system.

FIGURE 17.

§16. Being given the foci F and S, and R, either as the sum
of the focal distances, or from R : SF = PM : PS, we can find the
orthogonal system with its radical axis related to the conic as in § 1.

For let F be a circle of given radius and S, any point on F/.
Through the ends of any diameter of F, such as /^/ i , draw chords
through Si; these cut F again i n ^ and/2. Produce ft/, to meet / j / ,
in S2. Then, because of the right angles at / , and /3, Sj^jSj/, are
cyclic and Fa; bisects the angles fjlft and ./iSj/j. But half these
angles equals a right angle; for they are equal to /•,/$, +f$ft, and
therefore F/ja; and ¥/& are right angles. Hence x is orthogonal to
F, and a;X, which is at right angles to FSj, is the directrix. "We
might have taken S as any external point, such as the inverse of S,,
in which case the diameter would be that indicated by the line f,fs,
making equal angles with the directrix but in an opposite sense to

AA-
FIGURE 17.

§17. The locus of S2, the intersection of fjx and fju is the
polar of S,. For SJSSJ is a right angle and S is the inverse of Sj.

FIGURE 17.

§ 18. P 'S^ ' is parallel to the diameter through the ends of which
, and Si/2 pass.
For

and therefore the focal chord FSjQ' and the diameter f^ft are
parallel.
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FIGURE 17.

§ 19. If C be the auxiliary circle and xP', xQ' the tangents to a
focal chord P'S,Q', the tangents cut C again at the ends of a parallel
diameter. For Sa = a/1, and o F is parallel to fif3; therefore S/t is
bisected at c by the tangent and, since core, and ca{cx are at right
angles in the same semicircle, the tangent #0,(3,0, passes through
the end of the diameter cCc, and, since a F is parallel tojifi, cCc, is
parallel toyj/j. This gives a very ready method of determining the
point of contact of a given tangent. For let ac be the tangent;
then SP parallel to Cc gives the required point, and a and c can by
this always be found if R is given.

FIGURE 17.

§ 20. (a) *F bisects L P'FQ'; for it bisects / ,F/2 and we know
F8,a; and Q'S^ to be both right angles, hence xS bisects P'S,Q'.

(b) Cx bisects P'Q'; for C is the mid-point of the base cct of a;cc,
and P'Q' is parallel to ccl.

From (a) and (6), by aid of a generalisation of some elementary
geometry of the circle we can get the general case of tangents from
a point bisecting the focal angle of points of contact, and the line xC
(or xy if y be the point on second direction) bisecting all chords of a
conic parallel to PSQ or cci.

FIGURE 17.

§21. Since the tangent F H is parallel to f^ft, and the normal
F J is parallel to f-J"^ we have FH and FJ each equal F F . Hence
the tangent and normal at any point P' can be determined very
easily. For draw J H through F parallel to SP'; then a circle, with
F F as radius, cuts this line in J and H which, on being joined to P',
give the required lines. This holds for conies generally, as nearly
the whole of these notes do.

FIGURE 17.

§ 22. The following points are too obvious to require proof.

(1) The triangle axe, has its sides half the parallel sides of S,^/^.

(2) The focus is the orthocentre or polar centre of both triangles.
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(3) The cut of the polar of the inverse of the focus to F and C
determines the polar radius Sk and Sk,, that is, a perpendicular to
FSj at Si cuts F and C in k and Aj and 'Sk and SA,; this, in the case
of S ] / ^ , is equal to the minor axis BB, and, in the case of xccly

half the minor axis or CB.

(4) xccx is a self-conjugate triangle. For ccx is the polar of x,
exx is the polar of c and c is the polar of cx. So that any triangle is
self conjugate.

FIGURE 17.

§23. Since CS = |FS, SX = $SS,, CA = p t , FS.FS, = R*
we have CS. CX = CA2 and therefore xX is the polar of S to C.

If the tangent at P* were produced to cut the axis in T, and a
perpendicular from P1 cuts the axis in N, then, since P', N, Sn a are
cyclic, cCS,a are also cyclic and, C being the centre and Ca a chord
cutting the diameter CN in T, we have

CN.CT = CA3 = CSCX.

Hence TaPc is harmonic and therefore, if NF cut C in t, tT is the
tangent to C from T; or, in the case of the hyperbola, if the perpen-
dicular from T cut C in t, <N is the tangent from N to C.

FIGURE 17.

§ 24. If through c and cx Unas cY and cxY be drawn parallel to xe^
and xc, then yY, perpendicular to SF, is the second directrix. For
YF = xS and so on, the position of y being identical with that of x
to every line in the figure, if xcc^ were revolved round C till c
coincided with c2.

FIGURE 17.

§ 25. Cc and Cx are conjugate diameters and are conjugate lines
to the polar of circle xccx. For, by § 19 (a), Cx bisects FQ' which
is parallel to cc^.

Again, since x is the pole of ecx and C the pole of scX, the pole
of Ca; is the point R in which Cc^ meets xX. But Sc. S* = CBJ, or
Sx is the polar circle of cexx. Hence ccx and Ca; are conjugate lines
to this circle.
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FIGURE 15.

Addenda. Proof that, when P is a point inside a circle, S and S,
two inverse points, and XM the radical axis, then

2PM.FS = PK2 + PS2,

PM being the perpendicular on the radical axis and PK the semi-
chord at right angles to FP.

Let F be the centre of the circle and S and S, the two inverse
points which determine XM. Draw PM, PE and PK perpendicular
to XM, FX, and P / respectively;
then since FX»-SX* = R2

and FX = PM + FE, SX = P M - E S ,

we have (PM + F E ) ' - (PM - ES)2 = R2

2PM(FE + ES) + FE2 - ES2 = R2

2PM . FS = R2 - FE2 + ES2.

Now FE2 - ES2 = FP2 - PS2.

Substituting we get 2PM. FS = Rl - F F + PS*

and therefore 2PM. FS = PKa + PS2

which reduces to PM. FS = R. PS when P/= PS.
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