
HALF-TRANSITIVE AUTOMORPHISM GROUPS 

I. M. ISAACS AND D. S. PASSMAN 

Let G be a finite group and A a group of automorphisms of G. Clearly A 
acts as a permutation group on G#, the set of non-identity elements of G. 
We assume that this permutation representation is half transitive, that is all 
the orbits have the same size. A special case of this occurs when A acts fixed 
point free on G. In this paper we study the remaining or non-fixed point free 
cases. We show first that G must be an elementary abelian g-group for some 
prime q and that A acts irreducibly on G. Then we classify all such occurrences 
in which A is a ^-group. 

THEOREM I. Let A be a group of automorphisms of G which acts half transitively 
as a permutation group on G#. If \A | > 1, then either A acts fixed point free on G 
or G is an elementary abelian q-groupfor some prime q and A acts irreducibly. 

COROLLARY. If a finite group G admits a non-trivial half-transitive group of 
automorphisms, then it is nilpotent. 

Proof. We assume that A does not act fixed point free. Let k denote the 
common size of all the orbits of G* under the action of A. Given x £ G#, let Ax 

denote the subgroup of A fixing x so that [A : Ax] = k. Let Px be the centralizer 
of A x in G, that is 

P* = {££ G\ Vat Ax,a(g) = g}. 
If z is a non-identity element of G contained in both Px and Pv, then Ax and Ay 

centralize z so that A z 3 (AX} A y). Since [A : Ax] = [A : Ay] = [A : ^42],wesee 
that Ax = Ay and Px = Py. Finally x Ç Px and therefore the set of subgroups 
\PX) forms a partition of G. We mean by this that these subgroups have pair-
wise trivial intersections and that their set-theoretic union is G. We study this 
partition. 

We show first that each Px is a normal subgroup of G. Let L = G X ff A, 
the semidirect product of G by A. We compute the size of xL. Let x have h 
conjugates in G. Then for all a £ A, a(x) also has h conjugates in G. Hence xL 

is a join of conjugacy classes in G of size h and therefore h divides \xL\. On the 
other hand xL is the join of orbits under the action of A. Since each of these has 
size k, k also divides \xL\. Now k divides \G\ — 1 and h divides |G|. Thus h and k 
are relatively prime and therefore hk divides \xL\. This implies that xL is the 
join of at least k conjugacy classes in G. 

Since A is a group of automorphisms of G, A permutes the non-identity 
conjugacy classes of G. Let AG\X be the subgroup of A fixing the class of x 
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under this action. The above argument shows that all orbits have size at least k. 
Now let x and y be non-identity conjugates in G. Then clearly Acl x Z) Ax and 
Acix 2 Av. Also 

[A :Aclx] > * , [A :AX] = [4 : 4 y ] = *. 

This yields Ax = Ac] x = Ay and hence Px = Py. Therefore the partitioning 
subgroups are all normal in G. 

If there is only one partitioning subgroup, then for all x G G#, Px — G. 
This means that Ax centralizes G and since A is a group of automorphisms, this 
yields Ax = {1} and A acts fixed point free, a contradiction. Thus there are at 
least two distinct partitioning subgroups and we show that this implies that 
each of the groups Px has period q for the same prime q. If not, we can find 
distinct partitioning subgroups Px and Py with elements X\ G P / , yi G Pv* 
having different orders. We can, of course, assume that x = xi and y = yx. 
Let x have order m, y have order n, and m < n. Since Px and Py are disjoint 
normal subgroups, they commute elementwise and thus x and y commute. 
Set z = ym = (xy)m. Then clearly Az^Ay and Az~DAxy so that Az = Ay 

= 4 ^ . Therefore x;y G P y and y G P?7. Hence x G P?/, a contradiction. Thus G 
is a g-group of period q. 

We complete the proof with a somewhat different argument. The group 
L = G X a A acts as a permutation group on the elements of G (not C7#) by 
x
9a = a(xg). L is transitive since clearly G is. Now A is easily seen to be L1} 

the subgroup fixing the identity, and this acts half transitively on G — {1}. 
Hence L acts 3/2 transitively. By (5, Theorem 10.4), L is either primitive or 
Frobenius. In the latter case, L\ — A would act fixed point free on the regular 
normal subgroup G. Since this is not the case, L is primitive. Let H be an A-
admissible subgroup of G. Then the set of right cosets of H yields a set of L 
blocks. By primitivity these blocks are trivial, so H = {1} or G. Since G is a 
g-group having only trivial A -admissible subgroups, it must be elementary 
abelian with A acting irreducibly. Thus the theorem follows. 

The corollary follows immediately from Theorem I and the theorem of 
Thompson (3 and 4) which states that a group admitting a non-trivial fixed 
point free automorphism group must be nilpotent. 

THEOREM II. Let A be a non-trivial p-group of automorphisms of G which 
acts half transitively as a permutation group on G*. If p > 2, then A acts fixed 
point free. If p = 2, then A also acts fixed point free except for the cases tabulated 
below. In any case \AX\ < 2 for all non-identity x in G. 

(i) q = 2n — 1 is a Mer senne prime, G is abelian of type (q, q), and A is either 

gp(xf y\ x2" = 1, y2 = 1, y~lxy = x~l), 

the dihedral group of order 2W+1, or 

gp(x, y\x2n+1 — \,y2 = 1, y~lxy = x~1+2n), 

the semidihedral group of order 2n+2. 
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(ii) q = 2n + 1 is a Fermât prime, G is abelian of type (q, q), and A is the group 

gp(x, y, z\x2n = 1, y2 = 1, z2 = 1, y~lxy = x, z~lyz = yx2n~\ z~xxz = x_ 1). 

(iii) q = 3, G is abelian of type (3,3,3, 3), and A is either 

gp(x, y, zlx8 = 1, y2 = \,z2 = 1, y~lxy = x, z~lyz = yx4, z~lxz = x_1) 

or a central product of the dihedral and quaternion groups of order 8. 

Proof, By Theorem I, if A does not act fixed point free, then G — Q is an 
elementary abelian g-group (q 9e p) and A acts irreducibly on Q. 

LEMMA 1 (Roquette). Let P be a p-group with the property that every normal 
abelian subgroup is cyclic. Then P is one of the following: 

(i) if p is odd, then P is cyclic, 
(ii) if p — 2,P is cyclic, dihedral, semidihedral, or quaternion. 

LEMMA 2 (Roquette). Let the p-group P act irreducibly and faithfully on the 
vector space V. Suppose P has a normal, non-cyclic, abelian subgroup D. Then P 
has a subgroup H, normal of index p, with H 3 D and such that the representation 
restricted to H splits into p inequivalent conjugates. 

Both results are proved in (2). However the second lemma is given in a 
slightly different form, so we offer another proof of this below. 

Proof. We use Clifford's theorem (1, §49). The representation restricted to D 
breaks up into conjugate irreducible representations under the action of G. 
If 9Î is one such representation, let T = | x f G\ dlx = 9?} be its inertial group. 
Then D has t = [P : T] distinct irreducible constituents in its representation. 
If t = 1, then all constituents are equivalent and thus dt is faithful. Since D is 
abelian, it must be cyclic, a contradiction. Thus t > 1 and we can choose H to 
be a maximal subgroup of P containing T. Since [P : H] = p, the representation 
restricted to H either decomposes into the direct sum of p distinct conjugates 
or all irreducible constituents are equivalent. We show that the latter possi­
bility cannot occur. 

Suppose to the contrary that all the irreducible constituents of H are equiva­
lent. Choose one such © so that dt is a constituent of ©|J9. Since all the 
irreducible constituents of H are equivalent, this implies that 9Î has only t/p 
distinct conjugates, a contradiction. 

LEMMA 3. Let p > 2. Then A is cyclic and acts fixed point free on Q. 

Proof. If A is not cyclic, then by Lemmas 1 and 2 we can choose a subgroup B 
of A of index p on which the representation splits. Then 

Q = £ Qi, 
1 

each Ci is a .B-subspace, and if g 6 A — B, then g permutes the Qt cyclically. 
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Choose x 6 Qi, y G Qé- Clearly (using the fact that we have at least three 
terms in the direct sum) Ax C B, Ay C B, Axy C B. Thus also Ax Z) ^4^, 
4̂y 2 4̂ai/- Since these centralizers all have the same orders, this yields 

/ix
 = s±xy = <™-y-

Let 7 vary over Q2*. Then we see that Ax centralizes Q2 and hence all Qt 

(i 7e 1). But by the same argument Ay centralizes Qi- Since Ax = Ay, Ax 

centralizes Q. Since the representation is faithful, Ax = {1}. Finally since A 
is half transitive, it acts fixed point free. Since p > 2, it follows that A is cyclic. 
On the other hand if A is cyclic, then it has a minimum subgroup and so it acts 
fixed point free. This proves the result. 

This lemma proves the theorem in case p > 2. For convenience we define the 
following groups: 

Cn = gp(x\x2n = 1 ), the cyclic group of order 2n, 
Dn = gp(x,y\x2n = lyy

2 = l^y^xy = x~l), the dihedral group of order 2W+1, 
Sn

 = gp(%j ylx2"*1 = 1, y2 = 1, y~lxy = x~1+2n), the semidihedral group of 
order 2W+2, 

Qun = gp(%y y\^n = 1» y2 — x2V"~\ y~lxy = x_ 1), the quaternion group of 
order 2n+\ 

LEMMA 4. If 2n = qT + 1, then r = 1 aw^ p 2B - 1 w a Mer senne prime. 
If2r = qs — 1, then we have either 

(i) 5 = 1 and q = 2r + 1 is a Fermât prime or 
(ii) q = 3, 5 = 2, r = 3. 

Proof. Let 2W = gr + 1. If r is even, then ç r == 1 (mod 4) and hence 2n = 2 
(mod 4). Thus 2n = 2 and gr = 1, a contradiction. Thus r is odd and 
2n = (g + l ) ($ r _ 1 — g r - 2 + . . . + 1). Now the second factor contains an 
odd number of terms and hence is odd. On the other hand it divides 2n and so 
must equal 1. Thus r = 1 and the first result follows. 

Let 2r = qs - 1. If 5 is odd, then 2r = (q - 1) (q8'1 + . . . + 1). Again the 
second factor is an odd divisor of 2r and therefore it is equal to 1. This yields 
(i). Finally let 5 = 2m be even. Then 2r = (qm - 1) (qm + 1) so that qm - 1 = 
2«f qm _ 1 = 2\ Thus 2V - 2U = 2 and therefore 2V = 4, 2U = 2, and qm = 3. 
This yields (ii) and the result follows. 

LEMMA 5. Let the 2-group P act transitively onQ — {1}. Then we have either 
(i) P = Cn, \Q\ = q = 2n + 1 so that qis a Fermât prime or 

(ii) q = 3, JQI = 9, P = 52f C3, or ^ 2 . 

Proof. Let P* fix x G <2#. By transitivity, 2 r = [P: Pz] = qs ~ 1 = |Q#|. 
By Lemma 4, the only solutions are then (i;) 5 = 1, q = 2r + 1 or (iir) 
q = 3, 5 = 2, f = 3. In the first case, Ç is cyclic of prime order, so P is cyclic. 
Hence Px = {1}, r = n, and (i) follows. In the second case \Q\ = 9 and P is a 
subgroup of 5*2, the Sylow 2-subgroup of GL(2, 3). Note that IS2I = 16 and 

https://doi.org/10.4153/CJM-1966-122-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-122-5


HALF-TRANSITIVE AUTOMORPHISM GROUPS 1247 

[P: Px] = 8. If \PX\ > 1, then \P\ > 16 so P = S2. If \PX\ = 1, then | P | > 8 
and P acts fixed point free. Thus P = C3 or Qui. 

LEMMA 6. Suppose that for all x <E Q#, \AX\ = 2. Then \Q\ = q2r and qT + 1 
is eg^a/ to the number of non-central involutions of A. 

Proof. The central involution acts like ( — 1) and acts fixed point free. Let I 
denote the set of non-central involutions. Since for x G Q#, \AX\ = 2, we see that 
x £ £Q(AX) = 60(g) where g £ I. Thus Q = U , € 7 <&Q(g). If | / | < 2, then Q 
is the union of two proper subspaces, a contradiction. Hence \I\ > 3. Note also 
that the spaces &Q(g) have pairwise trivial intersection. 

Let g (z I and choose h Ç I with h 5e g, —g. Such a choice is possible since 
| / | > 3. Then 

Q = (E(g) + <£(-g) = <£(*) + 6 ( - A ) . 

We assume for convenience that |g(A)| > |S ( -A) | . Now S(g) H E(A) = {1} 
and 6 ( - g ) Pi g(ft) = {1}. These imply that |S(g)| = | g ( - g ) | = |<2|1/2. Say 
|Q| = q2r. Then |S(g)| = gr and from the disjoint union we conclude that 

| I | ( 2 ' - 1 ) = ( a « ' - l ) 

or | / | = qr + 1 and the result follows. 

We now study the exceptional groups of Lemma 1. If A is cyclic or generalized 
quaternion, then A acts fixed point free. The others cannot act fixed point free. 

LEMMA 7. If A = Dn or Sn then q = 2n — lis a Mersenne prime and \Q\ = q2. 
Conversely, let q = 2n — 1 be a Mersenne prime. Then Sn is a Sylow 2-subgroup of 
GL(2, q) and both Sn and its subgroup of index 2, Dn, act half transitively on 
Q — {1}, where Q is abelian of type (g, q). 

Proof. Let A = Dn or Sn. Then A has 2n non-central involutions and a cyclic 
subgroup of index 2 acting fixed point free. Since, for all x G Q*, Ax is disjoint 
from this cyclic subgroup, we have \AX\ < 2. If A acts half transitively, then 
since A cannot act fixed point free, we have \AX\ = 2. Thus Lemma 6 applies 
and | / | = 2n = qr + 1 with |Ç| = q2r. By Lemma 4, r = 1 and q = 2n - 1 is 
a Mersenne prime. Thus the first result follows. 

Let q = 2n — 1 be a Mersenne prime so that a Sylow 2-subgroup of GL(2, q) 
is isomorphic to Sn. Sn has a subgroup of index 2 isomorphic to Dn. Let A be 
either of these two groups. Then A has 2n non-central involutions and a cyclic 
subgroup of index 2 acting fixed point free. Thus again 1̂4*1 = 1 or 2 for each 
x G Q#. Now each non-central involution centralizes a proper subspace of Q 
and hence (since \Q\ = q2) fixes precisely q — 1 elements of Q*. Thus there are 
2n(q - 1) = (q + l)(g - 1) = q* - 1 elements x of Q* with |^x | = 2. Hence 
A acts half transitively on Q. 

We now proceed to prove the theorem. We need only consider the case where 
p = 2 and A does not act fixed point free. Thus A is not cyclic or quaternion. 
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If A = Sn or Dn, the result follows by the previous lemma. Hence we assume 
A ^ Cn, Qun, Sn, or Dn. By Lemmas 1 and 2, A has a subgroup B of index 2 
on which the representation splits. Moreover B contains a normal abelian 
non-cyclic subgroup of A. Then Q = Qi + Qi, each Qt is a ^-subspace, and if 
g Ç i — B, then g permutes the Q .̂ 

Let Ki be the kernel of the representation of B and Qt. Then i£i and K2 are 
conjugate in 4 , Kx P K2 = {1} and |i^i| = \K2\. Moreover B/Kxc^B/K2. 
Let x £ Qi- Then clearly B ^D Ax^> Kt. Thus we see that B/Kt acts half 
transitively on Qt. Let # £ Çi#. If Ax centralizes Q2, then K2^ Ax Q. Kx. 
Since Kif~\ K2 = {1}, this yields ^4X = {1} and A acts fixed point free, a 
contradiction. Thus ( S ^ f ^ ) = Q\ is a proper subspace of Q2. Let g be a fixed 
element of A - B. Let y £ Q2 - Qf

2. II Axy C 5 , then^tJ2/ Ç AxandAxy C 4 y 

so ^4z = ^4y and ^U centralizes y, a contradiction. Thus ^4^ $£ £ . Let g6 G Axy 

with b £ B. Then x̂ & = 3/ and 3/ belongs to the orbit of xg under the action of 
B/K2. Thus 

\(x°)B'K>\>\Q2-Q'2\>mA 

But B/K2 acts half transitively on Q2 so all the orbits have the same size. Hence 
B/K2 acts transitively on Q2 and Lemma 5 applies. There are several possi­
bilities to consider. 

Casel.B/K1~B/K2~S2l\Q1\ = \Q2\ = 9. 
We show that this cannot occur. Since S2 has a cyclic subgroup of index 2 

acting fixed point free, we see that x G Qf implies [Ax : Kf] = 2. Let x G Qi#, 
y É ft#. Then ^4xy H B = Ax P ^ so that [Axy : AXC\ Av] < 2. Since 
|4X | = \Ay\ = |i4Xtf|, this yields [4X : 4 X Pi Ay] < 2, [4y : Ax P Av] < 2. Thus 
[Ax ;Axr\K*]<± and [4 , : Kx P K2] < 8. Since Kxr\K2= {1}, | 4 , | < 8 
and |JK"I| = \K2\ < 4. Let x* (i = 1,2, 3, 4) be generators for the four subspaces 
of Qi. Then [K2 : AXi P K2] < [Ay : 4*, H 4„] < 2. Since |X2| < 4, K2 has 
at most three subgroups of index 2. Thus for, say, x\ and x2 we have 
[i£2 : K2 P AX1 P 4 „ ] < 2. Since Ci = <*i, x%), AXI P ^ , 2 =KU so J2ST2J < 2 
and \A y\ < 4. 

Again [Ay: AXi C\ Ay] < 2 and Ay has at most three subgroups of index 2. 
Thus for, say, x± and x2 we have 

[4„ : AX1 P ^X2 P Ay] = [4„ : Xi P 4 y ] < 2. 

Therefore \KX\ > I ^ P ^ I > M, | /2 = \K2\ = \KX\. Hence Kx = K1r\Ay 

and i£i C Ay. Thus X = (i£i, K2) C 4„. But X < 4 , so i£ centralizes the 
subgroup of Q generated by all yA. Since A acts irreducibly, K centralizes Q. 
Hence K = {1} and Ki = K2 = \l}. This means that B o^S2. Now we have 
assumed that B contains a non-cyclic normal abelian subgroup. Since S2 does 
not contain such a subgroup, we have a contradiction. Thus this case does not 
occur. 
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In the remaining cases, B/Ki acts fixed point free. Let x G (?i#, y G Qé-
Then AxyC\B = KXC\ K2 = {1}, so |^4^| = 2 . Thus Lemma 6 applies and 
I£B. Also Ax = Kx so \KX\ = \K2\ = 2. 

Case 2. 5 / i£ i ~ B/K2 c* C„, |(?| = q2 where g = 2n + 1 is a Fermât prime. 
Now K\ is central in B (since it is normal in B and has order 2) and B/Ki is 

cyclic, so JB is abelian. Since B has two disjoint subgroups Kx and i£2, we see 
that B is abelian of type (2, 2") and | J n B\ = 2. By Lemma 6, | / | = q + 1 
= 2" + 2, so |7 - (7 n J5)| = 2W. Let g be an element of order 2 not in 5 and 
let b £ B. Then (gô)2 = 1 if and only if g~lbg = fr-1. Let D = {b G 5 | g-1 

bg = &-1}. Since B is abelian, Z> is a subgroup of 5 and \D\ = \I — (I C\ B)\ 
= 2n. Since Kx is not a central subgroup of A, i£i H 7) = {1}. Thus B = D + Kx 

and D is cyclic of order 2 \ This yields the groups of type (ii) in the theorem. 
We show now that this situation does in fact occur. Let 6 be an element of an 

order 2n in GF(g) = GF(1 + 2w).Set 

x = [o J-*]' y = s [ ~ o ? ] ' z = [°i o ] -
Then 4̂ = (x, y, z) is the group of type (ii). A trivial argument using Lemma 6 
shows that A acts half transitively on Q, a group of type (g, q). 

Case 3. B/Kx ~ 5 / i£ 2 ^ C8, |<?| = 34. 
The methods of Case 2 yield the result here. We need only show that this 

situation occurs. Set 

["1 - 1 0 0~| [ - 1 0 0 01 [~0 0 1 01 

_ | l 1 0 0 I = I 0 - 1 0 0 I = I 0 0 0 1 I 
x ~ o o i i 1 y~ o o i o ' z " i o o o ' 

[_o o - l l j L o o o l j |_o i o oj 
Let A = (x, yj z). Again trivial verification shows that A acts half transitively 
on Q, a group of type (3, 3, 3, 3). 

Case 4. B/K± ~ B/K2 ~ Qu2, \Q\ = 34. 
Since B is not abelian, we require an alternative approach here. Let Z be the 

third subgroup of order 2 of (Ki, K2) = K. Since B/Ki ^ Qu2} we have B/K 
abelian of type (2, 2). Let x £ B. IÎ x £ K, then x2 = 1 G Z. If x G K, then 
x2 G K. Now B/Ki ~ Ç^2, so x2 G Kt. Hence x2 G Z. Clearly Z is central in A. 
Now J3 contains two non-central involutions of A, so by Lemma 6, 

| I - ( J H 5 ) | = 10 - 2 = 8. 

Let w G I - {I C\B). If ( M 2 = 1 with b G B, then ï e r 1 ^ = J-1. Since 6 
has order 2 or 4, we have b~x = bz with z £ Z. Let 

C = {6 G B\ w~lbw — bz for some z G Z}. 
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Since Z is central, C is a subgroup of B. Now C contains the eight b Ç B with 
(bw)2 = 1 and also C 2 ^ i . Hence \C\ > 8 and since \B\ = 16, we have 
B = C. Thus for each b £ B, w " 1 ^ = 6/(ô) with/(6) G Z. The map b->f(b) 
is easily seen to be a homomorphism of I? into Z, a group of order 2. Let £> be 
its kernel. Since D n K i = | l ) , we see that \D\ = 8 and D + KY = B. 
Clearly D C^L Qu^. 

Let E = (Z, Ku w). Clearly E centralizes D and E ~ Z>2. Also £ Pi D = Z, 
the common centre of both. Hence 4̂ = (D, E) is the central product of ()^2 
and JD2. Since such a group A has 10 non-central involutions, it is easy to see 
that this case does occur. 

This completes the proof of Theorem II. 

The authors wish to thank Professors R. Steinberg and E. Straus for their 
helpful suggestions. 
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