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Abstract. To give a relatively elementary proof of the Brumer–Stark conjecture
in a function field context involving no algebraic geometry beyond the Riemann–
Roch theorem for curves, Hayes (Compos. Math., vol. 55, 1985, pp. 209–239) defined a
normalizing field H∗

e associated with a fixed sgn-normalized Drinfeld module and its
extension field Km, which is an analogue of cyclotomic function fields over a rational
function field. We present explicitly in this note the formulae for the genus of the
two fields and the maximal real subfield Hm of Km. In some sense, our results can be
regarded as generalizations of formulae for the genus of classical cyclotomic function
fields obtained by Hayes (Trans. Amer. Math. Soc., vol. 189, 1974, pp. 77–91) and Kida
and Murabayashi (Tokyo J. Math., vol. 14(1), 1991, pp. 45–56).

2010 Mathematics Subject Classification. 11R58, 11R60, 11G09.

1. Introduction. Let gL be the genus of the algebraic function field L/F with a
constant field F . The genus is important and intrinsic to any function field. It is well
known that it is a difficult task to compute the genus of the function field in many
cases. Perhaps the most powerful tool to deal with it is the Riemann–Hurwitz formula,
which relates the genus gL with the genus gK of a subfield F ⊆ K ⊆ L of finite degree
[L : K ] < ∞. The Riemann–Hurwitz formula tells us that the key point to compute
the genus is by determining the different divisor DL/K of the extension L/K , which is
a divisor of L and contains all prime divisors of L that are ramified in L/K .

To provide an explicit class field theory for the rational function field, Hayes
investigated carefully in 1973 the cyclotomic function fields which are analogues of
cyclotomic number fields. Let k = �q(T) be a rational function field over a finite field
�q with q elements. Denote by ∞ the infinite prime divisor 1

T of k. Let �M be a set of
M-torsion points of kac associated with the Carlitz module, where M is a polynomial
of positive degree in �q[T ] and kac is the algebraic closure of k. KM = k(�M) are called
cyclotomic function fields in [6]. Let G∞ be the decomposition group of ∞ in KM/k
for M ∈ �q[T ] of positive degree. The fixed field of G∞ in KM , denoted by K+

M , is called
the maximal real subfield of KM . It is well known ([6], chapter 12) that KM/k is an
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abelian extension and the properties of K+
M are similar to those of the maximal real

subfield of a cyclotomic number field.
Let P be a monic irreducible polynomial of degree d > 0 in �q[T ]. Hayes gave in

[1] the explicit formula for the genus of KPn , where n is a positive integer.

THEOREM 1.1 ([1], Corollary 4.2). Let �(M) denote the order of the multiplicative
group (�q[T ]/(M))∗ for a polynomial M ∈ �q[T ] with positive degree. Then

2gKPn − 2 = (dqn − dn − q)
�(Pn)
q − 1

− dqd(n−1).

Based on Hayes’s ideas in [1], Kida and Murabayashi [5] calculated the genus for
KM and K+

M with respect to the arbitrary polynomial M ∈ �q[T ] of positive degree.

THEOREM 1.2 ([5], Corollary 1). Let M = ∏r
i=1 Pni

i be the factorization of M ∈
�q[T ] into powers of monic irreducible polynomials Pi and di = deg(Pi), i = 1, . . . , r. Let
si = ni�(Pni

i ) − qdi(ni−1). Then

2gKM − 2 = −2�(M) + (q − 2)
�(M)
q − 1

+
r∑

i=1

si
�(M)
�(Pni

i )
di.

As for gK+
M

, if r=1, then

2gK+
M

− 2 = (dn − 2)
�(M)
q − 1

− d
qd(n−1) − 1

q − 1
− d;

otherwise,

2gK+
M

− 2 = 1
q − 1

(
2gKM − 2 − (q − 2)

�(M)
q − 1

)
.

To provide a relatively elementary proof of the Brumer–Stark conjecture in the
function field context involving no algebraic geometry beyond the Riemann–Roch
theorem for curves, Hayes [4] defined, in 1985, a normalizing field H∗

e associated with a
fixed sgn-normalized Drinfeld module and its extension field Km, which is an analogue
of the classical cyclotomic function field over the rational function field. The purpose
of this note is to present explicitly the formulae for the genus of H∗

e and Km, which
were obtained by Hayes [4], and the so-called maximal real subfield Ha of Ka.

2. Preliminaries. Let K/�q be a global function field over finite constant field �q

with q elements, and ∞ be a fixed prime divisor of K with degree d∞. Let OK denote
the ring of elements of K regular outside of ∞, and let K∞ be the completion of K at
∞. It is well known ([6], chapter 14) that OK is a Dedekind ring with a group of units
O∗

K = �∗
q and with class number h(OK ) = d∞hK , where hK is the class number of K .

Denote by K̄∞ the algebraic closure of K∞, and C∞ the completion of K∞ with respect
to ord∞(∗), which is the ord function associated with the prime ∞. Denote by ∞ also
the unique extension of the above fixed prime to K̄∞ and C∞. It is also well known
([6], chapter 13) that C∞ is complete and algebraically closed, and will play the role of
the complex numbers � in our context.
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We have known that global function fields are analogues of number fields. In 1981,
Hayes [3] invented the normalization theory of the Drinfeld OK -module when d∞ = 1,

to investigate the analytic class number formulae for global function fields. Afterwards,
he defined elliptic units in function fields context by this theory, and then computed the
index of group of elliptic units in the full unit group. Inspired by this theory, Hayes [4]
extended the above normalization theory to the general case, i.e. d∞ > 1. With the help
of this beautiful theory, he provided an elegant and elementary proof of the famous
Brumer–Stark conjecture for global function fields. In this note, we mainly study the
different divisors and genus of the fields obtained by Hayes [4], i.e. H∗

e and Km in
Section 4 of [4]. Before starting our topic, we shall first recall some terminologies from
[4].

Let ρ be an arbitrary Drinfeld OK -module over C∞ such that the constant of ρx(t)
is equal to x for any x ∈ OK . Let T be a subfield of C∞ containing K . We say that T
is a field of definition for ρ if ρ is isomorphic over C∞ to a Drinfeld OK -module ρ ′

such that ρ ′
x has coefficients belonging to T for every x ∈ OK . For each nonconstant

element x ∈ OK , let Ix(ρ) denote the field of invariant of ρ at x (see Definition 6.3 in
[2]). Proposition 6.4 and Theorem 6.5 of [2] showed that Ix(ρ) is a field of definition
for ρ and depends only on the isomorphism class of ρ. Thus, Ix(ρ) depends only on
ρ and not on the choice of x. We write I(ρ) = Ix(ρ) for any nonconstant x ∈ OK and
call it the field of invariants of ρ. It is easy to see that I(ρ) is the smallest field of
definition for ρ. Let sgn be a fixed sign function, and ρ be a sgn-normalized Drinfeld
OK -module over C∞ of generic characteristic (note here that OK ⊂ C∞). Denote by
H1 the Hilbert class field of K associated with OK . We know from Hayes [2] that H1 is
the field of invariants of ρa for any fractional ideal a of OK , where ρa is the Drinfeld
module corresponding to the lattice a. By Corollary 8.12 of [2], it is unramified of
degree h(OK ) over K , and its constant field has degree d∞ over �q. Thus, if d∞ = 1,
then H1/K is a geometric extension, and we can get the genus of H1 as follows by the
Riemann–Hurwitz formula:

gH1 = 1 + hK (gK − 1).

With the help of Corollary 4.8 of [4], if d∞ > 1, then a Drinfeld OK -module of generic
characteristic over H1 cannot be a sgn-normalized Drinfeld module. Assume that
d∞ = 1 and ρ is a sgn-normalized Drinfeld OK -module over H1 of generic
characteristic hereafter. Let I∗(ρ) be the subfield of C∞ generated by the coefficients
of polynomial ρx, x ∈ OK − {0}. Hayes pointed out [2] that I∗(ρ) is independent of the
choice of ρ up to isomorphism. Denote by H∗

e the common field I∗(ρ) for the sgn-
normalized Drinfeld OK -module of generic characteristic. When d∞ = 1, we can claim
from Theorem 4.10 of [4] that the normalizing field of ρ, denoting by H∗

e , is exactly
H1. It can be inferred by the same theorem that H1(�a)/K is an abelian extension for
any nonzero ideal a ⊂ OK , where �a is the set of a-torsion points of ρ. Let G∞ be the
decomposition group of ∞ in H1(�a). Then, the fixed field of G∞ in H1(�a) is the ray
class field Ha of OK associated with a. For any prime of Ha lying over ∞, it is totally
ramified in H1(�a) with the ramification index equal to q − 1. By these facts, we can
easily prove the following simple facts:

FACT 2.1. The two function field extensions Ha/K and H1(�a)/K are both geometric
extensions.
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Proof. Denote by p∞ and P∞ respectively primes of Ha and H1(�a) lying over
∞, and F and E the constant fields of Ha and H1(�a), respectively. By the proof of
Proposition 7.7 in [6], we obtain

[F : �q] degHa
p∞ = f (p∞/∞)d∞

and

[E : F ] degH1(�a) P∞ = f (P∞/p∞) degHa
p∞,

where f (p∞/∞) and f (P∞/p∞) are residue class degrees. We note that ∞ splits
completely in Ha/K and p∞ is totally ramified in H1(�a)/Ha. Therefore, f (p∞/∞) =
f (P∞/p∞) = 1. Combining this equality with the fact d∞ = 1, we can claim that
[F : �q] = degHa

p∞ = 1, which in turn means that [E : F ] = 1. Thus, E = F = �q, and
our proof is complete. �

3. Main results. With comments of the previous section, we can now discuss the
genus of H1(�a) and Ha. To ease the notation, we denote by Ka the field H1(�a). It
is worth noting that if pe is the exact power of p dividing a, then any prime P of H1

lying above p is ramified in Ka/H1 with the ramification index �OK (pe), where �OK (pe)
denotes the order of multiplicative group (OK/pe)∗; if p � a, then P dose not ramify in
Ka/H1.

First, we consider the case that a = pn with n ≥ 1. The following theorem will give
the different divisor of the extension Ka/K .

THEOREM 3.1. Let a = pn with n ≥ 1 for prime ideal p. The different divisor of the
extension Ka/K is

DKa/K = s
∑
P|p

P + (q − 2)
∑

P∞|∞
P∞,

where P is the unique prime of Ka lying above P , which is a prime of H1 lying over p, and
s = n�OK (a) − �OK (a)

�OK (p) .

Proof. Note that the proof of our conclusion is similar to that of Hayes Theorem
4.1 [1]. We state it here for completeness.

We note first that only the primes p and ∞ are ramified in Ka. Since ∞ splits
completely in Ha and each prime of Ha lying above ∞ is totally ramified in Ka,
the ramification index of ∞ in Ka is q − 1, and thus the ∞-part of DKa/K is (q − 2)∑

P∞|∞ P∞. So we only have to show the value of s. To determine s, we need to
compute the exponent of the different divisor DKa/H1 at the prime above P by local
considerations, where P is the prime of H1 lying over p. Let Ka,P and H1,P denote the
completion of Ka and H1 at primes P and P, respectively. Then, Ka,P/H1,P is a totally
ramified extension of local fields, and Ka,P can be generated by a single root λ ∈ �a of
f (u) = ρa(u)

ρ
pn−1 (u) . By Proposition 7.6 in [2], we get that f (u) is an Eisenstein polynomial

at P , and this means that λi with 0 ≤ i < �OK (pn) constitute an integral basis for
this local extension. By the theory of local fields, we claim that the discriminant of
this extension is generated by the norm of f

′
(λ). Note that ρa(u) = ρpn−1 (u)f (u), where

ρa is the unique isogeny from ρ to a ∗ ρ up to isomorphism (for details see [2]). By
differentiating both sides of the above equality and then replacing u by λ, we can get that
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D(ρa) = ρpn−1 (λ)f
′
(λ), where D(ρa) denotes the constant of ρa(u). Since ρpn−1 (λ) ∈ �p

and the valuation at P of nonzero elements of �p is one, and the valuation of D(ρa)
at P is n�OK (a), we obtain that the valuation at P of the norm of f

′
(λ) is n�OK (a) −

�OK (a)
�OK (p) . By returning to the global circumstance again, we can finally establish our
conclusion. �

With the aid of the above theorem, we can deal with the general case by means of
the transitive property of different divisors.

COROLLARY 3.2. Let a = p
n1
1 · · · pnr

r with r ≥ 2 and ni > 0, 1 ≤ i ≤ r. The different
divisor of Ka/K is

DKa/K =
r∑

i=1

si(
∑
Pi|pi

∑
Pi|Pi

Pi) + (q − 2)
∑

P∞|∞
P∞,

where si = ni�OK (pni
i ) − �OK (pni

i )
�OK (pi)

.

Proof. Since the ramification index of ∞ in Ka is also q − 1, the coefficients of
prime P∞|∞ are all q − 2, and thus the ∞-part of the different divisor can be attained.
For the finite parts, we only have to consider the case r = 2, and the general case can
be done by the same arguments. Since only primes of H1 lying above p1 (resp. p2) are
ramified in Kp

n1
1
/H1 (resp. Kp

n2
2
/H1), Kp

n1
1

and Kp
n2
2

are linearly disjoint over H1, the
finite parts (DK

p
ni
i

/K )0, i = 1, 2 are relatively prime. By the transitive property of the
different divisor, we get that

(DKa/K
p

n1
1

)0 + iKa/K
p

n1
1

(DK
p

n1
1

/K )0 = (DKa/K
p

n2
2

)0 + iKa/K
p

n2
2

(DK
p

n2
2

/K )0,

where iKa/K
p

ni
i

is the extension of the divisors map. With the aid of the above statements,
we claim that, for i �= j,

(DKa/K
p

ni
i

)0 = iKa/K
p

nj
j

(DK
p

nj
j

/K )0.

Thus, the expression of finite parts of the different divisor can be obtained by above
theorem. By combining this with the above ∞-part, we complete our proof. �

In order to continue our topic, we need the following lemma, which is interesting
in itself.

LEMMA 3.3. Let a = p
n1
1 · · · pnr

r with r ≥ 2 and ni > 0, 1 ≤ i ≤ r, and Oa be the
integral closure of OK in Ka. Then, a generator of �a is a unit in Oa.

Proof. First, it is easy to show that �a ⊆ Oa by the properties of a sgn-normalized
Drinfeld module (for details see [4]). We known that �a is isomorphic to OK/a as
OK -modules. Suppose that λ ∈ �a be a generator of �a. In the first place, we prove the
case r = 2. Afterwards, we can prove the general case by induction. Assume now that
a = p

n1
1 p

n2
2 . Set λ1 = ρa/p1

n1 (λ) and λ2 = ρa/p2
n2 (λ). Then, λ1 and λ2 are the generators

of �p
n1
1

and �p
n2
2

, respectively. By Lemma 4.19 of [4], they generate pni
i Op

ni
i in the

subfields Kp
ni
i of Ka for i = 1, 2, where Op

ni
i is the integral closure of OK in Kp

ni
i . Since

these two generated ideals are relatively prime in Oa, there are elements α and β in Oa
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such that αλ1 + βλ2 = 1. Note here that λ divides both λ1 and λ2, then it divides units,
and thus λ is a unit. �

REMARK 3.4. The result of the above lemma can be considered as the generalization
of Proposition 12.6 of [6].

With the above preparation, we can now compute the different divisor of the
extension Ka/Ha.

THEOREM 3.5. Let a = p
n1
1 · · · pnr

r be a nonzero ideal of OK with r ≥ 1 and ni > 0,
1 ≤ i ≤ r. If r = 1, then

DKa/Ha
= (q − 2)

⎛
⎝ ∑

P1|p1

P1 +
∑

P∞|∞
P∞

⎞
⎠ ;

otherwise,

DKa/Ha
= (q − 2)

∑
P∞|∞

P∞.

Proof. Because Ha is the decomposition field of ∞ in Ka, and primes of Ka lying
above ∞ are totally ramified over Ha, the ∞-part of the different divisor is always equal
to (q − 2)

∑
P∞|∞ P∞ in any case. First, we consider the case r = 1. We note that only

primes of Ha lying above p1 are totally ramified in Ka with the ramification index q − 1,
and thus the coefficients of primes appearing in different are all q − 2. Now we deal
with another case, i.e. r > 1. Actually, we will show that Ka/Ha is unramified except at
the primes lying over ∞. Note that Ka = H1(λ) and Ha = H1(λq−1) for a generator of
λ ∈ �a. The minimal irreducible polynomial of λ over Ha is f (x) = xq−1 − λq−1. Thus,
the discriminant of λ is (λ(q−1)(q−2)). In the theory of global fields, the discriminant of
Ka/Ha divides the ideal generated by the discriminant of λ. Using Lemma 3.3, we have
that any finite prime of Ha is unramified in Ka, and this establishes our theorem. �

Having obtained explicit formulae for different divisors, we can compute the genus
of these function fields.

COROLLARY 3.6. With notation as Corollary 3.2, set di = degK pi for 1 ≤ i ≤ r. Then
we get that if r = 1, then

2gKa
− 2 = hK�OK (a)(2gK − 2) + hK s1d1 + hK�OK (a)(q − 2)

q − 1
;

otherwise,

2gKa
− 2 = hK�OK (a)(2gK − 2) + hK�OK (a)

r∑
i=1

sidi

�OK (pni
i )

+ hK�OK (a)(q − 2)
q − 1

,

where hk is the class number of K.

Proof. Note here that Ka/K is a geometric extension. With the help of Theorem 3.1
and Corollary 3.2, we can compute the genus of Ka by the Riemann–Hurwitz
formula. �
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COROLLARY 3.7. With the notation as Theorem 3.5, if r = 1, then

2gHa
− 2 = hK�OK (a)(2gK − 2)

q − 1
+ hK d1(s1 + 2 − q)

q − 1
;

otherwise,

2gHa
− 2 = hK�OK (a)(2gK − 2)

q − 1
+ hK�OK (a)

q − 1

r∑
i=1

sidi

�OK (pni
i )

.

We give some remarks about above formulae to conclude our note.

REMARK 3.8. Using sgn-normalized Drinfeld modules over H1 of generic
characteristic, we get explicit formulae for different divisors of Ka/K and Ka/Ha,
and the genus of Ka and Ha. We should note that our methods to determine these
formulae are valid only in the case d∞ = 1. When d∞ > 1, the normalizing field of
any sng-normalized Drinfeld module of generic characteristic is not equal to H1. If
we assume that K is the rational function field �q(T) and ∞ = 1

T , then our above
formulae are in accordance with Hayes’s [1] Theorem 4.1 and Kida and Murabayashi’s
[5] Corollary 1, and thus these formulae can be regarded as the generalizations of the
results obtained by Hayes and Kida.
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