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Abstract

We follow the idea of generalising the notion of classical iterated function systems, as presented by Mihail
and Miculescu. We give their deliberations a more general setting and, using this general approach, study
the generic aspect of the problem of existence of an attractor of a function system.

2010 Mathematics subject classification: primary 28A80; secondary 54E52.

Keywords and phrases: fractals, iterated function systems, fixed points, Baire category, porosity.

1. Introduction

The motivation for our study derives from the recent papers of Mihail [M] and Mihail
and Miculascu [MM1, MM2], where the authors presented interesting generalisations
of the well-known notion of iterated function systems (IFSs).

Originally, an IFS was a finite system of Banach contractions S := ( f1, . . . , fn) of
some complete metric space X. Such an IFS generates a natural mapping FS : K(X)→
K(X):

FS(D) :=
n⋃

k=1

fk(D)

(K(X) is the space of all nonempty and compact subsets of X). The mapping FS
turns out to be a Banach contraction (we consider K(X) as a metric space with the
Hausdorff metric H), so it has a unique fixed point, that is, a set A(S) ∈K(X) such that
FS(A(S)) = A(S).

Fixed points of IFSs are called attractors, or Hutchinson–Barnsley fractals. This
nice idea (first presented by Hutchinson [H], then popularised by Barnsley [B])
attracted many mathematicians and yielded a plentiful crop of results. In particular,
instead of selfmappings of a metric space X, Mihail and Miculescu [M, MM1, MM2]
considered mappings from a Cartesian product X × · · · × X into X. They derived
versions of fixed point theorems for such mappings and used them to obtain other ways
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for generating fractals. (Note that fixed points of such mappings were also investigated
earlier in the literature; see [Se].)

The fixed point theorems they generalised are the well-known Banach fixed point
theorem (in [M, MM2]) and the Edelstein theorem which states that a selfmapping f of
a compact space, which satisfies d( f (x), f (y)) < d(x, y) for different x, y, also satisfies
the conclusion of the Banach fixed point theorem (in [MM1]).

It is well known that both these famous fixed point results are special cases of the
fixed point theorem for ϕ-contractions. Hence the question naturally arises whether it
is possible to extend the considerations raised in [M, MM1, MM2] in this direction.

In this paper we give an affirmative answer to this question (Section 3). The proofs
will follow the ideas presented in [M, MM1, MM2] but, since our setting is more
general, some of them will be slightly shorter than the original ones. (It is often the
case in mathematics that the more general the assumptions, the simpler the proofs are.)

Moreover, we study the generic aspects of the problem. In particular, we show that
most nonexpansive function systems have attractors (Section 5).

2. Notation and terminology

In view of Section 5, we start by presenting some notions of porosity. Let X be a
metric space. In the following, B(x, R) stands for an open ball centered at x with radius
R > 0.

We say that M ⊂ X is lower porous if

∀x∈M ∃α>0 ∃R0>0 ∀R∈(0,R0) ∃z∈X B(z, αR) ⊂ B(x, R) \ M.

If M is a countable union of lower porous sets, then we say that M is σ-lower porous.
Clearly, σ-lower porosity implies meagreness, but the converse need not be true—in
all ‘reasonable’ complete metric spaces there are sets which are meagre and are not
σ-lower porous. Hence if we know that a particular set is not only meagre but also
σ-lower porous, then we know that it is even smaller. In fact, there are many notions
of porosity; for more information we refer the reader to survey papers [Z1, Z2].

Let (X, d) and (Y, ρ) be metric spaces. If f : X→ Y , then we denote by Lip( f ) the
Lipschitz constant of f (in the following, inf ∅ =∞):

Lip( f ) := inf{c > 0 : ∀x,y∈X ρ( f (x), f (y)) ≤ cd(x, y)}.

If Lip( f ) ≤ 1, then we say that f is nonexpansive.
If for some nondecreasing, upper semicontinuous function ϕ : [0,∞)→ R with

ϕ(t) < t for t > 0,
∀x,y∈X ρ( f (x), f (y)) ≤ ϕ(d(x, y)), (2.1)

then we say that f is a generalised ϕ-contraction. Clearly, if Lip( f ) < 1, then f is also
a generalised ϕ-contraction. (Simply set ϕ(t) := t Lip( f ).)
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If Y = X, then every generalised ϕ-contraction is called a ϕ-contraction. Recall
the following fixed point theorem. Part (i) is due to Browder [Br], and part (ii) is a
consequence of [J, Theorem 11] (see also [J, Remark 11]).

T 2.1. Let X be a complete metric space.

(i) If f : X→ X is a ϕ-contraction, then f satisfies the conclusion of the Banach
fixed point theorem, that is, f has a unique fixed point and each sequence of
iterates of f converges to that fixed point.

(ii) Let ( fn) be a sequence of ϕ-contractions (for the same function ϕ) which is
pointwise convergent to a function f on X. Then f is a ϕ-contraction. If also
lim inft→∞(t − ϕ(t)) > 0, then the sequence of fixed points of the functions fn
converges to the fixed point of f .

R 2.2. In fact, we can slightly weaken the assumptions of part (ii). Namely, we
can assume that ( fn) converges to f on a dense subset of X and f is continuous. Indeed,
since Lip( fn) ≤ 1, we instantly have that this implies that ( fn) is pointwise convergent
to f (see also [MM1, Proposition 2.12]).

R 2.3. It is easy to see that if X and Y are compact and

∀x,y∈X ρ( f (x), f (y)) < d(x, y),

then f is a generalised ϕ-contraction. In particular, the Edelstein theorem follows from
Theorem 2.1.

Recall that K(X) denotes the family of nonempty and compact subsets of X,
considered as a metric space with a Hausdorff (or Hausdorff–Pompeiu) metric H:

H(D,G) := max
{
sup
x∈D

(inf
y∈G

d(x, y)), sup
y∈G

(inf
x∈D

d(x, y))
}

= inf{r > 0 : D ⊂G(r) and G ⊂ D(r)},

where A(r) := {x ∈ X : ∃y∈A d(x, y) < r}.
It is well known that if X is complete, then K(X) is also complete, and if X is

compact, then K(X) is also compact.
Now if m ∈ N, then we denote by Xm the Cartesian product of m copies of X,

endowed with the maximum metric:

dmax((x1, . . . , xm), (y1, . . . , ym)) := max{d(x1, y1), . . . , d(xm, ym)},

and if m ∈ N and f1, . . . , fn : Xm→ X are continuous functions and S := ( fk)n
k=1, then

we define FS : K(X)m→K(X) in the following way:

FS(D1, . . . , Dm) :=
n⋃

i=k

F fk (D1, . . . , Dm), (2.2)

where F f (D1, . . . , Dm) := f (D1 × · · · × Dm) := { f (x1, . . . , xm) : xi ∈ Di, i = 1, . . . , n}.
We are ready to give the definition of a generalised iterated function system.
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D 2.4. Let X be a metric space and m, n ∈ N. Let f1, . . . , fn : Xm→ X be
generalised ϕ-contractions. Then S := ( fi)n

i=1 is called a generalised iterated function
system (GIFS) of order m. If additionally Lip( fi) < 1 for i = 1, . . . , n, then we call
S a generalised classical iterated function system (GcIFS) of order m. If S is a
GIFS, then the function FS, defined as in (2.2), is called the set function associated
to S.

R 2.5. If every fi, i = 1, . . . , n, is a generalised ϕ-contraction and satisfies (2.1)
for a function ϕi, then it also satisfies (2.1) for ϕ := max{ϕ1, . . . , ϕn}, and ϕ is
nondecreasing, upper semicontinuous and ϕ(t) < t for t > 0. Hence if S = ( fi)n

i=1 is a
GIFS, then there is one ‘appropriate’ function ϕ such that each fi is a ϕ-contraction
with this function ϕ. This observation will be important in the formulation of
Theorem 3.7.

R 2.6. Note that the GIFS considered in [MM2] (and the RIFS considered
in [M]) are precisely what we call GcIFS, and by Remark 2.3, in the case when X
is compact, our definition of GIFS is equivalent to that given in [MM1]. Moreover, the
case m = 1 has also been considered in the literature (see [Ma]).

3. Results

We begin with a generalisation of Theorem 2.1, which can also be viewed as a
generalisation of parts of [MM1, Theorem 3.4] and [M, Theorems 2.1 and 2.5].

T 3.1. Let (X, d) be a complete metric space and f : Xm→ X be a function.

(i) If f is a generalised ϕ-contraction, then there exists a unique α ∈ X such that
f (α, α, . . . α) = α and for every x1, x2, . . . , xm ∈ X, the sequence (xk)∞k=1 defined
by xk+m := f (xk, xk+1, . . . , xk+m−1), for all k ≥ 1, is convergent to α.

(ii) If ( fn) is a sequence of generalised ϕ -contractions (with the the same function
ϕ) which is pointwise convergent to f , then f is a ϕ-contraction, and if (αn)
is such that fn(αn, . . . , αn) = αn, n ∈ N, then αn→ α, where α is such that
f (α, . . . , α) = α.

R 3.2. In fact, in part (i) we can replace pointwise convergence by pointwise
convergence on a dense set, but we cannot skip the assumption that all fn are ϕ-
contractions with the same function ϕ. An appropriate example can be found in [GD,
p. 18]. (Note that [MM1, Theorem 3.4] is formulated for compact spaces.)

R 3.3. Note that [MM1, Theorem 3.4] and [M, Theorem 2.1] are formulated
in slightly different (but equivalent) ways. Namely, the sequence (xn) is defined by
xm+k := f (xk+m−1, . . . , xk) instead of xm+k := f (xk, . . . , xm+k−1). However, the proofs
presented there are appropriate for the second case.

The proof of the theorem requires the following three lemmas. We skip the proof
of the first lemma since it is mathematical folklore.
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L 3.4. Let X be a complete metric space and f : X→ X be such that for some
p ∈ N, the function f (p) satisfies the hypothesis of the Banach fixed point theorem.
Then f satisfies the hypothesis of the Banach fixed point theorem.

L 3.5. Let (X, d) be a metric space, m ∈ N and f : Xm→ X be nonexpansive.
Define h : Xm→ Xm by

h(x1, x2, . . . , xm) := (x2, . . . , xm, f (x1, x2, . . . , xm)).

Then h is also nonexpansive.

P. Suppose that f and h are as in the formulation and x = (x1, . . . , xm),
y = (y1, . . . , ym) ∈ Xm. Then

d( f (x), f (y)) ≤ dmax(x, y) = max{d(x1, y1), d(x2, y2). . . . , d(xm, ym)}.

Hence

dmax(x, y) = max{d(x1, y1), d(x2, y2), . . . , d(xm, ym)}

≥ max{d(x2, y2), d(x3, y3), . . . , d(xm, ym), d( f (x), f (y))}

= dmax(h(x), h(y)).

This completes the proof. �

L 3.6. Let (X, d) be a metric space, m ∈ N and xi, yi ∈ Xm, i = 1, . . . , m. Assume
that f : Xm→ X is a generalised ϕ-contraction (with the function ϕ). Then

dmax(( f (x1), . . . , f (xm)), ( f (y1), . . . , f (ym))) ≤ ϕ(η),

where η := max{dmax(x1, y1), . . . , dmax(xm, ym)}.

P. Let i ∈ {1, . . . , m}. Then

d( f (xi), f (yi)) ≤ ϕ(dmax(xi, yi)) ≤ ϕ(η).

Hence
dmax(( f (x1), . . . , f (xm)), ( f (y1), . . . , f (ym))) ≤ ϕ(η).

This completes the proof. �

We now give the proof of Theorem 3.1.

P. We first prove (ii). Let fn, n ∈ N, be ϕ-contractions (with the same function ϕ)
such that ( fn) is pointwise convergent to f . Clearly, f is a ϕ-contraction. Let
g, gn : X→ X, n ∈ N, be the functions defined by g(x) = f (x, x, . . . , x, ), gn(x) =

fn(x, x, . . . , x), x ∈ X. Clearly, gn are ϕ-contractions (with the same function ϕ)
and the sequence (gn) is pointwise convergent to g. In particular, by Theorem 2.1,
there exist unique α, αn ∈ X, n ∈ N, such that α = g(α) = f (α, α, . . . , α), gn(αn) =

fn(αn, αn, . . . , αn) = αn and αn→ α. This concludes the proof of (ii).
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We now prove (i). Let f be a generalised ϕ-contraction. As in the proof of (ii), it
can be shown that there exists a unique α ∈ X such that f (α, . . . , α) = α. Now consider
the function h : Xm→ Xm given by

h(x1, x2, . . . , xm) := (x2, x3, . . . , xm, f (x1, x2, . . . , xm)).

We will prove that h(m) is a ϕ-contraction. Let x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Xm

and set λ := dmax(x, y). Define the points xi, yi ∈ Xm, i = 1, . . . , m, in the following
way: x1 := x, y1 := y,

xi+1 := h(xi) = (xi+1, . . . , xm, f (x1), . . . , f (xi))

and
yi+1 := h(yi) = (yi+1, . . . , ym, f (y1), . . . , f (yi)).

By Lemma 3.5, h is nonexpansive, so dmax(xi, yi) ≤ λ, i = 1, . . . , m. Moreover, it can
be easily seen that

h(m)(x) = h(xm) = ( f (x1), . . . , f (xm)) and h(m)(y) = h(ym) = ( f (y1), . . . , f (ym)).

Hence, by Lemma 3.6,
dmax(h(m)(x), h(m)(y)) ≤ ϕ(λ).

The above considerations show that for every x, y ∈ Xm,

dmax(h(m)(x), h(m)(y)) ≤ ϕ(dmax(x, y)),

This shows that h(m) is a ϕ-contraction.
Hence h(m) fulfils the assumptions of Lemma 3.4 (taking p = m), so h satisfies the

hypotheses of the Banach fixed point theorem. That is, there exists (β1, . . . , βm) ∈ Xm

such that (β1, . . . , βm) = h(β1, . . . , βm) and every sequence of iterates of h converges
to (β1, . . . , βm).

In particular,
β1 = β2 = · · · = βm = f (β1, β2, . . . , βm),

and thus β1 = β2 = · · · = βm = α. (Recall that α was a unique point for which
f (α, . . . , α) = α.) Finally, for any x1, . . . , xm ∈ X,

(α, . . . , α) = (β1, . . . , βm) = lim
n→∞

h(n−1)(x1, . . . , xm) = lim
n→∞

(xn, . . . , xn+m−1),

so xn→ α and the proof is complete. �

We now prove a generalisation of [M, Lemma 2.4] and [MM1, Proposition 3.1].

T 3.7. Let (X, d) be a metric space, m ∈ N and S = ( fi)n
i=1 be a GIFS of order m

such that each fi is a ϕ-contraction with a function ϕ. Then the set function associated
to S, FS, is a generalised ϕ-contraction (with the same function ϕ).
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To prove the result we need some lemmas.

L 3.8. Let (X, d), (Y, ρ) be metric spaces and f : X→ Y be a generalised ϕ-
contraction. Then F f : K(X)→K(Y) is also a generalised ϕ-contraction (with the
same function ϕ), where

∀D∈K(X) F f (D) := f (D).

P. Let D,G ∈K(X). Set any x ∈ D and let (yn) ⊂G be such that d(x, yn)→
infy∈G d(x, y). Since ϕ is upper semicontinuous and nondecreasing,

inf
y∈G

ϕ(d(x, y)) ≤ lim sup
n→∞

ϕ(d(x, yn)) ≤ ϕ(inf
y∈G

d(x, y)) ≤ ϕ(H(D,G)).

Hence
inf
y∈G

ρ( f (x), f (y)) ≤ inf
y∈G

ϕ(d(x, y)) ≤ ϕ(H(D,G)).

Since x was arbitrary,

sup
x∈D

(
inf
y∈G

ρ( f (x), f (y))
)
≤ ϕ(H(D,G)).

In the same way we show that

sup
x∈G

(
inf
y∈D

ρ( f (x), f (y))
)
≤ ϕ(H(D,G)),

and the proof is complete. �

Using the well-known fact that

H
(⋃

i∈I

Di,
⋃
i∈I

Gi

)
≤ sup

i∈I
H(Di,Gi),

we obtain the following corollary.

C 3.9. Let (X, d), (Y, ρ) be metric spaces, n ∈ N and f1, . . . , fn : X→ Y.
Define F : K(X)→K(Y) in the following way:

F(D) :=
n⋃

k=1

fk(D), D ∈K(X).

If each fi is a generalised ϕ-contraction (with the same function ϕ), then F is a
generalised ϕ-contraction (with the function ϕ).

We now give the proof of Theorem 3.7.

P. It can be easily seen that if X is a metric space and m ∈ N, then, for every
D1, . . . , Dm,G1, . . . ,Gm ∈K(X),

max{H(D1,G1), . . . , H(Dm,Gm)} = H(D1 × · · · × Dm,G1 × · · · ×Gm).
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(It is important that we consider the maximum metric on the Cartesian product.)
Moreover, for every D1, . . . , Dm ∈K(X),

FS(D1, . . . , Dm) = F(D1 × · · · × Dm),

where F is defined as in Corollary 3.9. Hence the result follows from Corollary 3.9. �

The next lemma can be compared with [MM1, Lemma 2.13]. We skip the proof
since the result follows from [MM1, Lemma 2.11 and Proposition 2.12]. (In fact, we
observe that in the formulation of [MM1, Lemma 2.11], we can replace the uniform
convergence with uniform convergence on compact sets, and that X can be any metric
space.)

L 3.10. Let X be a metric space and S = ( f1, . . . , fn) be a GIFS. Let Sk =

( f k
1 , . . . , f k

n ), k ∈ N, be a GIFS such that for any i = 1, . . . , n, ( f k
i ) is pointwise

convergent to fi on a dense subset of X. Then (FSk ) is pointwise convergent to FS.

We are ready to formulate our main result, which (in its main points—see
Remark 3.2) is an extension of [MM1, Theorems 3.5 and 3.7] and [M, Theorems 2.2
and 2.6], and follows immediately from Theorems 3.1 and 3.7 and Lemma 3.10. Note
that a similar observation to Remark 3.3 also holds here.

T 3.11. Let X be a complete metric space and S = ( fi)n
i=1 be a GIFS of order m.

Then there exists a unique A(S) ∈K(X) such that

FS(A(S), . . . , A(S)) = A(S).

Moreover, for any H1, . . . , Hm ∈K(X), the sequence (Hk)∞k=1, defined by

Hk+m := FS(Hk, . . . , Hk+m−1), k ∈ N,

converges to A(S).
Now let Sk = ( f k

1 , . . . , f k
n ), k ∈ N, be GIFS of order m such that, for every i =

1, . . . , n, ( f k
i ) converges pointwise to fi on a dense subset of X, and such that all f k

i ,
i = 1, . . . , n, k ∈ N, are ϕ-contractions (with the same function ϕ). Then (A(Sk))k∈N

converges to A(S).

4. Example

We now present an example based on one presented in [MM2]. Throughout this
section we assume that

X = {(xn) ∈ c0 : ∀n∈N xn ≥ 0},

and we consider it as a metric subspace of c0 (the Banach space of all real sequences
which converge to zero). Note that X is not compact, but remains complete. We begin
with a definition. (Recall that classical IFSs are GIFSs of order one.)
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D 4.1. Let k, m ∈ N and let S = ( f1, . . . , fk) be a GIFS of order m, defined on
the space X. We say that S is nice if each fi : Xm→ X is of the form

fi((x1
n), . . . , (xm

n )) = ( f 1
i (x

ε i
1

ri
1
), f 2

i (x
ε i

2

ri
2
), f 3

i (x
ε i

3

ri
3
), . . .),

where (ri
n)n∈N is a sequence of naturals, and (ε i

n)n∈N is a sequence of naturals from
{1, . . . , m}.

R 4.2. Note that S = ( f1, . . . , fk) is nice if and only if each coordinate of each
fi depends only on one (established) coordinate of (x j

n), where j ∈ {1, . . . , m} is also
established.

Our main result in this section is the following theorem.

T 4.3. There is a compact set ∅ , A ⊂ X such that:

(i) for some nice GIFS S, FS(A × · · · × A) = A;
(ii) for any IFS S′ which consists of Banach contractions, FS′(A) , A;
(iii) for any nice IFS S′ which consists of ϕ-contractions, FS′(A) , A;
(iv) for any nice GcIFS S′, FS′(A × · · · × A) , A.

The proof requires a number of lemmas.

L 4.4. Let 0 < c < a < d < b and f : [a, b]→ [c, d] be linear with f (a) = c and
f (b) = d. For x ∈ [d, b], set

kx = max{n ∈ N ∪ {0} : f n(x) ≥ a} = max{n ∈ N : f (n+1)(x) is defined}.

Then
log

(
1 − b−a

b−d (1 − q)
)

log q
− 1 ≤ kx + 1 ≤

log
(
1 − b−a

b−d (1 − q)
)

log q
+ 1,

where q = (d − c)/(b − a).

P. The lemma (and its proof) become clearer if we make a cobweb graph of
iterations of f at a point x. Note that f is given by a formula:

∀t∈[a,b] f (t) = qt + p,

where p = (bc − da)/(b − a).
Let (an)n≥0 be the sequence of iterations of a linear extension f on b (in particular,

a0 = b and a1 = f (a0) = d), and let (bn)n≥1 be defined by bn = an−1 − an for n ∈ N. For
any n ≥ 2,

bn = an−1 − an = an−1 − (qan−1 + p) = an−1(1 − q) − p

= (qan−2 + p) − an−1q − p = q(an−2 − an−1) = qbn−1.

According to this, (bn) is a geometric sequence.
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Clearly, kb = kd + 1 and, for any x ∈ [d, b], kd ≤ kx ≤ kb. Hence it is enough to show
that

log
(
1 − b−a

b−d (1 − q)
)

log q
− 1 ≤ kb ≤

log
(
1 − b−a

b−d (1 − q)
)

log q
. (4.1)

By our assumptions, we can estimate

b − a ≤
kb+1∑
i=1

bi = b1
1 − qkb+1

1 − q
= (b − d)

1 − qkb+1

1 − q
,

which implies that
log

(
1 − b−a

b−d (1 − q)
)

log q
− 1 ≤ kb.

To get the second inequality in (4.1), we have to start with

b − a ≥
kb∑

i=1

bi

and proceed in an analogous way. Hence we get (4.1) and the proof is complete. �

L 4.5. There exists a function φ : [0,∞)→ [0,∞) with the following properties
(in which (φ(n)(1)) is the sequence of iterates of 1):

(a) φ is continuous, nondecreasing and φ(t) < t for t > 0;
(b) φ is concave;
(c) ∀m≥1, limn→∞ φ

(mn)(1)/φ(n)(1) = 1;
(d) ∀n≥0, φ

(n+1)(1)/φ(n)(1) ≥ 1
2 .

Note that if φ : [0,∞)→ [0,∞) satisfies (a), then (c) is equivalent to:

(c′) limn→∞ φ
(2n)(1)/φ(n)(1) = 1.

P. Let k ≥ 2 and define the function φ in the following way:
• φ(0) = 0;
• φ(t) = 1 − (1/k), for t > 1;
• φ(1/n) = 1/n − 1/kn, for n ∈ N;
• φ is linear on each interval [1/(n + 1), 1/n].

Note that we should write φk instead of φ, since this function depends on k.
However, our simplification will not lead to any confusion. For any n ∈ N, set

qn =
φ
( 1

n

)
− φ

( 1
n+1

)
1
n −

1
n+1

.

It is easy to see that, for each n ∈ N,

qn = 1 −
n(n + 1)(k − 1)

kn+1
.

Step 1. We prove that, for k ≥ 3, the function φ is concave. It is sufficient to prove that,
for each n ∈ N, qn ≤ qn+1. Easy computations show that this is true for k ≥ 3.
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Step 2. We prove that there exists k0 ∈ N such that, for k ≥ k0, the function φ satisfies

lim
r→∞

φ(2r)(1)
φ(r)(1)

= 1.

This will give us (c′) and, in consequence, (c).
For every n, put

An =

{
r ∈ N : f (r)(1) ∈

[ 1
n + 1

,
1
n

]}
.

It is enough to show that
∀n∈N, |An+1| ≥ 2|An| + 1, (4.2)

where |A| denotes the cardinality of A. Indeed, assume that we have proved (4.2).
Then, by induction, we can easily show that

∀n∈N, |An+1| ≥ |A1 ∪ · · · ∪ An| + 1. (4.3)

Now, for every r ∈ N, let nr be such that r ∈ Anr . (If r belongs to two sets, namely
r ∈ An ∪ An+1, then we set nr = n.) Then nr →∞. Moreover,

∀r∈N, n2r = nr or n2r = nr + 1. (4.4)

Indeed, by (4.3),

|Anr+1 ∪ Anr ∪ · · · ∪ A1| ≥ |Anr+1| + |A1 ∪ · · · ∪ Anr | − 1 ≥ 2|A1 ∪ · · · ∪ An|,

which gives us (4.4). (We have used the fact that max(A1 ∪ · · · ∪ An) =

|A1 ∪ · · · ∪ An|.) Finally, by (4.4),

∀r∈N,
f (2r)(1)
f (r)(1)

≥

1
nr+2

1
nr

,

which gives f (2r)(1)/ f (r)(1)→ 1.
We now show (4.2). It is easy to see that, for all k ≥ 3 and n ∈ N,

0 <
1

n + 1
−

1
kn+1

<
1

n + 1
<

1
n
−

1
kn
<

1
n
.

Hence, by Lemma 4.4, for every n ∈ N,

log
( 1

k

)
log

(
1 − n(n+1)(k−1)

kn+1

) − 1 ≤ |An| ≤
log( 1

k )

log
(
1 − n(n+1)(k−1)

kn+1

) + 1.

Then we only have to show that, for every n ∈ N,

2
log

( 1
k

)
log

(
1 − n(n+1)(k−1)

kn+1

) + 3 ≤
log

( 1
k

)
log

(
1 − (n+1)(n+2)(k−1)

kn+2

) − 1. (4.5)
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It is easy to check that there exists k0 ∈ N such that, for any k ≥ k0 and n ∈ N,

log
( 1

k

)
log

(
1 − n(n+1)(k−1)

kn+1

) ≥ 4.

Indeed, for k ≥ 3, we have qn ≤ qn+1, which shows that, for such k and all n ∈ N,

log
( 1

k

)
log

(
1 − n(n+1)(k−1)

kn+1

) ≥ log
( 1

k

)
log

(
1 − 2(k−1)

k2

) ,
so we only have to choose k0 ∈ N such that, for k ≥ k0,

log
( 1

k

)
log

(
1 − 2(k−1)

k2

) ≥ 4.

Hence it is enough to show that there exists k1 ∈ N such that, for k ≥ k1 and all n ∈ N,

3
log

( 1
k

)
log

(
1 − n(n+1)(k−1)

kn+1

) ≤ log
( 1

k

)
log

(
1 − (n+1)(n+2)(k−1)

kn+2

) .
Again, by a standard but tedious computation, we can prove this. This concludes the
proof of Step 2.

Step 3. We prove that there exists k0 ∈ N such that, for k ≥ k0 and every a ∈ (0, 1],
φ(a)/a ≥ 1

2 . This will show (d).

For every n ∈ N, put

pn = 1 −
n(n + 2)(k2 − 1)

2kn+2
.

Then the linear mapping which connects points (1/(n + 2), 1/(n + 2) − 1/kn+2) and
(1/n, 1/n − 1/kn) is given by

∀t∈[1/(n+2),1/n], hn(t) = pnt + cn,

where cn > 0 (if k ≥ 3). We can show in a standard way that there exists k0 such that
for all k ≥ k0 and all n ∈ N, pn+1 ≥ pn ≥

1
2 . Now let k ≥ k0 and choose any a ∈ (0, 1].

Then a ∈ [1/(m + 1), 1/m] for some m ∈ N. We then have

φ(a)
a
≥

pma + cm

a
≥ pm +

cm

a
≥

1
2
.

This concludes the proof of Step 3.
Steps 1–3 imply Lemma 4.5. �

L 4.6. Assume that I = I1 × I2 × · · · =
∏∞

n=1 In and J = J1 × J2 × · · · =
∏∞

n=1 Jn,
where In, Jn ⊂ [0,∞) are closed bounded nontrivial intervals with diam(In)→ 0,
diam(Jn)→ 0, In+1 ⊂ In and Jn+1 ⊂ Jn for n ∈ N. Let f1, f2, . . . : [0,∞)→ [0,∞)
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be ϕ-contractions (with the same function ϕ) satisfying

∃n0∀n≥n0 , ϕ(diam(In)) < diam(Jn). (4.6)

Then for any sequence of naturals (rn), we have that if f (I) ⊂ J, then f (I) is nowhere
dense in J (we consider J as a subspace of X), where f : X→ X is defined by
f ((xn)) = ( f1(xr1 ), f2(xr2 ), . . .).

P. Note that the topologies on I and J are the same as the Tichonov topologies.
In particular, I and J are compact.

Consider two cases.

Case 1. The sequence (rn) is one-to-one. Then, for infinitely many n, rn ≥ n. Indeed,
assume for the sake of a contradiction that rn ≥ n only for n ∈ {k1, . . . , km}. Set p0 =

max{rk1 , . . . , rkm} + 1 and let j ∈ {1, . . . , p0}. If j ∈ {k1, . . . , km}, then r j = rki < p0. If
j < {k1, . . . , km}, then r j < j ≤ p0. Hence, for each j ∈ {1, . . . , p0}, r j ∈ {1, . . . , p0 − 1},
which shows that (rn) cannot be one-to-one.

By our assumptions, there exists n0 such that, for any n ≥ n0, ϕ(diam(In)) <
diam(Jn). Hence, for infinitely many n ∈ N,

diam( fn(Irn )) ≤ diam( fn(In)) ≤ ϕ(diam(In)) < diam(Jn).

Hence f (I) = P1 × P2 × P3 × · · · , where each Pn is an interval and, for infinitely
many n, Pn , Jn. The result follows.

Case 2. Assume that rn = rm for some m, n with m < n. It is enough to observe that the
set

B = {( fm(x), fn(x)) : x ∈ Irn}

has an empty interior (as a subset of Jm × Jn). Indeed, assume that this is the case
and take any base open set U = U1 × U2 × · · · ⊂ I. If U ⊂ f (I), then Um × Un ⊂ B, a
contradiction. Hence f (I) has an empty interior. Since it is also closed in J (because
f (I) and J are compact in X), it is nowhere dense in X.

To see that B has an empty interior it is enough to show that it is a subset of
R2 with Lebesgue measure zero. But this follows from the fact that B can be
viewed as an image of a measure-zero set Irn × {0} ⊂ R

2 under a Lipschitz function
(x, y) 7→ ( fn(x), fm(x)). The result follows. �

We are ready to give the proof of Theorem 4.3.

P  T 4.3. Let φ be as in Lemma 4.5 and define f1, f2 : X × X→ X in the
following way:

f1((xn), (yn)) = (φ(y1), φ(x1), φ(x2), φ(x3), . . .),

f2((xn), (yn)) = (φ(y1) + 1 − φ(1), φ(x1), φ(x2), φ(x3), . . .).
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Then S = { f1, f2} is a nice GIFS. Indeed, for any ((xn), (yn)), ((x′n), (y′n)) ∈ X × X, by
Lemma 4.4(b),

‖ f1((xn), (yn)) − f1((x′n), (y′n))‖

= sup{|φ(y1) − φ(y′1)|, |φ(x1) − φ(x′1)|, |φ(x2) − φ(x′2)|, |φ(x3) − φ(x′3)|, . . .}

≤ sup{φ(|y1 − y′1|), φ(|x1 − x′1|), φ(|x2 − x′2|), φ(|x3 − x′3|), . . .}

≤ φ(max{‖(xn) − (x′n)‖, ‖(yn) − (y′n)‖}),

which shows that f1 is a φ-contraction. In a similar way we can show that f2 is a
φ-contraction. Hence S is a GIFS. Clearly, S is nice.

Now consider the set

A = [0, 1] × [0, φ(1)] × [0, φ(2)(1)] × · · · =
∞∏

n=0

[0, φ(n)(1)].

It turns out that A is the attractor of S. Indeed, A is compact and

f1(A × A) = [0, φ(1)] × [0, φ(1)] × [0, φ(2)(1)] × · · ·

and
f1(A × A) = [1 − φ(1), 1] × [0, φ(1)] × [0, φ(2)(1)] × · · · .

Hence, by Lemma 4.5(d) (used for n = 0), A = f1(A × A) ∪ f2(A × A). This gives (i).
Note that A cannot be an attractor of an IFS consisting of finitely many Banach

contractions since A has infinite Hausdorff dimension. Indeed, by Lemma 4.5(d),

∞∏
n=0

[
0,

1
2n

]
⊂ A,

and this first set has infinite Hausdorff dimension (see [MM2, Example 4.3] for
details). This gives (ii).

Now let S′ = (g1, . . . , gk) be a nice IFS consisting of ϕ-contractions (with the same
function ϕ). In particular, for every n ∈ N,

ϕ(diam([0, φ(n)(1)])) = ϕ(φ(n)(1)) < φ(n)(1) = diam([0, φ(n)(1)]).

Hence, by Lemma 4.6 (used for I = J = A), if FS′(A) ⊂ A, then for each i ∈ {1, . . . , k},
the set gi(A) is nowhere dense in A. Hence FS′(A) is nowhere dense in A, and, in
particular, FS′(A) , A. This concludes (iii).

Now let S′ = (g1, . . . , gk) be a nice GcIFS of order m, and assume that FS′(A) ⊂ A.
We will show that, for each i = 1, . . . , k, gi(A × · · · × A) is nowhere dense in A. Let
i ∈ {1, . . . , k}. Consider the mapping g̃ : X→ X given by

g̃((xn)) = gi((x1, xm+1, x2m+1, . . .), (x2, xm+2, x3m+2, . . .), . . . , (xm, x2m, x3m, . . .)).
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Then for some sequence of naturals (rn),

g̃i((xn)) = (g1(xr1 ), g2(xr2 ), g3(xr3 ), . . .).

Moreover, since S′ is a GcIFS, α := Lip(gi) = Lip(g̃) < 1. In particular, g̃ is a ϕ-
contraction with a function ϕ(t) = αt, and

g̃(I1 × I2 × I3 × · · · ) ⊂ [0, 1] × [0, φ(1)] × [0, φ(2)(1)] × · · · ,

where Im(n−1)+i = [0, φ(n−1)(1)] for any n ≥ 1 and i ∈ {1, . . . , m}. By Lemma 4.5(c) and
the fact that, for n ≥ 2,

φ(mn)(1)
φ(n−1)(1)

=
φ(mn)(1)
φ(n)(1)

φ(n)(1)
φ(n−1)(1)

≥
φ(mn)(1)
φ(n)(1)

φ(2(n−1))(1)
φ(n−1)(1)

,

there exists n0 ∈ N such that, for n ≥ n0, φ(mn)(1) > αφ(n−1)(1). Let p > (n0 − 1)m. Then
p = (n − 1)m + i for some n ≥ n0 and i ∈ {1, . . . , m}. Thus

ϕ(diam(Ip)) = ϕ(diam Im(n−1)+i) = ϕ(diam([0, φ(n−1)(1)]))

= α diam([0, φ(n−1)(1)]) < diam([0, φ(mn)(1)])

≤ diam([0, φ(m(n−1)+i)(1)]) = diam(Ip).

Hence, by Lemma 4.5, g̃(I) is nowhere dense in A. Since g̃(I) = gi(A × · · · × A), we
have that gi(A × · · · × A) is nowhere dense in A. The proof is complete.

We believe that Lemma 4.6 is true for any IFS and GcIFS, so we state the following
conjecture.

C 4.7. The set A, considered in the proof of Theorem 4.3, is an attractor of
no IFS and of no GcIFS.

5. Porosity results

In this section we investigate the size of the families of all GIFSs and GcIFSs. It
turns out that a natural setting for such an investigation has already been considered.
In [DM, RZ1, RZ2] (and many other papers) the authors considered the problem of the
size of the set of all mappings which satisfy some fixed point property, in the space of
all nonexpansive(-type) mappings. In particular, it was proved that if K is a nonempty
closed convex and bounded subset of a Banach space, then the complement of the
set of all nonexpansive selfmappings of K which satisfy the hypothesis of the Banach
fixed point theorem is a σ-lower porous subset of the space Ω of all nonexpansive
selfmappings of K, and that the set of all Banach contractions is a σ-lower porous
subset of Ω, provided that K is a subset of a Hilbert space. In [S1] we generalise these
results by considering more general spaces. These generalisations can be applied for
investigating the size of the families of all GIFSs and GcIFSs.
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We now present these results (in a slightly less general form than we did in [S1]).
If (X, d) and (Y, ρ) are metric spaces, then we define:

Ω(X, Y) := { f : X→ Y : f (X) is bounded and ∀x,y∈X ρ( f (x), f (y)) ≤ d(x, y)}.

We can consider Ω(X, Y) as a metric space with a standard supremum metric:

h( f , g) := sup{ρ( f (x), g(x)) : x ∈ X},

which is complete provided that Y is complete.
Define the following family of functions:

Ra := {η : [0,∞)→ [0, 1] : η is nonincreasing and η(t) < 1 for t > 0}.

Define also the following subsets of Ω(X, Y):

kB(X, Y) := { f ∈Ω(X, Y) : Lip( f ) < 1}

and

kR(X, Y) := { f ∈Ω(X, Y) : ∃η∈Ra ∀x,y∈X ρ( f (x), f (y)) ≤ η(d(x, y))d(x, y)}.

R 5.1. It is known (see [J, Lemma 1]) that that for any η ∈ Ra, there exists
an upper semicontinuous, nondecreasing function ϕ : [0,∞)→ [0,∞) with ϕ(t) < t for
t > 0, and such that η(t) ≤ ϕ(t) for t ≥ 0. (For detailed discussion of different types of
contractive conditions we refer the reader to [J].) Hence each element of kR(X, Y) is
a generalised ϕ-contraction.

The following result follows from our previous research. Part (i) is implied by [S1,
Theorem 3.1.22, Corollary 3.1.30 and Remark 3.1.21] (see also [S3]), and part (ii) is
exactly [S2, Corollary 3.2(i)] (see also [S1, Theorem 3.2.7(i)]).

T 5.2. Assume that X, Y are nonempty convex and closed subsets of (possibly
different) Banach spaces. The following conditions hold.

(i) The set Ω(X, Y) \ kR(X, Y) is a σ-lower porous subset of Ω(X, Y).
(ii) If additionally X, Y are subsets of (possibly different) Hilbert spaces, then the set

kB(X, Y) is a σ-lower porous subset of Ω(X, Y).

In view of the above considerations it is natural to consider GIFSs of order m and
of ‘length’ n as a subset of the following space (here, (X, d) is a metric space):

Ωm,n(X) := {( f1, . . . , fn) : fi ∈Ω(Xm, X)} =Ω(Xm, X) × · · · ×Ω(Xm, X).

Then we define

GIFSb
m,n(X) := {( f1, . . . , fn) ∈Ωm,n(X) : ( fi)n

i=1 is a GIFS}

and
GcIFSb

m,n(X) := {( f1, . . . , fn) ∈Ωm,n(X) : ( fi)n
i=1 is a GcIFS}.
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Note that the superscript index b is connected to the fact that we restricted our
definition to those fi, which have bounded images.

Since each n-tuple of functions ( f1, . . . , fn) is a function from Xm to Xn, and each
function f : Xm→ Xn is an n-tuple f = ( f1, . . . , fn) for some f1, . . . , fn, we can easily
see thatΩm,n(X) =Ω(Xm, Xn), GcIFSb

m,n(X) = kB(Xm, Xn) and, in view of Remark 5.1,
kR(Xm, Xn) ⊂ GIFSb

m,n(X). Therefore, applying Theorem 5.2, we get the following
result.

T 5.3. Assume that X is a nonempty convex and closed subset of Banach
space and m, n ∈ N. Then the set Ωm,n(X) \ GIFSb

m,n(X) is a σ-lower porous subset
of Ωm,n(X). In particular, the set of all n-tuples ( f1, . . . , fn) from Ωm,n(X), such that
the function FS defined as in (2.2) (for S := ( fi)n

i=1) generates the fractal in the sense
of Theorem 3.11, is a complement of a σ-lower porous subset of Ωm,n(X).

T 5.4. If X is a nonempty, convex and closed subset of a Hilbert space, then
the set GcIFSb

m,n(X) is a σ-lower porous subset of Ωm,n(X).
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