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Abstract

In his work on deformation quantization of algebraic varieties Kontsevich introduced
the notion of algebroid as a certain generalization of a sheaf of algebras. We construct
algebroids which are given locally by NC-smooth thickenings in the sense of Kapranov,
over two classes of smooth varieties: the bases of miniversal families of vector bundles
on projective curves, and the bases of miniversal families of quiver representations.

Introduction

In this work we study certain families of vector bundles over noncommutative bases. More
precisely, our framework is the theory of NC-schemes over C, developed by Kapranov in [Kap98].
These are analogs of the usual schemes based on algebras that are close to being commutative:
any expression containing sufficiently many commutators in such rings vanishes. More precisely,
these are NC-nilpotent algebras; one also considers NC-complete algebras which are complete
with respect to the commutator filtration.

In this theory there is a natural notion of NC-smoothness, which is analogous to the notion of
quasi-free algebra from [CQ95]. Kapranov proves the existence and uniqueness of an NC-smooth
thickening for any smooth affine scheme X. By definition, such a thickening corresponds to
an NC-smooth algebra whose abelianization is the algebra of functions on X. The problem of
determining which nonaffine smooth schemes admit such extensions seems to be quite hard. There
are very few known examples of such thickenings. For example, there are explicit constructions for
Grassmannians and abelian varieties (see [Kap98, PT14]). In both cases the relevant NC-smooth
thickenings represent natural functors on the category N of NC-nilpotent algebras. On the other
hand, there is no smooth scheme for which we would know that there is no NC-smooth thickening.

One of the constructions considered in [Kap98] is that of a natural functor of families of
vector bundles over NC-nilpotent bases, which on the commutative level are induced by a given
family of vector bundles on a fixed projective variety with a base B. More precisely, we consider
the following situation. Let Z be a projective algebraic variety, B a smooth variety, and let Eab

be a vector bundle over B × Z. We denote by ρ : B × Z → B the natural projection.

Definition 0.0.1. We say that Eab is an excellent family of bundles on Z if:

(a) OB → ρ∗End(Eab) is an isomorphism;

(b) the Kodaira–Spencer map κ : TB → R1ρ∗End(Eab) is an isomorphism;
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(c) R2ρ∗End(Eab) = 0;

(d) Rdρ∗End(Eab) is locally free for d > 3.

For example, if Z is a projective curve then conditions (c) and (d) are automatic. Condition
(a) is satisfied for a family of simple bundles (see [HL10, Lemma 4.6.3]). Condition (b) is satisfied
if the map from B to the moduli stack of vector bundles on Z is étale.

Following [Kap98], we consider the natural functor hNCB on the categoryN of noncommutative
families of vector bundles compatible with Eab (see Definition 1.5.1 for details). It was claimed
in [Kap98] that this functor is representable by an NC-smooth thickening of B. However, the
proof contained a gap.

In the present paper we prove that whenever dimB > 1, the functor hNCB is not representable
by an NC-scheme (see Theorem 1.5.6). The reason for this is rather silly: we observe that hNCB
factors through the quotient category aN of N in which conjugate homomorphisms are identified
(see § 1.2).

The natural idea then is to ask the representability question in this new category aN . Our
main technical result is that this is true locally: the functor of families over NC-nilpotent bases is
representable in the case where B is affine (see Theorem 2.2.1). We use this local representability
of hNCB in aN to construct in the general case a C-algebroid1 overB in the sense of [Kon01], [KS12,
§ 2.1], given locally by an NC-smooth thickening of B. We call such a structure an NC-smooth
algebroid thickening of B (see Definition 1.3.2 for details).

Theorem A (See Theorems 1.3.8 and 2.2.1). Let B be a (smooth) base of an excellent family
of vector bundles. Assume that B is connected and dimB > 2. Then there exists an NC-smooth
algebroid thickening of B.

Note that the case dimB = 1 is of no interest since any smooth commutative scheme of
dimension 1 is already NC-smooth.

In the case where B is quasi-projective, so that there exists an open affine covering (Ui)
of B, such that all intersections Ui ∩ Uj are distinguished affine opens in both Ui and Uj , the
algebroid in Theorem A can be described in more down-to-earth terms as follows. We have an
NC-smooth thickening of Ui for each i; over Ui ∩ Uj we have isomorphisms between the two
induced NC-smooth thickenings; and over Ui ∩ Uj ∩ Uk the isomorphisms agree up to an inner
automorphism (furthermore, the corresponding invertible elements are chosen and satisfy the
natural compatibility condition over Ui ∩ Uj ∩ Uk ∩ Ul).

Note that algebroids were introduced by Kontsevich in connection with deformation
quantization of algebraic varieties (see [Kon01, KS12]). NC-smooth thickenings are in some
ways similar to deformation quantization algebras (in particular, the construction of NC-
smooth thickenings from torsion-free connections in [PT14] is somewhat reminiscent of Fedosov’s
deformation quantization procedure in [Fed94]). Thus, it is not very surprising that algebroids
made their appearance in the theory of NC-smooth thickenings. In light of Theorem A, it seems
that rather than asking which smooth schemes admit NC-smooth thickenings, it is more natural
to ask which smooth schemes admit NC-smooth algebroid thickenings.

In fact, in the proof of Theorem A we construct a canonical algebroid (up to an equivalence).
Since there is a well-defined notion of a module over an algebroid, one natural problem is whether
there is a universal family of modules over our algebroid, extending the original family over B.

1 This notion has nothing to do with the more commonly used Lie algebroid : the latter is a sheaf of Lie algebras
with some extra structures, whereas a C-algebroid is a certain stack of C-linear categories.
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One can also try to study the higher-rank analog of the Fourier–Mukai transform picture for NC
Jacobians considered in [PT14, § 4]. We leave these questions for a future study.

Motivated by Toda’s work [Tod17], we also consider the similar picture for representations
of quivers. Namely, starting with an excellent family (see Definition 2.4.2) of representations
of a finite quiver Q (with no relations), we consider the functor of compatible families of
representations of Q over NC-nilpotent affine schemes. We show that the situation is completely
similar to (and somewhat easier than) the picture discussed above.

Theorem B (See Theorems 1.3.8 and 2.4.4). Let B be a (smooth) base of an excellent family
of representations of Q. Assume that B is connected and dimB > 2. Then there exists an
NC-smooth algebroid thickening of B.

For example, this result applies to the moduli space of stable quiver representations
corresponding to an indivisible dimension vector.

Note that for the proof of Theorem B we develop a version of nonabelian hypercohomology
H1 for a sheaf of groups acting on a sheaf of sets, which may be of independent interest (see § 2.3).

Toda also constructs in [Tod17] local (non-NC-smooth) NC-thickenings for some obstructed
families of vector bundles (and for representations of quivers with relations). It would be
interesting to study whether these thickenings glue into an algebroid.

The paper is organized as follows. In § 1 we discuss the category aN of affine almost NC
(aNC) schemes in which conjugate homomorphisms are identified. We prove in § 1.3 that any
formally smooth functor on aN , that is locally representable, leads to an NC-smooth algebroid
thickening (see Theorem 1.3.8). Then in § 1.5 we show that the functor of NC-families extending
the given excellent family of vector bundles factors through aN , and as a consequence, is not
representable except in trivial cases (see Theorem 1.5.6).

In § 2 we prove local representability results for formally smooth functors on aN . First, we
give a technical representability criterion for such a functor extending the functor on commutative
algebras representable by a smooth affine scheme (see Proposition 2.1.3). Then we apply this
criterion to the functor of NC-families extending a given excellent family of vector bundles
(see Theorem 2.2.1) and then to the functor of NC-families of quiver representations (see
Theorem 2.4.4).

Conventions. All algebras we consider are over C, and all schemes are assumed to be of finite
type over C. The expression [a, b] always denotes the commutator in an associative algebra:
[a, b] = ab− ba.

1. Affine aNC-schemes and the nonrepresentability of the functor of NC-families of
vector bundles

1.1 Generalities on NC-schemes
For a ring R, we define the decreasing filtration InR by

InR =
∑

i1>2,...,im>2, i1+···+im>n

R ·RLie
i1 ·R · . . . ·R ·R

Lie
im ·R,

where RLie
n is the nth term of the lower central series of R viewed as a Lie algebra. Note that

R/I2R is precisely Rab, the abelianization of R.
We define the category Nd of NC-nilpotent algebras of degree d as the category of algebras

R for which Id+2R = 0. Thus, N0 = Com is the category of commutative algebras. A ring R
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is in N1 if and only if it is a central extension of a commutative algebra. Here we say that an
extension of algebras

0→ I → R→ R→ 0

is a central extension if I is a central ideal in R with I2 = 0.
We denote by N =

⋃
d>0Nd the category of NC-nilpotent algebras. For A ∈ N we denote by

hA the corresponding representable covariant functor on N : hA(B) = Homalg(A,B).
An algebra R is called NC-complete if it is complete with respect to the filtration (InR). We

denote by NC the category of NC-complete algebras. For an NC-complete algebra R we denote
by hR the functor on N given by hR(B) = Homalg(R,B). Note that the restriction hR|Nd

is
naturally isomorphic to the representable functor hR/Id+2R. This easily implies that the functor

NCop
→ Fun(N , Sets) : R 7→ hR

is fully faithful.
An NC-complete algebra R is called NC-smooth if the functor hR is formally smooth, that

is, for any central extension in N , B′→ B, the induced map hR(B′)→ hR(B) is surjective. An
NC-nilpotent algebra A of degree d is called d-smooth if the same is true for the functor hA|Nd

.
Kapranov defines NC-nilpotent schemes (over C) as locally ringed spaces locally isomorphic

to the spectrum of an NC-nilpotent algebra, with its natural structure sheaf, which is defined
similarly to the commutative case. General NC-schemes are similarly modeled on formal spectra
of NC-complete algebras (see [Kap98, § 2] for details). One can view an NC-scheme X as an
underlying usual scheme Xab equipped with a sheaf of noncommutative algebras OX such that
its abelianization is OXab . In this case we say that X is an NC-thickening of Xab. In the case
where X is NC-smooth, we say that it is an NC-smooth thickening of Xab.

Lemma 1.1.1.

(i) Let R be a d-smooth algebra, such that dimRab > 2 and Rab is connected. Assume that
d > 1. Then the center of R is C + Id+1R.

(ii) Let ONCX be an NC-smooth thickening of a smooth connected scheme X with dimX > 2.
Then the center of ONCX is the constant sheaf CX .

Proof. (i) Let Z(R) denote the center of R. We have a central extension of algebras

0→ Id+1R→ R→ R′ = R/Id+1R→ 0,

hence, we have the inclusion C + Id+1R ⊂ Z(R). In the case d = 1 we have R′ = Rab and the
commutator pairing associated with the above extension is

[f̃ , g̃] = df ∧ dg ∈ Ω2
Rab ' I2R,

where f̃ , g̃ ∈ R are lifts of f, g ∈ R′ = Rab. This easily implies that an element of Z(R) projects
to C ⊂ R′.

In the case d > 1, by the induction assumption, we can assume that Z(R′) = C + IdR′.
Hence, it is enough to investigate elements of Z(R) that project to elements of IdR′ ⊂ R′. Let
us consider the commutator pairing

IdR′ ×Rab
→ Id+1R : (α, f) 7→ [α̃, f̃ ],
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where α̃, f̃ ∈ R are lifts of α and f . We claim that this pairing is induced by the natural
commutator pairing

U(Lie+(Ω1
Rab))d × Ω1

Rab → U(Lie+(Ω1
Rab))d+1,

where we use the notation of [PT14, § 2.1] (in particular, Lie+(?) denotes the degree >2 part of
the free Lie algebra) and an isomorphism

grnI(R) ' U(Lie+(Ω1
Rab))n

for n 6 d+ 1 (see [PT14, Corollary 2.3.15]). More precisely, we claim that

[α̃, f̃ ] = −[α, df ]U , (1.1.1)

where we view α as an element of IdR′ = grdI(R), and on the right-hand side we take the
commutator in the algebra U(Lie+(Ω1

Rab)). Indeed, by [PT14, Corollary 2.3.9], we can realize

R as a subalgebra in T (Ω1
Rab)/T>d+2(Ω1

Rab) (where T (?) denotes the tensor algebra over Rab),

so that the projection R → Rab is induced by the projection to T 0 = Rab. Furthermore, the
elements in the image of R have tensor components of the form (f,−df, . . .). Since T 0 is in the
center of the tensor algebra, this immediately implies formula (1.1.1). Thus, if α ∈ IdR′ lifts
to an element of Z(R) then [α, df ]U = 0 for any f . Since U(Lie+(Ω1

Rab)) is a subalgebra in the
tensor algebra T (Ω1

Rab), this implies that α is in the center of T (Ω1
Rab), hence, α = 0 (since

dimRab > 2). This implies that Z(R) = C + Id+1R.
(ii) It is enough to check this in the case where X is affine, that is, X is the formal spectrum of

an NC-smooth algebraR such thatRab is connected. Now the assertion easily follows from (i). 2

By a vector bundle E on an NC-nilpotent scheme X we mean a sheaf of right O-modules
which is locally free of finite rank. We denote by Eab the induced vector bundle on Xab.

Lemma 1.1.2. Assume that X ⊂ X ′ is a nilpotent extension of affine NC-nilpotent schemes,
that is, OX is a quotient of OX′ by a nilpotent ideal. Let E′ be a vector bundle over X ′, and
E the induced vector bundle over X. Let ϕ : OnX → E be a trivialization. Then ϕ extends to a
trivialization OnX′ → E.

Proof. It is enough to consider the case where 0→ I → OX′ → OX → 0 is a central extension.
Then I is a quasicoherent sheaf over OXab , so

H1(X ′, E′ ⊗ I) = H1(Xab, Eab ⊗ I) = 0.

Thus, the n global sections of E defining the trivialization can be lifted to global sections of E′.
It is easy to see (arguing locally) that they give a trivialization of E′. 2

1.2 The category of affine aNC-schemes
The category aN has the same objects as N , while the morphisms in aN are equivalence classes
of homomorphisms A→ B, where f1, f2 : A→ B are equivalent if there exists b ∈ B∗ such that
f2 = bf1b

−1. We denote by aNd ⊂ aN the full subcategory of NC-nilpotent algebras of degree d.
Given a ring A in N and a multiplicative set S ⊂ Aab, let S denote the preimage of S under

the projection A→ Aab. Then S satisfies Ore conditions and S−1A is again NC-nilpotent (see
[Kap98, § 2.1]). For any B ∈ N the composition with the localization morphism ι : A→ A[S−1]
induces an embedding HomN (A[S−1], B) ↪→ HomN (A,B) with the image consisting of [f ] such
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that f(S) ⊂ B∗. Since the latter condition is invariant with respect to our equivalence relation
on HomN (A,B), the composition with [ι] gives an embedding

HomaN (A[S−1], B) ↪→ HomaN (A,B)

with the same characterization of the image.
Note also that for B ∈ N an element b ∈ B is invertible if and only if its image in Bab is

invertible. Thus, a homomorphism f : A→ B factors through A[S−1] if and only if the induced

homomorphism fab : Aab
→ Bab factors through Aab[S

−1
], where S ⊂ Aab is the image of S. It

follows that we have a cartesian square of sets

hA[S−1](B) //

��

hA(B)

��
h
Aab[S

−1
]
(Bab) // hAab(Bab).

Now let R be an NC-complete algebra and let T ∈ Rab be a multiplicative subset. Following
Kapranov [Kap98, Definition (2.1.8)], we set

R[[T−1]] := lim
←−(R/IdR)[T−1

d ],

where Td ⊂ R/IdR is the preimage of T . In the case where T = {fn | n > 0}, for some element
f ∈ Rab, we denote the above algebra simply by R[[f−1]].

For an NC-complete algebra R we denote by hR the corresponding functor on aN : hR(B)
is the set of conjugacy classes of algebra homomorphisms R → B. Since the images of
both horizontal arrows in the above cartesian square are stable under the action of inner
automorphisms of B, we deduce that the similar square

hR[[T−1]](B) //

��

hR(B)

��
hRab[T−1](B

ab) // hRab(Bab)

(1.2.1)

is still cartesian for any B ∈ N .
Let aNC denote the category of NC-complete algebras with morphisms given by algebra

homomorphisms viewed up to conjugation, that is, up to post-composing with an inner
automorphism. We denote by aNCSis the subcategory in aNC, whose objects are NC-smooth
algebras, with isomorphisms in aNC as morphisms.

Lemma 1.2.1. The functor

aNCSop
is → Funis(aN ,Sets) : R 7→ hR

is fully faithful, where Funis is the category of functors and natural isomorphisms between them.

Proof. Note that for any d> 0, the restriction hR|aNd
is naturally isomorphic to the representable

functor hR/Id+2R. Thus, for NC-complete algebras R and R′, we have a natural identification

Iso(hR′ , hR) ' lim
←−d IsoaN (R/Id+2R,R

′/Id+2R
′),
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where IsoaN (?, ?) denotes the set of isomorphisms in the category aN . Thus, it suffices to prove
that if R and R′ are NC-smooth then the natural map

IsoaNC(R,R
′)→ lim

←−d IsoaN (R/Id+2R,R
′/Id+2R

′) (1.2.2)

is a bijection. To check surjectivity, assume we are given a collection of algebra homomorphisms

fd : R/Id+2R→ R′/Id+2R
′,

which are compatible up to conjugation, that is, the homomorphism fd+1,d : R/Id+2R →
R′/Id+2R

′ induced by fd+1 is equal to θudfd, where θud is the inner automorphism associated
with a unit ud ∈ R′/Id+2R

′. Now, starting from d = 0, we can recursively correct fd+1 by
an inner automorphism of R′/Id+3R

′, so that the homomorphisms (fd) become compatible on
the nose (not up to an inner automorphism). Since R′ is NC-complete, this defines a unique
homomorphism f : R→ R′ inducing (fd). Furthermore, since R is NC-complete, we see that f
is an isomorphism if and only if all fd are isomorphisms.

It remains to check that (1.2.2) is injective. Thus, given two isomorphisms f, f ′ : R → R′

such that the induced isomorphisms fd and f ′d are conjugate for each d, we have to check that f
and f ′ are conjugate. By considering f−1f ′, we reduce the problem to checking that if we have
an automorphism f : R→ R such that fd is an inner automorphism of R/Id+2R for each d, then
f is inner. For any algebra A, let us denote by Inn(A) the group of inner automorphisms of A.
Note that we have an exact sequence of groups

1→ Z(A)∗→ A∗→ Inn(A)→ 1.

Applying this to each algebra R/Id+2R, and passing to projective limits, we have an exact
sequence

1→ lim
←−dZ(R/Id+2R)∗→ lim

←−d(R/Id+2R)∗
ρ
−−−A lim

←−d Inn(R/Id+2R).

We claim that the arrow ρ in this sequence is surjective. Indeed, it is enough to check that the
inverse system (Z(R/Id+2R)∗) satisfies the Mittag-Leffler condition. But by Lemma 1.1.1(i), for
d > 1, the image of the projection

Z(R/Id+2R)∗→ Z(R/Id+1R)∗

is equal to C∗, which implies the required stabilization. Thus, the map ρ is surjective. Note that
the source of this map can be identified with R∗. Thus, we deduce the surjectivity of the natural
map

R∗→ lim
←−d Inn(R/Id+2R).

Hence, we can compose f with an inner automorphism θu of R, such that f ′ = θuf induces the
identity automorphism of R/Id+2R for each d. It follows that f ′ = id, that is, f is inner. 2

1.3 Gluing
We can define the Zariski topology on aN op naturally. However, this is not a subcanonical
topology, that is, representable functors are not necessarily sheaves with respect to this topology.
Namely, suppose f1, f2 : A→ B are a pair of homomorphisms, inducing the same homomorphism
Aab
→ Bab. Assume also that we have a covering of Spec(Aab) by distinguished affine opens,

Spec(Agi), such that f1 and f2 become conjugate as morphisms from Agi to Bgi . It may happen
that f1 and f2 are still not conjugate by an element of B∗.
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Example 1.3.1. Let R := k[x, y]. For any ideal I ⊂ R we can consider the central extension A of
R by Ω2

R/k⊗RR/I, obtained from the universal central extension via the natural homomorphism

Ω2
R/k → Ω2

R/k ⊗R R/I. We consider a pair of homomorphisms

f1 = id, f2 = id +δ : A→ A,

where δ : A→ R→ Ω2
R/k ⊗R R/I is a derivation given by

δ(r) = ω ∧ dr mod IΩ2
R/k,

for some 1-form modulo I, ω ∈ Ω1
R/k ⊗R R/I. We will prove that for I = (xy − 1), there exists

a 1-form ω such that f1 and f2 are locally conjugate, but not globally conjugate. Note that if
Rg is a localization of R then the corresponding localization of A is a central extension of Rg
by Ω2

Rg/k
⊗Rg (R/I)g. It is easy to see that the condition for f1 and f2 to be conjugate over

Spec(Rg) is that for some r ∈ R∗g one has

δ(r′) = r−1dr ∧ dr′ mod IΩ2
Rg/k

for any r′ ∈ R. Since the morphism η 7→ η∧? gives an isomorphism

Ω1
Rg/k

⊗Rg (R/I)g ' HomRg(Ω1
Rg/k

,Ω2
Rg/k

⊗Rg (R/I)g),

this is equivalent to the condition

ω ≡ r−1 dr mod IΩ1
Rg/k

.

Let us consider the homomorphism of sheaves on Spec(R) = A2
k,

τ : O∗→ Ω1 ⊗O O/I,

induced by φ 7→ φ−1 dφ. Thus, the condition on ω means that it comes from a global section
of the sheaf image im(τ), but is not in the image of the induced morphism on global sections.
Since H0(A2,O∗) = k, the latter condition is equivalent to ω 6= 0. Now we observe that the sheaf
Ω1⊗O O/I is supported on the curve xy = 1 which is contained in the affine open subset x 6= 0.
Hence, the 1-form dx/x gives a well-defined nonzero global section of im(τ), as required.

Because of this we do not try to glue affine aNC-schemes using sheaves on aN . Instead, we
show that a locally representable formally smooth functor on aN always leads to an algebroid
over the underlying commutative smooth scheme X, that corresponds locally to an NC-smooth
thickening of X.

Recall that a C-algebroid A over a topological space X is a stack of C-linear categories over
X, such that A is locally nonempty and any two objects of A(U) are locally isomorphic. We
refer to [KS12, § 2.1] for basic results on algebroids.

Definition 1.3.2. Let X be a smooth scheme. An NC-smooth algebroid thickening of X is a
C-algebroid A over X such that for every object σ ∈ A(U) over an open subset U ⊂ X the sheaf
of algebras EndA(σ) is an NC-smooth thickening of U .

For a sheaf of C-algebras A over X we have the corresponding C-algebroid with a fixed global
object σ such that A is the endomorphism algebra of σ.
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Definition 1.3.3. For a C-algebroid A, we define the center of A as the sheaf

ZA := End(IdA)

of endomorphisms of the identity functor on A. We say that a C-algebroid A has trivial center
if the natural map of sheaves CX → ZA is an isomorphism.

It is easy to see that for any local object σ ∈ A(U) one has a natural identification of ZA|U
with the center of the sheaf of algebras EndA(σ). Thus, by Lemma 1.1.1(ii), any NC-smooth
algebroid thickening has trivial center.

We will prove a general gluing result for sheaves of C-algebras with trivial centers and then
apply it to construct NC-smooth algebroid thickenings.

Lemma 1.3.4.

(i) Let A and A′ be a pair of C-algebroids with trivial centers over an irreducible scheme X,
and let F,G : A→ A′ be a pair of equivalences. Assume that for an open covering (Ui) of X we
have an isomorphism F |Ui ' G|Ui . Then there exists an isomorphism F ' G.

(ii) Let A and A′ be a pair of C-algebroids with trivial centers over an irreducible scheme X.
Assume that for an open covering (Ui) of X we have an equivalence

Fi : A|Ui → A′|Ui

and that for each pair i, j, we have an isomorphism

Fi|Uij ' Fj |Uij ,

where Uij = Ui ∩Uj . Then there exists an equivalence F : A→ A′ such that F |Ui ' Fi. Such an
equivalence is unique up to an isomorphism.

(iii) Let Ui be an open covering of an irreducible scheme X, and for each i let Ai be a
C-algebroid with trivial center over Ui. Assume that for every i, j, we have an equivalence

Fij : Ai|Uij → Aj |Uij ,

such that for every i, j, k, there is an isomorphism

Fjk|Uijk
◦ Fij |Uijk

' Fik|Uijk
,

where Uijk = Ui ∩Uj ∩Uk. Then there exist a C-algebroid A over X and equivalences Fi : A|Ui →

Ai, such that for every i, j, there is an isomorphism

Fij ◦ Fi|Uij ' Fj |Uij .

Furthermore, such A is unique up to an equivalence.

Proof. (i) Let us choose for each i an isomorphism φi : F |Ui → G|Ui . Then for each i, j, we have

φj |Uij = φi|Uij ◦ cij ,

where cij is an autoequivalence of Fi|Uij . Since Fi is an equivalence, we have Aut(F ) ' Aut(idA).
Locally, the sheaf Aut(idA) is given by the center of EndA(σ), where σ is an object of A.
Hence, by Lemma 1.1.1, the natural morphism of sheaves C∗X → Aut(idA) is an isomorphism.
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Thus, cij is a Cech 1-cocycle with values in C∗X . Since X is irreducible, the corresponding Cech

cohomology is trivial, so we can multiply φi by appropriate constants in C∗, to make them

compatible on double intersections. The corrected isomorphisms glue into a global isomorphism

F → G.

(ii) Let us choose for each i, j an isomorphism φij : Fi|Uij → Fj |Uij . Then for each i, j, k, the

composition cijk = φkiφjkφij is an autoequivalence of Fi|Uijk
, where cijk is a Cech 2-cocycle with

values in C∗X . As above, choosing representation of cijk as a coboundary allows to correct φij by

constants in C∗, so that the isomorphisms φij are compatible on triple intersections. Hence, we

can glue (Fi) into the required global equivalence F : A→ A′. The fact that F is unique up to

an isomorphism follows from (i).

(iii) For every i, j, k, let us choose an isomorphism

gijk : Fjk|Uijk
◦ Fij |Uijk

→ Fik|Uijk
.

Then for every i, j, k, l, we have over Uijkl,

gikl(Fkl ∗ gijk) = cijklgijl(gjkl ∗ Fij)

for some cijkl ∈ Aut(Fil)(Uijkl) = C∗. Furthermore, (cijkl) is a Cech 3-cocycle with values in

C∗X . Hence, we can multiply gijk with appropriate constants to make them compatible on

quadruple intersections. This allows us to glue (Ai) into a global C-algebroid A over X (see

[KS12, Proposition 2.1.13]). The uniqueness of A up to an equivalence follows from (ii). 2

Proposition 1.3.5. Let (Ui) be an open covering of an irreducible scheme X. Assume that for

each i we are given a sheaf of C-algebras Ai with trivial center over Ui, and for each pair i < j,

a covering (Vk = Vij,k) of Uij , together with isomorphisms of sheaves of C-algebras

αij,Vk : Ai|Vk → Aj |Vk

for all k. We assume that the restrictions of αij,Vk and αij,Vl to Vk ∩ Vl differ by an inner

automorphism. Also, we assume that for i < j < k there exists a covering (Wl = Wijk,l) of

Uijk such that αjk|Wl
◦ αij |Wl

and αik|Wl
differ by an inner automorphism. Then there exists a

C-algebroid A over X, together with equivalences of C-algebroids,

Fi : A|Ui → Ai,

where Ai is the C-algebroid over Ui associated with Ai, such that for i < j there exist

isomorphisms

αij,Vk ◦ Fi|Vk ' Fj |Vk

over the covering (Vk) of Uij . Such an algebroid A is unique up to an equivalence.

Proof. Each isomorphism αij,Vk gives an equivalence

Fij,Vk : Ai|Vk → Aj |Vk .

Since the local autoequivalence of Ai associated with an inner automorphism of Ai is isomorphic

to the identity, we get that Fij,Vk and Fij,Vl induce isomorphic equivalences over Vk ∩ Vl.
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By Lemma 1.3.4(ii), we obtain an equivalence defined over Uij ,

Fij : Ai|Uij → Aj |Uij ,

such that Fij |Vk ' αij,Vk .
Furthermore, we claim that over Uijk there is an isomorphism

Fjk|Uijk
◦ Fij |Uijk

' Fik|Uijk
. (1.3.1)

Indeed, by assumption, we have a similar isomorphism over each open subset from the covering
(Wl) of Uijk. Thus, our claim follows from Lemma 1.3.4(i), applied to the equivalences on both
sides of (1.3.1).

Finally, we can apply Lemma 1.3.4(iii) to conclude the existence and uniqueness of the
required NC-smooth algebroid A over X. 2

We will now apply the above general result to NC-smooth thickenings.
For a functor h on aN such that hCom = hX and an open subset U ⊂ X, we define the

subfunctor h/U ⊂ h by

h/U (Λ) = h(Λ)×hX(Λab) hU (Λab),

where we use the identification h(Λab) ' hX(Λab).

Lemma 1.3.6. Let h = hR, where R is an NC-complete algebra. Then for any distinguished affine
D(f) ⊂ Spec(Aab) we have an equality of subfunctors h/D(f) = hA[[f−1]].

Proof. This follows immediately from the cartesian square (1.2.1) with T = {fn | n > 0}. 2

Lemma 1.3.7. Let h be a functor on aN such that h|Com = hX for some scheme X. Assume that
(Ui) is an affine covering of X, such that for every i we have an isomorphism h/Ui

' hAi for some
Ai ∈ N . Let us denote also by Ai the corresponding sheaf of algebras over Ui. Then for every
open subset V ⊂ Ui ∩ Uj , which is distinguished in both Ui and Uj , we have an isomorphism

αij,V : Ai|V ' Aj |V

compatible with the isomorphisms hAi(V ) ' h/V ' hAj(V ). Furthermore, for another such open
V ′ ⊂ Ui ∩Uj the isomorphisms αij,V |V ∩V ′ and αij,V ′ |V ∩V ′ differ by an inner automorphism. Also,
for any open V ⊂ Ui ∩ Uj ∩ Uk, distinguished in Ui, Uj and Uk, we have

αjk|V ◦ αij |V = αik|V ◦Ad(uijk)

for some uijk ∈ Ai(V )∗.

Proof. Let us fix an isomorphism h/Ui
' hAi for each i. Suppose V ⊂ Ui ∩ Uj is a distinguished

affine open in both Ui and Uj . Then

hAi,/V ' h/V ' hAj ,V .

Thus, by Lemmas 1.3.6 and 1.2.1, we have an isomorphism between the corresponding
localizations of Ai and Aj in aN , and hence, an isomorphism αij : Ai|V ' Aj |V , defined uniquely
up to an inner automorphism. For V ⊂ Ui ∩Uj ∩Uk the compatibility between αij , αjk and αik,
up to an inner automorphism, follows from the compatibility of all of these isomorphisms with
the isomorphisms of hAi,/V , hAj ,/V and hAk,/V with h/V . 2
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Theorem 1.3.8. Let h be a formally smooth functor on aN such that h|Com = hX , where X
is a smooth connected scheme with dimX > 2. Assume that h is locally representable, that is,
there exist an open affine covering (Ui) of X, and isomorphisms

h/Ui
' hAi ,

where Ai is an NC-smooth thickening of Ui. Then there exist an NC-smooth algebroid A over
X and equivalences of algebroids

Fi : A|Ui → Ai,

such that for every open subset V ⊂ Ui ∩ Uj , distinguished in both Ui and Uj , there is an
isomorphism

gij ◦ Fi|V ' Fj |V ,

where gij : Ai|V → Aj |V is a representative (up to conjugation) of the isomorphism hAi|V '
h/V ' hAj |V .

Proof. First, we apply Lemma 1.3.7 and obtain isomorphisms

αij,V : Ai|V → Aj |V

for every open V ⊂ Ui ∩ Uj , distinguished in both Ui and Uj , such that these isomorphisms for
V and V ′ and for V ⊂ Ui ∩Uj ∩Uk, are compatible up to an inner automorphism. Hence, we are
in the setup of Proposition 1.3.5, where as open coverings of Uij (respectively, Uijk) we take the
covering by all open affines which are distinguished in Ui and Uj (respectively, Ui, Uj and Uk).
Note that the centers of Ai are trivial by Lemma 1.1.1(ii). Thus, applying Proposition 1.3.5, we
get the required NC-smooth algebroid over X. 2

1.4 Recollections on nonabelian H1

We will use some basic constructions involving nonabelian cohomology, which we recall here. The
comprehensive reference is Giraud’s book [Gir71] (more specifically, we use [Gir71, §§ 3.3, 3.4]).
A more explicit treatment in terms of Cech cocycles is given in [Man97, § 2.6.8]; however, it
contains one mistake that we will correct.

For a sheaf of groups G on a topological space X and an open covering U = (Ui) of X, the
set of 1-cocycles Z1(U ,G) consists of gij ∈ G(Uij), such that gii = 1, gijgji = 1 and

gij |Uijk
gjk|Uijk

= gik|Uijk
.

Two such 1-cocycles (gij) and (g̃ij) are cohomologous if

g̃ij = hi|Uijgijh
−1
j |Uij ,

for some hi ∈ G(Ui). We denote by H1(U ,G) the corresponding set of equivalence classes (pointed
by the class of the trivial cocycle). The nonabelian cohomology set H1(X,G) is obtained by taking
the limit over all open coverings. Note that our convention for nonabelian 1-cocycles is the same
as in [Gir71] and differs from that of [Man97, § 2.6.8] by passing to inverses. For brevity, we
will no longer write explicitly the restrictions to the intersections in formulas involving sections
defined over different open subsets.

For a homomorphism G1 → G2 the induced map of pointed sets H1(X,G1)→ H1(X,G2) is
defined in an obvious way. Now assume we are given an abelian extension of sheaves of groups

1→ A→ G′
p
−−−A G → 1.
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This means that A is a sheaf of abelian groups, which is a normal subsheaf in G′, and G is the
corresponding quotient. Then we have a natural connecting map

δ0 : H0(X,G)→ H1(X,A)

such that δ0(g) = 1 if and only if g lifts to a global section of G′. Namely, for an open covering
Ui we can find g′i ∈ G′(Ui) such that p(g′i) = g, and set δ0(g) to be the class of the 1-cocycle
(g′i)

−1g′j ∈ A(Uij). Note that δ0 is not a homomorphism in general. Rather, it satisfies

δ0(g1g2) = g−1
2 (δ0(g1)) + δ0(g2), (1.4.1)

where we write the group structure in H1(X,A) additively and use the natural action of H0(X,G)
on H1(X,A) induced by the adjoint action of G on A. (This means that g 7→ δ0(g−1) is a crossed
homomorphism.) An equivalent restatement of (1.4.1) is that there is a twisted action of H0(X,G)
on H1(X,A) given by

g × a = g(a) + δ0(g−1), where g ∈ H0(X,G), a ∈ H1(X,A). (1.4.2)

Explicitly, the usual action of g ∈ H0(X,G) on the class of a Cech 1-cocycle (aij) with values
in A is given by g′iaij(g

′
i)
−1, where g′i ∈ G′(Ui) are liftings of g. On the other hand, the twisted

action of g on aij is given by g′iaij(g
′
j)
−1.

Next, starting from a class g ∈ H1(X,G), we can construct a class

δ1(g) ∈ H2(X,Ag)

such that δ1(g) = 0 if and only if g is in the image of the map H1(X,G′)→ H1(X,G). Here Ag
is the sheaf obtained from A by twisting with g. Namely, if g is represented by a Cech 1-cocycle
gij ∈ G(Ui) then we have isomorphisms ψi : A|Ui → Ag|Ui such that ψj = ψi ◦ gij over Uij .
To construct δ1(g), for some covering (Ui), we can choose liftings g′ij ∈ G′(Uij) for a 1-cocycle
(gij) representing g (such that g′ijg

′
ji = 1 and g′ii = 1). Then δ1(g) is the class of the 2-cocycle

(ψi(g
′
ijg
′
jkg
′
ki)) with values in Ag.

Finally, for a given class g ∈ H1(X,G), we need the following description of the fiber of the
map

H1(X,G′)
H1(p)
−−−−−−A H1(X,G)

over g. Assume that this fiber is nonempty and let us choose an element g′ ∈H1(X,G′) projecting
to g. Then we have an exact sequence of twisted groups

1→ Ag → (G′)g′ → Gg → 1.

Thus, as before we have two actions of the group H0(X,Gg) on H1(X,Ag). Now we can construct
a surjective map

H1(X,Ag)→ H1(p)−1(g), (1.4.3)

such that the fibers of this map are the orbits of the twisted action of H0(X,Gg) on H1(X,Ag)
(see (1.4.2)). Namely, let (g′ij) be a Cech 1-cocycle representing g′, and let aij ∈ A(Uij) be the
g-twisted 1-cocycle, so that ψi(aij) is a 1-cocycle with values in Ag. This means that over Uijk
one has

aij Ad(gij)(ajk) = aik.

Then our map (1.4.3) sends (aij) to the class of (aijg
′
ij).
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In the particular case where the (usual) action of H0(X,Gg) on H1(X,Ag) is trivial, the

corresponding connecting map

δ0 : H0(X,Gg)→ H1(X,Ag)

is a group homomorphism, and the map (1.4.3) induces an identification of the cokernel of this

homomorphism with H1(p)−1(g). Equivalently, in this case the map (1.4.3) corresponds to a

transitive action of H1(X,Ag) on H1(p)−1(g), such that the stabilizer of any element is the

image of δ0. (In [Man97, § 2.6.8] it is stated incorrectly that such an action exists in the general

case.)

1.5 The functor of NC-families extending a given excellent family

Let Z be a projective algebraic variety, B a smooth algebraic variety, and let E be an excellent

family of bundles on Z with the base B (see Definition 0.0.1). Note that our definition is slightly

stronger than [Kap98, Definition (5.4.1)] in that we add condition (d), which is used crucially in

the base change calculations.

For an NC-nilpotent scheme X and a usual scheme Z there is a natural product operation

which gives an NC-nilpotent scheme X × Z, so that functions on Z become central in OX×Z .

In the affine case this corresponds to the operation of extension of scalars R 7→ R ⊗C S from

NC-nilpotent C-algebras to NC-nilpotent S-algebras, where S is a commutative C-algebra.

Following [Kap98], we consider the following functor of noncommutative families of vector

bundles compatible with E .

Definition 1.5.1. For an excellent family E over a smooth (commutative) base B, we define the

functor hNCB : N → Sets sending Λ ∈ N to the isomorphism classes of objects in the following

category CΛ. Consider NC-schemes X = Spec(Λ) and X ×Z. Let us denote by Xab
0 = Spec(Λab

0 )

the reduced scheme associated with the abelianization of X. Then the objects of CΛ are the

triples (f,EΛ, φ) consisting of:

(i) a morphism f : Xab
0 → B of schemes;

(ii) a locally free sheaf of right OX×Z-modules EΛ;

(iii) an isomorphism φ : OXab
0 ×Z

⊗ EΛ
∼
→ (f × id)∗E .

A morphism (f1, E1, φ1) → (f2, E2, φ2) exists only if f1 = f2 and is given by an isomorphism

E1→ E2 commuting with the φi. On morphisms hNCB is the usual pullback.

The following result is stated in [Kap98] (see [Kap98, Proposition (5.4.3)(a)(b)]). However,

we believe our stronger assumptions on the family E , including condition (d), are needed for it

to hold, and we will give a complete proof below.

Proposition 1.5.2. The functor hNCB is formally smooth and the natural morphism of functors

hB → hNCB |Com is an isomorphism.

Lemma 1.5.3. For any commutative algebra Λ and any (f,EΛ, φ) ∈ hNCB (Λ) the natural map

Λ→ End(EΛ)

is an isomorphism.
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Proof. We prove this by the degree of nilpotency of the nilradical of Λ. Assume first that Λ is
reduced. Then we have EΛ = (f × id)∗E . Hence, by the base change theorem,

H0(X × Z, (f × id)∗End(E)) ' H0(X,RpX,∗(f × id)∗End(E))

' H0(X,H0(Lf∗Rρ∗End(E))),

where X = Spec(Λ). Since Riρ∗End(E) are locally free for i > 1, we have

H0(Lf∗Rρ∗End(E)) ' f∗ρ∗End(E) ' OX ,

where in the last isomorphism we used assumption (a). This shows that our assertion holds for
such Λ.

Next, assume we have a central extension 0→ I → Λ′ → Λ→ 0 of commutative algebras,
such that I is a module over Λ0, the quotient of Λ by its nilradical. Assume that Λ→ End(EΛ)
is an isomorphism for any (f,EΛ, φ) ∈ hNCB (Λ) and let us prove a similar statement over Λ′.
Given (f,EΛ′ , φ

′) ∈ hNCB (Λ′), let EΛ be the induced locally free sheaf over Spec(Λ) × Z. Then
we have an exact sequence of coherent sheaves on Spec(Λ′)× Z,

0→ EΛ0 ⊗ p∗1I → EΛ′ → EΛ→ 0,

where I is the ideal sheaf on Spec(Λ′) corresponding to I. Taking sheaves of homomorphisms
from EΛ′ we get an exact sequence

0→ End(EΛ0)⊗ p∗1I → End(EΛ′)→ End(EΛ)→ 0.

Passing to global sections, we obtain a morphism of exact sequences

0 // I //

��

Λ′ //

��

Λ //

��

0

0 // H0(X0 × Z, End(EΛ0)⊗ p∗1I) // End(EΛ′) // End(EΛ).

Note that EΛ0 ' (f × id)∗E , so, as before, we get

H0(X0 × Z, End(EΛ0)⊗ p∗1I) ' H0(X0, I ⊗H0(Lf∗Rρ∗End(E)))

' H0(X0, I ⊗ f∗ρ∗End(E)) ' I,

where X0 = Spec(Λ0). Thus, in the above morphism of exact sequences the leftmost and
the rightmost vertical arrows are isomorphisms. Hence, the middle vertical arrow is also an
isomorphism. 2

Proof of Proposition 1.5.2. Assume we are given a central extension

0→ I → Λ′→ Λ→ 0 (1.5.1)

inN and an element (f,EΛ, φ) ∈ hNCB (Λ), so that EΛ is a locally free sheaf of rightOX×Z-modules
of rank r, where X = Spec(Λ). We have to check that it lifts to a locally free sheaf of right
OX′×Z-modules, where X ′ = Spec(Λ′). Furthermore, it is enough to consider central extensions
as above, where the nilradical of Λab acts trivially on I, so that I is a Λab

0 -module.
We have a natural abelian extension of sheaves of groups on Xab × Z,

1→ Matr(OXab×Z)⊗ p∗1I → GLr(OX′×Z)→ GLr(OX×Z)→ 1, (1.5.2)
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where I is the coherent sheaf on Xab corresponding to I. The isomorphism class of EΛ

corresponds to an element of the nonabelian cohomology H1(Xab × Z,GLr(OX×Z)). By the
standard formalism (see § 1.4) the obstruction to lifting this class to a class in H1(Xab × Z,
GLr(OX′×Z)) lies in H2(Xab × Z, End(EΛab

0
) ⊗ p∗1I), where EΛab

0
is induced by EΛ. We claim

that this group H2 vanishes. Indeed, we have EΛab
0
' (f × id)∗E . Applying the base change

theorem, we get an isomorphism

RΓ(Xab
0 × Z, (f × id)∗End(E)⊗ p∗1I) ' RΓ(Xab

0 , I ⊗ Lf∗Rρ∗End(E)).

It remains to observe that by our assumptions (c) and (d), the complex of sheaves Lf∗Rρ∗End(E)
has no cohomology in degrees 2 or higher (recall that Xab

0 is an affine scheme).
To prove the second assertion we argue by induction on the degree of nilpotency of the

nilradical of a test algebra Λ. Thus, we consider a square zero extension (1.5.1) of commutative
algebras, where I is a Λab

0 -module, and study the corresponding commutative square

hB(Λ′) //

��

hB(Λ)

��
hNCB (Λ′) // hNCB (Λ).

(1.5.3)

We assume that the right vertical arrow is an isomorphism and we would like to prove the same
about the left vertical arrow. We know that both horizontal arrows are surjective. Furthermore,
using the interpretation in terms of nonabelian H1 and the exact sequence (1.5.2), we can get a
description of the preimage of an element EΛ ∈ hNCB (Λ) under the bottom arrow. Namely, the
corresponding sequence of twisted sheaves is

0→ End(Eab)⊗ p∗1I → Aut(EΛ′)→ Aut(EΛ)→ 1. (1.5.4)

By Lemma 1.5.3, we have Aut(EΛ) = Λ∗, and it is easy to see that this group acts trivially
on H1(Xab × Z, End(EΛab) ⊗ p∗1I) (since Λ′ is in the center of Aut(EΛ′)). It follows that the
preimage of EΛ in hNCB (Λ′) is the principal homogeneous space for the abelian group

coker(Aut(EΛ)
δ0−−−−A H1(Xab × Z, End(EΛab)⊗ p∗1I)),

where δ0 is the connecting homomorphism associated with (1.5.4). However, by Lemma 1.5.3,
fixing a lifting EΛ′ ∈ hNCB (Λ′), we get that the previous map in the long exact sequence,
Aut(EΛ′)→ Aut(EΛ), is just the projection (Λ′)∗→ Λ∗, so it is surjective. This implies that the
preimage of EΛ is the principal homogeneous space for

H1(Xab × Z, End(EΛab
0

)⊗ p∗1I) ' H0(Xab
0 , I ⊗H1(Lf∗Rρ∗End(E))).

By our assumptions (c) and (d), we have

H1(Lf∗Rρ∗End(E)) ' f∗R1ρ∗End(E),

thus, the above group is H0(Xab
0 , I ⊗ f∗R1ρ∗End(E)).

On the other hand, different extensions of Spec(Λ) → B to Spec(Λ′) → B correspond to
H0(B, f∗I ⊗ TB). It is easy to check that the map hB(Λ′) → hNCB (Λ′) is compatible with the
Kodaira–Spencer map

H0(B, f∗I ⊗ TB) ' H0(Xab
0 , I ⊗ f∗TB)→ H0(Xab

0 , I ⊗ f∗R1ρ∗End(E)),

which is an isomorphism by assumption (b). It follows that the map hB(Λ′) → hNCB (Λ′) is an
isomorphism. 2
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We have the following simple observation.

Proposition 1.5.4. The functor hNCB : N → Sets factors through aN .

Proof. Suppose we have two homomorphisms f1, f2 : Λ′→ Λ in N such that they are conjugate,
that is, f2 = θf1, where θ = θu is an inner automorphism of Λ : θu(x) = uxu−1 for some unit
u in Λ. We have to check that f1 and f2 induce the same map h(Λ′)→ h(Λ). Equivalently, we
have to check that the map h(θ) : h(Λ)→ h(Λ) is equal to the identity. Note that θu induces an
automorphism of the NC-scheme X = Spec(Λ), which we still denote by θ, and the map h(θ)
sends a right OX×Z-module EΛ to (θ× idZ)∗EΛ. Now we observe that the automorphism θ× id of
X×Z acts trivially on the underlying topological space and is given by the inner automorphism
θu of the structure sheaf O = OX×Z associated with u, which we view as a global section of O∗.
Thus, the operation (θ × idZ)∗ is given by tensoring on the right with the O −O bimodule θuO
(which is the structure sheaf with the left O-action twisted by θu).

We now use the general fact that twisting by an inner automorphism does not change the
isomorphism class of a bimodule. Namely, if M is an R − S bimodule and θu is the inner
automorphism of R associated with u ∈ R∗, then we have an isomorphism of R− S bimodules,

M
∼
−−−A θuM : m 7A um.

This construction also works for bimodules over sheaves of rings and an inner automorphism
associated with a global unit. This implies that in our situation the functor (θ× idZ)∗ is
isomorphic to the identity, and our claim follows. 2

Remark 1.5.5. In fact, our proof of Proposition 1.5.4 shows a little more. We can enhance hNCB to
a functor with values in groupoids, by considering the category of the data as in Definition 1.5.1
and isomorphisms between them. On the other hand, we can consider a 2-category of algebras in
N with the usual 1-morphisms and with 2-morphisms between f1, f2 : Λ′ → Λ given by u ∈ Λ∗

such that f2 = θuf1. Then the functor hNCB lifts to a 2-functor from this 2-category to the
2-category of groupoids.

Theorem 1.5.6. If dimB > 1 then for any d > 1 the functor hNCB |Nd
is not representable by an

NC-nilpotent scheme of degree d.

Proof. It is enough to consider the case d = 1. Suppose hNCB |N1 is representable by an NC-
nilpotent scheme X of degree 1. Then by Proposition 1.5.2, X is 1-smooth and Xab ' B. Let
U = Spec(A) ⊂ X be an affine NC-subscheme corresponding to an open affine subscheme of B
of dimension at least 1. Then A is a 1-smooth algebra with dimAab > 1, and hA is a subfunctor
of hNCB |N1 . Since the latter functor factors through aN1, this would imply that hA also factors
through aN1.

It remains to prove that for any 1-smooth algebra A with dimAab > 1 the functor hA does
not factor through aN1. To this end we will give an example of two conjugate homomorphisms
f1, f2 : A→ A′ such that f1 6= f2. Set

A′ = (A ∗ C[z, z−1])[[ab]]/I3.

It is easy to see that A′ is 1-smooth and (A′)ab = Aab⊗C[z, z−1]. Therefore, by Lemma 1.1.1(i),
the element z is not in the center of A′. Hence, we can take f1 : A → A′ to be the natural
homomorphism and set f2(a) = zf1(a)z−1. 2
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2. Representability results

2.1 Local representability in aN
Kapranov gives the following criterion for a formally smooth functor on Nd to be representable
by an NC-scheme.

Proposition 2.1.1 [Kap98, Theorem (2.3.5)]. Let M be a smooth algebraic variety. A formally
smooth functor h :Nd→ Sets, such that h|Com = hM , is representable by a d-smooth NC-scheme
if and only if for any pair of central extensions in Nd, Λ1→ Λ, Λ2→ Λ, the natural map

h(Λ1 ×Λ Λ2)→ h(Λ1)×h(Λ) h(Λ2)

is an isomorphism.

We will prove an analogous representability criterion for affine aNC-schemes. As in the case
of NC-schemes the main idea is to study fibers of the map h(p) : h(Λ′) → h(Λ) for a central
extension

0→ I → Λ′
p
−−−A Λ→ 0 (2.1.1)

(cf. the proof of [Kap98, Lemma (2.3.6)]).
For d > 1, let h : aNd→ Sets be a functor such that h|aNd−1

is representable by A ∈ aNd−1.
The key new ingredient we have to use is the following. Given a central extension (2.1.1) with
Λ′ ∈ Nd, Λ ∈ Nd−1, and a homomorphism f : A→ Λ, we set

U(f) := {u ∈ Λ∗ | uf(a)u−1 = f(a)∀a ∈ A}.

Then we have a natural map

∆f : U(f)→ Der(A, I) = Der(Aab, I)

where

∆f (u) : A→ I : a 7→ [u, f(a)]Λ′u
−1. (2.1.2)

Here for l1, l2 ∈ Λ, we define [l1, l2]Λ′ ∈ Λ′ by

[l1, l2]Λ′ := [l̃1, l̃2], (2.1.3)

where l̃i is a lifting of li to Λ′. Note that [u, f(a)]Λ′ ∈ I.
Furthermore, one can check that the image of ∆f depends only on the image of f in

HomaN (A,Λ) = h(Λ). Also, using the fact that I is central, we immediately check that ∆f

is a group homomorphism. The next result shows that in the case where h itself is representable,
the cokernel of ∆f maps bijectively to h(p)−1(f).

Lemma 2.1.2. Let A′ be an NC-nilpotent algebra of degree d such that A = A′/Id+1A
′. Then

for any central extension (2.1.1), with Λ′ ∈ Nd and Λ ∈ Nd−1, and any algebra homomorphism
f : A′→ Λ, there exists a natural transitive action of the group Der(A, I) on the fiber hA′(p)

−1(f)
of the map hA′(p) : hA′(Λ

′)→ hA′(Λ), such that the action of Der(A, I) on any element of this
fiber induces a bijection

coker(∆f )
∼
−−−A hA′(p)

−1(f).
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Proof. It is well known that the difference between two homomorphisms A′ → Λ′ lifting
f : A′ → Λ is a derivation A′ → I, and that this induces a simply transitive action of
Der(A′, I) = Der(A, I) on the set of such liftings. Now assume that we have two homomorphisms
f ′1, f

′
2 : A→ Λ′, such that both p ◦ f ′1 and p ◦ f ′2 are conjugate to f . Then, replacing f ′1 and f ′2 by

conjugate homomorphisms, we can assume that p ◦ f ′1 = p ◦ f ′2 = f . Now it is easy to see that if
f ′2 and f ′1 are conjugate by u ∈ (Λ′)∗ then u ∈ U(f), and the difference f ′2 − f ′1 is the derivation
a 7→ [u, f(a)]Λ′u

−1. This establishes the required bijection. 2

Next, we return to the situation where only h|aNd−1
is representable. Recall (see [Kap98,

Proposition (1.2.5)]) that for any central extension (2.1.1) there is a natural isomorphism

Λ′ ×Λ Λ′
∼
−−−A Λ′ ×Λab (Λab ⊕ I) : (x, y) 7A(x, (xab, y − x)), (2.1.4)

where x → xab is the projection Λ′ → Λab, and Λab ⊕ I is the trivial commutative algebra
extension of Λab by I (such that I2 = 0 and Λab is a subalgebra). Let us assume in addition that
h commutes with pull-backs by commutative nilpotent extension, so that

h(Λ′ ×Λab (Λab ⊕ I)) ' h(Λ′)×h(Λab) h(Λab ⊕ I).

Combining this with the above isomorphism, we get a natural map

h(Λ′)×h(Λab) h(Λab ⊕ I) ' h(Λ′ ×Λ Λ′)→ h(Λ′)×h(Λ) h(Λ′). (2.1.5)

Now assume that Λ′ ∈ Nd, Λ ∈ Nd−1 and that we are given an element f ′ ∈ h(Λ′) lifting
f ∈ h(Λ). Since h|aNd−1

' hA, we have a natural identification of the fiber of h(Λab ⊕ I) →
h(Λab) = Homalg(A,Λab) over fab with Der(A, I). Thus, for any D ∈ Der(A, I), we can consider
a pair (f ′, fab + D) on the left-hand side of (2.1.5). Let us define f ′ + D ∈ h(p)−1(f), so that
(f ′, f ′ +D) is the image of (f ′, fab +D) under (2.1.5). In this way we get a map

δf ′ : Der(A, I)→ h(p)−1(f) : D 7→ f ′ +D. (2.1.6)

It is easy to see (by considering Λ′ ×Λ Λ′ ×Λ Λ′) that in this way we get an action of the group
Der(A, I) on h(p)−1(f). Note that in the case where h is representable by some A′ ∈ Nd, this
operation is exactly that of adding a derivation A′→ A→ I to a homomorphism A′→ Λ′.

We can now prove the following local aNC version of Proposition 2.1.1.

Proposition 2.1.3. Let A be a (d− 1)-smooth algebra in aNd−1, and let h : aNd→ Sets be a
formally smooth functor such that h|aNd−1

' hA. Then h is representable by a d-smooth algebra
in aNd if and only if the following two conditions hold.

(i) For any nilpotent extension Λ′ → Λ with Λ′ ∈ aNd and Λ ∈ Com, and any commutative
nilpotent extension Λ′′→ Λ, the natural map

h(Λ′ ×Λ Λ′′)→ h(Λ′)×h(Λ) h(Λ′′)

is a bijection.

(ii) For every central extension (2.1.1), for any f ′ ∈ h(Λ′) extending f ∈ h(Λ), the map δf ′ ,
which is well defined due to condition (i), induces a bijection

coker(∆f )
∼
−−−A h(p)−1(f).
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Proof. Assume first that h is representable by A′ ∈ aNd. To check condition (i) for h = hA′ we

first note that since Λ and Λ′′ are commutative, the set h(Λ′) ×h(Λ) h(Λ′′) can be described as

pairs of homomorphisms f ′ : A→ Λ′ and f ′′ : A→ Λ′′ lifting the same homomorphism f : A→ Λ,

up to the equivalence replacing f ′ by a conjugate homomorphism. Clearly, this is the same as

giving a homomorphism A′ → Λ′ ×Λ Λ′′ up to conjugacy. On the other hand, condition (ii) for

hA′ follows from Lemma 2.1.2.

Now assume that conditions (i) and (ii) hold, and let A′ → A be a d-smooth thickening of

A (it exists by [Kap98, Proposition (1.6.2)]). Let e ∈ h(A) be the family corresponding to the

isomorphism h|aNd−1
' hA. Since h is formally smooth, there exists an element e′ ∈ h(A′) lifting

e. Let hA′ → h be the induced morphism of functors. We already know that it is an isomorphism

on aNd−1, and we claim that it is an isomorphism on aNd. The argument is similar to that of

Proposition 1.5.2. Given Λ′ ∈ Nd, we can fit it into a central extension (2.1.1) with Λ ∈ Nd−1.

Then we consider the commutative square

hA′(Λ
′) //

��

hA′(Λ)

��
h(Λ′) // h(Λ).

Since hA′(Λ) ' hA(Λ) ' h(Λ), we know that the right vertical arrow is an isomorphism. Also,

both horizontal arrows are surjective. Let us fix a homomorphism f ∈ hA(Λ), and its lifting

f ′ ∈ hA′(Λ′). As we have seen in Lemma 2.1.2, the fiber of the top horizontal arrow over f is

identified with coker(∆f ). The same is true for the fiber of the bottom horizontal arrow over f ,

by condition (ii). It remains to observe that both isomorphisms are induced by the operation

(2.1.6) of adding a derivation in Der(A, I), which is compatible with morphisms of functors on

aNd, extending hA on aNd−1. Thus, the left vertical arrow induces an isomorphism between the

fibers of the horizontal arrows over f . Since f was arbitrary, we deduce that the left vertical

arrow is an isomorphism. 2

Remark 2.1.4. All the fiber products of algebras above are taken in Nd. Fiber products in aNd
usually do not exist (unless one of the factors is commutative).

2.2 Local representability of the functor of NC-families by an aNC-scheme

Assume we are in the situation of § 1.5. By Proposition 1.5.4, we can view hNCB as a functor

on the category aN . Our main goal is to prove the local representability of the corresponding

functor hNCB |aNd
by a d-smooth NC-algebra.

Theorem 2.2.1. Assume that the base B of an excellent family is affine. Then for every d > 0

the functor hNCB |aNd
is representable by a d-smooth thickening of B. Hence, the functor hNCB is

representable by an NC-smooth thickening of B.

The proof will proceed by induction on d. We need two technical lemmas (the second of

which is a noncommutative extension of Lemma 1.5.3).

Lemma 2.2.2. Assume that hNCB |aNd−1
is representable by A ∈ Nd−1. Then for any central

extension (2.1.1) with Λ ∈ aNd−1, Λ′ ∈ aNd, and any homomorphism f : A → Λ, there is
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a commutative square

U(f)
∆f //

��

Der(Aab, I)

−KS
��

Aut(EΛ)
δ0 // H1(Spec(Λab)× Z,End(Eab)⊗ I).

(2.2.1)

Here ∆f is given by (2.1.2); EΛ = Ef is the family in hNCB (Λ) induced by f ; the map KS is
induced by the Kodaira–Spencer map; and the homomorphism U(f)→ Aut(Ef ) associates with
u ∈ Λ∗ an automorphism of Ef induced by left multiplication by u on Λ. The map δ0 is the
connecting map associated with the exact sequence of sheaves (1.5.4), where EΛ′ is a vector
bundle over Spec(Λ′)×Z lifting EΛ. In particular, in this situation δ0 is a group homomorphism.

Proof. We will compute the maps in the square (2.2.1) using local trivializations. Let us denote
by Eab the original family over B×Z, and let E be the family over Spec(A)×Z corresponding to
the element idA ∈ hA(A) ' hNCB (A). We denote by fab the homomorphism Aab

→ Λab induced
by f and the corresponding morphism of affine schemes Spec(Λab)→ Spec(Aab) = B. Note that,
by Proposition 1.5.2, we have an isomorphism Eab = (fab × id)∗Eab.

Step 1: computation of δ0 : Aut(Ef ) → H1(Spec(Λab) × Z, End(Eab) ⊗ p∗1I). Let us fix an
open affine covering (Ui) of Spec(Λab)×Z such that Ef ′ is trivial over Ui. Then, given an
automorphism α ∈ Aut(Ef ) over Ui, we can lift α to an automorphism αi of EΛ′ . Now over Ui∩Uj
the endomorphism α−1

i αj − id of EΛ′ factors through the kernel of the projection Ef ′ → Ef ,
that is, Eab⊗ p∗1I. This gives the Cech 1-cocycle with values in End(Eab)⊗ p∗1I, representing
the class δ0(α).

Step 2: computation of the KS map

Der(Aab, I)→ H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I). (2.2.2)

Note that we have an identification

Der(Aab, I) ' H0(B, TB ⊗ fab
∗ I).

Let us fix trivializations ϕab
i : On→ Eab over an affine open covering (Ui) of B×Z, and let gab

ij =

(ϕab
i )−1ϕab

j ∈Matn(O(Ui ∩Uj)) be the corresponding transition functions. Then to a vector field

v on B with values in fab
∗ I the KS map associates the Cech 1-cocycle ϕab

i v(gab
ij )(gab

ij )−1(ϕab
i )−1

on B × Z with values in End(Eab)⊗ p∗1fab
∗ I.

We also need to calculate the image of this class under the isomorphism induced by the
projection formula

H1(B × Z, End(Eab)⊗ p∗1f∗I)
∼
−−−A H1(B × Z, (f × id)∗((f × id)∗End(Eab)⊗ p∗1I))

' H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I).

To this end we note that the morphism fab × id : Spec(Λab) × Z → B × Z is affine, and so
Ũi := (fab × id)−1(Ui) is an affine open covering of Spec(Λab) × Z, over which we have the
induced trivializations of Eab = (fab × id)∗Eab, which we still denote by ϕab

i . Now it is easy to
see that the corresponding Cech 1-cocycle on Spec(Λab)×Z with values in End(Eab)⊗I is given
by

ϕab
i v(gab

ij )fab(gab
ij )−1(ϕab

i )−1,
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where we denote also by fab : O(Ui ∩Uj)→ O(Ũi ∩ Ũi) the homomorphism induced by fab, and

also extend v to a derivation O(Ui ∩ Uj)→ p∗1I(Ũi ∩ Ũj).

Step 3: we can now check the commutativity of the square (2.2.1). We start by choosing an
affine open covering (Ui) of B × Z and trivializations of Eab over Ui. Then we can lift these
trivializations to some trivializations ϕi : OnSpec(A)×Z |Ui → E (see Lemma 1.1.2). We denote by

gij the corresponding transition functions in GLn(OSpec(A)×Z(Ui ∩ Uj)).
By definition, ∆f (u) is the derivation

v(a) = [u, f(a)]Λ′u
−1 = [ũ, f̃(a)]ũ−1,

where ũ, f̃(a) ∈ Λ′ are some lifts of u and f(a) (note that Der(A, I) = Der(Aab, I)). Hence,
KS(∆f (u)) is represented by the 1-cocycle

ϕi[ũ, f̃(gij)]Λ′ ũ
−1f̃(gij)

−1
ϕ−1
i = ϕi(ũf̃(gij)ũ

−1f̃(gij)
−1
− id)ϕ−1

i . (2.2.3)

As in step 2, we have the induced affine open covering Ũi of Spec(Λab)×Z, and the induced
trivializations ψi of Ef over Ũi. Let us choose a lifting EΛ′ of Ef to a vector bundle over
Spec(Λ′)×Z (which exists by formal smoothness of hNCB ), and liftings ψ′i of ψi to trivializations

of EΛ′ over Ũi (see Lemma 1.1.2). Note that we have ψ−1
i ψj = f(gij), and hence (ψ′i)

−1ψ′j provide

liftings f̃(gij) ∈ Λ′ of f(gij). The image of u ∈ U(f) in Aut(Ef ) can be represented over Ũi as
ψiuψ

−1
i , where we view u as the corresponding operator of the left multiplication by u (note

that these operators are compatible on intersections because u · f(gij) = f(gij) · u, due to the
inclusion u ∈ U(f)). Using the lifting ũ ∈ Λ′ of u, we get local automorphisms of Ef ′ over

Ũi, αi = ψ′iũ(ψ′i)
−1. Then

δ0(α) = α−1
i αj − id = (ψ′iũ

−1(ψ′i)
−1)(ψ′j ũψ̃

−1
j )− id = ψ′i(ũ

−1f̃(gij)ũf̃(gij)
−1
− id)(ψ′i)

−1.

Comparing this with (2.2.3), we see that

δ0(α) = KS(∆f (u−1)) = KS(−∆f (u)) = −KS(∆f (u)). 2

Lemma 2.2.3. Assume that hNCB |aNd
is representable by A ∈ aNd, so hNCB |aNd

' hA. Then for
every d-nilpotent algebra Λ and every homomorphism f : A→ Λ, the induced homomorphism
U(f)→ Aut(Ef ) is an isomorphism. Here Ef represents the family in hNCB (Λ) induced by f .

Proof. We will prove the assertion by induction on d′ 6 d such that Λ is d′-nilpotent. For d′ = 0,
that is, when Λ is commutative, we have U(f) = Λ∗ and the assertion follows from Lemma 1.5.3.

Next, we have to see that both groups fit into the same exact sequences, when Λ′ is a central
extension of Λ by I. Namely, if f ′ : A→ Λ′ is a homomorphism lifting f , then by Lemma 2.2.2,
we have a morphism of exact sequences

1 // 1 + I //

id

��

U(f ′) //

��

U(f)
∆f //

��

Der(Aab, I)

−KS
��

1 // 1 + I // Aut(Ef ′) // Aut(Ef )
δ0 // H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I).

Note that the map KS is an isomorphism. Since the map U(f)→ Aut(Ef ) is an isomorphism
by the induction assumption, we deduce that U(f ′)→ Aut(Ef ′) is also an isomorphism. 2
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Proof of Theorem 2.2.1. By Proposition 1.5.2, we know that the assertion is true for d = 0. Now,
assuming that the functor hNCB |aNd−1

is representable, we will apply Proposition 2.1.3 to prove
that hNCB |aNd

is representable. It suffices to check conditions (i) and (ii) of this proposition. To
prove condition (i), assume that Λ′→ Λ and Λ′′→ Λ and nilpotent extensions with Λ,Λ′′ ∈ Com.
To see that the map

h(Λ′ ×Λ Λ′′)→ h(Λ′)×h(Λ) h(Λ′′)

is a bijection, we construct (as in [Kap98, Lemma (5.4.4)]) the inverse map as follows. Starting
with families EΛ′ and EΛ′′ over Λ′ and Λ′′, and choosing an arbitrary isomorphism of the induced
families over Λ, we define the family over Λ′×Λ Λ′′ as the fibered product EΛ′×EΛ EΛ′′ . One has to
check that the result does not depend on a choice of isomorphism of families over Λ (this may fail
in general, but works for commutative Λ′′). Note that different choices differ by an automorphism
of EΛ, so it is enough to see that any such automorphism can be lifted to an automorphism of
EΛ′′ . But this follows immediately from Lemma 1.5.3.

Next, let us check condition (ii). Given a central extension (2.1.1) with Λ′ ∈ Nd, Λ ∈ Nd−1,
and a family (fab, EΛ, φ) in hNCB (Λ), then choosing a lifting EΛ′ to a family over Λ′, from the
corresponding exact sequence of sheaves of groups (1.5.4) we get a connecting map

δ0 : Aut(EΛ)→ H1(Xab × Z, End(EΛab)⊗ p∗1I).

Furthermore, by Lemma 2.2.2, δ0 is actually a group homomorphism (and the source of this map
acts trivially on the target). Thus, from the formalism of nonabelian cohomology applied to the
abelian extension of sheaves of groups (1.5.2) we get that different liftings of EΛ to a family over
Λ′ form a principal homogeneous space over coker(δ0) (see § 1.4). Note that by Lemma 2.2.3,
we have an isomorphism U(f) ' Aut(EΛ), where f : A→ Λ is the homomorphism giving EΛ.
Thus, by Lemma 2.2.2, we can identify coker(δ0) with coker(∆f ). Thus, to prove condition (ii),
it remains to check that the two actions of Der(A, I) on the set of liftings of EΛ are the same
(the one coming from the formalism of nonabelian cohomology, and the other one given by the
map (2.1.6)).

To this end we use the computation of the Kodaira–Spencer map (2.2.2) using local
trivializations. Namely, we choose trivializations of the universal bundle E over an open
covering of Spec(A) × Z, and denote by gij the corresponding transition functions, so that
f(gij) are the transition functions for EΛ. Then, in the notation of Lemma 2.2.2, a derivation
v ∈ Der(A, I) = Der(Aab, I) gives rise to the Cech 1-cocycle

ϕiv(gij)f(gij)
−1ϕ−1

i

on Spec(Λab) × Z with values in End(Eab) ⊗ p∗1I. The corresponding f(gij)-twisted 1-cocycle
with values in Matr(O) ⊗ p∗1I is (v(gij)f(gij)

−1). Now by definition, the action of v on the set
of liftings of f(gij) to a 1-cocycle with values in GLr(OSpec(Λ′)×Z) sends (g̃ij) to

(1 + v(gij)f(gij)
−1) · g̃ij = (g̃ij + v(gij)). (2.2.4)

On the other hand, from v we get a homomorphism fab + v : A → Λab ⊕ I, and hence, the
1-cocycle (fab + v)(gij) with values in GLr(OSpec(Λab⊕I)×Z) lifting fab(gij). Hence, a lifting g̃ij
of f(gij) together with v defines a 1-cocycle

(g̃ij , (f
ab + v)(gij))
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with values in GLr(OSpec(Λ′×
Λab (Λab⊕I))×Z). It remains to observe that under the isomorphism

(2.1.4) this corresponds to the 1-cocycle

(g̃ij , g̃ij + v(gij))

with values in GLr(OSpec(Λ′×ΛΛ′)×Z), which has (2.2.4) as the same second component. 2

2.3 Nonabelian hypercohomology
We will use below the following simple generalization of nonabelian H1. Let G be a sheaf of
groups over a topological space X, and let E be a sheaf of sets, equipped with a G-action. We
view a pair G y E as a generalization of a complex of length 2.

For an open covering U = (Ui)i∈I of X, we define the set of 1-cocycles over U for the pair
G y E :

Z1(U ,G y E) := {(gij ∈ G(Uij))i,j∈I , (ei ∈ E(Ui))i∈I | gii = 1, gijgji = 1,

gijgjk = gik, ei = gij(ej)}, (2.3.1)

where as usual we denote Uij = Ui ∩Uj , Uijk = Ui ∩Uj ∩Uk (and the restrictions to appropriate
intersections are assumed). Two 1-cocycles over U , (gij , ei) and (g̃ij , ẽi) are called cohomologous
if for some collection hi ∈ G(Ui) we have

g̃ij = higijh
−1
j , ẽi = hi(ei).

It is easy to see that this defines an equivalence relation on Z1(U ,G y E), and we denote by
H1(U ,G y E) the corresponding set of equivalence classes. Passing to the limit over all open
coverings U , we get the nonabelian hypercohomology set H1(X,G y E).

These sets are natural: if we have a homomorphism of sheaves of groups G1 → G2 and a
compatible map of sheaves of sets E1→ E2, then we get the induced map

H1(X,G1 y E1)→ H1(X,G2 y E2).

Also, sending (gij , ei) to gij defines a projection to the usual nonabelian H1,

H1(X,G y E)→ H1(X,G).

Recall that H1(X,G) classifies isomorphism classes of G-torsors. Similarly, the set H1(X,
G y E) can be identified with the isomorphism classes of pairs (P, e), where P is a G-torsor, and
e is a global section of the twisted sheaf EP = P ×G E .

Next, we have the following analog of the connecting homomorphism H1
→ H2. Assume

that we have an abelian extension of sheaves of groups

1→ A0→ G′
p
−−−A G → 1

over X, and sheaves of sets E ′ and E , where G′ (respectively, G) acts on E ′ (respectively, E).
Further, assume that we have a sheaf of abelian groupsA1 acting freely on E ′, and an identifcation
E = E ′/A1. We denote this action as a1 + e′, where a1 ∈ A1, e′ ∈ E ′. We require the following
compatibilities between these data. First, the projections p : E ′ → E and p : G′ → G should be
compatible with the actions (of G′ on E ′ and of G on E). Note that this implies that there is an
action of G′ on A1, compatible with the group structure on A1, such that

g′(a1 + e′) = g′(a1) + g′(e′).
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Secondly, we require that the subgroup A0 ⊂ G′ acts trivially on A1, so that there is an induced
action of G on A1, such that the above formula becomes

g′(a1 + e′) = p(g)(a1) + g′(e′).

In particular, for g′ = a0 ∈ A0, we get

a0(a1 + e′) = a1 + a0(e′). (2.3.2)

For e′ ∈ E ′ and a0 ∈ A0, let us define de′(a0) ∈ A1 from the equation

a0(e′) = de′(a0) + e′

(this is possible since a0 acts trivially on E). Furthermore, (2.3.2) easily implies that da1+e′(a0) =
de′(a0), so we have a well-defined map of sheaves

E × A0→ A1 : (e, a0) 7→ de(a0),

compatible with the group structures in A0 and A1, such that

a0(e′) = dp(e′)(a0) + e′.

In particular, for every section e of E over an open subset U ⊂ X we have a complex of abelian
groups over U , (A•, de). Note that G acts on A0 (via adjoint action Ad(g)), A1 and E , and we
have

g(de(a0)) = dg(e)(Ad(g)a0). (2.3.3)

Now assume we have a class c ∈ H1(X,G y E) represented by a Cech 1-cocycle (gij , ei). Let
g = (gij) be the induced class in H1(X,G). We have the corresponding twisted sheaves Ag0 and
Ag1, and (2.3.3) implies that the dei glue into a global differential

de : Ag0 → A
g
1.

We will define an obstruction class δ1(c) with values in

H2(X, (Ag•, de)),

such that it vanishes if and only if (gij , ei) can be lifted to a class in H1(X,G′ y E ′). Namely, by
making the covering small enough, we can assume that

gij = p(g′ij), g′ij ∈ G′(Uij), ei = p(e′i), e′i ∈ E ′(Ui).

Then we have well-defined elements a0,ijk ∈ A0(Uijk) and a1,ij ∈ A1(Uij), such that

g′ijg
′
jk = a0,ijkg

′
ik,

g′ij(e
′
j) = a1,ij + e′i.

It is easy to check that (a0,ijk, a1,ij) satisfy the equations

a0,ijk + a0,ikl = Ad(gij)a0,jkl + a0,ijl, a1,ij + gij(a1,jk) = dei(a0,ijk) + a1,ik,

which exactly means that we get a 2-cocycle δ1(gij , ei) with values in (Ag•, de).
One can check that this construction gives a well-defined element δ1(c) ∈ H2(X, (Ag•, de)).

Namely, a different choice of liftings g′ij 7→ a0,ijg
′
ij , e

′
i 7→ a1,i + e′i would lead to adding the
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coboundary of (a0,ij , a1,i) to the twisted 2-cocycle (a0,ijk, a1,ij). On the other hand, changing
(gij , ei) to (higijh

−1
j , hi(ei)) would lead to a different presentation of the twisted sheaves Ag•, so

that the action of hi glues into isomorphism between two presentations. Our 2-cocycles δ1(gij , ei)
and δ1(higijh

−1
j , hi(ei)) correspond to each other under this isomorphism.

Next, let us assume that a class c ∈ H1(X,G y E) is lifted to a class c′ ∈ H1(X,G′ y E ′).
(More precisely, we need to fix the corresponding pair (P ′, e′) where P ′ is G′-torsor and e′ is a
global section of E ′P ′ .) Let g ∈ H1(X,G) be the image of c. We define the following subgroup in
H0(X,Gg):

H0(X,G, c) := {(αi ∈ G(Ui)) | αi = gijαjg
−1
ij , αi(ei) = ei},

where (gij , ei) is a Cech representative of c. We have a natural connecting map (depending on a
choice of c′)

δ0 : H0(X,G, c)→ H1(X, (Ag•, de)),

defined as follows. We can assume (gij , ei) comes from a Cech representative (g′ij , e
′
i) for c′. Let

α = (αi) be an element in H0(X,G, c). We can assume that each αi can be lifted to α′i ∈ G′(Ui).
Then we have

α′i · a0,ij = g′ijα
′
j(g
′
ij)
−1, α′i(a1,i + e′i) = e′i,

for uniquely defined a0,ij ∈ A0(Uij), a1,i ∈ A0(Ui). It is easy to check that the equations

a0,ij + Ad(gij)(a0,jk) = a0,ik, dei(a0,ij) = a1,i − gij(a1,j), (2.3.4)

are satisfied; these mean that (a0,ij , a1,i) define a 1-cocycle with values in (Ag•, de). We set δ0(αi)
to be the class of this 1-cocycle. As in § 1.4, one can check that α 7→ δ0(α−1) is a crossed
homomorphism, that is, equation (1.4.1) is satisfied.

Next, we have a natural surjective map (depending on c′)

H1(X, (Ag•, de))→ Lc, (2.3.5)

where Lc ⊂ H1(X,G′ y E ′) is the set of liftings of c. Namely, given a twisted Cech 1-cocycle
with values in (Ag•, de), (a0,ij , a1,i), so that equations (2.3.4) are satisfied, and a representative
(g′ij , e

′
i) of c′, we get a new lifting (a0,ijg

′
ij , a1,i + e′i). Furthermore, as in § 1.4, we can identify the

fibers of (2.3.5) with the orbits of the twisted action of H0(X,G, c) on H1(X, (Ag•, de)), which is
defined similarly to (1.4.2). In particular, in the case where the usual action of H0(X,G, c) on
H1(X, (Ag•, de)) is trivial (or equivalently, δ0 is a group homomorphism), these orbits are simply
the cosets for the image of δ0.

2.4 Families of representations of quivers
We will now consider families of representations of quivers (without relations). Let Q be a finite
quiver with the set of vertices Q0 and the set of arrows Q1. We denote by h, t : Q1 → Q0 the
maps associating with an arrow its head and tail.

As in [Tod17], we can consider representations of Q over an NC-scheme X. Such a
representation is a collection of vector bundles (Vv)v∈Q0 over X, and a collection of morphisms
ea : Vt(a)→ Vh(a), for each a ∈ Q1.

With a collection V = (Vv)v∈Q0 of vector bundles over X we associate a triple of sheaves of
groups on the underlying topological space of X,

G(V) :=
∏
v

Aut(Vv), E0(V) :=
∏
v

End(Vv), E1(V) :=
∏
a

Hom(Vt(a),Vh(a)).
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Note that there is a natural action of G(V) on E1(V) given by

(gv) · (φa) = (gh(a)φag
−1
t(a)).

In the case of trivial bundles Vv = Onv , for a dimension vector n•, we denote these sheaves by

G(n•), E0(n•) and E1(n•). When we want to stress the dependence on the NC-scheme X we write

G(n•, X), etc.

A structure of a representation of Q on V is given by a global section e = (ea) of E1(V). For

such a structure e we can build a two-term complex

E•(V, e) : E0(V)
df
−−−−A E1(V),

where the differential is given by de(φv) = φh(a)ea−eaφt(a). Note that H0E•(V, e) is precisely the

sheaf of endomorphisms of (V, e) as a representation of Q.

Let (V, e) be a representation of Q over X. Over some open affine covering U = (Ui) of X

we can choose a trivialization ϕi = (ϕv,i) :
⊕

vO
nv
Ui
→

⊕
v Vv|Ui . Then over each Ui we have

morphisms

ea,i := ϕ−1
h(a),ieaϕt(a),i ∈ Matnt(a)×nh(a)

(O(Ui)) = E1(n•)(Ui),

and over intersections Ui ∩ Uj we have transition functions

gij = (gv,ij) = ϕ−1
i ϕj ∈

∏
v

GLnv(O(Ui ∩ Uj)) = G(n•)(Ui ∩ Uj).

One immediately checks that (gij , ea,i) defines a Cech 1-cocycle with values in the pair G(n•) y
E1(n•) (see § 2.3). Furthermore, a different choice of trivializations (ϕi) leads to a cohomologous

cocycle, so we have a well-defined element of H1(X,G(n•) y E1(n•)). We can easily check that

in this way we get a bijection between the latter nonabelian hypercohomology set and the set of

isomorphism classes of representations (V, e) of Q, such that the underlying vector bundle has

dimension vector n•.

For a central extension (2.1.1) we have an abelian extension of sheaves of groups

1→ E0(n•,OXab)⊗ I → G(n•,OX′)→ G(n•,OX)→ 1, (2.4.1)

where X = Spec(Λ), X ′ = Spec(Λ′), I ⊂ OX′ is the ideal sheaf associated with I, and an exact

sequence of abelian groups

0→ E1(n•)⊗ I → E1(n•, X
′)→ E1(n•, X)→ 0,

compatible with the actions of the groups from (2.4.1). From § 2.3 we get that the obstacle to

lifting a representation (V, e) of Q over Spec(Λ) to a representation of Q over Spec(Λ′) is an

element of the hypercohomology H2(Xab, E•(V, e) ⊗ I). But the latter group H2 fits into the

exact sequence

. . .→ H1(Xab, E1(V)⊗ I)→ H2
→ H2(Xab, E0(V)⊗ I)→ . . . .

Since Xab is an affine scheme, we deduce that our H2 vanishes. Thus, the functor of families of

Q-representations on N is formally smooth.
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Definition 2.4.1. With a representation (V, e) of Q over a commutative scheme B we associate
the KS map, which is a morphism of coherent sheaves on B,

KS : TB → H1E•(V, e), (2.4.2)

defined as follows. Locally we can choose trivializations ϕ :
⊕

vOnv →
⊕

v Vv and, for a local
derivation v of OB, set

KS(v) := ϕv(ϕ−1eaϕ)ϕ−1 mod im(de) ∈ E1(V, f)/ im(de).

It is easy to check that a change in a local trivialization leads to the addition of a term in im(de),
so the map KS is well defined.

This definition is motivated by the fact that in the case where B = Spec(k) is
the point and (V, e) is a Q-representation over k, the space H1E•(V, e) is isomorphic to
Ext1((V, e), (V, e)) (see [Bri12, Corollary 1.4.2]), which is the tangent space to deformations
of (V, e) as a Q-representation.

Now let us fix a family (Vab, eab) of representations of Q over a smooth commutative base
scheme B. We have the following analog of Definition 0.0.1.

Definition 2.4.2. We say that (Vab, eab) is an excellent family of representations of Q if:

(a) the natural map OB → End(Vab, eab) = H0E•(Vab, eab) is an isomorphism;

(b) the Kodaira–Spencer map KS : TB → H1E•(Vab, eab) is an isomorphism.

Condition (a) is satisfied for families of endosimple representations (see [Tod17, Lemma 3.4]).
Both conditions are satisfied for the moduli spaces of stable quiver representations corresponding
to an indivisible dimension vector (see [Kin94, Proposition 5.3]).

Let us point out some consequences of assumptions (a) and (b). Given f : S → B (where S
is a commutative scheme), for (V, e) = (f∗Vab, f∗e) we have

End(V, e) = H0E•(V, e) = H0Lf∗E•(Vab, eab) ' f∗H0E•(Vab, eab) ' f∗OB ' OS ,

where we used the fact that H1E•(Vab, eab) ' TB is locally free. Also, if S is affine, then for any
coherent sheaf F on S we have

H1(E•(V, e)⊗F) ' H1E•(V, e)⊗F ' f∗TB ⊗F .

We now consider the following analog of Definition 1.5.1 for quiver representations.

Definition 2.4.3. For an excellent family (Vab, eab) of representations of Q over a smooth
(commutative) base B, we define the functor hNCB : N → Sets by letting hNCB be the set of
isomorphism classes of the following data (f, VΛ, φ). Let X = Spec(Λ) and let Xab

0 be the reduced
scheme of the abelianization of X. Then f : Xab

0 → B is a morphism, (VΛ, eΛ) is a representation
of Q over X, and φ : (EΛ, eΛ)|Xab

0
' (f∗Vab, f∗eab) is an isomorphism of representations of Q.

We have the following analog of Theorem 2.2.1 (and Proposition 1.5.4).

Theorem 2.4.4. The functor hNCB is formally smooth and factors through the category aN . If
the base B is affine then for every d > 0 the functor hNCB |aNd

is representable by a d-smooth
thickening of B.
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Proof. The proof follows the same steps as in the case of families of vector bundles. We have
already shown that hNCB is formally smooth. The fact that hNCB factors through aN is proved
similarly to Proposition 1.5.4.

The key technical computation is the analog of Lemma 2.2.2, which in our case claims
commutativity of the diagram

U(f)
∆f //

��

Der(Aab, I)

−KS
��

Aut(VΛ, eΛ)
δ0 // H0(Xab,H1E•(Vab, eab)⊗ I)

(2.4.3)

associated with a central extension (2.1.1) and a representation (VΛ′ , eΛ′) of Q over X ′ =
Spec(Λ′). Here we assume that hNCB |aNd−1

is represented by A ∈ Nd−1, that Λ ∈ aNd−1 and that
(VΛ, eΛ) is a Q-representation over X = Spec(Λ) corresponding to a homomorphism f : A→ Λ.
Also, (VΛ′ , eΛ′) is a Q-representation over X ′, extending (VΛ, eΛ). The right vertical arrow
in (2.4.3) is induced by the KS map (2.4.2), and the bottom arrow is the connecting map
defined in § 2.3. More precisely, we use here the identification for any quiver representation
(V, e) over X of the automorphism group Aut(V, e) with the group H0(X,G(n•), c), where
c ∈ H1(X,G(n•) y E1(n•)) is the class of (V, e). Also, we use the natural isomorphism

H1(X, E•(Vab, eab)⊗ I)
∼
−−−A H0(X,H1E•(Vab, eab)⊗ I) (2.4.4)

induced by the projection E1(Vab)→ H1E•(Vab, eab).
We assume that there is an open covering (Ui) of B and trivializations ϕab

i of Vab|Ui and

the compatible trivializations ψi of VΛ and VΛ′ over the covering Ũi = q−1Ui. Let (gij , ei) be the
Cech 1-cocycle corresponding to the universal family over Spec(A), so that the corresponding
cocycle for (VΛ, eΛ) is (f(gij), f(ei)).

By definition of δ0 (see § 2.3), starting from an automorphism α of Aut(VΛ, eΛ), we can lift
it over Ũi to an automorphism α′i of (VΛ′ , eΛ′) and then define δ0(α) as the class of the Cech
1-cocycle with values in E•(Vab, eab)⊗ I, given by

a0,ij = (α′i)
−1α′j − id, a1,i = (α′i)

−1ei,Λ′ − ei,Λ′ .

Calculating as in the proof of Lemma 2.2.2, and recalling that the action of G0(n•) on E1(n•) is
given by conjugation, we get

a0,ij = ψi([ũ
−1, f̃(gij)]− id)ψ−1

i = ψi∆f (u−1)(f(gij))f(gij)
−1ψ−1

i ,

a1,i = ψi(ũ
−1ei,Λ′ ũ− eΛ′)ψ

−1
i = ψi∆f (u−1)(ei)ψ

−1
i ,

where we extend the derivation ∆f : A → I to matrices with entries in A. Now we note that
the image of the class of this Cech 1-cocycle under the isomorphism (2.4.4) is simply the global
section of H1E•(Vab, eab)⊗ I given by

(a1,i mod im(de)) = KS(∆f (u−1)) = −KS(∆f (u)). 2

Acknowledgements
The work of the second author is supported in part by NSF grant DMS-1700642 and by
the Russian Academic Excellence Project ‘5-100’. He also would like to thank Institut de
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