References

- 1. S. L. Ross, *Differential Equations*, Blaisdell, Waltham, Mass., (1964).
- 2. R. Courant, H. Robbins, I. Stewart (editor), *What is Mathematics: An Elementary Approach to Ideas and Methods* (2nd edn.), Oxford University Press, London, 1996.

10.1017/mag.2024.124 © The Authors, 2024 ALLAN J. KROOPNICK Published by Cambridge *Department of Business Administration,* University Press on behalf of *University of Maryland Global Campus,* The Mathematical Association *3501 University Boulevard, East Adelphi, Maryland 20783 USA* e-mail: *allan.kroopnick@faculty.umgc.edu*

108.41 Diophantine approximations for a class of recursive sequences

Introduction: The canonical example of a divergent sequence is $\{(-1)^n\}_{n\geq 1}$. It is arguably the simplest example of a sequence $\{x_n\}_{n\geq 1}$ for which we can explicitly compute that $\overline{\lim}_{n \to \infty} x_n = 1 \neq -1 = \underline{\lim}_{n \to \infty} x_n$, where we recall that the limit superior and limit inferior are defined, respectively, by and $\lim x_n = \lim_{m \to \infty} \int \inf x_m$. Two closely related divergent sequences are given by $c_n = \cos(n)$ and $s_n = \sin(n)$, $n \ge 1$. Similarly, we have $\overline{\lim}_{n \to \infty} c_n = 1 \neq -1 = \underline{\lim}_{n \to \infty} c_n$, but these calculations are not nearly as simple as the ones for the canonical example $\{(-1)^n\}_{n\geq 1}$ since they essentially rely on a deeper fact regarding the equi-distribution modulo 2π of the positive integers. $n \rightarrow \infty$ $\overline{n\rightarrow\infty}$ $\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} (\sup_{m \geq n} x_m)$ and $\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} (\inf_{m \geq n} x_m)$ $c_n = \cos(n)$ and $s_n = \sin(n), n \ge 1$ $n \rightarrow \infty$

A natural way to re-write the divergence of a bounded sequence such as ${c_n}_{n \geq 1}$ is by considering a slightly modified version of it that behaves monotonically. For example, let us define recursively the sequence $\{u_n\}_{n\geq 1}$ by

$$
u_{n+1} = \max\{u_n, c_n\}, \qquad n \geq 1, \tag{1}
$$

with $u_1 \in \mathbb{R}$ some fixed value. Proving the convergence of the recursive sequence (1) is a straightforward exercise found in the calculus textbook [1, Exercise 106, p. 505]. Clearly, if $u_1 \geq 1$, the sequence is constant and equal to u_1 , hence convergent to u_1 . Assuming $u_1 < 1$, we see that u_n is nondecreasing and bounded above by 1, therefore convergent by the Monotone Convergence Theorem. The really interesting question however, which is not asked in [1], is finding out *precisely which value* does the sequence ${u_n}_{n \geq 1}$ converge to. On a closer inspection, we discover that computing the exact value of $\lim u_n$ propels us into the wonderful world of Diophantine approximations, the area of mathematics concerned with the approximation of real numbers by rational ones.

Diophantine approximations

The calculation of $\lim u_n$ makes use of Dirichlet's Approximation Theorem [3, Chapter II]. *n* [→] ∞

Theorem 1 (Dirichlet)

For any $\alpha \in \mathbb{R} \setminus \{0\}$ and $n \in \mathbb{N}$, there exist $p, q \in \mathbb{Z}$ such that $1 \leq q \leq n$ and $|aq - p| < \frac{1}{n}$.

Since the proof of Theorem 1 is a simple consequence of the Pigeonhole Principle, we briefly recall it here for the convenience of the reader. We only give the argument for $\alpha > 0$. Consider the set of $n + 1$ numbers $f_k = ka - \lfloor ka \rfloor, \ 0 \le k \le n$, where the *floor* of $x \in \mathbb{R}$ is defined as $\lfloor x \rfloor$ = max {*m* ∈ \mathbb{Z} : *m* ≤ *x*}. Since all of the numbers f_k belong to the interval

$$
[0, 1) = \bigcup_{l=0}^{n-1} \left[\frac{l}{n}, \frac{l+1}{n} \right],
$$

we conclude that there must exist some $l_0 \in \{0, 1, ..., n-1\}$ and with $k_1 < k_2$ such that $f_{k_1}, f_{k_2} \in \left[\frac{l_0}{n}, \frac{l_0+1}{n}\right]$. In particular, $|f_{k_2} - f_{k_1}| < \frac{1}{n}$. Now letting $q = k_2 - k_1$ and $\text{yields } |qa - p| < \frac{1}{n}.$ *l*⁰ ∈ {0, 1,…, *n* − 1} $k_1, k_2 \in \{0, 1, \ldots, n\}$ with $k_1 < k_2$ such that $f_{k_1}, f_{k_2} \in \left[\frac{l_0}{n}, \frac{l_0+1}{n}\right]$ $|f_{k_2} - f_{k_1}| < \frac{1}{n}$. Now letting $q = k_2 - k_1$ and $p = \lfloor k_2 \alpha \rfloor - \lfloor k_1 \alpha \rfloor$

We are now ready to compute $\lim u_n$. Let $\varepsilon > 0$ be given and choose $N = N(\varepsilon) \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon$. By Theorem 1, there exist $p, q \in \mathbb{N}$ such that $1 \leq q \leq N$ and $|2\pi q - p| < \frac{1}{N} < \varepsilon$. Recalling that the cosine function is Lipschitz, that is, $n \rightarrow \infty$

$$
\left|\cos x - \cos y\right| \leqslant \left|x - y\right|, \qquad \forall x, y \in \mathbb{R},
$$

we get

$$
1 - \cos p = \cos 2\pi q - \cos p < \varepsilon.
$$

Finally, for all $n > p$, we have

$$
|u_n - 1| = 1 - u_n \leq 1 - u_{p+1} \leq 1 - \cos p < \varepsilon.
$$

This proves that $\lim u_n = 1$. $n \rightarrow \infty$

Similarly for the sequence $\{u_n\}_{n\geq 1}$, we could have also defined recursively the sequence $\{v_n\}_{n \geq 1}$ by

$$
v_{n+1} = \min \{ v_n, c_n \}, \qquad n \geq 1. \tag{2}
$$

By the Monotone Convergence Theorem we see that $\{v_n\}_{n \geq 1}$ is convergent as well, but to what exactly? Using the substitution $v_n = -w_n$, this reduces to computing $\lim w_n$, where $\{w_n\}_{n \geq 1}$ is given by $n \rightarrow \infty$

$$
w_{n+1} = \max \{ w_n, -c_n \} = \max \{ w_n, \cos (n + \pi) \}.
$$
 (3)

The recursive sequences defined in (1) and (3) suggest that one should consider a larger class of recursive sequences that encompasses both of them.

A class of recursive sequences

Let $\beta \in \mathbb{R}$ and $\gamma \in [0, \infty)$ be some fixed parameters, and $u : \mathbb{R} \times [0, \infty) \to \mathbb{R}$ some fixed function. Consider the class of sequences $\{u_n^{\beta,\gamma}\}_{n \geq 1}$ given by the recursion

$$
u_1^{\beta,\gamma} = u(\beta,\gamma), u_{n+1}^{\beta,\gamma} = \max\{u_n^{\beta,\gamma}, \cos(\gamma n + \beta)\}, \qquad n \geq 1. \tag{4}
$$

Without loss of generality, we can assume $\beta \leq 0$, since we can always replace cos($γn + β$) with cos($γn + β'$), where $β' = β - 2πk_0$ for some $k_0 \in \mathbb{N}$ such that $\beta \leq 2\pi k_0$. In what follows, we break up the discussion of the convergence of the sequence $\{u_n^{\beta,\gamma}\}_{n \geq 1}$ into two cases.

First, let us assume that $\frac{\gamma}{2\pi} \in \mathbb{Q}$, that is, $\gamma = 2\pi t$ for some $t = \frac{r}{s} \in \mathbb{Q}_+$ with $\gcd(r, s) = 1, s \ge 1$. Note that in this case, for all $n \in \mathbb{N}$, $\cos\left(2\pi \frac{nr}{s} + \beta\right)$ takes values from the finite set

$$
\mathcal{G}_{\beta,\gamma} = \left\{ \cos \left(2\pi \frac{pr}{s} + \beta \right) : p \in \{0, 1, \ldots, s-1\} \right\},\
$$

which yields $\lim_{n} u_n^{\beta,\gamma} = \max\{u(\beta,\gamma), \max \mathcal{G}_{\beta,\gamma}\}\$. In particular, if $\gamma = 2\pi r$, for some $r \in \mathbb{N}$ then $\lim_{n \to \infty} u_n^{\beta,\gamma} = \max \{u(\beta, \gamma), \cos \beta\}.$ $n \rightarrow \infty$

Second, consider the case where $\frac{\gamma}{2\pi} \neq \mathbb{Q}$. Our claim is the following:

If
$$
\beta \le 0 \le \gamma
$$
, and $\frac{\gamma}{2\pi} \notin \mathbb{Q}$, then $\lim_{n \to \infty} u_n^{\beta, \gamma} = 1$.

The main tool we will use to prove this claim is Kronecker's Approximation Theorem [2].

Theorem 2 (Kronecker): Any real number can be approximated by multiples of any irrational number modulo integers; that is, given $\beta \in \mathbb{R}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, we have

 $\forall \varepsilon > 0, \exists q \in \mathbb{N}, \exists p \in \mathbb{Z} \text{ such that } |aq - p - \beta| < \varepsilon.$

To prove now the claim above, start by noting that if $\alpha > 0$ and $\beta \leq 0$, then necessarily $p \geq 0$ in Theorem 2. If we apply Theorem 2 to $\alpha = \frac{2\pi}{\gamma} \notin \mathbb{Q}$ and β/γ , we obtain for appropriate integers p, q that

$$
\left|\frac{2\pi}{\gamma}q-p-\frac{\beta}{\gamma}\right|<\frac{\varepsilon}{\gamma};
$$

that is,

$$
|2\pi q - (\gamma p + \beta)| < \varepsilon.
$$

From this point on, the argument concerning the computation of the limit of the sequence $\{u_n^{\beta,\gamma}\}_{n>1}$ resembles the one given for the sequence $\{u_n\}_{n>1}$. Letting $n > p$, we have

$$
\left| \mu_n^{\beta,\gamma} - 1 \right| = 1 - u_n^{\beta,\gamma} \le 1 - u_{p+1}^{\beta,\gamma} \le 1 - \cos(\gamma p + \beta)
$$

$$
= \cos 2\pi q - \cos(\gamma p + \beta) < \varepsilon,
$$

which proves our claim. In particular, this shows that for the sequence defined in (3), $\lim w_n = 1$, and then for the sequence defined in (2), $\lim v_n = -1.$ $n \rightarrow \infty$ $n \rightarrow \infty$

Finally, let us observe that the study of the families of recursive sequences

$$
\tilde{u}_{n+1}^{\beta,\gamma} = \min \{ \tilde{u}_n^{\beta,\gamma}, \cos(\gamma n + \beta) \}, \qquad n \ge 1,
$$

$$
z_{n+1}^{\beta,\gamma} = \max \{ z_n^{\beta,\gamma}, \sin(\gamma n + \beta) \}, \qquad n \ge 1,
$$

and

$$
\tilde{z}_{n+1}^{\beta,\gamma} = \min \left\{ \tilde{z}_{n}^{\beta,\gamma}, \sin \left(\gamma n + \beta \right) \right\}, \qquad n \geq 1,
$$

reduces to the obvious equalities:

$$
\tilde{u}_n^{\beta,\gamma} = -u_n^{\beta + \pi,\gamma}, z_n^{\beta,\gamma} = u_n^{\beta - \frac{1}{2}\pi,\gamma} \text{ and } \tilde{z}_n^{\beta,\gamma} = -u_n^{\beta + \frac{1}{2}\pi,\gamma}.
$$

References

- 1. J. Haas, M. D. Weir, G. B. Thomas, Jr., *University Calculus: Alternate Edition*, Pearson Education (2008).
- 2. K.-L Kueh, A note on Kronecker's approximation theorem, *Amer. Math. Monthly* **93,** no. 7, (1986) pp. 555-556.
- 3. W. Schmidt, Diophantine Approximations and Diophantine Equations, *Lecture Notes in Mathematics*, **Vol. 1467,** Springer (1991).

10.1017/mag.2024.125 © The Authors, 2024 ÁRPÁD BÉNYI Published by Cambridge University Press *Department of Mathematics,* on behalf of *516 High St, Western Washington University,* The Mathematical Association *Bellingham, WA 98225, USA* e-mail: *benyia@wwu.edu*

108.42 On matrices whose elements are integers with given determinant

Introduction

For matrices with large positive integer elements with a small determinant is an interesting question in a linear algebra course. In this paper, we investigate matrices of order n with large positive integer elements and having a small determinant. In [1], the author explains the method for finding an infinite family of square matrices of order 2 with large positive integer entries and small positive integer determinant. Motivated by this fact, we generalise it for the case of square matrices of any arbitrary order $n \ge 2$. More precisely, we prove the following result.

Theorem 1: Given positive integers d and M , there exist infinitely many matrices $A = [a_{ij}]_{1 \le i,j \le n}$ with integer elements satisfying $a_{ij} \ge M$ and $\det A = d$.