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Abstract
In the USA, the linkages between the housing market, the credit market, and the real sector have been
striking in the past decades. To explain these linkages, I develop a small-scale dynamic stochastic general
equilibrium (DSGE) model in which agents update non-rational beliefs about future house price growth,
in accord with recent survey data evidence. Both standard productivity shocks and shocks in the credit
sector generate endogenously persistent booms in house prices. Long-lasting excess volatility in house
prices, in turn, affects the financial sector and propagates to the real sector. This amplification and propa-
gationmechanism improves the ability of the model to explain empirical puzzles in the US housing market
and to explain the macro-financial linkages during 1985−2019. The learning model can also replicate the
predictability of forecast errors evidenced in recent survey data.
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1. Introduction
The subprime financial crisis, which started in the US mortgage credit market in 2007 following a
sudden decrease in house prices and finally propagated to the real sector, has revealed the strong
linkages between the housing sector, the credit market, and the real sector. Therefore, it seems
crucial to explain the dynamics of house prices to understand the credit and business cycles over
the last decades. However, as for other assets, such as stocks, patterns of excess volatility in house
prices relative to fundamentals have been apparent.1

To address this puzzle, this paper presents a stylized small-scale dynamic stochastic general
equilibrium (DSGE) model in the spirit of Iacoviello (2005), in which non-rational expectations
about future housing returns are introduced. This assumption is motivated by two distinct recent
pieces of evidence. First, survey data about expected house price growth have recently developed
(see the Michigan Survey of Consumers), thereby filling a gap in the understanding of the forma-
tion of house price expectations. Similar to what has been long established for macroeconomic
variables and other assets, recent survey data reveal that US households make systematic forecast
errors when predicting future house price growth and that these forecast errors are predictable.
Second, the recent theoretical literature shows that modeling non-rational expectations about
future house prices enables a better explanation of the empirical behavior of house prices (e.g.,
Granziera and Kozicki (2015) and Glaeser and Nathanson (2017)).

In this paper, non-rational expectations about future house price growth relate to the assump-
tion that agents do not understand how house prices form endogenously throughmarket clearing.
Agents, instead, believe that house price growth is exogenous and equals the sum of two compo-
nents: a persistent time-varying component and a transitory component. Because agents cannot
observe the two components separately, the agents learn over time the unobservable persistent
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component of house price growth, by using past data. To introduce the smallest degree of free-
dom into themodel and the smallest deviation from the rational expectations assumption, I follow
Winkler (2020) in assuming that, conditional on house price expectations, expectations of all vari-
ables are rational. This assumption does not imply that expectations of other variables are fully
rational, as errors in the estimation of house prices propagate to other variables, but they are
however model-consistent. Under this assumption, the solving method is close to the standard
perturbation method used for models with rational expectations.

In contrast to current literature on learning about future house prices, the learning mecha-
nism is embedded into a production economy. Thus, both the asset price and the business cycles
implications of the learning mechanism can be investigated. In addition to standard total fac-
tor productivity shocks, the model features shocks in the credit supply sector, namely, lenders’
intertemporal shocks that mimic sudden variations in the willingness to lend independently of
borrowers’ ability to repay the debt. Indeed, as emphasized by Iacoviello (2015), productivity
shocks, which are the traditional drivers of business cycles in most DSGE models, are unlikely
to fully explain the Great Moderation dynamics, the 2007−2008 financial crisis and its aftermath,
when business cycles have been mainly financial.

Our approach yields the following main results. First, the learning model explains several puz-
zling features of housing market dynamics. The model is able to generate endogenously persistent
booms in house prices in response to small macroeconomic and credit supply sector shocks. In
addition, in contrast with the rational expectations version of the model, the learning model repli-
cates the strong autocorrelation in house prices and the positive sign of the autocorrelation in
housing returns observed in US data during 1985−2019. Second, the learning model generates
an amplified response of credit and macroeconomic variables to shocks. This amplification is
made apparent by the fact that the shocks variance that is required to simultaneously replicate
the volatility in house prices and in additional variables observed during 1985−2019 in the USA
is significantly smaller under learning. Third, the learning model replicates the predictability of
forecast errors in both housing returns and macroeconomic variables, in accord with survey data.

Therefore, the present paper contributes to the recent literature that models the subjective law
of motion of asset returns as an unobserved component model (Adam et al. (2012), Adam et al.
(2016), Adam et al. (2017), and Caines (2020). It shows that introducing this modeling assumption
for housing returns beliefs in a macroeconomic model leads to predictions that are consistent
with both macroeconomic evidence on the role of housing in the US business cycle and with
micro-survey data on beliefs. Our results thus offer additional empirical support for the specific
assumptionmade for asset returns beliefs, further justifying its use in earlier literature and arguing
in favor of its use in larger macroeconomic models.

The remainder of the paper is organized as follows. Section 2 presents the related literature.
Section 3 describes the baseline model with collateralized borrowing constraints, credit frictions,
and capital adjustment costs. Section 4 explains the formation of beliefs about future house prices
and describes the equilibrium under learning. Section 5 displays the simulated results obtained
in the learning model, compares them to those of the rational expectations model, and discusses
how they can help explain features of the joint dynamics of house prices, credit, real variables, and
expectations since the mid-1980s in the USA. Finally, Section 6 concludes.

2. Related Literature
This paper is related to two strands of the literature that have for the most part remained separate.
The first strand aims at modeling expectations that are more consistent with the results of
survey data and at better replicating non-fundamental house price dynamics documented in the
empirical literature. Thus, Gelain and Lansing (2014) and Granziera and Kozicki (2015) explain
house price volatility by introducing intuitive, but not microfounded, extrapolative models of
house price expectations.
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By contrast, I directly follow Adam et al. (2012), Adam et al. (2016), Adam et al. (2017), and
Caines (2020) in specifying the perceived law of motion of asset prices. Expectations of future
house price growth are microfounded, relying on Bayesian updating of the perceived law of
motion. These papers model exchange economies in which consumption and output streams are
exogenous. Therefore, they cannot account for the impact of asset prices on the business cycle. An
exception is the recent paper by Winkler (2020). In contrast to this paper, the model developed
in the present note focuses on house prices rather than on stock prices and includes shocks in
the credit supply sector and household debt to account for the specificities of the last decades in
the USA. Kuang (2014) has developed a related small-scale macroeconomic model with learning
about housing returns but has not investigated the implications for the production sector and for
longer-termUS business cycle statistics, and has not compared the model results with survey data.
Even more recently, Adam et al. (2020) have developed a similar setting, but their model does
not feature a financial sector and therefore cannot generate a financial accelerator mechanism
and implications for the dynamics of credit. Pintus and Suda (2019) also model non-rational
expectations and learning about financial variables such as leverage, but they introduce house
price shocks to replicate the boom–bust pattern of the 2000s. Pancrazi and Pietrunti (2019)
assume that agents fail to forecast the long-run mean reverting behavior in house prices, but they
abstract from learning and focus on consumption-saving decisions.

The literature on the role of the housing market in the business cycle is the second strand
of literature this paper relates to. Several papers investigate the linkages between asset mar-
kets, the credit market, and the real sector in production economies with financial frictions,
where consumption and production are endogenous, featuring a well-known financial accelerator
mechanism (Kiyotaki and Moore (1997), Bernanke et al. (1999)).

However, in most of the papers that feature housing assets as collateral, at least part of the
dynamics of house prices is driven by exogenous changes directly related to the housing sec-
tor. The most common approach consists in introducing housing price shocks, housing demand
shocks, or housing technology shocks (Iacoviello (2005), Iacoviello and Neri (2010)). Such ingre-
dients are not very helpful in understanding house price dynamics, as the latter thus remain largely
exogenous. Other elements of explanations resort to monetary policy shocks and financial con-
ditions shocks (Aoki et al. (2004)), or to non-time separable preferences (Jaccard (2012)). In all
cases, this set of explanations, based on standard rational expectations specifications, is difficult to
reconcile with survey data about expected future house price growth.

By contrast, I only introduce discount factor shocks in the lending sector (in addition to
standard productivity shocks), such that the dynamics of the housing market are initially driven
by shocks in the credit supply sector and not directly by shocks related to the housing market.
The response of house prices to exogenous shocks is thus more endogenous, less close to the
shock, and more consistent with patterns observed during boom-and-bust episodes in the US
housing market. Indeed, the steep increase in house prices that started in 2001 in the USA arose as
a consequence of relaxed financial conditions and the fast development of mortgage credit (e.g.,
Mian and Sufi (2009)). Therefore, by explaining house price dynamics more endogenously, it is
possible to investigate the feedback transmission channels between the credit sector, the housing
market, and the real sector. In addition, in contrast to the rational expectations literature on the
role of house prices in the US business cycle, the present paper is able to explain several features
of survey data and thus to explain the joint properties of house prices, survey forecasts, credit,
and business cycle statistics.

3. The Baseline Model
The baseline model is close to the extended model presented in Iacoviello (2005), except that
it focuses on real and financial frictions. The model features a discrete-time, infinite horizon
economy with three types of agents: lenders in the form of patient households and borrowers in
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the form of both entrepreneurs and impatient households. The housing stock in the economy is
exogenous and normalized to 1. All variables are expressed in units of a single consumption good,
which also serves as an investment good.

3.1. Lenders
It is assumed that a set of households displays a high discount factor relative to other households.
Their preferences take the standard following form:

max EP0
∞∑
t=0

βtPdt[ ln(Ct,P)+ j ln(Ht,P)+ψ ln(1−Nt,P)]. (1)

Patient households thus value consumption Ct,P, housing services provided by real estate assets
Ht,P, and leisure hours equal to 1−Nt,P, where Nt,P are working hours. Patient households dis-
count future periods with the discount factor βP, j is the weight allocated to housing services in
the utility function, and ψ is the weight allocated to leisure. dt follows an autoregressive process
in the form of:

ln(dt)= ρd ln(dt−1)+ εd,t , (2)

where ρd < 1, and εd,t is the discount factor shock which follows a normal distribution with mean
zero and variance σd. The interpretation of this shock is that time preferences are time-varying:
patient households can suddenly display more or less preference for current consumption, hous-
ing services, and leisure. This shock is introduced to mimic a context of higher willingness to lend,
independently of borrowers’ net worth. An exogenous decrease in the current period discount fac-
tor of lenders thus increases the credit supply, independently of borrowers’ ability to pay back the
debt. Expectations are evaluated under the probability measure P and can differ from rational
expectations.

The intertemporal flow of funds constraint of patient households writes as follows:

Ct,P + qtHt,P + Bt =wtNt,P + Rt−1Bt−1 + qtHt−1,P, (3)

where qt is the price of houses, Bt is the debt held by patient households, Rt is the (gross) interest
rate on debt, and wt is the wage. Housing assets are traded in each period. The intertemporal first-
order conditions with respect to housing, debt, and hours worked are standard, except that the
time preference shock is included:

dt
1

Ct,P
qt = βPEPt

[
1

Ct+1,P
qt+1dt+1

]
+ jdt

1
Ht,P

. (4)

dt
Ct,P

= βPEPt
[

dt+1
Ct+1,P

Rt
]
. (5)

wt
Ct,P

= ψ

1−Nt,P
. (6)

3.2. Entrepreneurs
Entrepreneurs own the capital stock and maximize the intertemporal utility of consumption
streams:

max EP0
∞∑
t=0

βtF[ ln(Ct,F)], (7)
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subject to the following flow of funds constraint:

Ct,F + qtHt,F + Rt−1Bt−1,F +wtNt + It = Yt + Bt,F + qtHt−1,F , (8)

where βF is the entrepreneurs’ discount factor, Ct,F is consumption, Ht,F represents real estate
holdings, Bt,F is debt, Nt is labor demand, It is investment, and Yt is output, which is produced
according to the following production function:

Yt =AtKαt−1H
v
t−1N

1−α−v
t . (9)

Total factor productivity At follows a standard AR(1) process in the log:

ln(At)= ρa ln(At−1)+ εa,t , (10)

where εa,t follows a normal distribution with mean zero and variance σa. Adjusting capital too fast
is assumed to be costly, and the capital accumulation equation takes the standard following form
under capital adjustment costs (Hayashi (1982)):

Kt = It + (1− δ)Kt−1 − φ

2

(
It

Kt−1
− δ

)2
Kt−1, (11)

where Kt is the capital stock, δ is the capital depreciation rate, and φ is a parameter governing the
size of the capital adjustment cost. Entrepreneurs can borrow a limited amount of debt and face a
collateralized borrowing constraint in which housing assets play the role of pledgeable assets:

Bt,F ≤mEPt
[
qt+1

Ht,F
Rt

]
, (12)

where the term EPt
[
qt+1

Ht,F
Rt
]
represents expected future asset value and m is the loan-to-value

ratio. The lender can recover only some fraction of the pledgeable assets in case of default due to
asymmetry of information between lenders and borrowers, implying that m< 1. The first-order
conditions for firms with respect to labor, debt, and real estate assets write:

wt = (1− α − v)Yt
Nt

, (13)

1
Ct,F

= βFEPt
[

1
Ct+1,F

]
Rt +μF,t , (14)

and
qt
Ct,F

= βFEPt
[

1
Ct+1,F

(
qt+1 + vYt+1

Ht,F

)]
+μF,tmEPt

[
qt+1
Rt

]
, (15)

where μF,t ≥ 0 is the Lagrange multiplier associated with the borrowing constraint. The comple-
mentary slackness condition writes

μF,t

[
Bt,F −mEPt

[
qt+1

Ht,F
Rt

]]
= 0. (16)

The first-order condition with respect to labor is standard, except that the share of labor in
the production function depends not only on the share of capital but also on the share of real
estate assets in the production function. The Lagrange multiplier μF,t associated with the borrow-
ing constraint appears in the previous two equations, which shows that financial frictions act as
an intertemporal wedge in the first-order conditions by comparison to standard first-order con-
ditions. Note that in the non-stochastic steady state, the Lagrange multiplier associated with the
borrowing constraint of firms μF is equal to

(βP−βF
βF

) 1
CF
. Therefore, the discount factor of lenders

must be strictly higher than the discount factor of borrowers (i.e., βF <βP) to ensure that the
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Lagrange multiplier associated with the borrowing constraint is strictly positive. The combination
of the first-order conditions with respect to capital and to investment yields

1

Ct,F
(
1− φ

(
It

Kt−1
− δ

))
= EPt

⎡⎣βF 1
Ct+1,F

⎛⎝αYt+1
Kt

+ 1

1− φ
(
It+1
Kt

− δ
) (1− δ − φ

2

(
It+1
Kt

− δ

)2
+ φ

(
It+1
Kt

− δ

)
It+1
Kt

)⎞⎠⎤⎦.
(17)

3.3. Impatient households
The preferences of impatient households are similar to those of patient households except that
their time preference rate βI differs (βI <βP). This assumption, which is standard in a borrower–
saver model, makes impatient households willing to borrow rather than lend. The maximization
program of impatient households is thus the following:

max EP0
∞∑
t=0

βtI [ ln(Ct,I)+ j ln(Ht,I)+ψ ln(1−Nt,I)] (18)

s.t.

Ct,I + Rt−1Bt−1,I + qtHt,I =wtNt,I + qtHt−1,I + Bt,I (19)

Bt,I ≤mEPt
[
qt+1

Ht,I
Rt

]
. (20)

All variables indexed by I for impatient households are equivalent to similar variables indexed
by P for patient households. Impatient households face a borrowing constraint similar to that of
entrepreneurs. The first-order conditions with respect to housing, labor supply, and debt write

qt
Ct,I

= βIEPt
[
qt+1
Ct+1,I

]
+ j

1
Ht,I

+μI,tmEPt
[
qt+1
Rt

]
, (21)

wt
Ct,I

= ψ

1−Nt,I
, (22)

1
Ct,I

= βIEPt
[

1
Ct+1,I

Rt
]

+μI,t , (23)

whereμI,t ≥ 0 is the Lagrangemultiplier associated with the borrowing constraint of the impatient
households. The complementary slackness condition writes

μI,t

[
Bt,I −mEPt

[
qt+1

Ht,I
Rt

]]
= 0. (24)

3.4. Market clearing
Finally, the model is closed by adding market clearing conditions and standard transversality
conditions. The market clearing condition on the goods market is

Yt = It + Ct,P + Ct,F + Ct,I . (25)

Bonds are assumed to be in zero-net supply:

Bt = Bt,F + Bt,I . (26)
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The equilibrium condition on the labor market is

Nt =Nt,P +Nt,I . (27)

Finally, the market clearing condition on the housing market is

HP,t +HF,t +HI,t = 1. (28)

The model is solved under the assumption that the borrowing constraint of both entrepreneurs
and impatient households is binding (and thus that the associated Lagrange multipliers μF,t and
μI,t are strictly positive). When numerically solving the model, I verify that this assumption holds
true in all simulations.

4. The Learning Model
4.1. Perceived process for house price growth
Following a recent trend in the literature on learning regarding asset prices (Adam et al. (2012),
Adam et al. (2016), Adam et al. (2017), Winkler (2020)), I now assume that agents in the economy
do not understand the endogenous process through which house prices form. The actual equi-
librium price results from the equalization of the demand for housing of the three sectors in the
model to the exogenous supply of housing. Instead, in the learning model, agents observe house
prices realizations and try to determine whether the actual evolution is permanent or temporary.
They thus try to evaluate the persistence of the current variation in house prices based on their
past experience. Therefore, instead of taking into account the housing market clearing condition,
atomistic market participants believe that logged house prices follow an exogenous process which
takes the following form:

ln(qt)− ln(qt−1)= ln(μt)+ ln(ηt), (29)

where ηt is a temporary disturbance, and where the time-varying persistent componentμt follows
the process:

ln(μt)= ln(μt−1)+ ln(νt), (30)

where νt is an additional disturbance. Agents perceive the innovations ηt and νt to be normally
distributed according to the following joint distribution:(

ln(ηt)
ln(νt)

)
∼N

((
0
0

)
,

(
σ 2
η 0
0 σ 2

ν

))
. (31)

Modeling perceived house price growth as an unobserved component model is grounded on
several empirical elements. First, the implied learning mechanism not only gives rise to a neat
optimal filter but is also very intuitive: when house prices grow, it is hard to disentangle whether
the increase is persistent or only temporary. Observers thus try to evaluate the persistence of the
increase based on their past experience. This is consistent with recent empirical evidence that
shows that households extrapolate from recent changes in house prices to form expectations of
future prices (Kuchler and Zafar (2019)). Second, the perceived law of motion for house prices is
consistent with the short-term empirical behavior of house prices. Indeed, US house prices present
episodes of persistent increase followed by episodes of persistent decrease. Random walk specifi-
cations were thus a natural starting point in the literature for testing the behavior of house prices
(Gau (1984), Case and Shiller (1989)) and are thus an intuitive device for modeling the unob-
served component of perceived future house price growth. Third, Adam et al. (2012) and Caines
(2020) show that this specification for perceived house price growth helps better understand the
recent dynamics of house prices in G7 countries prior to the subprime financial crisis. Fourth,
recent papers (Adam et al. (2016), Adam et al. (2017), Winkler (2020) and Adam et al. (2020))
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emphasize that this specification is successful in explaining several features of survey data about
future stock and housing returns.

4.2. Optimal Bayesian learning
Agents observe house price realizations qt without noise, but they are not able to separately
observe the persistent component and the transitory component of what they believe to be the
exogenous process driving house price dynamics. Therefore, they face an optimal filtering prob-
lem and come up with the best statistical estimate ln(μ̂t) of the persistent component ln(μt) in
each period t. Due to normality of residuals and the linearity of the process, Bayesian filtering
amounts to standard Kalman filtering in the setup. Again following the related literature, the prior
distribution of beliefs is assumed to be a normal distribution with mean parameter ln(μ̂0) and dis-
persion parameter σ0. Because the deterministic steady state is the starting point in the simulations
below, as is usual in DSGEmodels analysis, I set the prior mean and dispersion parameters at their
steady state values. The prior mean belief about house price growth is thus set at ln(μ̂0)= 0, and
prior uncertainty σ 2

0 is set at its Kalman filter steady state value σ 2:2

σ 2 =
−σ 2

ν +
√
(σ 2
ν )2 + 4σ 2

ν σ
2
η

2
. (32)

Agents’ subjective probability measure P is specified jointly by equations (29), (30), and (31),
by prior beliefs and by knowledge of the productivity and lenders’ discount factor random pro-
cesses. The posterior distribution of beliefs in time t following some history up to period t, ωt , is
ln(μt)|ωt ∼N( ln(μ̂t), σ 2), where ln(μ̂t) is given by the following optimal updating rule:

ln(μ̂t)= ln(μ̂t−1)+ g
[
ln(qt)− ln(qt−1)− ln(μ̂t−1)

]
. (33)

This unique recursive equation – in which g is the Kalman filter gain, which optimal expression
is σ 2

σ 2+σ 2η – fully characterizes agents’ beliefs about house price growth, which are summarized in
each period t by the state variable μ̂t . The Kalman filter gain governs the size of the updating in
the direction of the last forecast error.3 Logically, the Kalman filter gain increases in the signal-to-
noise ratio σ 2ν

σ 2η
. A higher signal-to-noise ratio means that changes in house prices are driven to a

higher extent by changes in the persistent componentμt relative to changes in the transitory noise
ηt . Thus, the last forecast error is more informative for predicting future house prices. To solve the
model under subjective expectations, I resort to lagged beliefs updating to avoid the simultaneous
determination of beliefs and house prices. Indeed, according to equation (33), the mean belief
about house price growth ln(μ̂t) in period t depends on current house prices qt . At the same time,
house prices in period t depend on the expectations of future house price growth and, thus, on the
currentmean belief ln(μ̂t). To avoid this issue, which is inherent in self-referential learning, lagged
beliefs updating is assumed, that is, agents rely on lagged information when updating their beliefs.
This assumption is common to all papers that model the same specification of asset prices and is
also standard in the general self-referential learning literature. Adam et al. (2017) provide micro-
foundations for this updating rule with delayed information. Lagged beliefs updating consists in
rewriting the beliefs updating equation rule (33) as:

ln(μ̂t)= ln(μ̂t−1)+ g
[
ln(qt−1)− ln(qt−2)− ln(μ̂t−2)

]
. (34)

The slightly modified updating rule means that in period t, agents update their mean belief
in the direction of the forecast error of the previous period rather than of the current period.
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Consequently, themean belief ln(μ̂t) is now predetermined at time t, and equilibrium house prices
are determined by the housing market clearing condition. Lagged beliefs updating thus ensures
that the equilibrium is unique. Given the perceived law of motion for house prices, agents believe
that house prices in period t are such that:

ln(qt)= ln(qt−1)+ ln(μ̂t)+ z1t , (35)

where z1t is seen by agents as an exogenous forecast error, normally distributed with mean 0 and
variance σz, whereas it is actually endogenous: it is equal to the difference between the expected
growth rate of house prices and the actual growth rate formed endogenously on the housing mar-
ket. Following Winkler (2020), I treat the lagged forecast error ln(qt−1)− ln(qt−2)− ln(μ̂t−2) as
an exogenous disturbance z2t in the belief system of agents in period t while ensuring that z2t
is equal to the lagged forecast error. In the learning model, expected quarterly housing returns
EPt [ ln(qt+1)− ln(qt)] are given by ln(μ̂t). Thus, the perceived parameters of the unobserved com-
ponent model σν and ση affect housing returns expectations through the Kalman filter gain g.
Therefore, these parameters affect the demand for housing and the related substitution effects.

4.3. Solving the model under imperfect market knowledge
The system of equations characterizing the subjective structural model includes the first-order
conditions (4−6), (13−15), (17), and (21−23), the flow of fund constraints (3), (8), and (19), the
production function (9), the capital accumulation equation (11), the complementary slackness
conditions (16−24), market clearing conditions (26) and (27), random processes (2) and (10),
and the beliefs’ updating equation (34). P now represents the subjective probability measure. The
market clearing condition on the housing market is not included in the perceived system of equa-
tions because agents do not understand how house prices form. Solving this subjective system
of equations yields the subjective policy functions. However, subjective solution functions do not
characterize the actual equilibrium house prices, which arise endogenously in the model through
the market clearing condition.4 Therefore, to solve the model under imperfect market knowledge,
I rely on two steps, following the method proposed in Winkler (2020). First, I numerically solve
for the coefficients of the approximate subjective policy function of the above system of equations
in the neighborhood of the deterministic steady state, relying on standard perturbation methods.
Second, I solve for the approximate actual policy function, that is, the objective solution function,
by deriving actual endogenous house prices from the subjective policy function, relying on chain
rules derivation. I obtain the derivatives of the Taylor expansion of the actual policy function in
the neighborhood of the deterministic steady state. This yields a numerical approximation for the
objective policy function, which fully characterizes the numerical solution to the learning model.5

5. Results: House Price Dynamics and Macro-Financial Linkages
The model is solved under both the assumptions of rational expectations and imperfect mar-
ket knowledge, to assess the relevance of the model in explaining the US asset price, credit, and
business cycles during 1985−2019.

5.1. Calibration strategy
The first set of parameters consists of static parameters (βP, βI , βF , α,ψ ,m1,m2, δ, j), which affect
only the steady state. The discount factor of patient households βP is set at 0.9934 so that the
steady state mortgage rate R̄ equals the mean of the average 1-year adjustable mortgage rate in the
US over the period of interest. The discount factors of impatient households and firms (βI , βF) are

https://doi.org/10.1017/S1365100522000566 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100522000566


Macroeconomic Dynamics 2005

Table 1. Calibration

Parameter Calibrated value (learning) Calibrated value (rational expectations)

βP 0.9934 0.9934
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βI 0.94 0.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βF 0.94 0.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ 2 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j 0.075 0.075
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v 0.05 0.05
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 0.34 0.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m 0.5 0.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 0.025 0.025
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ 10.2404 14.9855
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρa 0.93 0.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρd 0.83 0.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σa 0.0061 0.0069
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σd 0.0061 0.0257
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g 0.007 NA

set at 0.94, following Iacoviello (2015). The weight on leisure in the household utility function is
set at ψ = 2, as in Iacoviello (2015). The weight on housing in the household utility function is set
at j= 0.075, whereas the share of housing in the consumption goods production function is set
at v= 0.05. These parameter values imply a steady state entrepreneurial share of housing of 24%.
Given the US average labor share to output during 1985−2019, we obtain α = 0.34 for the share
of capital in the production function. The capital depreciation rate δ is set at the standard value
of 0.025, corresponding to a 10% annual depreciation. The loan-to-value ratio m is set at 0.5 to
match the steady state debt-to-GDP ratio in the model with the average debt-to-GDP ratio in the
data. This value is consistent with the values estimated in Iacoviello (2005) and Kuang (2014) for
the household sector and is in themiddle range of distinct values estimated for the entrepreneurial
sector (Gerali et al. (2010)). It implies a significant degree of financial frictions and is such that the
borrowing constraints are always binding throughout the simulations.

Regarding the dynamic parameters of the model, the persistence parameter of the productiv-
ity shock ρa is estimated from the US data during 1985−2019 by using the perpetual inventory
method. The linearly detrended Solow residual displays relatively strong persistence, with ρa =
0.93. For the persistence parameter of the lenders’ preference shock, I rely on the literature on
intertemporal disturbances and set ρd = 0.83 (Primiceri et al. (2006)). The remaining dynamic
parameters (g, φ, σa, σd) are chosen to minimize the distance function between four second-order
moments in the data (namely, the variances of production, investment, house prices, and con-
sumption) and corresponding theoretical moments, both in the learningmodel and in the rational
expectations model. Table 1 gathers the values of all parameters.

The estimation yields a Kalman filter gain g of 0.007, which is rather small but however con-
sistent with the range of values estimated in learning models with a similar belief process (e.g.,
Winkler (2020)). The estimated standard errors of the two shocks are higher in the rational expec-
tations model than in the learning model. In particular, the standard error of the shock in the
credit supply sector is more than four times larger. This result reveals the strong amplification in
the responses to shocks generated by the learning mechanism.6 Due to the high variance of the
shock in the credit supply sector in the rational expectations model, the capital adjustment cost
parameter is higher than in the learning model.
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Table 2. Business cycles, credit, and house price moments

US data Learning REmodel under RE model under

Q1 1985–Q4 2019 Model Learning calibration RE calibration

σhp(Yt)∗ 0.0102 0.0101 0.0087 0.0104
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σhp(It)∗ 0.0342 0.0341 0.0236 0.0341
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σhp(Ct)∗ 0.0073 0.0078 0.0073 0.0087
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σhp(Nt) 0.0153 0.0037 0.0016 0.0055
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σhp(Bt) 0.0198 0.0277 0.0124 0.0264
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σhp(qt)∗ 0.0194 0.0194 0.0079 0.0194
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(It , Yt) 0.89 0.96 0.96 0.84
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Ct , Yt) 0.81 0.99 1.00 0.97
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Nt , Yt) 0.87 0.81 0.61 0.49
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Bt , Yt) 0.41 0.91 0.93 0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(qt , Yt) 0.54 0.74 0.90 0.69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Yt−1, Yt) 0.88 0.77 0.72 0.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(It−1, It) 0.91 0.79 0.70 0.69
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Ct−1, Ct) 0.84 0.76 0.73 0.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Nt−1, Nt) 0.94 0.82 0.66 0.65
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(Bt−1, Bt) 0.96 0.82 0.67 0.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρhp(qt−1, qt) 0.93 0.87 0.74 0.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ
(
ln
(

qt
qt−1

)
, ln
(
qt−1
qt−2

))
0.68 0.25 −0.03 −0.03

5.2. Business cycle, credit, and house price statistics
Table 2 compares the standard business cycle, credit, and house price moments in the data with
those of the learning model. The table also reports the moments obtained in the rational expecta-
tions model for values of dynamic parameters that are identical to those estimated in the learning
model (“RE model under learning calibration”) and for values of dynamic parameters specifically
estimated for this version of the model (“RE model under RE calibration”). The use of the first
calibration helps identify differences in the size of the propagation and amplification mechanisms
between the rational expectations and the learning model, whereas the use of the second calibra-
tion enables the study of the version of the rational expectations model that best fits the targeted
data. Table 2 presents both the moments that were directly targeted in the estimation strategy
(output, house prices, investment, and consumption volatility), displayed with an asterisk, and a
large set of standard moments that were not targeted.7

Despite the parsimony of the baseline model, both the learning and the rational expectations
model replicate relatively well the volatility of production and the volatility of most other vari-
ables. However, both models tend to overpredict the volatility of debt, and they unsurprisingly
have difficulties in replicating the volatility of hours due to the simplicity of labor market deci-
sions in standard basic real business cycle models. When the rational expectations model is solved
with the same parameter values as the learning model, the model cannot match the volatility of
the distinct variables, thus revealing that strong amplification mechanisms arise under learning.
In addition, the learning model replicates the high autocorrelations observed in the data, better
than both versions of the rational expectations model. The learning mechanism indeed acts as an
endogenous source of persistence without needing to resort to habit or other exogenous sources
of persistence. The learning model also replicates the strong procyclicality in the model variables,
even though the model tends to overpredict the correlation of debt and house prices with output.
In addition, interestingly, the learning model predicts a positive autocorrelation in house price
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Figure 1. Impulse response functions following a positive productivity shock.

growth ρ( ln qt
qt−1

, ln qt−1
qt−2

), as observed in the data. The rational expectations model is unable to
replicate this feature of the data. Indeed, unlike the learning model which generates extrapolation
in house price beliefs and thus autocorrelation in housing returns, the rational expectations model
generates a mean-reverting behavior in housing returns.

5.3. Impulse response functions analysis
To better understand the amplification mechanism in operation in the learning model, the
impulse response functions to the two shocks under learning and under rational expectations are
displayed below. The impulse response functions represent log-deviations from the steady state in
response to a one-standard-deviation positive productivity shock and a one-standard-deviation
negative lenders’ preference shock.8

Following a productivity shock (Figure 1), entrepreneurs increase labor demand and invest-
ment, and output grows. Demand for housing grows, in particular in the borrowing sector,
because holding housing assets relaxes the borrowing constraint. This growth in demand is
reflected in higher house prices. Credit increases in equilibrium, in response to the relaxation
of the borrowing constraint. Consumption increases due to a rise in wealth.

Despite this common mechanism, there are significant differences between the impulse
response functions in the learning and rational expectations model. In the learning model, house
prices are booming following the shock. Indeed, the initial effect of the shock is amplified over
time; house prices display a persistent hump-shaped response due to the specific dynamics of
housing returns expectations. Equations (15) and (21) show how changes in house prices that
are expected to be persistent under learning have a multiplier effect on borrowers’ consumption.
Similarly, response of credit to the shock is initially stronger and is amplified over time relative
to the response in the rational expectations model. Hours worked also react more strongly in
the learning model. The responses of aggregate output, consumption, and investment are also
stronger and slightly hump-shaped compared to the same responses in the rational expectations
model. However, consumption in the lending sector increases less under learning than under
rational expectations because moremoney is transferred into the future through credit. Therefore,
at the aggregate level, the higher increase in consumption in the borrowing sector under learning
is partially offset.

A negative lenders’ preference shock (Figure 2) implies that patient households value the cur-
rent period less and are, thus, more willing to transfer money into the future through lending. This
shock thus mimics a context of higher willingness to lend and easier access to credit independent
of borrowers’ net worth.
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Figure 2. Impulse response functions following a negative lenders’ preference shock.

Following the shock, patient households increase the credit supply, because the marginal utility
of current consumption becomes smaller. Borrowers increase investment in housing assets and
credit is higher in equilibrium. Consumption increases, along with output. Once again, in the
learning model, the shock generates an endogenous boom in house prices, whereas the response
of house prices is much smaller and not persistent in the rational expectations model.

The differences between the learning model and the rational expectations model are stronger
for the discount factor shock than for the productivity shock, because the former produces less off-
setting effects between sectors. The responses of macroeconomic and credit variables are clearly
amplified under learning, and the initial effect of the shock on these variables is propagated
over time. Differences in the impulse response functions relate to differences in the evolution
of expected housing returns and prices, which affects current housing demand in the three sectors
of the economy and thus also affects intertemporal trade-offs and the financial accelerator mecha-
nism. The actual law ofmotion under learning differs from the actual law ofmotion under rational
expectations to the extent that two additional state variables appear in the model’s reduced form
summarized by the policy function: the mean belief for house price growth ln(μ̂t) and the lagged
forecast error, which are slow-moving variables. The fact that under learning current and expected
variables depend on these state variables thus amplifies the effects of shock on house prices and
the other model variables.

5.4. Explaining non-rational patterns in expectations: forecast errors predictability
I now investigate the ability of the learning model to explain some features of house price and
macroeconomic expectations, as measured by survey data. In particular, the latter reveal that
forecast errors are correlated with variables that were observable at the time of the forecast.
By contrast, the rational expectations hypothesis implies that forecast errors are unpredictable
because all information available at the time of the forecast is already incorporated into the
forecast. Consequently, by nature, models that assume rational expectations fail to explain
the data in what regards the formation of expectations. Table 3 presents evidence of forecast
errors predictability in survey data about expected future macroeconomic variables and housing
returns and compares this predictability to that obtained by the learning model and the rational
expectation model with RE calibration. Correlations in both models are obtained from data
simulations of length 50,000. Forecast errors for annual house price returns in period t are
defined as εRqt+4

= ln(qt+4)− ln(qt)− EPt [ ln(qt+4)− ln(qt)]. In the learning model, they are
equal to ln(qt+4)− ln(qt)− 4 ln(μ̂t). In the data, forecast errors for annual house price returns are
the difference between realized annual house price growth and 1-year-ahead household forecasts
from the US Michigan Survey of Consumers available for 2007–2019. Forecast errors for output,
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Table 3. Forecast errors predictability

US survey data Learning Rational expectations

ρ
(
εRqt+4 , ln

(
qt
qt−1

))
0.56 (0.00) 0.41 (0.00) 0.0021 (0.63)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ
(
εYt+1 , ln

(
qt
qt−1

))
0.13 (0.12) 0.14 (0.00) −3.46 ∗ 10−6 (1.00)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ
(
εIt+1 , ln

(
qt
qt−1

))
0.03 (0.68) 0.13 (0.00) −2.66 ∗ 10−4 (0.95)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ
(
εCt+1 , ln

(
qt
qt−1

))
0.16 (0.07) 0.05 (0.00) −8.04 ∗ 10−5 (0.99)

investment, and consumption (εY , εI and εC) are retrieved from the Survey of Professional
Forecasters and are computed for annualized quarter-on-quarter growth rates of the variables for
1985−2019. P-values are displayed in parentheses.

The results reveal that the learning model is able to replicate the sign, and, to some extent,
the size, of the predictability of forecast errors, even though predictability was not targeted in
the calibration method. Thus, the learning model predicts a strong positive correlation between
housing returns forecast errors and house price growth at the time of the forecast. This feature
emerges because agents tend to underpredict housing returns when house prices start to rise (i.e.,
when house price growth is high). In what regards the forecast errors of macroeconomic variables,
the learning model succeeds in replicating the positive sign of the correlation of these errors with
the observed house price growth at a short-term horizon. This positive correlation suggests that
agents tend to underpredict future macroeconomic variables at the beginning of a housing boom.

6. Conclusion
The present note proposes an interpretation of the recent US macro-financial linkages based on
imperfect knowledge regarding the formation of house prices and on learning about the perceived
law of motion of housing returns. The model’s quantitative results suggest that learning about
future house prices offers an intuitive mechanism for explaining the joint dynamics of macroe-
conomic variables, credit, and house prices in a simple and standard production economy, while
considering that the empirical validity of the rational expectations assumption is called into ques-
tion. Therefore, the results of the learning model offer additional empirical support for modeling
the perceived process for asset price returns as an unobserved component model, as assumed in
the recent literature. The promising results that are obtained despite the small scale of the model
pave the way for several extensions in larger DSGE models, allowing to derive optimal policies
when asset prices display expectations-driven excess volatility.
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Notes
1 As stated by Piazzesi and Schneider (2016), “a major outstanding puzzle is the volatility of house prices—including but not
only over the recent boom–bust episode. Rational expectations models to date cannot account for house price volatility—
they inevitably run into “volatility puzzles” for housing much like for other assets. Postulating latent “housing preference
shocks” helps understand how models work when prices move a lot but is ultimately not a satisfactory foundation for policy
analysis. Moreover, from model calculations as well as survey evidence, we now know that details of expectation formation
by households—and possibly lenders and developers—play a key role” (p. 5).
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2 Note that in the steady state, agents assume both η̄ and ν̄ to be equal to zero, and that posterior uncertainty will remain at
its steady state value following new house price realizations, because it is already starting at its minimal value.
3 Given that the value of the Kalman filter gain g is estimated through moments-matching, providing numerical values for
σν and ση is not needed to solve the model.
4 Therefore, the actual law of motion of house price growth differs from the perceived law of motion and does not present a
random walk component.
5 See the appendix in Winkler (2020) for more details on the solving method.
6 As a comparison, in his model, Iacoviello (2015) estimates the volatility of the housing demand shock, which is introduced
to replicate the volatility of house prices, at 0.0346. This value is higher than the sum of the volatility of the two shocks in our
model. Our model can, however, fully replicate the dynamics of house prices while providing a more endogenous explanation
of these dynamics, that is, without resorting to housing sector shocks.
7 Both the empirical quarterly data and the model-generated data are logged and hp-filtered with a parameter of 1600 (except
for the house price growth rate). The model-generated consumption is the sum of the consumptions of patient households,
impatient households, and entrepreneurs.
8 To compare impulse response functions under subjective and rational expectations for similar shocks, the standard
deviations of shocks and values of dynamic parameters that I retain are those estimated for the learning model.
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