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Abstract
Continuum robot-based surgical systems are becoming an effective tool for minimally invasive surgery. A flexible,
dexterous, and compact robot structure is suitable for carrying out complex surgical operations. In this paper, we
propose performance metrics for dexterity based on data density. Data density at a point in the workspace is higher
if the number of reachable points is higher, with a unique configuration lying in a small square box around a point.
The computation of these metrics is performed with forward kinematics using the Monte Carlo method and, hence,
is computationally efficient. The data density at a particular point is a measure of dexterity at that point. In contrast,
the dexterity distribution property index is a measure of how well dexterity is distributed across the workspace
according to desired criteria. We compare the dexterity distribution property index across the workspace with the
dexterity index based on the dexterous solid angle and manipulability-based approach. A comparative study reveals
that the proposed method is simple and straightforward because it uses only the position of the reachable point
as the input parameter. The method can quantify and compare the performance of different geometric designs of
hyper-redundant and multisegment continuum robots based on dexterity.

1. Introduction
Surgical robots provide numerous advantages, including precise and predictable movements by means
of complex three-dimensional paths, the capability to perform highly accurate motions during surgery,
and are popular as they reduce postoperative in-hospital case time [1]. A key category of surgical robots
is the continuum robots [2], popular for their flexibility and dexterity (with multiple segments) [3].
Conventional multi-port robotic systems for minimally invasive surgery have rigid surgical tools result-
ing in conical workspace, insufficient dexterity, and a high payload. They cannot operate in deep surgical
sites with space limitations. In such cases, some of the interesting options are emerging such as snake-
like flexible continuum robots and micro robots. The dexterity of the continuum robot helps to perform
complex tasks in constrained workspace. Therefore, dexterity is essential for designing flexible surgi-
cal manipulators/ instruments (forceps and endoscopes) to access deep, confined surgical spaces [4]
and repositioning its base in a surgical environment to position the robot end-effector in the dexterous
region. Continuum robots have applications in Natural Orifice Transluminal Endoscopic Surgery and
Single Port Access surgeries [5] to perform complex procedures by dexterous manipulation of the robot,
avoid extra incision requirements, and damage to peripheral tissues during surgeries.

There are different types of actuation mechanisms [6, 7] that are used to drive these kinds of flexi-
ble mechanisms. Some of the continuum robots are often remotely actuated with external actuators to
minimize robot size due to environmental constraints [8]. An actuation mechanism for a tendon-driven
continuum robot uses tendons, which are pulled by actuators such as servo motors, linear actuators,
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and shape memory alloys [9–12]. Li et al. [13] did a comparative study of surgical tendon-driven
continuum robot structure, tendon-driven serpentine manipulator, and concentric tube-type continuum
robot based on their workspace and dexterity based on dexterous solid angle (DSA) [14, 15] approach
and found that the number of segments and their length ratios influence the workspace and dexterity.
The study also confirmed that the tendon-driven continuum robot could have better distal-end dexterity
among these three.

Dexterity is a fundamental measure of the number of potential orientations to achieve at a certain
point in the workspace or the count of inverse kinematics solutions that can be found [16]. Various
notions of dexterity and the corresponding measures have been adopted in the literature. The measures
broadly belong to two categories – measures that quantify the ability of the robot to produce motions
in different directions and measures that quantify the number of orientations that a robot can achieve
at a particular position. Examples for methods in the first category include condition number of the
Jacobian [17–19] and the volume of the manipulability ellipsoid [20–22]. These works define dexterity
in terms of the ability of the robot to produce motions in different directions. Methods in the second
category compute the number of orientations that the robot can achieve at a particular position. For
example, researchers in ref. [23] compute the number of orientations in which the object can be grasped
at a particular position. In 1994, Abdelmalek et al. [24] introduced the concept of the DSA for a hyper-
redundant robotic arm. Later, Wu et al. [14] defined a DSA-based measure of dexterity and dexterity
indices to investigate the distribution property of dexterity across the workspace. Burgner et al. [25]
characterize the workspace of a concentric tube robot, computing robot redundancy across the reach-
able volume by counting configurations per discretized workspace volume. However, some of these
methods involve inverse kinematics and the use of jacobian [26], which is computationally intensive for
continuum robots [27, 28]. Solving inverse kinematics for multisegment robots is a challenge due to its
complexity, hyper-redundant DOF, and nonlinearities [27]. One needs to adopt a sophisticated regres-
sion method, as in deep learning [29, 30] to get some solution. Here, we are avoiding the need for inverse
kinematics using the data density approach stated. The design of a multisegment continuum robot for a
surgical system will need a description of the number of segments, their lengths, and the total length.
Considering a given cavity size, the length of robot segments has a major influence on the kinematics
of the multisegment robot.

In this paper, we chose the tendon-driven three-segment continuum robot (6 DOF), where each seg-
ment has 2 DOF; therefore, it has been considered for the study. Such a 6 DOF version provides a
comprehensive representation of both position and orientation in three-dimensional space and is there-
fore considered for dexterity analysis by utilizing a newly proposed dexterity measure based on data
density, which is computationally simpler due to the lesser number of computation steps required than
other, as it only requires end-effector position data computed from the sample of uniformly distributed
random robot configuration in the workspace using forward kinematics. Similar approaches are used to
compute the forward kinematics for multisegment continuum robots [6, 13, 31, 32]. For the simulation,
bending of the robot segment in constant curvature [33–35] is assumed for simplification of the robot
kinematics; there is also the scope using another kinematic model. In the first simulation, dexterity distri-
bution is analyzed based on the proposed data density-based approach, DSA, and manipulability-based
approach for different robot designs. In the second simulation, the dexterity distribution property index,
dexterity index, and manipulability index distribution are calculated based on data density, DSA, and
manipulability-based approach, respectively, by varying the segment length of the robot, and the results
are verified.

In the proposed approach, the measures of dexterity and dexterity distribution property index of a
multisegment continuum robot are based on data density. Various methods are studied in the literature
for dexterity and related measures (dexterity distribution property) to analyze the robot design. A com-
parison has been made based on required input parameters to compute the dexterity and its distribution
for various types of continuum robot design. Our key contributions to this paper are
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Figure 1. Kinematic classification of continuum robot manipulator.

1. A new, simple, and effective measure of dexterity based on data density.
2. A new measure of dexterity distribution property that characterizes the distribution according to

desired criteria (higher dexterity away from the robot base is preferred).
3. The proposed method is compared and validated with state-of-the-art methods like the DSA-

based dexterity measure and manipulability index.

The first key contribution is about a new measure of dexterity at a point, whereas the second contribution
is about the new measure of dexterity distribution across the entire workspace. The dexterity distribution
computed by the proposed data density-based dexterity measure is validated by comparison with the
existing dexterity measures. The variation in dexterity distribution property, measured by varying the
segment length, follows a trend similar to the existing approaches in the literature.

The proposed method utilizes forward kinematics of the tendon-driven continuum robot, which
is explained in Section 2. In Section 3, the dexterity distribution property based on data density is
discussed, and a qualitative comparative study is conducted. In Section 4, the simulation results are
discussed.

2. Kinematics and simulation of continuum robot
In this section, we present the kinematics of a three segment continuum robot. The key assumptions for
the kinematic modelling are

1. Each of the three segments of the continuum robot segment bends in constant curvature due to
the resultant moment acting on the end tip of the segment. However, when all three segments are
taken together, the overall robot has multiple curved sections (3D curvature) in all directions.

2. The elastic structure along the center line of the segment is symmetric and homogeneous around
its longitudinal axis, called the backbone of the robot. Hence can bend in all directions uniformly.

3. Each point in the workspace is obtained by forward kinematics from a random sample of
configuration using Monte Carlo (nonrepetitive robot configuration).

Continuum robot’s kinematics is divided into two phases of kinematic mappings, the first of which is
robot-specific mapping and the second of which is robot independent mapping [6, 36–38], as illustrated
in Figure 1. Robot-independent forward kinematics [31] compute the end-effector’s pose using the con-
tinuum segment’s configuration space parameters (3D curvature) can be described as ψi = [θi, φi, Si]T .
Where φ is the angle of the bending plane from the x0-axis, θ is the bending angle of curvature, and Si is
the length of the curvature of the continuum segment, which is considered as the length of the segment.

The comparable rigid body model’s motion can be used to depict the bending of the continuum
segment by local frame transformations shown in Figure 2. The Denavit–Hartenberg (DH) parameters
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Table I. Equivalent modified DH parameters of the constant curvature
continuum robot [6].

Link θ d a α

1 φ 0 0 −π/2
2 θ/2 0 0 π/2
3 0 d = s × sin θ/2

θ/2
0 −π/2

4 θ/2 0 0 π/2
5 −φ 0 0 0

Figure 2. The continuum robot’s frame representation of the updated DH parameters.

of the equivalent rigid body model of the continuum segment are the function of the configuration space
parameters of the bent arc segment, which are used to obtain the robot-independent kinematic relations.

The DH parameters for a single segment are given in Table I, where d is the distance between the base
and the end tip of the continuum segment. The homogeneous transformation matrix for single-segment
continuum robot (forward kinematics) in Eq. (1). The end tip position of the continuum segment is

Ti−1
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos2 φi( cos θi − 1) + 1 sin φi cos φi( cos θi − 1) cos φi sin θi

Si cos φi(1 − cos θi)

θi

sin φi cos φi( cos θi − 1) − cos2 φi( cos θi − 1) + cos θi sin φi sin θi

Si sin φi(1 − cos θi)

θi

− cos φi sin θi − sin φi sin θi cos θi

Si sin θi

θi

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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x = Si cos φi(1 − cos θi)

θi

(2)

y = Si sin φi(1 − cos θi)

θi

(3)

z =
{

Si sin θi
θi

, ∀ θi �= 0

Si, For θi = 0
(4)

The configuration space parameters for the ith segment are ψi = [θi, φi, Si]T . This paper follows the
constant curvature bending assumption and keeps the segment length Si constant. In the special case
when θi = 0, the radius curvature of the segment becomes infinite; hence, the end tip position of the
segment becomes x = 0, y = 0, and z = Si. The homogeneous transformation matrix of the end tip coor-
dinate frame w.r.t. the base coordinate frame of the ith segment of continuum robot is Ti−1

i in (1). Now,
the transformation matrix of the end tip of the distal segment w.r.t. the base of a three-segment robot
can be written as

T0
3 = T0

1 .T1
2 .T2

3 =
[

R0
3 P0

3

0 1

]
(5)

where in equation (5), T0
3 is the total transformation matrix of a three-segment continuum robot w.r.t. the

base of the first segment. The end-effector pose of the robot is represented by P0
3 and R0

3, respectively.
We have taken an example case with a 50 mm segment length for which the geometric model is

shown in Figure 3. In Figure 3, the tendons in red, blue, and green color are used to actuate the third,
second, and first segments, respectively, where the tendons of the distal segment pass through proximal
segments through the guiding hole on disks. Therefore, guiding holes are provided symmetrically with
equal angular offset.

2.1. Generation of workspace point by Monte Carlo approach
The reachable points of the workspace are generated using the forward kinematics model of the three-
segment continuum robot mechanism from samples of the configuration parameter obtained using the
Monte Carlo method. This method produces pseudo-random numbers between the range of config-
uration parameters [39]. This ensures the generated samples can simulate the random points in the
workspace, where the random values of configuration variables are uniformly distributed. Using its
DH matrix parameters as the function of robot configuration parameters (ψi), a finite number of config-
uration parameter’s samples are generated by the Monte Carlo method [40] based on the given range in
Table II as follows;

ψi
k =ψimin + rand (ψimax −ψimin) ; i = 1, 2, 3 k = 1, 2, 3, 4, . . . , m (6)

where ψ k
i = [θi

k, φi
k]T represents the kth sample values for each configuration variable θi and φi of the ith

segment obtained by Monte Carlo sampling, with the sample size of m = 108. The value of configuration
variables ranges [θimin, θimax] ∈ [−π , π ], and [φimin, φimax] ∈ [0, 2π ].

The continuum robot workspace is symmetric about the z-axis; hence, reachable points (mp) in the
planar workspace cross-section in the XZ-plane at y = 0 are chosen for simulating the dexterity distri-
bution in a planar space. The planar dexterity distribution simulation and corresponding configuration
parameters are used to compute the manipulability across the workspace cross-section. The mp is a
number of points in workspace cross-section mp ∈ m.

2.2. Workspace
The robot workspace measures the robot’s reachability and region’s volume that the robot end-effector
can reach. The forward kinematics, in equations (1–5), is used to compute the robot workspace by
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Table II. Simulation parameters used for 3D and planar workspace plots of three-segment
continuum robots.

No. of segment Segment length (mm) θRange (rad) φRange (rad) Samples
3 50, 50, and 50 [−π , π ] [0, 2π ] for 3D 108

Figure 3. Geometric model of three-segment continuum robot, four tendons drive each segment [33].

using input configuration parameters generated based on Monte Carlo method [39] for the configu-
ration parameter θi, φi ranges [−π to π ] and [0 to 2π ], respectively, for each ith segment of continuum
robot according to predefined simulation parameters, as shown in Table II.

Due to the flexible backbone structure, continuum robots can bend uniformly in all directions. Hence,
the robot workspace will be symmetric about the z-axis. It is also assumed that each continuum segment
can bend by a 180◦ bending angle. The three-segment continuum robot’s workspace in 3D space and
a planar workspace were plotted with simulation parameters (see Table II) and illustrated in Figures 4,
and 5, respectively. The reachable points of the end-effector are dense in some regions of the workspace,
which signifies the reachability with multiple configurations. The workspace cross-section (planar) is
utilized to compute the dexterity distribution property index across the workspace. The area of the planar
workspace is computed by calculating the area of the polygon shape created by the robot’s reachable
positions at the boundary region of the cross-section of the workspace.
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Figure 4. 3D workspace of a three-segment tendon-driven continuum robot.
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Figure 5. A three-segment tendon-driven continuum robot’s workspace cross-section in X-Z plane.

3. A new method of evaluating dexterity and a dexterity distribution property index using data
density approach

In surgical workspaces, a robot end-effector should access distant target regions with sufficient dexterity
to perform complex tasks like cutting, suturing, and endoscopy [41]. Obtaining such a dexterous region
in the distal end of the robotic device will require special attention to some desirable features. we define
a term called dexterity distribution property index of these workspaces based on only data density of the
position points in the workspace as the number of such points in such unit space will be directly pro-
portional to the no of orientations possible to the end effector in the same unit space (or the dexterity of
the end effector). Such dexterity property measure should also capture the distance of the high dexterity
region from the base of the continuum robot. The farther the dexterity region is the better the suitability
for the surgical application. As this also depends on the number of segments considered as well as their
relative lengths, which are different from that of the articulated robots, this index would be suitable for
evaluating design variants that are being explored or optimized.

Table III presents a comparison of the various measures of dexterity based on the approaches used,
parameters computed, and insight provided (dexterity and dexterity distribution). This comparison
considers the kinematics approaches, dexterity, dexterity distribution property, and input parameters.
Badescu and Mavroidis [15], Abdel et al. [24], and Li et al. [13] adopted the DSA approach for the dex-
terity analysis; in addition to this Wu et al. [14] defined the dexterity indices for analyzing the distribution
property of dexterity along the axis directions. The DSA-based approach is the forward kinematics-based
approach that utilizes the position and orientation of the robot from sample configuration and computes
DSA. The DSA (D(k)) at a position is defined as the ratio of the area of the service region (AR(k)) of
the unit sphere constructed at the position of kth point to the total area of the sphere (Asp) [14]. The total
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Table III. Required parameters based comparison of the proposed method with existing
approaches to measure dexterity.

Standard parameters Extended parameters
Dexterity

distribution
Authors Approach Position Orientation Jacobian Dexterity property
M. Badescu and C.
Mavroidis [15],
Abdel et al. [24],
Li et al. [13]

DSA
√ √ × √ ×

Wu et al. [14], DSA
√ √ × √ √

Wang and Lau [17],
Cardou et al. [19]

Condition
number of the
Jacobian matrix

√ √ √ √ ×

Abdel et al. [43],
Leibrandt et al. [44]

Manipulability
√ √ √ √ ×

Du et al. [45] Inverse
kinematics and
DSA

√ √ × √ ×

Hota and Kumar [46] Inverse
kinematics

√ × √ √ ×
Present approach Data density

√ × × √ √

area of the identical area patches of the service sphere is intersected by the end tip tangent of the robot
called service region (AR(k)). A dexterous solid angle can be written as

D(k) = AR(k)

Asp

(7)

Dg =
m∑

k=1

D(k).dp(k) (8)

where Dg is the dexterity index defined to quantify the dexterity distribution property across the
workspace based on the DSA approach, and dp(k) is the distance of the point from the base of
the robot.

To compare the proposed method with manipulability-based approaches for dexterity [42–44], we
have also computed the manipulability index (w1) on each point in the workspace using the same con-
figuration samples generated to compute data density ρ(k) and DSA D(k) a dexterity measure. The
comparison shows that the results are quite similar. However, the manipulability index takes a longer
time to compute as it involves Jacobian computation. In addition, the term manipulability index distri-
bution property wg is defined similarly to the dexterity distribution property based on the data density
approach. Manipulability of a manipulator proposed by Yoshikawa [20] manipulability is

w = √
det(JJT) = S1, S2, . . . Sn (9)

where w is a quantitative measure of the manipulability of a robot arm that can be written as the multiply
of the singular values S1, S2, . . . Sn, which also represents the volume of the manipulability ellipsoid.
The defined manipulability index w1(k) corresponding to the kth configuration of the robot and the
manipulability index distribution property wg of the workspace in the paper are

w1(k) = Smin

Smax

(10)

wg =
m∑

k=1

w1(k).dp(k) (11)
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where Smin, Smax are the minimum and maximum singular values corresponding to the kth configuration
of robot or reachable point in workspace. We use an index k to represent a reachable kth point with robot
tip position coordinates [x, y, z]T ∈ P0

3 having a configuration of the robot parameters (θi, φi where i =
1, 2, 3), the maximum and minimum singular value is the square root of the maximum and minimum
eigenvalues of (JJT) [42].

The DSA approach requires the end-effector poses to evaluate the dexterity. On the other hand, the
Jacobian matrix is required to compute the dexterity based on the condition number of Jacobian and
the robot manipulability at a point. Du et al. [45] combined the DSA and inverse kinematics approach
to minimize the computation time in dexterity evaluation. Hota and Kumar [46] used the inverse kine-
matics approach to calculate the dexterity in terms of counting the possible no of orientations at a point
as the inverse kinematic solution, but inverse kinematics of multisegment continuum robots is quite
difficult.

In the present data density-based approach, only the position of the reachable points in the workspace
is used to evaluate the dexterity measure, and the dexterity distribution property index is a measure
of distribution property of the dexterity away from the robot base across the workspace [47, 48] of
a multisegment continuum robot without the need to solve inverse kinematics [49]. Though memory
intensive, this eases the determination in practical situations due to its simpler computation requirement.
The proposed data density-based approach is described in the following sections.

3.1. Comparison of various approaches
Multisegment continuum robots are redundant manipulators that involve complex inverse kinematics.
The proposed approach utilizes forward kinematics to compute the reachable points in the workspace
using the sample of robot configuration parameters for a finite range of robot configurations based
on the Monte Carlo method discussed in section 2.1. Each point in the workspace is determined
from a random set of configuration variables, resulting a random end-effector orientations. When the
positional data points are denser in the workspace, as shown in Figure 5, the robot can reach these
positions in more configurations. This leads to positional data density (ρ) for repetitive end-effector
positions with different robot configurations. On this basis, robot dexterity is analogous to the robot
workspace’s positional data density at a point (ρ). The measure dexterity distribution property index
(σ ) is calculated to quantify the distribution property of the proposed dexterity measure across the
workspace.

The dexterity distribution property index (σ ) helps to visualize the high-density region (more dexter-
ous region away from the robot origin). This parameter is useful for flexible surgical robot design and
repositioning of the robot base during surgery to get high dexterity of the tooltip to perform complex
surgical procedures in a confined space [50].

3.2. Methodology to determine data density and simulation
The data density at a point is considered the density of the reachable points inside a unit square area
around that point in the workspace cross-section in XZ-plane at y = 0 and volume in the case of a 3D
workspace. The proposed algorithm only considers a cross-section because the workspace is asymmetric
about the Z-axis. Data density at a point corresponds to the kth configuration and is calculated by assign-
ing a square block around the point, counting the number of reachable points (Nk) within the block,
and dividing it by the area of the block in equation (12) as shown in Figure 6. For example, P1 and P2

are two random reachable points in the workspace indicated in Figure 6 to compute the density square
around point P1 and P2 are in sky blue and yellow color, respectively. Each robot configuration obtains a
unique reachable point in the box. Therefore, we propose the definition of a data density-based measure
of dexterity ρ (where ρ(area),ρ(vol) for workspace cross-section and workspace volume, respectively) and
dexterity distribution property index (σ ) based on data density as follows:
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Figure 6. Representation of the data density (ρ(area)) based approach for dexterity distribution property
in the workspace cross-section in XZ-plane at y = 0.

ρ(area)(k) = Nk

Asquare

(12)

σ =
mp∑

k=1

ρ(area)(k).dp(k) (13)

Similarly, the volumetric data density-based measure of dexterity ρ(vol) and the dexterity distribution
property index are as follows:

ρvol(k) = Nk

Vcube

(14)

σ =
m∑

k=1

ρvol(k).dp(k) (15)

where ρ(area)(k) and ρ(vol)(k) are the data density of the unit square block having area Asquare and volume
Vcube, respectively, at the kth point of mp number of reachable points in the workspace cross-section. dp(k)
is the distance of the kth point from the robot base. Dexterity distribution property index σ is defined as
the summation of the product of data density (the measure of dexterity) at a point and the distance of
the respective point from the origin of the robot. As stated before this definition gives weightage to the
concentration of data density away from the base, near the workspace boundary.

As the proposed method is based on forward kinematics, we use simulation criteria for the 3D
workspace plot given in Table II to generate the reachable point from configuration parameters using
the Monte Carlo approach. The data density algorithm is implemented at the reachable point of the
workspace cross-section, in a vertical plane through the Z-axis, because the workspace is symmetrical
about the Z-axis. In the case of a serial robot, the joints have actuation limits due to physical or assem-
bly constraints, which results in a nonsymmetric workspace. However, in the case of the tendon-driven
continuum robot, the actuation line is far from the robot assembly; therefore, it is free from actuation
constraints, which results in a symmetric workspace. A nonsymmetric workspace is possible when we
assign the actuation constraints in the configuration space variable.

The dexterity distribution in the 3D workspace is shown in Figure 7 by taking a typical example
of a three-segment continuum robot design having the segment lengths S1 = 90 mm, S2 = 30 mm, and
S3 = 30 mm, with a total of 150 mm length, where the dexterity may vary with the robot design. Where
Figure 7(a) shows the dexterity distribution in the workspace cross-section in vertical planes through
the Z-axis. The reachable points for a nonsymmetric workspace are computed using forward kinematics
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Figure 7. Dexterity distribution across the workspace using proposed data density-based approach
(a) using ρ(area) for workspace cross-section in a vertical plane through the z-axis (b) Using ρ(vol) for
workspace volume for given configuration (c) Using ρ(vol) for workspace volume for given configuration.
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Figure 8. Dexterity distribution across the workspace cross-section in XZ plane at y = 0 using data
density (ρ(area)) based approach.

from the uniformly distributed random sample of the configuration parameters for the given range of
configuration. There are one million configuration samples generated for the configuration range of
[π/3, 2π/3] and [−π/6, π/6] for 3D non-symmetric workspace named workspace1 and workspace2,
respectively, the corresponding dexterity distribution is shown in Figures 4(b) and (c), respectively.

The dexterity distribution across the workspace cross-section in XZ plane at y = 0 for different seg-
ment lengths is shown in Figure 8. This simulation is conducted for different sets of robot designs
with varying segment lengths by keeping the total robot length (S1 + S2 + S3) constant, say, 150 mm of
three-segment continuum robots, for which proposed data density-based measure of dexterity ρ(area) is
computed. Dexterity measures across the workspace based on Eq. (12), red: high dexterity, blue: low
dexterity region. The color bar shows the workspace’s minimum to maximum data density range which
is the proposed measure of dexterity for a workspace of reachable point. The same variants of the contin-
uum robot designs are used to compute the dexterity distribution across the cross-sectional workspace
in the XZ plane at y = 0 using DSA (D(k)) and manipulability index(w1(k)) based approaches as shown
in Figure 9 and Figure 10 respectively.

In the second simulation, the study focuses on analyzing the effect of segment length of three segment
robots on dexterity distribution. Therefore, we quantified the terms dexterity distribution property index
σ , dexterity index, and Manipulability index distribution property (wg) for workspace cross-section in
XZ plane at y = 0 for which the simulation criteria are given in Table IV. The nonzero length of the
first and second is varied with a step size of 5mm by keeping the distal segment length as constant
S3 = 30mm. For each set of segment lengths, the dexterity distribution property index, dexterity index,
and manipulability index distribution property are computed and shown in Figure 11.

4. Results
Simulation results show the dexterity distribution across the workspace using various measures of dex-
terity for comparison, which are described in Table V. The dexterity distribution for the 3D workspace
is shown in Figure 7 by computing the dexterity on reachable points in the workspace cross-section at
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Table IV. Simulation criteria to analyze the effect of segment lengths on dexterity distribution
property index (σ ) of three segment robot with 180◦ bending capability.

Segment length range �S (mm) Range θ(rad) Range φ(rad) Samples in each
S1 ∈ [5, 115] 5 [−π , π ] [0, 2π ] 108

S2 ∈ [115, 5] 5 [−π , π ] [0, 2π ] 108

S3 = 150 − (S2 + S1) – [−π , π ] [0, 2π ] 108

Figure 9. Dexterity (D) distribution across the workspace cross-section in XZ plane at y = 0 using DSA
(D(k)) based approach.

Figure 10. Manipulability index (w1) distribution across the workspace cross-section in XZ plane at
y = 0 based on manipulability approach.
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Figure 11. Effect of segment length variation on dexterity distribution property measure across the
workspace cross-section in XZ plane at y = 0 based on (a) data density-based approach, (b) DSA-based
approach, and (c) manipulability based approach, respectively.

vertical plane through the z-axis in Figure 7(a), each at 45 degrees and non-symmetric 3D workspace
in Figure 7(b) and (c). A nonsymmetric workspace of a continuum robot is possible when we assign the
actuation constraints to the configuration space variable. We need the same number of configuration
samples for the same difference in the configuration range. The simulation results are obtained based on
the proposed measure of dexterity and a dexterity distribution property in the above section for a set of
segment lengths of the three-segment continuum robots in Figure 8. The results are compared with the
dexterity distribution across the workspace cross-section based on DSA [15] [24] as shown in Figure 9
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Table V. Comparison of simulation results.

Number of
Measure of computation Computation

Workspace type Method dexterity Figure no. Remarks steps time (sec.)
3D using workspace

crosssection
Proposed ρ(area)(k) Figure 7(a) Applicable for symmetric

workspace
- 3924

3D Proposed ρ(vol)(k) Figure 7(b),(c) Visualize the relative
dexterity

- 2440

Workspace crosssection
in XZ pane y = 0

Proposed ρ(area)(k) Figure 8 Dexterity distribution similar
to DSA and manipulability
index

4 1024.5

Workspace crosssection
in XZ pane y = 0

Dexterous solid
angle

DSA (D(k)) Figure 9 Proposed and DSA approach
have better visualization to
dexterity distribution

7 Not available

Workspace crosssection
in XZ pane y = 0

Manipulability
index

w1(k) Figure 10 Effect of segment lengths on
dexterity distribution
observed.

7 Not available
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and manipulability-based approach in Figure 10. The obtained dexterity distribution property across
the workspace by the proposed measure is very similar to the dexterity distribution property based on
the DSA-based measure of dexterity. Both the simulations, of which the conditions are listed, are car-
ried out in MATLAB 2019b on a WINDOWS 10 pro-64-bit platform with Intel Core i5-6500 3.20 GHz
CPU and 12.0 GB RAM. The number of computation steps required by each method in this paper is
included in Table V. The DSA-based approach involves seven steps: configuration parameters genera-
tion (Monte Carlo), forward kinematics position, orientation, discretizing the workspace into patches,
service sphere, DSA, and dexterity index. The manipulability-based approach also involves seven steps:
configuration parameters generation (Monte Carlo), forward kinematics position, Jacobian, manipula-
bility, singular values, manipulability index, and manipulability index distribution property. In contrast,
the proposed data-density-based approach involves only four steps: configuration parameters genera-
tion (Monte Carlo), forward kinematics position, data density-based measure of dexterity, and dexterity
distribution property index. Using the proposed approach, the computation time to determine dexterity
distribution across the workspace cross-section in the XZ plane at y = 0 from 108 uniformly distributed
random configuration parameter samples for the robot’s full range of motion (robot workspace) is
1024.517 s. Meanwhile, the computation time is 2440.1176 s to compute the dexterity distribution
for a nonsymmetric 3D workspace using 106 uniformly distributed random configuration parameter
samples.

In the above simulation results from three different methods, it is observed that the proposed method
is identical to the DSA-based approach. Further, the simulation is extended to compare the effect of
the segment length variation (with step�S) on the data density-based, DSA-based, and manipulability-
based measure of dexterity. The simulation is performed using the parameters given in Table IV for
three segment continuum robots to verify the proposed measure of dexterity distribution property as
dexterity distribution property index. Here, we are analyzing the effect of the length of the first and sec-
ond segments on the data density-based dexterity distribution property index by following the constraint
S3 = 150 − (S1 + S2), where the distal segment length S3 is kept constant and compared with the dexter-
ity index (Dg) and manipulability index distribution property (wg) based on the DSA and manipulability
based approach, respectively, using the same simulation criteria.

A scaling factor is used to normalize the dexterity distribution property index and manipulability
index distribution property of all the design variants in one scale, as shown in Figure 11. Based on
the comparison, the dexterity distribution property index corresponds well with the dexterity index for
segment length variation. Simulation results are presented in Figure 11 to show how dexterity distri-
bution property index, dexterity index, and manipulability index distribution property vary according
to segment length in Figures 11(a), (b) and (c), respectively. Figure 11(c) shows the effect of segment
length variation on additional terms as manipulability index distribution property (wg) measure across
the workspace using manipulability-based approach for comparison. The results show the manipulabil-
ity approach based manipulability index distribution property follows a similar trend for segment length
variation as seen in the case of DSA and data density approach, where the dexterity index (Dg) and dex-
terity distribution property index (σ ) will be larger for a large length of the proximal segment. As seen
in Figure 8, it reaffirms that higher dexterity is obtained for some designs at the distant peripheral region
of the workspace and thereby increases the effectiveness of the robotic device usage. Therefore, the
small change in dexterity distribution property index when S1 < S2 and increases as S1 > S2 because,
when S2 > S1, dexterity is maximum nearer to the base of the robot and vice versa, as shown in
Figure 11.

5. Limitations and future recommendations
This proposed method required a large number of position data inside the workspace for better visual-
ization of the dexterity distribution. The method is more suitable for computing the dexterity analysis for
hyper-redundant robots, for which inverse kinematics is also challenging. The generated configuration
sample for the analysis must be uniform random samples. For robots with less than 6DOF, there is a
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high computation cost. The method is computationally costly in order to compute the data density-based
dexterity for 3D workspace.

There is also the scope to improve the method’s computation efficiency for many reachable points
in the 3D workspace. This method will help researchers explore the dexterity analysis of new different
hyper-redundant robot mechanisms without solving its complex inverse kinematics. The design opti-
mization of the mechanisms is based on the workspace and dexterity distribution property. The robot
design having a high dexterity distribution property index will make it easier to do complex tasks. The
dexterity distribution will help to reposition the base of the redundant manipulators.

6. Conclusion
In this paper, we present two new measures of dexterity based on a data density approach – one for
dexterity at a point and the second to quantify the dexterity distribution across the workspace cross-
section in the XZ plane at y = 0 due to its symmetry about the Z-axis. The positional data density is
considered as the dexterity at a point, whereas the dexterity distribution property index is computed as
the sum of the positional data density, weighted by the distance of the points. The reachable positions in
the workspace are calculated by forward kinematics using the sample configuration parameters obtained
from the Monte Carlo simulation for the given range of configuration variables as input parameters. The
dexterity distribution property index provides a measure of dexterity distribution property across the
workspace cross-section. Our results show that the dexterity distribution property index also varies with
the length of the continuum segments like other existing measures of similar methods to verify.

Qualitative and quantitative comparisons of the method with similar works were carried out.
Qualitatively, we compare this with previous methods based on the input parameters, quantities com-
puted, and outcomes of the dexterity measures. Quantitatively, we compare the results with that of
the DSA approach and manipulability index-based approach. We observe that the dexterity distribu-
tion results from the three approaches are similar, but our method is simpler and easier as it uses only
reachable positions in the workspace cross-section to compute the proposed dexterity measure. We also
present the dexterity computation in 3D for symmetric and asymmetric cases.

In a second simulation, the results of the dexterity and dexterity distribution property index are com-
pared with the DSA-based and manipulability-based approach by computing the dexterity index and
manipulability index distribution properties, respectively. Here, it is also observed that all have similar
responses to the segment length variation when distal segment length is fixed; however, the proposed
method is simpler and easier to compute. Therefore, it can be directly used for dexterity analysis and
design synthesis of hyper-redundant robots for dexterous manipulation. In the future, the computation
efficiency of the method can be improved for 3D workspace.
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