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Abstract — The process of deformation in clays is visualized as the combination of recoverable defor-
mation resulting from bending and rotation of individual particles and irrecoverable deformation due
to relative movement between adjacent particles at their points of contact. The relative movement
between particles is treated as a rate process in which interparticle bonds are continually broken and
reformed as the deformation proceeds. Accordingly, the rate of deformation is governed by the acti-
vation energy associated with the rupture of interparticle bonds. Thus, in terms of a rheological
model, the fundamental element consists of a spring, representing the recoverable deformatlon, in
series with a rate process dashpot representing the irrecoverable deformation.

Owing to the heterogeneous nature of the fabric of clay soils, i.e. varying particle size, shape,
orientation, surface characteristics, etc., a wide range of activation energies, elastic stiffness, and
other material properties is anticipated. This is accounted for by assuming a Gaussian distribution
for the model properties. Thus, the complete rheological model postulated in this study consists of a
combination of spring and dashpot elements covering the complete spectrum of model properties.

The response of the rheological model is analyzed for creep and constant strain-rate loading. The
analysis is accomplished numerically using a digital computer since no closed form solution exists
for the non-linear systems of equations that result from this model. Experimental data for a number of
triaxial tests on clays under various conditions of loading are presented for comparison with the

model behavior.

INTRODUCTION

THE DEFORMATIONAL response of clays to applied
loads is a highly complex phenomenon. A large
number of physical variables influence the micro-
scopic deformation processes, such as clay fabric,
moisture content, adsorbed cations, temperature
and stress history. Therefore, the task of devising
a rheological model for clays in which the model
parameters are specifically related to the micro-
scopic deformation phenomena is a formidable one
indeed.

One of the first attempts to formulate a rheo-
logical model for clays in which the model elements
represented specific microscopic behavior was that
of Geuze and Tan (1953). This model was composed
of elastic springs representing bending and rotation
of particles and linear dashpots representing the
breaking and reforming of interparticle bonds.
A few years later, Murayama and Shibata (1958)
introduced the concept of rate process theory
(Glasstone, Laidler and Eyring, 1941) in connec-
tion with the breaking and reforming of interparticle
bonds. Recently, the rate process theory has
been utilized in a number of studies of clay behavior
under load (Mitchell 1964, Christensen and Wu,
1964, Mitchell et al., 1968). Although the rate
process hypothesis cannot be completely validated
since microscopic processes are involved, these
sidies present very convincing evidence for rate

83

process theory as a physical interpretation of in-
elastic deformation.

However, it has been pointed out (Singh and
Mitchell, 1968) that all the rheological models
proposed to data, have failed in some major respect
to fully describe clay behavior. It is the purpose
of this study to attempt to formulate an improved
rheological model based upon considerations of
the physico-chemical properties and fabric of
clays.

INELASTIC DEFORMATION OF CLAYS AS A
RATE PROCESS

It has been demonstrated (Rosenquist, 1959;
West, 1965) that the fabric of clays consists of
individual particles or packets of particles arranged
more or less randomly with edge-to-face contacts
between particles pre-dominating. Although the
exact nature of the interparticle contacts is not
known, i.e. whether the contact is mineral-to-mineral
or mineral through adsorbed layer to mineral, it
is generally agreed that physico-chemical bonds
are formed at the contacts which are partly respon-
sible for the shearing resistance of clays. Of course,
additional shearing resistance may be developed
from purely mechanical phenomena such as
bending and crushing of particles and volume
expansion during shear.

The theory of rate processes, first advanced by
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Glasstone, Laidler, and Eyring (1941) has been
used with good success to describe the behavior
of such diverse materials as steel (Kauzmann, 1941)
and textiles (Eyring and Halsey, 1948) as well as
clays. Mitchell et al.(1968) have recently presented
the results of a comprehensive study of creep in
clays which support the rate process hypothesis.
Based on its success in previous studies of clays,
the rate process theory for inelastic deformation
in clays is adopted in this study. Complete deriva-
tions of the theory are available in other sources
(see, e.g. Tobolsky, Powell and Eyring, 1943).
Therefore, only a brief outline will be presented
here.

The rate process theory is based on assumption
that the energy distribution over the “flow units”
(atoms, molecules, or groups of molecules) can
be expressed by the Maxwell-Boltzman distribu-
tion,

p ~ e~AFIRT %))

where AF is the necessary energy per mole that
must be supplied for the flow unit to become
“activated” and p is the probability of achieving it;
R is the universal gas constant and T is the temp-
erature in Kelvin units. The mean frequency of
thermal oscillations of the flow units is, according
to statistical mechanics, kT/h, in which k is Boltz-
mann’s constant and % is Planck’s constant. Thus,
the rate, or frequency, of activation of the flow
units in the absence of external forces is

kT

y = emarar 6)

If an external force is applied to the flow unit, an

Energy Required to Cause Displacement

energy gradient will be created in the direction of
the force, increasing the frequency of activation
in the direction of the force and decreasing it in
the opposite direction. The net frequency of activa-
tion in the direction of the force thus becomes

o = k_T —AF[RT i (I‘_)‘_)
v—v=2 ’ e sinh %T 3)

in which f is the applied force and i is the distance
between the equilibrium positions of the flow units.
This process can be visualized by means of the
diagram shown in Fig. 1. The activation energy,
AF, is depicted as a symmetrical energy barrier
in the absence of external forces which becomes
distorted when an external force is applied. The
distortion of the energy barrier gives rise to the net
frequency of activation expressed in Eq. (3).

A DISTRIBUTED-PARAMETER MODEIL FOR
CLAY DEFORMATION

In the present development, the basic unit of
deformation is assumed to consist of a bond rupture,
controlled by rate processes as described in the
previous section, along with the associated
elastic deformation. A bond is considered to be
the net physico-chemical attraction between
adjacent clay particles at their points of contact
and may involve atoms, molecules, or groups of
molecules. In order to convert the net frequency
of bond rupture, as given in Eq. (3), into a macro-
scopic strain rate, it is necessary to introduce
a structural factor X so that the strain rate may be
written as

s v kT arimr g ™A
y=X P SthNkT 4)

AF

Displocement

Fig. 1. The concept of energy barriers in rate process theory.
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since, = Nf (4a)
in which 7 = macroscopic shear stress on the
plane of flow
N = number of bonds per unit area in
the plane of flow
and X = macroscopic shear strain resulting

from a bond rupture.

The behavior of the basic deformation unit may
thus be represented by a spring, representing the
recoverable deformation, in series with a non-linear
dashpot obeying Eq. (4), representing the irrecover-
able deformation.

Fundamental parameters of deformation units

The clay mass asa whole is a complex assemblage
of particles of various sizes, shapes and orienta-
tions. Therefore, it is unlikely that the character-
istics of the deformation units will all be the same.
In fact, it is more likely that a broad spectrum of
characteristics will be found, distributed more or
less at random throughout the mass. This suggests
that a realistic rheological model for clay should
consist of an assemblage of elements having a
broad range of properties.

The basic deformation unit has four fundamental
parameters; they are as follows:

(1) activation energy,AF;

(2) macroscopic strain
rupture, X;

(3) elastic stiffness, K.

(4) ratio of strainina deformation unit to the macro-
scopic strain, A;.

resulting from bond

The four fundamental parameters listed are inde-
pendently subscripted since, in general, one

parameter for a given unit does not depend on
any of the others. The first three parameters have
already been defined but the last one requires
further explanation. The quantity A; reflects the
degree of participation of a given unit in the
deformation process;i.e.

A =T 5)
Y

where, y;;; = strain in a particular deformation unit
¥ = macroscopic strain in clay mass.

The quantity A is generally considered to be a func-
tion of the surface characteristics (Mitchell, 1965)
and. as such, probably varies only slightly; there-
fore, it is not included among the subscripted
parameters. The rheological model can thus be
visualized as a number of individual elements
connected in parallel as shown in Fig. 2. However,
it also has the additional provision that the strain
in any given element may be different from the
imposed macroscopic strain as indicated by the
curved dashed line.

Assumed distributions of fundamental parameters

The values of the parameters will depend upon
the combined effects of particle size, shape and
orientation, properties of the pore fluid, stress
history, temperature, etc. Moreover, the distribu-
tion of these values in any given clay mass is not
known and cannot be determined by presently
available experimental techniques. Lacking any
information to the contrary, it seems reasonable
to assume that the distribution of each of the
parameters considered is random.

The assumption of randomness leads to a Gaus-
sian, or normal, distribution which is described

I 7

Fig. 2. The distributed-parameter model for clays.
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mathematically by the following equation:

P(x) = e —t—xP28.* (6)

1
S w\/27r
where, P(x) is the probability that a quantity, whose
mean value is ¥, will have a value of x, and S,
is the standard deviation. It may be noted that only
two properties, the mean value and standard
deviation, are required to completely define the
normal distribution. A typical normal distribution
curve, which could represent the distribution of any
of the four parameters considered in this discussion,
is shown in Fig. 3.

Thus, the rheological model shown schematically
in Fig. 2, in which the parameters, AF;, X;, K,
and A, are assumed to have normal distributions
as shown in Fig. 3, and expressed mathematically
in Eq. (6), constitutes the proposed distributed-
parameter model for clays.

RESPONSE CHARACTERISTICS OF
DISTRIBUTED-PARAMETER MODEL
From Fig. 2, it can be seen that the fraction of
the stress carried by the elements of the ijk! type is

Ti = Kielyym—vs) = KAy —v3) (7)

where, v, is the total strain in the elements of
ijkl type and v;; is the strain in the dashpots of ij
type.
The sum of the stresses carried by the individual
elements is
T= 2 Tk Mk (8)

ikl

where, n;;; is the fraction of the elements that are

of the ijkI type. Summation, rather than integration,
over the distribution is indicated because the
response equations which follow are impossible
to integrate except by numerical means. Taking the
time derivative of Eq. (7) and substituting for y;
from Eq. (4) gives

T = KelAgy — By sinh (a7 50)] 9

wher N 9
e @ T ONKT a)
and  By= le% e ~AFJRT (9b)

Constant strain rate

To obtain the response under constant strain
rate loading (y = constant), Eq. (9) is integrated
with the initial condition

T,»jkl=0 at t=90

and the resulting stresses 7,;; are summed for all
the elements yielding

1 ; B+ Az»
TZ—EnUkIIOg[éﬂ—‘_\/ +(a
Bi; B

X ikl

tanh {v (B + (A)?) Zx (1) + tanh~"

ﬁij - A[’)’/
© @5+ (Am2)>}] (10
where, Z{(0) = ‘3‘2— Kyt {10a)

Equation (10) is evaluated numerically with a digital
computer and an example of the typical behavior

normal distribution curve
assumed for parameters

BF, X, K, 8,

2s,

P(x)

X

Fig. 3. Assumed normal distribution for model parameters.
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of the model under constant strain rate loading is
shown in Fig. 4 for several strain rates.

The steady-state condition for this type of load-
ing is easily obtained from Egq. (9) by setting
T4 = 0 and summing over all elements. Thus, the
steady-state shear stress can be written

ss E ikt S h=ti—=1.
Ts « Rijrer SIN [B

ikl y

(11)

Creep response

The response of the model to creep loading is
obtained by substituting Eq. (7) into Eq. (8),
taking the time derivative, and setting + = 0 which
gives

¥ X g MK =

ikl

> i Ky (12)
ikl
However, since

> N Ky = K

ikl

(13)

where K is the mean elastic stiffness, the equation
for creep, from Eq. (12), becomes
1 .
7= I3 > i Bis Ky sinh (a7 i55) (14)
ijkl

where the 7, are determined by integrating the
following system of non-linear differential equations
resulting from the substitution of Eq. (14) into
Eq. (9):
KA .
% 2 Mgkt By Ky sinh (a7 i50)

ijkl

— KB sinh (o7 50).

Tiikl =

(15)
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The numerical solution of Eq. (15) is difficult
and consumes large amounts of computer time;
accordingly, an alternative method was adopted
to obtain the creep curves. This alternative method
makes use of the constant strain rate solution
which is comparatively easy to obtain. Specifically,
the creep response is obtained by constructing a
horizontal line corresponding to the desired stress
level over a family of constant strain rate curves as
shown in Fig. 4 and noting the values of strain-
rate and the time parameter Z(z) at the intersections.

COMPARISON OF MODEL BEHAVIOR WITH
EXPERIMENTAL RESULTS
Material

The soil used in this study is a commercially
produced illite called Grundite. This soil has a
liquid limit of about 70 per cent and a plasticity
index of about 40 per cent; approximately 65 per
cent by weight is finer than 2 u.

The test specimens were made by remolding at a
water content of 45 per cent and trimming to
standard triaxial size of 1-4 in. diameter and 3-0 in.
length. They were then sealed in rubber mem-
branes, and stored under water for one week prior
to testing to eliminate thixotropic hardening
effects.

Shear tests

Specimens were tested under conditions of con-
stant strain rate and constant load (creep). All
tests reported herein were conducted under
undrained conditions. The constant strain rate
tests were conducted as unconfined compression

o,

Deviator Stress, kg/cm?

16° L

Bi* 16% o 10°

Z{t)

Fig. 4. Typical constant strain rate response of distributed-parameter
model.
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tests in an apparatus with a controlled rate of
feed. Results of 18 tests are reported with axial
strain rates ranging from 1-07X 10 min~! to
1-35 X 1072 min~..

The creep tests were performed by applying a
constant load to the specimen through a hanger
arrangement. Although several creep tests have
been performed as part of this study, just one
typical result is shown herein. The results of the
creep tests tended to be very reproducible and the
typical case presented can be considered represen-
tative of all the creep tests that were performed.

RESULTS

According to the previous discussion, there are
four distributed parameters to consider: AF;,
X;, Ky, and A;. However, AF; and X; always appear
together in the expression for B; as given in
Eq. (9b). Therefore, a single distribution describ-
ing By ts sufficient to take care of both AF,; and
X;. Since B;; is dominated by the term, exp
(—AF;/RT), logarithm of B;; is assumed to be nor-
mally distributed as shown in Fig. 5 in which 8 is
the mean value.

Several distributions were tried for K, but the
results indicated that the response is substantially
unaffected by variations in K. This is apparently
due to the dominating influence of the distribution
of B;. Similarly, variations in A; do not appear
to affect the overall response to any significant
degree. Therefore, the only distribution that must
be considered is that of 8;: K and A, may be
treated as constants.

p(BU)

; (.2447)

/7
/,,/,/

77
(.0614) L /

Constant strain rate tests

For purposes of comparison with the theoretical
behavior of the distributed-parameter model, the
constant strain rate tests are first analyzed from the
standpoint of steady-state behavior. The steady-
state condition is interpreted to be the shear
stress and strain rate at the point where the
stress-strain curve levels off. In some cases the
stress-strain curve reached a peak and then dropped
off; in these cases, the peak value was selected
as steady-state, the drop off being attributed to
failure occuring on isolated shear planes.

The steady-state resuits are presented in terms
of “deviator stress,” D, which is the difference
between principal stresses (o, —o3), and the
axial strain rate &. The analogous terms in the
theoretical response equations are the shear
stress, r, and the shear strain rate, y, which are
interpreted in this study as the shear stress and
strain rate respectively on the octahedral plane.
Christensen and Wu (1964) have shown that, under
triaxial loading conditions, these quantities are
related as follows:

Toet = ﬁD (16)
3
Yoot = V2e. (16a)

Hereafter the subscripts on7 andy will be omitted
with the understanding that they refer to the octa-
hedral plane.

In Fig. 6 are shown the results of 18 constant
strain rate tests with the steady-state deviator

Ié ={x l(-)g min-l
=Ny

ABjj varies 24 orders
of magnitude

1% 10°

Fig. 5. Typical assumed distribution for 8;;.
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16° 162

Axial Strain Rate , € (min')

Fig. 6. Steady-state constant strain rate response.

stress, Dy, plotted v.s. strain rate on a log scale.
Although the scatter is considerable. the tendency
for increasing strength with increased strain rate
is readily apparent.

The theoretical curves shown in Fig. 6 are ob-
tained from Eq. (11) by assuming a distribution of
B:; and choosing « so as to obtain the best possible
fit with the experimental data. In all cases, A,
is taken to be unity. The parameters 3;; which were
used in Fig. 6 are considered to represent the
complete range of physically reasonable possi-
bilities. It can be seen from Eq. (9b) that B
depends on X; and AF,. It seems unlikely that the
structural factor X; will vary more than, say, from
0-1 to 10-0 with an average of approximately 1-0.
The decision as to what is a reasonable range of
AF; is based on two criteria: (1) no negative values
of activation energy were permitted, and (2) the
mean value of activation energy was not allowed
to exceed 50 Kcal mole™!. These restrictions, taken
together, require 8;; to fall within the range of
107% min~'~10"®* min~!. Curve A represents one
extreme, where B;; is given a very large range of
values, while curve C shows the opposite extreme
where 8 is the same for all units. Curve B re-
presents a case half way between 4 and C. It

should be pointed out that these three curves do
not represent all the possible combinations of
Bi; that can be made to fit the experimental data;
however, these cases are representative and cover
the complete range of behavior within the restric-
tions previously mentioned.

The theoretical constant strain rate response is
presented in the form of dimensionless shear stress
7* vs. the time parameter Z(r) on a log scale. The
dimensionless shear stress 7* is the ratio of the
actual shear stress at any time to the steady-state
value; thus,

(17)

where 7 is given by Eq. (10) and 7, is given by
Eq.(11).

Figure 7 shows several combinations of g,
the steady-state behavior of which fits the experi-
mental data well enough to be considered as
possibilities. These various combinations of 8
are grouped according to the range of 8;; thus, in
Fig. 7a are shown three curves for constant 8,
in Fig. 7b are three curves for range of g8;; of 24
orders of magnitude, and Fig. 7c shows three
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Fig. 7. Comparison of theoretical and experimental constant strain
rate response.

curves for a range of 8;; of 48 orders of magnitude.

Superimposed on the theoretical curves are the
data for six tests. Instead of individual data points,
a bar is used to show the variation of the experi-
mental data. The real time scale corresponding
to the experimental data is shown along the top of
the diagram. The superposition of the data was
accomplished by sliding a sheet containing the
data horizontally over the theoretical curves until
the best possible match was obtained. By matching
the real time and the time parameter Z(f), a value
for Z(t) is obtained. In this case

Z(t) = 180~ 330z.

It can be seen from Fig. 7 that the agreement
between the theoretical and experimental constant
strain rate response is quite good for the cases
where 8;; varies over 24 and 48 orders of magnitude,
although in the lower 7* range the data tend to lie
generally above the theoretical curves. However,
the degree of confidence in the lower points is
much less than that of the higher points because

of seating difficulties when the load is first applied
and because of the sensitivity of the time scale in
that range. The case where 8;; is a constant (Fig.
7a) does not agree well with the experimental
data. If individual test results are compared with
the theoretical curves, the fit is clearly superior
for B;; varying over 24 or 48 orders of magnitude
as compared to 8;; constant. This seems to support
the concept of distributed parameters. However,
individual test results are not shown because of
space limitations.

Creep tests

The theoretical creep response for the model was
evaluated for the same distribution of parameters
as was found to be applicable for constant strain
rate. The theoretical curves are shown in Fig. 8
with the axial strain rate, €, plotted versus the
time parameter, Z(t), on a log-log scale for a stress
level of r = 0-043 kg/cm?.

Superimposed upon the theoretical curves are
the data points for a typical creep test run at the
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Fig. 8. Comparison of theoretical and experimental creep response.

stress level 7 = 0-043 kg/cm?®. As in the case of the
constant strain rate data, the sheet with the experi-
mental data points was adjusted horizontally
until the best fit was obtained. The agreement
between the theoretical curves and the experimental
results is excellent in the case of creep loading
although some of the distributions shown are
apparently unacceptable because their curves
reach a steady-state condition while the experi-
mental creep curves rarely exhibit such behavior.

The theoretical creep behavior predicted by the
proposed model agrees well with the experimental
behavior observed by Singh and Mitchell (1968)
in that the slope of linear relationship between
logarithm of strain rate and logarithm of time is
nearly —1.

As in the case of constant strain rate, by match-
ing the real time scale corresponding to the
experimental points with the scale for the time
parameter, Z(t), the value of Z(r) can be estimated.

CCMVol. 17 No.2—-D

From the results shown in Fig. 8, it is found that
Z(t)y = 2500t ~ 4600¢.

This value is, unfortunately, not in agreement with
that obtained from constant strain rate loading.
The value of Z(z) from creep loading is approxi-
mately 13 times that obtained from constant strain
rate. Although Fig. 8 shows the results of only
one creep test, this ratio was quite consistent
for all the tests performed in this investigation.

An explanation for the discrepancy between the
constant strain rate and creep behavior is in order.
In the first place, the response of the clay in con-
stant strain rate loading may appear slower than
it should because of seating problems, slack in the
loading machinery, etc. Secondly, the material
might strain-harden and become a stiffer material
as loading progresses. Both of these effects can be
handled by cyclic loading of the specimens until a
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consistent stress-strain curve is obtained. A small
number of constant strain rate tests with cyclic
loading has been recently performed. These
tests show that

Z(1) = 1000¢ ~ 3000¢

which supports the foregoing explanation.

It is also possible that the theoretical model
which, in order to be valid, requires that no
significant structural changes occur during the
deformation, may not be valid up to the ultimate
stress. In most of the tests performed during
this investigation, the steady-state condition was
judged to have been reached at approximately 10
per cent strain. Strains of that magnitude may be
beyond the limits of the validity of the theory.

SUMMARY

A rheological model has been developed to
describe the behavior of clays under load. The
basic unit of deformation is assumed to consist
of interparticle bond rupture occuring as a rate
process plus the associated elastic deformation.
The fundamental parameters of the model are
identified as (1) the activation energy. AF;, (2)
the macroscopic strain resulting from a bond
rupture, X;, (3) the elastic stiffness, Kj, and (4)
the ratio of strain in a deformation unit to the macro-
scopic strain, A;. Owing to the heterogeneous
nature of clay fabric, the concepts of distributed-
parameters is introduced, in which the four
fundamental model parameters are assumed to
have a range of values which follow a normal
distribution curve.

It is shown that the distributed-parameter model
is capable of describing the constant strain rate
and creep response of the clay tested. It is also
shown that the distribution of the activation energy,
AF;, has a dominating influence on the response of
the model so that the distribution of the other para-
meters can be ignored for practical purposes.
Although there is a discrepancy between the values
of the time parameter Z(¢) as calculated from the
constant strain rate and creep results, it is pointed
out that this may be due, in part, to experimental
difficulties.
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Résumé — Le procédé de déformation des argiles est considéré comme une combinaison de déformation
récupérable résultat du pliage et de la rotation des particules individuelles et de déformation irrécupér-
able due au mouvement relatif entre des particules adjacentes a leur point de contact. Le mouvement
relatif est considéré comme un procédé progressif dans lequel les liaisons entre les particules sont
brisées et rétablies de maniére continue a mesure que la déformation avance. Il s’ensuit que le taux
de déformation est gouverné par P’énergie d’activation associée a la rupture des liaisons entre les
particules. En termes d’un modéle rhéologique, I'élément de base consiste en un ressort représentant la
déformation récupérable en série avec un dashpot de taux représentant la déformation irréupérable.

En raison de la nature héterogéneuse des sols d’argile, p.e. dimensions variables des particules,
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forme, orientation, caractéristiques de la surface etc., on s’attend & une gamme trés large d’énergies
d’activation, de rigidité élastique et d’autres caractéristiques. Cela est expliqué par 'hypothése d’une
distribution gaussienne des caractéristiques du modéle. 1l s’ensuit que le modéle rhéologique com-
plet postulé dans cette étude comporte une combinaison d’éléments de ressort et de dashpot couvrant
la gamme totale des propriétés du modéle.

On analyse la réponse du modele rhéologique du point de vue de la caractéristique de glissement
et de charge a effort constant. L’analyse s’effectue par moyen numérique a I’aide d’un ordinateur
numérique, étant donné qu’il n’existe aucune solution de forme fermée pour les systémes non-linéaires
d’équations résultant de ce modele. Les données expérimentales pour un certain nombre d’essais a
trois axes sur ’argile sous des conditions de charge différentes sont présentées en vue d’un comparaison
avec le comportement du modéle.

Kurzreferat — Der Deformationsvorgang in Tonen wird als eine Kombination einer reversiblen
Deformation, infolge der Biegung und Rotation von Einzelteilchen, und einer irreversiblen Defor-
mation, infolge der Relativbewegung benachbarter Teilchen an ihren Beruhrungstellen, angesehen.
Die Relativbewegung zwischen Teilchen wird als ein Geschwindigkeitsprozess behandelt, in welchem
fortgesetzt Zwischenteilchenbindungen gebrochen und wieder hergestellt werden, u.zw. in dem Masse
als der Deformationsvorgang fortschreitet. Demgemass wird die Deformationsgeschwindigkeit von
der mit dem Bruch der Zwischenteilchenbindungen verknupften Aktivierungsenergie bestimmt. In
der Ausdrucksweise eines rheologischen Modells bestiinde also das grundlegende Element aus einer
Feder, die die reversible Deformation wiedergibt und der ein Geschwmdlgkeltsprozess -Bremszylinder
nachgeschaltet ist, der die irreversible Deformation darstelit.

Infolge des heterogenen Charakters des Tonbodengefiiges, d.h. schwankende Teilchengrosse,
Form, Orientierung, Oberflachenmerkmale usw., wird ein weiter Bereich von Aktivierungsenergien,
elastischer Steife und sonstigen Werkstoffeigenschaften erwartet. Dieser Umstand wird Durch
Annahme einer Gausschen Verteilung fiir die Modelleigenschaften beriicksichtigt. Das in dieser
Untersuchung vorgeschlagene, komplette, rheologische Modell besteht also aus einer Kombination
von Feder- und Bremszylinderelementen, die den Gesamtbereich der Modelleigenschaften umfassen.

Die Reaktion des rheologischen Modells wird fiir Kriechverformung und Verformungsgeschwin-
digkeitsbelastung untersucht. Die Untersuchung wird zahlenmissig unter Vermendung eines Digital-
rechners ausgefiihrt, da fiir die nichtlinearen Systeme von Gleichungen, die sich aus diesem Modell
ergeben, keine Losung geschlossener Form existiert. Es werden experimentelle Daten fiir eine Reihe
triaxialer Priifungen von Tonen unter verschiedenen Lastbedingungen zum zwecke eines Vergieichs
mit dem Verhalten des Modells angefiihrt.

Pesrome—IlIpouecc aepopmauuu 8 ramHax U3o0paxaeM Kak cOYeTaHHe NMOAAAIOILKXCA U3BACUEHHUIO
AeopMalnit BCIeACTBAE CruBaHUs U BPALLEHUS OTAENbHbBIX YACTHL ¥ He NONAAIOILENCH H3BICYEHHIO
aepopMauuy H3-3a OTHOCHTEBHOTO IBHIKEHUS MEX/Y COCEAHUMM YACTHIAMMU B TOYKAX UX CONPHUKO-
cHoBeHUA. OTHOCHTEbHOE ABHKEHWE MEXAY 4acTHMUAMM pacCMaTPUBAETCsA, KaK KUHETHYECKHii
ApOLECC, B KOTOPOM MEXHYaCTHYHbie CBS3H HENPEPLIBHO MPEPLIBAIOTCH M BO300HOBIAIOTCA IO
mepe npoasuxerust aehopMaunu. COOTBETCTBEHHO CKOPOCTh eGOpPMaLIMH ONpeNenseTcs sHepruei
aKTHUBALIMM, CBA3ZAHHON C Pa3pbiBOM MeX4aCTUUYHbIX CBA3eH. TakuM o6pa30oM, Nojib3yach MOHATHAMU
PEOJIOrMYECKOi MOAETH, OCHOBHOM 31EMEHT 3TO MNPYXHHA, MPEACTABNAIOILAA BOCCTAHABIMBAEMY IO
neopMaunio, nocjeloBaTENbHO BKAKOYEHHAs ¢ AeMNQEpPOM KMHETHYECKOTO MHpoLecca, Mpeacra-
BISIOIMM HEBOCCTAHABIMBAEMYIO AeopmaLiuio.

BcneacTsue rereporeHHbiX CBOACTB CTPYKTYPbl TMHUCTbIX MOYB, T.€. PA3HUL B Pa3Mepe 4acTHll,
dopme, OPUCHTALMKU, NOBEPXHOCTHbIX CBOMCTBAX U T.M., MPEABUAUTCS LIMPOKKE ONANA30H 3HEPTHI
aKTHUBAUMH, YNPYTrOCTH M ADYTMX CYWIECTBEHHBLIX XapakrepucTuk. OOGBACHACTCA ITO, NPUHUMAS
pacripesenerune ["aycca ans monensHeix CBOUCTB. Takum 06pa3oM, YKOMIUIEKTOBAHHAS PEONOTHYE-
CKas MOJE/b, MPUHAMAEMas IS 10Ka3aTENbCTB B HACTOSLLUEM HCCEA0BAHUH, COCTOUT W3 MPYXKUHbI
n aemndepa, NOKpbIBas BECb CMIEKTP MOAEABHBLIX CBOKCTB.

PearupoBanue peonoru4eckoi Moaenu MOABepraeTcst aHanu3y Ha MOMA3YYECTh M MOCTOSHHOE
HaMnpsx)eHHe—CTeneHb HArpy3k. AHanu3 BbIMOTHAETCA UUGPORO, MOMbL3YACh UAGDPOBOA BLIYMCIUTE-
HBHOM MALIMHOM, TAK KaK HE CYLUECTBYET DPELCHHA NpenornpenesieHHOR (OpMbI AT HENMHEMHBIX
CUCTEM YPABHCHMIA, Pe3ybTUPYIOWMX W3 ITOH MOJENH. 3KCIEPUMEHTAJIbHbIE AaHHbIE, MOJYYEHHbIE
M3 psiia TPEXOCHbBIX MCTILITAHWA HA r/IMHE B Pa3jU4HbIX YCIIOBMSX HATPY3KH, NPEACTAB/IEHb] 31ECh
U CPABHEHMA C MOBCACHUEM MOIENH,
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