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Abstract

Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing
energetic cost (EC). However, EC is challenging tomeasure and it is typically indirectly estimated through respiratory
gas analysis. This study introduces a novel EMG-based objective function that captures individuals’ natural energetic
expenditure during walking. The objective function combines information from electromyography (EMG) variables
such as intensity and muscle synergies. First, we demonstrate the similarity of the proposed objective function,
calculated offline, to the EC during walking. Second, we minimize and validate the EMG-based objective function
using an online Bayesian optimization algorithm. The walking step frequency is chosen as the parameter to optimize
in both offline and online approaches in order to simplify experiments and facilitate comparisons with related
research. Compared to existing studies that use EC as the objective function, results demonstrated that the
optimization of the presented objective function reduced the number of iterations and, when compared with gradient
descent optimization strategies, also reduced convergence time. Moreover, the algorithm effectively converges
toward an optimal step frequency near the user’s preferred frequency, positively influencing EC reduction. The good
correlation between the estimated objective function andmeasured EC highlights its consistency and reliability. Thus,
the proposed objective function could potentially optimize lower limb exoskeleton assistance and improve user
performance and human–robot interaction without the need for challenging respiratory gas measurements.

Impact Statement

Wearable devices are important in assisting people, such as patients or older adults, during rehabilitation and
everyday activities like walking. Some exoskeletons have been able to reduce the energy cost of walking.
However, they require a cumbersome device to quantify it, making it impractical to use in real-life scenarios.
Thus, we need to identify a way to assess energetic cost using wearable technologies. To address this, we
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introduced an EMG-based objective function that captures insights into energetic cost through muscle dynamics
and motor coordination. Then, we minimized the proposed objective function online by optimizing walking step
frequencies. We found that the EMG-based objective function highly correlates with energetic cost during
walking. We also found that our algorithm effectively identifies an optimal step frequency that reduces
participants’ energetic cost. These findings will facilitate the customization of the assistance in wearable assistive
devices and its application in real situations.

1. Introduction

Wearable robots are in continuous development to enhance human movement, motor control, user
performance, and overall user experience. The control characteristics of these devices play a key role
in defining their behavior and interaction with users. The current focus is on achieving individualized
assistance, acknowledging that physiological and neurological differences among individuals affect their
response to the same device and assistance (Zhang et al., 2017). Adding to the challenge, as the number of
assisted joints increases, so does the complexity of parameter tuning (Zhang et al., 2017; Bryan et al.,
2021). As a result, recent advances aim to develop methodologies that enable assistive devices to
automatically and continuously customize the assistance (Felt et al., 2015; Zhang et al., 2017). This
has resulted in an increasing focus on human-in-the-loop optimization (HILO) strategies, which not only
facilitate iterative and automatic tuning of control characteristics (i.e., actuation profile) but also seek to
personalize the assistance by minimizing physiological and biomechanical objective functions (Díaz
et al., 2022).

Developing a HILO strategy involves defining an objective function that describes user performance
and selecting an optimization algorithm capable of minimizing or maximizing the objective function
(Díaz et al., 2022). The most widely used objective function for evaluating lower-limb wearable robots
during walking is the energetic cost (EC) (Díaz et al., 2022), which displays the overall energy
consumption in the body per unit of time (e.g., muscle dynamics, blood circulation, or aerobic processes)
(Felt et al., 2015). Measuring EC poses challenges as it relies on indirect calorimetry through an
ergospirometric device, resulting in noisy, sparsely sampled, and time-delayed measurements (Felt
et al., 2015). The need for a rapid estimation of instantaneous EC is crucial for implementing HILO
outside the laboratory. Especially for robotic devices that aim to adjust their assistance based on changes
in intensity (i.e., energy requirements) without the need for extended periods of constant activity
(Ingraham et al., 2019b). Consequently, researchers have been exploring alternative physiological or
biomechanical signals, such as those from portable wearable sensors, to estimate EC more efficiently
(Ingraham et al., 2019b; Blake and Wakeling, 2013; Ingraham et al., 2019a). Slade et al. (2019) have
shown that muscle activity and vertical ground reaction forces are adequate and rapid energy expenditure
estimators during inclined walking. Moreover, Ingraham et al. (2019a) presented multiple physiological
and biomechanical signals that highly correlate with EC during various tasks, such as heart rate, ankle
acceleration, and the sum of electromyography (EMG) signals. Recently, our group proposed an EMG-
based objective function that combines muscle intensity and the variability of muscle synergies to
describe the natural energetic behavior of humans walking (Díaz et al., 2022).

Specifically inHILO, EMGhas served as an effective objective function due to its instantmeasurement
of muscle effort and higher temporal resolution compared to breath-by-breath assessments (Blake and
Wakeling, 2013). Various EMG-based approaches in HILO include 1) decreasing muscle activity from
one muscle in response to hip (Xu et al., 2023) or ankle exoskeleton assistance (Wang et al., 2021; Yan
et al., 2019), 2) a heuristic approach where muscle activity signals the user’s desire for assistance and
guides robot torque (Jackson and Collins, 2019), and 3) a muscle-activity-based cost function tested in an
ankle exoskeleton (Han et al., 2021).

EMG research has revealed that these signals represent muscle activity resulting from motoneuronal
activation (Farina et al., 2014). However, the musculoskeletal apparatus has many degrees of freedom,
making its assessment more complex. Thus, understanding how the central nervous system (CNS)
manages the redundancy of the musculoskeletal system is crucial in motor neuroscience and clinical
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scenarios. The execution of a motor task requires that the CNS combines the information of multiple
muscles into an adequate number of motor synergies and coordinates them via a hierarchical neural
pathway (Chvatal and Ting, 2013; Hagio and Kouzaki, 2014). These muscle synergies are spatiotemporal
building blocks that optimize motor behavior formation (d’Avella et al., 2003). Almost any change to the
musculoskeletal system and its coordination patterns leads to an increase in EC (Collins et al., 2015).
Consequently, muscle synergies become relevant for understanding changes in EC, providing insights
into spatiotemporal modulated activation patterns and analyzing motor task performance (Hagio and
Kouzaki, 2014).

Muscle synergies have been used mainly in optimizing upper-limb wearable robots (Garcia-Rosas
et al., 2021a, 2021b; Hamaya et al., 2019). In lower limbs, a recent study presented a muscle-synergy-
based objective function tested in one participant wearing a hip exoskeleton (Ma et al., 2024). This study
shows that muscle synergies and HILO strategies in an exoskeleton can decrease muscle activity and
increase motion coordination. However, there is still insufficient research on lower limb wearable robotic
devices; the reason might be the complexity of the movement and the number of muscles that need to be
modulated for muscle synergies. Latest studies focusing on muscle synergies during walking or balance
propose that variations in synergies for different activities directly explain the difference in biomechanical
demands of the particular activity (Chvatal and Ting, 2013; Gupta and Agarwal, 2022).

It is widely known that individuals optimize their coordination patterns for factors such as EC, motion
performance, and motor control (Zhang et al., 2017). Therefore, we explored EMG signals in our search
for physiological measurements that correlate with changes in EC to enhance and speed up HILO. These
signals provide valuable insights into EC based on muscle dynamics and coordination patterns derived
frommuscle synergies (Diaz et al., 2023). Then, the purpose of this study is first to develop anEMG-based
objective function that captures individuals’ natural EC when walking at various step frequencies (Diaz
et al., 2023). The second objective is to validate and minimize the objective function by optimizing the
step frequency using an online Bayesian optimization algorithm. The parameter we optimize is the step
frequency, rather than a robotic assistive device because it is easy to prescribe and measure, has a
metabolic minimum, and can be easily replicated by other researchers (Felt et al., 2015). For each step
frequency, we estimated the EC using the EMG-based objective function and measured it with a standard
device. The measured values served as the ground truth for evaluating the accuracy of our objective
function. By identifying optimized step frequency values that minimize EC, we expect to demonstrate the
efficacy of an EMG-based objective function and lead to its integration into wearable robotic devices,
such as lower limb exoskeletons. This means that user performance and human–robot interaction can be
optimized without the cumbersome way of quantifying exchanged gasses. It would become feasible to
optimize human–robot interaction in real-life scenarios.

2. Methodology

This study consists of two complementary experimental protocols. The first protocol, published in Diaz
et al. (2023), focused on identifying the EMG-based objective function that represents individuals’ EC
when walking at different step frequencies. In this first stage, we used a steady-state cost mapping to
minimize the objective function offline (Felt et al., 2015) (Figure 1A–B). The second protocol is an
extended version of the first onewherewe aimed tominimize the objective function online (Figure 1C–E).
Both protocols involved participants walking at prescribed step frequencies (i.e., device parameters)
guided by a metronome, which represented the “computer-controlled assistive device” that participants
had to follow. Note that for the remainder of this work, the aforementioned first and second protocols are
referred to as offline and online, respectively.

This studywas conducted following the standards of the Declaration of Helsinki, and the local medical
ethical commission (Vrije Universiteit Brussel and University Hospital of Brussel) granted ethical
approval.
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2.1. Experimental setup

For this study, a total of 19 participants were recruited. All participants provided written informed consent
before the study. Participants were divided into 2 groups, 10 participants (3 females and 7 males,
age = 24.3 ± 2.9 years, body mass = 74.3 ± 10.0 kg, height = 180.4 ± 9.1 cm) completed first the offline
optimization experimental protocol. Afterward, the other 9 participants (2 females and 7 males,
age = 25.4 ± 3.6 years, body mass = 66.8 ± 8.7 kg, height = 173.2 ± 5.6 cm) completed the online
optimization experimental protocol. Both experiments involved participants walking on a treadmill at a
constant velocity of 1.25 m/swhile equipped with a respiratory device and 8 EMG sensors positioned on
their lower limbs. At the beginning of each participant’s lab visit, we asked them to walk for 5 minutes at
their most comfortable pace to determine their preferred step frequency and serve as a warm-up.
Subsequently, the equipment (EMG sensors and respiratory device) was added; participants stood at rest
for 5 minutes to evaluate their resting metabolic rate and walked for 5 minutes to assess their metabolic
rate when walking at their most comfortable pace.
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Figure 1. Overview of the offline (red dotted square) and online (purple dotted square) experimental
protocols for human-in-the-loop optimization based on the EMG-based cost function. Participants
walked at multiple-step frequency values guided by a metronome. Oxygen consumption ( _VO2) and

carbon dioxide production ( _VCO2) were measured using a wearable metabolic system. Surface EMG
electrodes recorded bilateral muscle activity from eight muscles: RF, GL, GM, and TA. A. EMG-based
objective function derived from muscle synergies and muscle intensity, including the similarity of synergy

vectors (SSV) and similarity between activation coefficients (SAC). B. Offline optimization of the
calculated objective function. C. Estimation of EC using the EMG-based objective function as a

participant walked at a step frequency set by the metronome. D. Bayesian optimization updated the step
frequency parameter to minimize the estimated cost of walking. EI stands for expected improvement. E.

New step frequency value given by the Bayesian optimization strategy.
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During each offline protocol, participants completed nine different walking conditions: their preferred
step frequency and 25%, 15%, 10%, and 5% below as well as above their preferred step frequency (Felt
et al., 2015). Each condition lasted for 5 minutes.We randomized the order of the nine-step frequencies to
avoid sequence effects and minimize fatigue.

The online protocol included two walking trials after the standing (resting) and warm-up periods.
Participants were given 5minutes of rest between walking trials. Each trial was a maximum of 24minutes
and consisted of two consecutive phases: initialization and optimization. The initialization phase involved
three initial exploration points, which were necessary to initiate the Bayesian optimization algorithm. The
optimization phase consisted of one to five Bayesian optimization iterations. Note that the number of
iterations depended on how long the proposed algorithm took to converge. For each iteration, participants
walked for 3minutes at the step frequency commanded by themetronome. During the last seconds of each
three-minute segment, we used the EMG-based objective function to estimate the EC. Afterward, we used
the Bayesian optimization strategy to identify the subject-specific optimal walking cadence. Further
details on the optimization strategy are provided in Section 2.4.

Figure 1 shows the setup during data collection for the offline and online protocols. Breath-by-breath
rates of oxygen consumption and carbon dioxide production were measured with a respiratory system
(Cosmed K5, Rome, Italy). The muscle activity was measured using the Trigno surface EMG system
(Delsys Inc., Natick, MA, USA). The muscles selected were based on other research studies in gait
optimization (Jackson and Collins, 2019; Bryan et al., 2021). The sensors were located in the following
muscles from each leg: rectus femoris (RF), gastrocnemius lateralis (GL), gastrocnemius medialis (GM),
and tibialis anterior (TA).

2.2. Measured outcomes

In order to propose an objective function that combines motor coordination and muscle effort and
adequately explains the altered energy expenditure during walking, we extracted three key measured
outcomes: EMG intensity, variability of muscle synergies, and EC. These outcomes form the basis for
constructing the proposed EMG-based objective function (later explained in Section 2.3).

2.2.1. Energetic cost
Thewhole body ECwas calculated using the Brockway Equation (1), where y(t) is respiratory response in
Watts, and _VO2 and _VCO2 are volumetric flow rates in mL * min�1.

y tð Þ= 0:278 � _VO2 tð Þþ0:075 � _VCO2 tð Þ (1)

Instantaneous EC was continuously estimated by using a first-order dynamical model described by
Selinger and Donelan (2014). This model is commonly used in HILO (Kim et al., 2017; Han et al.,
2021; Zhang et al., 2017) to estimate instantaneous EC during non-steady state gait because it
considers the delay between measured EC (from respiratory gases) and the body’s instantaneous
energy demands.

In line with earlier studies, in the offline optimization protocol, participants were allowed to reach a
steady pace during the first minutes of each five-minute walking session (Bryan et al., 2021; Zhang et al.,
2017). Afterward, we calculated the instant energy cost using data from the last three minutes.

In the online optimization protocol, we shortened the time per condition since we aim to decrease the
time spent in each parameter setting, and therefore the overall time needed for convergence using a HILO
methodology. For each three-minute walking condition, participants were allowed to reach a steady state
during the initial minute. Once the optimization was completed, the instantaneous ECwas calculated over
the last two minutes of each walking condition offline. The goal was to compare the output of the EMG-
based objective function with the calculated instantaneous EC.
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2.2.2. EMG preprocessing
Raw EMG recordings were band-pass filtered (10–450 Hz), full-wave rectified, and low-pass filtered
(6 Hz) using a second-order Butterworth filter. For each participant and muscle, the resulting linear
envelopes were normalized with respect to the maximum peak amplitude for that muscle. The latest was
selected as themaximumvalue of a 50msmoving-averagewindow applied to themuscle linear envelopes
in each trial (Úbeda et al., 2018). Next, we proceeded to process the EMG signals to calculate both muscle
intensity and muscle synergies.

EMG intensity. A signal’s power spectral density (PSD) characterizes the distribution of power across
frequencies in the signal. The area under the PSD curve represents the power of the signal. Some studies,
such as those by Von Tscharner (2000) and Blake and Wakeling (2013), use the term “intensity” to
describe the power of the EMG signal. In this context, intensity is defined as a quantitative measure
estimating the power of the EMG at time t (Von Tscharner, 2000). To obtain the total EMG intensity, one
would sum up the EMG intensity across muscles over the time period t.

The intensity of the signal was estimated usingWelch’s PSD (Hann window length 1 s, overlap 0.60s).
The area under the PSD curve was employed to calculate the EMG intensity using Equation 2, where f
represents the positive frequency and Pxx is the intensity per frequency.

EMGintensity xð Þ=
Z ∞

0
Pxx fð Þdf (2)

We computed each participant’s overall muscle activity (EMG intensity) for each step frequency at
minutes 2 and 3. The total EMG intensity is the combined intensity of all muscles. To find the overall
EMG intensity per participant at each step frequency, we averaged the EMG intensity recorded during
minutes 2 and 3. Participants were given the initial minute to familiarize themselves with the new step
frequency. Subsequently, we focused on processing minutes 2 and 3, intending to minimize the time
needed for each set of parameters in future applications.

Muscle synergies. Muscle synergies were extracted using a nonnegative matrix factorization (NNMF)
fromEMG signals. The EMGdata were organized in amatrix format, with each row representing the time
series of a specific muscle (d’Avella et al., 2003; Chvatal and Ting, 2013; Cheung et al., 2020). NNMF
decomposes muscle activities (EMGsignals) into a linear combination of time-invariant synergy vectors
(Wi) and activation coefficients (Ci tð Þ). Each Wi displays the relative contribution of each muscle
involved in synergy i, while the Ci tð Þshows changes over time. Four synergies explaining over 90% of
signal variance were extracted per condition, aligning with previous findings (Zhao et al., 2021).

EMGsignals tð Þ≈
XNsyn

i

Ci tð ÞWi (3)

For each step frequency setting, we identified muscle synergies at two specific moments: the start of
minutes 2 and 3. In the initial 20 seconds of eachminute, we determined the right leg’s stance phases based
on the maximum amplitude of the GL.We assumed a gait cycle to initiate with a right stance (indicated by
the GL’s maximum amplitude) and conclude after two right stance phases (Diaz et al., 2023). Subse-
quently, muscle synergies were computed for the average EMG activity of each muscle over the chosen
gait cycles. These conditions ensured that participants adapted to the prescribed step frequency for one
minute, a complete gait cycle occurred, and the analysis remained consistent across conditions.

Muscle synergies were computed at two distinct time points for each step frequency to measure the
variability between these muscle synergies. Lower variability indicates a higher level of coordination.
Two metrics were used to demonstrate how synergies change over time: cosine similarity of synergy
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vectors (SSV) and similarity between activation coefficients (SAC). First, SSVevaluates the similarities
between muscle synergy vectors, commonly used for spatial comparison of extracted synergies (Zhao
et al., 2021; Gupta andAgarwal, 2022; Nishida et al., 2017). SSV values range from 0 to 1, with the cosine
angle extending from 0 to π. A smaller angle signifies a higher similarity between two synergy vectors.
The mean SSV was calculated across the four synergy vectors at minutes 2 and 3, generating an overall
SSVoutput. Second, we computed the Euclidean distance between activation coefficient curves at each
time step to evaluate SAC.

2.3. EMG-based objective function

A linear mixed-effects model was employed to combine information from the EMG signals of each
participant in the offline experimental protocol. The goal was to create an objective function that closely
mirrors the EC variations resulting from changes in step frequency. Linear mixed-effects models extend
linear regression for grouped datasets, proving advantageous in studies with repeatedmeasurements, such
as ours, involving multiple step frequencies for the same participant.

The proposed model comprises fixed effects (EMG variables) and random effects (participant). Fixed
effects, similar to explanatory variables in a regression model, influence the response variable. Random
effects are associated with individual experimental units randomly drawn from a population.

To formulate the cost function, it was crucial to calculate three EMG predictor variables (X1, X2, X3).
This process involved determining specific aspects of the EMG signals for each participant. SSV was the
first predictor variable (X1), and SAC was the second predictor variable (X2), both derived from the
analysis of muscle synergies. The third predictor variable, EMG intensity (X3), represented the signal’s
power at a particular time t for eachmuscle. These variables collectively formed the essential inputs for the
model to describe the relationship between the response variable (EC) and the independent variables
(EMG predictors), accounting for participant-specific coefficients (grouping variable). The model
corresponds to Equation 4.

yim = β0þβ1X1im þβ2X2im þβ3X3im þb0imþ ϵim (4)

where yim is the observation i for each level m of grouping variable participant, βj are the fixed-effects
coefficients (j = 1, 2, 3), b0m is the random effect for levelm of the grouping variable participant, and ϵi is
the observation error for observation i. The random effects and observation error have a normal
distribution.

2.4. Human-in-the-loop Bayesian optimization

As mentioned in Section 2.1, human-in-the-loop Bayesian optimization was conducted during the online
experimental protocol and was divided into two phases: initialization and optimization. We assessed the
estimated EC over three iterations in the initialization phase. The step frequency values from the
initialization correspond to the mean, minimum, maximum, and intermediate step frequencies from
our preliminary study (Diaz et al., 2023). These initial exploration points are needed to compute an initial
posterior distribution before starting the optimization process.

After the initialization, Bayesian optimization was iteratively performed every three minutes using the
EMG-based objective function (Figure 1C). First, the posterior distribution of the objective function was
estimated as a function of step frequency using a Gaussian process (Figure 1D, top). Then, the next step
frequency value to evaluate was the maximum of the expected improvement (Figure 1D, bottom). After,
the metronome was updated, and participants were asked to follow the new parameter (Figure 1E). We
assumed that Bayesian optimization converged if the new step frequency was in the 1% range from a
previously evaluated parameter. Bayesian optimization ended after 24 minutes if the algorithm did not
converge.
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AGaussian process was used tomodel the response surface of the EMG-based objective function. This
process was calculated utilizing the mean (μx) and covariance (k x,x00ð Þ) (Brochu et al., 2010) with a zero
mean. We selected a squared exponential kernel for the covariance function as shown in Equation 5 (Kim
et al., 2017).

k xi,xj
� �

= σ2f � e�
xi�xjð Þ2
2l2 (5)

where σ2f is the variance from the objective function and l is the length scale parameter (step frequency).
The signal variance captures the overall magnitude of the cost function variation, and the length scales
capture the sensitivity of the objective functionwith respect to changes in step frequency. Considering that
the estimated EC f xð Þ has additive, independent, and identically distributed noise, the samples can be
expressed as

y xð Þ= f xð Þþ ε, ε�N 0,σ2noise
� �

(6)

where σ2noise is the noise variance and a hyperparameter guiding the behavior of the model. Given the
Gaussian process prior and data set, D, the posterior estimated EC distribution was calculated for a step
frequency parameter, x*, as y x∗ð Þ� y∗ �N μ∗,σ

2
∗

� �
. Themean and variance are calculated as explained by

Kim et al. (2017).
To acquire the next step frequency parameter, we used the expected improvement (EI), also known as

the acquisition function, which balanced the exploration and exploitation of the Bayesian optimization
algorithm. EI selected the next parameter by calculating the expected reduction in the objective function
over the step frequencies previously evaluated using Gaussian process posterior distribution (Kim et al.,
2017; Ding et al., 2018). The next parameter was then calculated using Equation 7.

xnþ1 = argmaxx∗ EI x∗½ �ð Þ (7)

The argmax function identifies the step frequency that corresponds to themaximumEI valuewithin the
parameter range (x∗). The newly selected parameter is then sent to the metronome.

2.5. Data analysis

2.5.1. Offline optimization
Following data collection from the offline protocol, we could continue to the offline optimization phase.
Here, we constructed a linear mixed-effects model to estimate ECs for each participant at step frequencies
that range between �25% and 25% of their preferred step frequency. Employing the Steady-State Cost
Mapping method, we fitted a cubic polynomial to steady-state measures across the different step
frequency settings, identifying the step frequency that minimized EC. We calculated the sum of squared
errors (SSE) and R2 for each participant’s fitted cubic polynomial on estimated EC across step frequen-
cies. Finally, we conducted a linear regression to compare measured and estimated EC values. These steps
enhanced the robustness of our model and provided insights into its predictive accuracy across multiple
participants and step frequencies.

2.5.2. Online optimization
After completing the online optimization, we compared the estimated EC, derived from the EMG-based
objective function with the measured EC obtained using the ergospirometric device. This analysis
exclusively utilized data from the online optimization protocol. Both estimated and measured ECs
underwent normalization using the min-max method, transforming the data range from 0 to 1 for ease
of comparison.
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We used a mixed-effects model to assess the relation between measured (mec) and estimated (eec)
EC. This approach accounts for the nonindependence of observations within the same participant by
incorporating each participant as a random effect:mec � eecþð1 j participantÞ. Due to a very low variance
component for the random effects (σ� 0), which indicates minimal individual differences, we conducted
a linear regression analysis. This additional analysis allowed us to assess the correlation between
measured and estimated ECs by quantifying how much of the variance in measured EC is explained
by estimated EC.

Additionally, we computed the error between the preferred and optimal step frequency values to
evaluate the effectiveness and accuracy of the proposed objective function. Furthermore, we compared
the measured EC at the optimal step frequency determined by the Bayesian Optimization with the EC of
participants walking at their preferred step frequency.

3. Results

3.1. EMG-based objective function

Figure 2 displays the mean values for the EMG variables across step frequencies. EMG outputs for the
preferred and near step frequencies (�5% to 5%) exhibit the lowest values in most variables, except for
SSV, which also has low values at�10% and 10% of the preferred frequency. The highest and lowest step
frequencies show the highest outputs across variables, suggesting a similar behavior to EC in the selected
EMG variables.

Table 1 shows that the fitted cubic polynomial over the estimated EC (yi) was good for most
participants with R2 values above 0.7 and low SSE values (SSE < 0.3). Figure 3 presents the estimated
EC (yi) for four participants at each step frequency, calculated using Equation 4. The figure also includes

Figure 2. Mean ± standard deviation of the selected EMG variables at the different step frequencies.
These metrics were collected during the offline optimization protocol.

Table 1. Sum squared error (SSE) and R2 for each participant’s fitted cubic polynomial on estimated EC across step frequencies.
Results derived from the offline optimization protocol

Participant SSE R2

1 0.06 0.87
2 0.14 0.92
3 0.25 0.59
4 0.73 0.65
5 0.25 0.91
6 0.11 0.94
7 0.10 0.76
8 0.10 0.95
9 0.31 0.70
10 0.06 0.76
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the fitted cubic polynomial model derived from the steady-state cost mapping algorithm. The participants
selected are those with the best and worst model fits, based on Table 1. The curves illustrate that the
estimated (yi) increases as the step frequency deviates from the preferred.

The linear-mixed effects model has 90 observations, 4 fixed-effects coefficients, 10 random effects
coefficients, and 2 covariance parameters. Analysis of Table 2 revealed significant effects of the intercept,
X2, and X3 (p� values ≤ 0.05) on EC. X1 was retained in the model to improve prediction accuracy. The
model’s mean squared error was 0.12.

The fixed-effects coefficients βj highlighted in blue in Table 2 are the relevant values used to estimate yi
using descriptive EMG variables as inputs. In Figure 4, the relationship between the observed response
(measured EC) and the fitted response (estimated EC) is illustrated, with an R2of 0.82 indicating a well-
fitting model.

3.2. Online Bayesian optimization

Each participant completed the online protocol twice. Here, we refer to each iteration as trial 1 and trial
2, respectively. The mixed-effects model analysis, used to compare measured and estimated ECs
across participants, showed a significant fixed effect of estimated EC on measured EC
(pvalues < 0.001), with an effect size estimate of 0.79. This confirms a good positive relationship
between the estimated and measured ECs across participants, adjusted for individual variations. In the
linear regression analysis, the R2 was 0.64, confirming the good correlation between the measured and
estimated EC.

Figure 6 illustrates an example of the general behavior of the objective function throughout an
experiment and how it relates to the measured EC for one representative participant. For this example,
the correlation between the output from the EMG-based objective function and the estimated EC was
highly significant (Pearson correlation = 0.97).

Figure 3. Illustration of the model fitting process for four participants (the best and worst model fittings
are included). Each panel shows EC estimates at step frequencies ranging from �25% to 25% of each
subject’s preferred step frequency (see Equation 4). A third-order polynomial was used (steady-state cost
mapping algorithm) to determine the percentage step frequency that yields the minimum yi. The minimum

value from the curve is indicated with dotted lines.

Table 2. Fixed-effects coefficients (95% confidence intervals)

Name Estimate SE tStat p value Lower Upper

Intercept 1.193 0.243 4.909 <0.001 0.710 1.676
X1 0.008 0.013 0.6587 0.5118 �0.017 0.0342
X2 2.015 0.613 3.287 0.001 0.796 3.233
X3 3.396 0.501 6.769 <0.001 2.399 4.394
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Figure 4. Estimation of the energetic cost after fitting the model to the data set from the offline
optimization protocol using Equation 4. The R-squared from the linear regression is 0.82.

Figure 5. Correlation between normalized energetic cost (Measured) and normalized EMG-based cost
function (Estimated). The R-squared from the linear regression is 0.64.
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Moreover, to assess the consistency of the EMG-based cost function, each participant underwent the
experiment twice with identical initialization parameters for both trials. Then, the mean squared error
between the initialization outputs of both trials was calculated, resulting in an error of 0.198.

Table 3 provides information on the convergence time for each trial and the percentage error between
the preferred and optimal step frequencies indicated by the objective function. The average time to
converge per trial was 15 and 16 minutes, respectively. Similarly, the mean number of iterations was
5. The percentage errors fall within �6% to 6%, and the mean error was 4%.

The optimization method resulted in an approximate 12% reduction in EC for five participants in both
the first and second trials, compared to their EC at their preferred step frequency. This indicates that
participants experienced lower EC when walking at the optimized step frequency than at their preferred
step frequency.

4. Discussion

In this study, we developed and validated an EMG-based objective function designed to capture the
natural EC of walking at various step frequencies. Our analysis demonstrates that variations in EMG

Table 3. Time to converge and % error between the preferred step frequency (PSF) and the optimal parameter given by the
optimization are presented for the first and second trials

Participant 1 2 3 4 5 6 7 8 9

% Error PSF �2.88 4.12 �1.79 6.00 5.00 2.73 4.63 0.94 4.55
�3.85 �6.19 1.79 �3.00 �4.00 6.36 �5.56 �3.77 �1.82

Time to converge (min) 15 15 12 12 12 12 24 12 21
15 15 12 18 15 21 15 12 24

Figure 6. Comparison of measured and estimated energetic cost (EC) during walking at different step
frequencies for one representative participant. Each step frequency was maintained for 180 seconds. The

Bayesian optimization was initialized with the first three values, and subsequent parameters were
determined by the optimization algorithm until its convergence to a minimum.
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signal intensity and muscle synergies are effectively correlated with changes in EC across different
walking cadences. Using this information, the proposed model determines the optimal step frequency for
individuals, enhancing both performance and energy efficiency. Initially evaluated in an offline setting,
the model was subsequently implemented in an online framework where it was validated through an
online Bayesian optimization strategy. The optimization successfully determined optimal step frequen-
cies for participants with notable consistency and accuracy.

In the offline optimization, we used a Steady-State Cost Mapping, an established method that fits a
cubic polynomial to steady-state measures at various parameter settings. This method, previously utilized
by Felt et al. (2015) to assess ECs across multiple step frequencies, effectively characterizes the EMG-
based objective function at different step frequencies across participants in our study. However, an offline
model is time-consuming for participants and does not allow for an automated tuning process. Thus, we
validated our preliminary results with an online Bayesian optimization strategy commonly used in HILO
studies because it is well suited for optimizing noisy and expensive-to-evaluate objective functions such
as energetic cost. While a direct comparison between the offline and online estimations of the objective
function is challenging due to variations in protocol characteristics (such as the number of iterations, time
per iteration, and step frequencies), it is important to highlight the robustness of our model. In the offline
approach, the linear mixed model explained 82% of the dataset’s variance in measured metabolic cost.
Despite the limitations imposed by the small offline data set (n = 10), we anticipated that the model could
not be generalized well; thus, we expected a lower performance in the online optimization. Nevertheless,
even with an R-squared of 0.65 in the online optimization, our model demonstrates a good correlation and
performance, underlying its reliability and effectiveness in capturing individuals’ natural energetic
optimization strategy while walking at different step frequencies.

Muscle activity has proven pivotal in predicting the metabolic cost of walking (Ingraham et al., 2019a;
Blake andWakeling, 2013; Ingraham et al., 2017) and has shown relevant results as a performancemetric in
HILO (Zhang et al., 2017; Jackson and Collins, 2019; Han et al., 2021). While previous studies focused on
muscle activity intensity alone, our preliminary results highlighted the potential of including muscle
synergies variability in an objective function (Diaz et al., 2023). The optimal step frequency minimizes
muscle synergies variability, restoring participants’motor coordination, and reduces overall muscle activity
intensity. This leads to amore energy-efficientwalkingpattern, contributing to overall energy cost reduction.
Our results align with Felt et al. (2015) and Kim et al. (2017), who were able to estimate optimal step
frequency and minimize instantaneous metabolic cost with different optimization strategies. However, our
results demonstrated a positive trend in identifying a step frequency value around 5% of their preferred that
output a lower energetic cost than the one calculated when walking at their preferred step frequency.

It is hard to explain what guides users’ preferences; it can be related to balance, comfort, or energy
requirements (Ingraham et al., 2022). The association between kinematic synergy and user preference
suggests that participants exhibit higher coordination and, thus, reduced ECwhen guided by ametronome
near their preferred step frequency. Including user preference in the design of such objective functionswill
be interesting since it is known as a meta-criterion that considers factors that are challenging to quantify
but significant to the user experience (Ingraham et al., 2023). Some studies have focused on understanding
the impact of wearable device assistance on motor control and coordination. Steele et al. (2017) studied
the effects of an ankle exoskeleton assistance in coordination patternswhen healthy participants walk. The
authors showed that the complexity of the muscle coordination patterns (i.e., synergy vectors) was similar
during unassisted and assisted walking, but wearing the exoskeleton impacted the activation coefficients
(i.e., temporal activation patterns). The results presented in this study are comparable with the ones from
Steele because we highlight changes in activation coefficient variability (referred to as SAC) with varying
step frequencies (i.e., device parameters) during walking. Other researchers have also established
connections between muscle activation patterns and metabolic cost when the assistance from an ankle
exoskeleton varies (Jeong et al., 2023). These results collectively underscore the potential applicability of
the presented objective function in enhancing lower limb exoskeletons.

In HILO, only one study has used muscle synergies to optimize the assistance from lower limb
wearable devices. In that study, Ma et al. (2024) optimized the assistance of a hip exoskeleton based on a
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synergy similarity coefficient that compares the muscle synergies from a participant walking with a set of
control parameters with a reference synergy calculatedwhen participants walkedwithout the exoskeleton.
The challenge of muscle synergies is how to quantify changes properly, so researchers have used a
reference to facilitate comparison and present a metric that can assess performance. However, calculating
the correct reference adds to the challenge, as it relies on the dataset used for calculation. Our study avoids
the need for a reference, which is hard to have available in some patient populations. Additionally, the
muscle synergies variability could be an interesting metric to assess performance in other scenarios.

This study employed a limited population of young and healthy participants. However, we aim to
expand the data set to enhance algorithm robustness, decrease converging time, and extend the application
to various motion tasks.

5. Conclusion

This study highlights the relation between an EMG-based objective function, that relies on muscle
intensity and muscle synergies coordination, and the EC of humans walking at different step frequencies.
The consistent performance of the EMG-based objective function output across participants indicates the
potential of using this proposal to achieve a practically feasible HILO of powered wearable devices.
Consequently, we expect to extend this application further to lower limb exoskeletons and explore how
effectively lower-limb wearable devices can be optimized using the proposed objective function.
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