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Abstract We prove the existence of a family of slow-decay positive solutions of a supercritical elliptic
equation with Hardy potential

−Δu +
c

|x|2
u = up in R

N ,

and study the stability and oscillation properties of these solutions. We also show that if the equation
on R

N has a stable slow-decay positive solution, then for any smooth compact K ⊂ R
N a family of the

exterior Dirichlet problems in R
N \K admits a continuum of stable slow-decay infinite-energy solutions.
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1. Introduction

Our starting point is a superlinear elliptic problem in the entire space:

−Δu = up, u > 0 in R
N , (1.1)

where p > 1 and N � 3. In what follows we denote the critical Sobolev exponent by
pS := (N + 2)/(N − 2). It is well known that for p < pS (1.1) has no positive solutions.
For finite-energy solutions this is an easy consequence of Pohozaev’s identity. For positive
solutions without decay assumptions at ∞ this is a deep result of Gidas and Spruck [9].
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For p = pS all positive solutions of (1.1) are given up to translations by a one-parameter
family

Wλ(|x|) := λ(N−2)/2W1(λ|x|) (λ > 0),

where W1(x) := (1 + (N(N − 2))−1|x|2)−(N−2)/2 is a rescaled minimizer of the Sobolev
inequality.

For p > pS the structure of the solution set of (1.1) is more complex. First we note
that, for all p > N/(N − 2), (1.1) possesses an explicit singular radial positive solution

U∞(x) := Cp|x|−2/(p−1), Cp :=
(

2
p − 1

(
N − 2 − 2

p − 1

))1/(p−1)

.

Observe that if p > pS , then U∞ ∈ H1
loc(R

N ) and, hence, U∞ is a weak solution of
(1.1) in the entire space R

N , despite the singularity at the origin. However, U∞ is an
infinite-energy solution because of its slow decay at infinity for p > pS .

The set of all radially symmetric solutions of (1.1) can be analysed through phase-
plane analysis after applying Fowler’s transformation (see [17, pp. 50–55]). In particular,
if p > pS , then (1.1) admits a radial positive solution U1(|x|) such that U1(0) = 1. It is
known that U1(|x|) is monotone decreasing and that

lim
|x|→∞

U1(|x|)
|x|−2/(p−1) = Cp;

however, U1 has no explicit representation in terms of elementary functions. Taking into
account the scaling invariance, one concludes that rescalings of U1 are also solutions of
(1.1), so (1.1) possesses a one-parameter continuum of radial positive solutions

Uλ(|x|) = λ2/(p−1)U1(λ|x|) (λ > 0). (1.2)

One can show that the singular solution U∞ is the limit of the family (Uλ), in the sense
that, for any x �= 0,

lim
λ→∞

Uλ(|x|) = U∞(|x|)

holds. In addition, it is known that, given 0 < λ1 < λ2 � ∞, the solutions Uλ1(r) and
Uλ2(r) in the range pS < p < pJL intersect each other infinitely many times as r → ∞,
while for p � pJL the solutions are strictly ordered, that is, Uλ1(r) < Uλ2(r) for all r � 0.
Here,

pJL :=

⎧⎪⎨
⎪⎩

N − 2
√

N − 1
N − 4 − 2

√
N − 1

if N > 10,

∞ if N � 10,

is the Joseph–Lundgren stability exponent, introduced in [13]. The exponent pJL controls
various oscillation and stability properties of the solutions Uλ, which are particularly
important in the study of the time-dependent parabolic version of (1.1); see [11, 20]
or [17, pp. 50–55] for a discussion.
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We are interested in a perturbation of (1.1) by the Hardy inverse square potential,
that is, the equation

−Δu +
μ

|x|2 u = up, u > 0 in R
N \ {0}, (1.3)

where μ > −CH and CH := (N − 2)2/4 is the Hardy critical constant, i.e. the optimal
constant in the Hardy inequality∫

RN

|∇ϕ|2 dx � CH

∫
RN

|ϕ|2
|x|2 dx ∀ϕ ∈ C∞

c (RN ). (1.4)

The Hardy potential provides an important example of a long-range potential, that is, a
potential that modifies the asymptotic decay rate of solutions at ∞ and their behaviour
at the origin (see, for example, [1,10]).

For p �= pS a Pohozaev-type identity shows that, similarly to (1.1), (1.3) has no finite-
energy solutions [19]. For p = pS , (1.3) admits an explicit one-parameter family of
finite-energy radial solutions (see [1, 19]). However, the structure of positive solutions
of (1.3) in the critical regime p = pS is not fully understood. It is known that for large
values of μ > 0 (1.3) admits non-radial solutions that are distinct modulo rescalings
from the radial solutions (see [1,19]). See [12] for recent results and a discussion of open
questions in this direction.

In the present work we consider (1.3) in the supercritical regime p > pS . In § 2 we
outline the problem and discuss the basic properties of the explicit singular solution
similar to U∞. In § 3, for optimal ranges of p and μ we establish (Theorem 3.1) the
existence of a one-parameter family (Uλ)λ>0 of infinite-energy solutions of (1.3), which
coincides with (1.2) when μ = 0. We also discuss the stability properties of these solutions.
The presence of the Hardy potential produces a range of new critical exponents related
to stability, which do not have immediate analogues in the unperturbed case of (1.1).
Finally, in § 4, we discuss (1.3) in exterior domains. In Theorems 4.1 and 4.3 we prove
the non-existence of certain classes of slow-decay positive solutions, which justify the
optimality of critical exponents introduced in § 3. In Theorem 4.5 we show that if the
singular solution U∞ of the problem on R

N is stable, then for any smooth compact set
K ⊂ R

N a family of exterior Dirichlet problems for (1.3) in R
N \ K admits a continuum

of stable slow-decay infinite-energy solutions. In particular, our results in § 4 show that
the stability of slow-decay positive solutions of (1.3) is a robust property, which in some
sense remains stable under perturbations of domain in the equation.

2. Equations with Hardy potential

We study the equation

−Δu +
ν2 − ν2

∗
|x|2 u = up, u > 0 in R

N \ K, (2.1)

where K = {0}, or {0} ∈ K and K is a connected compact set with the smooth boundary
∂K, p > 1, N � 3, ν > 0 and ν∗ := (N−2)/2, so ν2

∗ is the Hardy critical constant in (1.4).
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By a solution of (2.1) we understand a classical solution u ∈ C2(RN \K), with no a priori
assumption on the decay of u(x) at ∞. We say that u is a weak solution of (2.1) in R

N

if u ∈ H1
loc(R

N ) and∫
∇u · ∇ϕ dx + (ν2 − ν2

∗)
∫

uϕ

|x|2 dx =
∫

upϕ dx ∀ϕ ∈ C∞
c (RN ).

Note that, for ν < ν∗, solutions of (2.1) must have a singularity at the origin (see
Lemma 2.5); however, this singularity might be compatible with the concept of a weak
solution in R

N .
We say that a solution u of (2.1) in R

N \ K has finite energy if u ∈ D1
0(R

N \ K), the
completion of C∞

c (RN \ K) with respect to the norm ‖∇ϕ‖L2 . We say that a solution
u of (2.1) is stable in R

N \ K if the formal second variation at u of the energy that
corresponds to (2.1) is non-negative definite, that is,∫

|∇ϕ|2 dx + (ν2 − ν2
∗)

∫
ϕ2

|x|2 dx − p

∫
up−1ϕ2 dx � 0 ∀ϕ ∈ C∞

c (RN \ K). (2.2)

A solution u > 0 of (2.1) is called semi-stable in R
N \K if it is stable in R

N \BR for some
R > 0. A solution u > 0 of (2.1) is called unstable if it is not semistable. Note that these
definitions do not require u to be a finite-energy solution. See [8] for the discussion of
various notions of stability of infinite-energy solutions of elliptic equations of type (1.1).

2.1. Explicit radial solution

For ν > 0, introduce the critical exponents

p∗ := 1 +
2

ν∗ + ν
and p∗ :=

⎧⎪⎨
⎪⎩

1 +
2

ν∗ − ν
if ν < ν∗,

∞ if ν � ν∗.

Clearly, p∗ < pS < p∗. For p > p∗, set

U∞(x) := Cp,ν |x|−2/(p−1), where Cp−1
p,ν := ν2 −

(
ν∗ − 2

p − 1

)2

.

A direct computation shows that U∞ is a positive solution of (2.1) for all p∗ < p < p∗,
while for p �∈ [p∗, p

∗] the coefficient Cp,ν becomes negative. Note that U∞ ∈ H1
loc(R

N ) for
p > pS , that is, U∞ is a weak solution of (2.1) in R

N . However U∞ is an infinite-energy
solution because of its slow decay at ∞.

The importance of the solution U∞ is due to the fact that it will be used as an
elementary building block for constructing further solutions of (2.1). In order to do this,
it is essential to understand the stability properties of U∞.

Lemma 2.1. Let p ∈ (p∗, p
∗) and ν > 0. The solution U∞ is stable if and only if

pCp−1
p,ν � ν2, (2.3)

while if (2.3) fails, then U∞ is unstable.
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Proof. The formal second variation of the energy that corresponds to (2.1) at U∞ is
given by ∫

|∇ϕ|2 dx + (ν2 − ν2
∗ − pCp−1

p,ν )
∫ |ϕ|2

|x|2 dx.

Thus, the assertion follows directly from the fact that ν2
∗ is the optimal constant in the

Hardy inequality (1.4).
Taking into account the scaling invariance of Hardy’s inequality we also conclude that

if (2.3) fails, then U∞ must be unstable. �

The inequality (2.3) amounts to a third-degree algebraic expression, for which closed-
form solutions could be obtained using Cardano’s formulae; however, the explicit expres-
sions for solutions are tedious. Below we present a qualitative analysis of (2.3). Set
s := −2/(p − 1), so (2.3) transforms into

(s + ν∗)2(s − 2) + 2ν2

|s| � 0 (−ν∗ − ν < s < min{−ν∗ + ν, 0}).

Define

θ(s) := (s + ν∗)2(s − 2).

Solving (2.3) for p∗ < p < p∗ is then equivalent to classifying the roots of the equation

θ(s) = −2ν2 (−ν∗ − ν < s < min{−ν∗ + ν, 0}), (2.4)

and solving the inequality

θ(s) � −2ν2 (−ν∗ − ν < s < min{−ν∗ + ν, 0}). (2.5)

Note that θ(0) = −2ν2
∗ and that θ has two critical points: a local maximum at smax :=

−ν∗ with θ(smax) = 0 and a local minimum at smin := −(ν∗ − 4)/3 with θ(smin) =
− 4

27 (2 + ν∗)3. Define

ν̄ :=

√
2
27

(2 + ν∗)3 =

√
2
(

N + 2
6

)3

.

Clearly, for every ν > 0, (2.4) has exactly one root σ# in the interval (−ν∗ − ν, −ν∗). To
analyse the roots of (2.5) in the interval (−ν∗, min{−ν∗ + ν, 0}), we distinguish between
the cases smin < 0 and smin � 0.

In the case smin � 0 (that is, 3 � N � 10) we have the following.

(i) If ν � ν∗, then (2.4) has no roots in (−ν∗, 0) and (2.5) holds for all s ∈ (−ν∗−ν, σ#].

(ii) If 0 < ν < ν∗, then (2.4) has exactly one root σ− ∈ (−ν∗, −ν∗ + ν) and (2.5) holds
for all s ∈ (−ν∗ − ν, σ#] ∪ [σ−, −ν∗ + ν).
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Figure 1. Stability properties of U∞ in the case 3 � N � 10.

In the case smin < 0 (that is, N � 11) we have the following.

(i) If ν > ν̄, then (2.4) has no roots in (−ν∗, 0), so (2.5) holds for all s ∈ (−ν∗ −ν, σ#].

(ii) If ν∗ < ν � ν̄, then (2.4) has exactly two roots σ− and σ+ in (−ν∗, 0) and −ν∗ <

σ− � smin � σ+ < 0, so (2.5) holds for all s ∈ (−ν∗ − ν, σ#] ∪ [σ−, σ+].

(iii) If 0 < ν � ν∗, then (2.4) has exactly one root σ− in (−ν∗, 0) and σ− ∈ (−ν∗, smin),
so (2.5) holds for all s ∈ (−ν∗ − ν, σ#] ∪ [σ−, 0).

In what follows we define

p# = 1 − 2
σ#

, p− := 1 − 2
σ−

, p+ := 1 − 2
σ+

,

and note that
1 < p∗ < p# < pS < p− � p+ < p∗

for all values of N � 3 and ν > 0, when all the exponents are well defined. The above
analysis then leads to the following characterization, equivalent to (2.3), of the stability
properties of the solution U∞ in terms of the original parameters p and ν.
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Figure 2. Stability properties of U∞ in the case N � 11.

Lemma 2.2. Let p ∈ (p∗, p
∗) and ν > 0.

(a) If ν∗ < ν � ν̄ and N � 11, then the solution U∞ is stable for p ∈ (p∗, p#]∪ [p−, p+]
and unstable for p ∈ (p#, p−) ∪ (p+, p∗).

(b) If 0 < ν < ν∗ and N � 3 or ν = ν∗ and N � 11, then the solution U∞ is stable for
p ∈ (p∗, p#] ∪ [p−, p∗) and unstable for p ∈ (p#, p−).

(c) If ν � ν∗ and 3 � N � 10 or ν � ν̄ and N � 11, then the solution U∞ is stable for
p ∈ (p∗, p#] and unstable for p ∈ (p#, ∞).

Remark 2.3. In the pure Laplacian case ν = ν∗ one calculates the explicit values

p# =
N + 2

√
N − 1

N − 4 + 2
√

N − 1
, p− =

N − 2
√

N − 1
N − 4 − 2

√
N − 1

;

here p− is defined only for N � 11. Thus, for the Laplacian the exponent p− coincides
with the Joseph–Lundgren stability exponent pJL (see [13] or [17, p. 50]), while the
exponent p# is known to appear in the context of local singularities of solutions of (1.1)
(see [16, Lemma 5]).
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Remark 2.4. If N � 11 and ν = ν̄, then p− = p+ = (N + 2)/(N − 10) is the only
supercritical value of p where U∞ is stable. Note, in addition, that limν→∞ p#(ν) = 1, and
also that if 3 � N � 10, then limν↑ν∗ p−(ν) = ∞, while for N � 11, limν↓ν∗ p+(ν) = ∞.

2.2. Slow and fast decay solutions

Clearly, a solution u of (2.1) is a positive superharmonic of the linear Hardy operator,
that is, u satisfies the linear inequation

−Δu +
ν2 − ν2

∗
|x|2 u � 0 in R

N \ K. (2.6)

As a consequence, solutions of (2.1) with ν2 < ν2
∗ are always singular at the origin, while

for ν2 > ν2
∗ solutions might vanish at the origin. More precisely, the following local decay

properties for positive superharmonics of Hardy’s operator hold (see [15]).

Lemma 2.5. If u > 0 satisfies (2.6) in a neighbourhood of the origin, then

lim inf
|x|→0

u(x)
|x|−ν∗+ν

> 0, lim inf
|x|→0

u(x)
|x|−ν∗−ν

< ∞. (2.7)

If u > 0 satisfies (2.6) in an exterior domain, then

lim inf
|x|→∞

u(x)
|x|−ν∗−ν

> 0, lim inf
|x|→0

u(x)
|x|−ν∗+ν

< ∞. (2.8)

Bidaut-Véron and Véron [1, Theorem 3.3] proved that the structure of the solution set
of (2.1) in exterior domains that decay at ∞ no slower than U∞ is essentially determined
by the solutions of the equation

−ΔSN−1ω + Cp−1
p,ν ω = ωp, ω > 0 in SN−1 (2.9)

on the sphere SN−1.

Lemma 2.6 (Bidaut-Véron and Véron [1, Theorem 3.3]). Let p �= pS . If u > 0
satisfies (2.1) in R

N \ K and

lim sup
|x|→∞

u(x)
|x|−2/(p−1) < ∞, (2.10)

then either

lim
|x|→∞

u(x)
|x|−ν∗−ν

= c (fast decay) (2.11)

or there exists a positive solution ω(·) of (2.9) such that

lim
|x|→∞

u(|x|, ·)
|x|−2/(p−1) = ω(·) (slow decay) (2.12)

in the Ck(SN−1) topology for any k ∈ N.
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Remark 2.7. Clearly, Cp,ν is a constant solution of (2.9). For 1 < p < (N +1)/(N −3)
it is known (see [9] or [1, Corollary 6.1]) that Cp,ν is the only solution of (2.9), provided
that

(p − 1)Cp−1
p,ν � N − 1, (2.13)

while if (2.13) fails, then (2.9) admits non-constant solutions (see [1, Corollary 6.1],
[19, Theorem 0.5] and [12, Theorem 1.3]). A similar result holds for some values p >

(N + 1)/(N − 3) (see [3]). The complete structure of the solution set of (2.9) is not yet
fully understood (see [2,12] for some recent results in this direction).

Remark 2.8. If ν > 0 and p < pS , then (2.10) always holds (see [1, Remark 3.2]).

We classify the positive solutions of (2.1) into fast- and slow-decay solutions according
to the alternatives (2.11) and (2.12). Note that for p > pS slow-decay solutions are always
infinite-energy solutions, because of the slow decay rate (2.12) at ∞.

3. Radial slow-decay solutions in R
N

The radial positive solutions u(|x|) > 0 of (2.1) in R
N \ {0} correspond to the positive

solutions U(r) = u(r) of the initial-value problem

−U ′′ − N − 1
r

U ′ +
ν − ν∗

r2 U = Up (r > 0), (3.1)

which can be studied through the phase-plane analysis.
The existence of a family of regular at the origin slow-decay solutions of (3.1) in the

Laplacian case ν = ν∗ is well known and goes back at least to [13].

Theorem 3.1. Let pS < p < p∗. For any λ > 0 (3.1) then admits a unique positive
solution Uλ ∈ C2(0, ∞) such that

lim
r→0

Uλ(r)
r−ν∗+ν

= λ, lim
r→∞

Uλ(r)
r−2/(p−1) = Cp,ν . (3.2)

Moreover,
Uλ(r) = λ2/(p−1)U1(λr) ∀λ > 0. (3.3)

Furthermore, for λ ∈ (0, ∞] the following properties hold.

(i) If pCp−1
p,ν � ν2, then the solutions Uλ are stable and ordered in the sense that

0 < λ1 < λ2 � ∞ implies that Uλ1(r) < Uλ2(r) for every r � 0 and, in addition,

lim
r→∞

Uλ2(r) − Uλ1(r)
r−ν∗

> 0. (3.4)

(ii) If pCp−1
p,ν > ν2, then the solutions Uλ are unstable and oscillate in the sense that

0 < λ1 < λ2 � ∞ implies that Uλ2(r)−Uλ1(r) changes sign in (R, +∞) for arbitrary
R > 0.

https://doi.org/10.1017/S0013091513000588 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000588


264 V. Moroz and J. Van Schaftingen

The proof of the theorem follows the exposition in [17, pp. 50–53], with minor adjust-
ments needed to accommodate ν �= ν∗. We present the sketch of the arguments for the
convenience of readers.

Proof of Theorem 3.1. Using the transformation

w(t) = r2/(p−1)U(r), t = log(r), (3.5)

problem (3.1) becomes an autonomous second-order differential equation

w′′ + 2βw′ + wp − γw = 0, t ∈ R, (3.6)

where, since pS < p < p∗,

β := ν∗ − 2
p − 1

> 0 and γ = Cp−1
p,ν = ν2 −

(
ν∗ − 2

p − 1

)2

> 0.

Set
E(w) = E(w, w′) := 1

2 |w′|2 − 1
2γw2 +

1
p + 1

wp+1.

Then, E is a Lyapunov function for (3.6) and

d
dt

E(w(t)) = −2β(w′(t))2 � 0.

Set x := w and y := w′. Problem (3.6) can then be written as an autonomous first-order
system (

x′

y′

)
=

(
y

−2βy + γx − xp

)
=: Φ(x, y),

which possesses two equilibria

(0, 0) and (γ1/(p−1), 0)

in the half-space {(x, y) : x � 0}. Define

A0 := ∇Φ(0, 0) =

(
0 1
γ −2β

)
, A∗ := ∇Φ(γ, 0) =

(
0 1

−(p − 1)γ −2β

)
.

The matrix A0 has two real eigenvalues

α± := −β ±
√

β2 + γ =
2

p − 1
− ν∗ ± ν,

such that α− < 0 < α+. The corresponding eigenvectors are (1, α+) and (1, α−), that is,
(0, 0) is a saddle point of the vector field Φ. The matrix A∗ has two eigenvalues

α∗
± := −β ±

√
β2 − (p − 1)γ;

the corresponding eigenvectors are (1, α∗
+) and (1, α∗

−). Clearly, Re(α∗
±) < 0, so

(γ1/(p−1), 0) is always an attractor. Note also that α∗
± is real if and only if pCp−1

p,ν � ν2.
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Using the Lyapunov function E one can show that the trajectory tangent at the origin
to the eigenvector (1, α+) is a heteroclinic orbit that connects the equilibria (0, 0) and
(γ1/(p−1), 0) (see [17, p. 52]). Moreover, since (0, 0) is a hyperbolic saddle-point, the
uniqueness of such a heteroclinic orbit follows by standard arguments. The corresponding
solution w(t) exists for all t ∈ R and satisfies that

lim
t→−∞

w(t) = 0, lim
t→+∞

w(t) = γ1/(p−1). (3.7)

Moreover, we can assume that w(t) satisfies the normalization condition

lim
t→−∞

w(t)
eα+t

= 1. (3.8)

Since (3.6) is autonomous, w(t + θ) is also a solution of (3.6) that corresponds to the
same heteroclinic orbit, for any θ ∈ R. Given θ ∈ R, set λ := eθ. Then,

Uλ(r) := r−2/(p−1)w(log(λr)) = λ2/(p−1)U(λr),

and Uλ satisfies (3.2) in view of (3.8) and (3.7), that is, Uλ is the required solution
of (3.1). The uniqueness of Uλ follows from the uniqueness of w(t) since (3.5) defines a
one-to-one correspondence between solutions of (3.1) and (3.6).

To understand the oscillation and stability properties of Uλ note that the eigenvalues
α∗

± are real if and only if
β2 � (p − 1)γ,

which is equivalent to the stability condition (2.3). Note that then

α− < α∗
− � −ν∗ � α∗

+ < α+.

If the roots α∗
± are real, then arguments similar to those in [17, p. 53] show that the

trajectory w(t) is monotone increasing in t for all t ∈ R. Hence, the solutions Uλ(r)
are monotone increasing in λ. In particular, Uλ(r) < U∞(r) for any λ > 0 and the
solutions Uλ are ordered. Furthermore, in view of (2.3) the solution U∞ is stable. Since
Uλ(r) < U∞(r), we obtain that

pUp−1
λ (|x|) � pUp−1

∞ (|x|) = pγ|x|2 � ν2|x|2.

By Hardy’s inequality we conclude that∫
|∇ϕ|2 dx + (ν2 − ν2

∗)
∫

ϕ2

|x|2 dx − p

∫
Up−1

λ (|x|)ϕ2 � 0

for all ϕ ∈ C∞
c (RN ), that is, Uλ is a stable solution of (2.1). In addition, similarly

to [17, Remark 9.4], we conclude that

lim
t→∞

w′(t)
w(t) − γ1/(p−1) = α∗

+ � −β,

which, after returning to the original variables and combined with (3.3), implies (3.4).
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If α∗
± are complex, then, similarly to in [17, p. 52], one can see that the trajectory

(x(t), y(t)) spirals infinitely many times around the attractor (γ, 0), which suggests that
the solutions Uλ oscillate in the sense of Theorem 3.1 (ii). The detailed proof of the
oscillation and instability of Uλ when α∗

± are complex is a particular case of a more
general Theorem 4.3, which will be proved in the next section. �

Remark 3.2. In the subcritical case p∗ < p � pS , (3.1) has no positive slow-decay
solution that satisfies (3.2). Indeed, if p = pS , then β = 0, Re(α∗

±) = 0 and the stationary
point (γ1/(p−1), 0) is a centre. One can show that the trajectory tangent at the origin
to the eigenvector (1, α+) is a homoclinic orbit. This homoclinic orbit corresponds to
an explicit one-parameter family of finite-energy solutions of (3.1) (see [19, pp. 253–
254]). If p∗ < p < pS , then β > 0, Re(α∗

±) > 0 and the stationary point (γ1/(p−1), 0) is
repelling. Hence, a heteroclinic between (γ1/(p−1), 0) and (0, 0) originates at (γ1/(p−1), 0)
and converges to (0, 0) tangentially to the eigenvector (1, α−). This heteroclinic orbit
corresponds to a positive solution of (3.1) that decays at infinity as O(|x|−ν∗−ν) and has
a singularity at the origin of order O(|x|−2/(p−1)).

4. Slow decay solutions in exterior domains

We first justify that the value of the non-existence exponent p∗ is sharp. The result,
which first appeared in [1, Remark 3.2], is an immediate consequence of Lemma 2.6.

Theorem 4.1. Let p � p∗. Equation (2.1) then has no slow-decay solutions in R
N \B̄R

for arbitrary R > 0.

Proof. Simply note that for p > p∗ one has that Cp−1
p,ν � 0 and, hence, the equation

(2.9) on the sphere does not have any positive solution. The conclusion then follows from
Lemma 2.6. �

Remark 4.2. If p > p∗ then the slow decay rate is incompatible with the upper bound
(2.8) of Lemma 2.5. This argument, however, does not apply when p = p∗.

Next we justify the sharpness of the stability and non-oscillation condition (2.3). The
result below extends the oscillation statement of Theorem 3.1 beyond the radial setting.
See also [20, Proposition 3.5] for related results in the pure Laplacian case ν = ν∗.

Theorem 4.3. Let p > pS , let ν > 0 and let pCp−1
p,ν > ν2. Let U∗ > 0 be a subsolution

of (2.1) such that

lim inf
|x|→∞

U∗(x)
|x|−2/(p−1) � Cp,ν . (4.1)

Then U∗ is unstable. Furthermore, if u > 0 is a supersolution of (1.1), then either u = U∗
or (u − U∗)− �= 0 in R

N \ B̄R, for arbitrary large R > 0.

Proof. From (4.1) we obtain that

pUp−1
∗ (x) � (ν2 + ε)|x|−2 (|x| > Rε)
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for some ε > 0 and Rε � R. Assume that U∗ is semistable, that is, there exists R > 0
such that (2.2) holds in R

N \ B̄R. But then we arrive at∫
|∇ϕ|2 dx + (ν2 − ν2

∗)
∫

ϕ2

|x|2 dx � (ν2 + ε)
∫

ϕ2

|x|2 dx ∀ϕ ∈ C∞
c (RN \ B̄Rε

),

a contradiction to Hardy’s inequality. We conclude that U∗ is unstable.
Furthermore, set h = u − U∗ and assume that h � 0 in R

N \ B̄R for some R > 1. By
convexity and (4.1) we then obtain that

−Δh +
ν2 − ν2

∗
|x|2 h � up − Up

∗ = (U∗ + h)p − Up
∗

� pUp−1
∗ h �

pCp−1
p,ν

|x|2 h � ν2 + ε2

|x|2 h (|x| > Rε). (4.2)

It is well known that such an inequation has no positive solutions (see [15, Corollary 3.2]).
We conclude that either h = 0 or h changes sign in R

N \ B̄Rε . �

Remark 4.4. The above result does not exclude the possibility that u < U∗ in an
exterior domain. The latter is, however, not possible in the case when both U∗ and u

are slow-decay solutions. In particular, since all the solutions Uλ satisfy (4.1), the above
result includes the oscillation statement (ii) of Theorem 3.1.

We next show that if the stability assumption (2.3) holds, then the slow-decay solutions
of (2.1) in exterior domains are well ordered in a certain sense. We consider the exterior
boundary-value problem for (2.1)

−Δu +
ν2 − ν2

∗
|x|2 u = up, u > 0 in R

N \ K,

u = ψ on ∂K,

⎫⎪⎬
⎪⎭ (4.3)

where K � {0} is a connected compact set with the smooth boundary ∂K, and ψ ∈
C(∂K) is a non-negative continuous function.

Theorem 4.5. Let p > pS , let ν > 0 and let pCp−1
p,ν � ν2. Let U∗ > 0 be a slow-decay

solution of (2.1) in R
N \ K such that, for some R > 0,

U∗(x) � U∞(x) (|x| > R)

holds. Given ψ ∈ C(∂K) such that

0 � ψ(x) � U∗(x) on ∂K,

problem (4.3) admits a slow-decay solution Uψ
∗ such that

0 < Uψ
∗ � U∗ in R

N \ K.

Moreover,

lim
|x|→∞

U∗(x) − Uψ
∗ (x)

|x|−ν∗
= 0. (4.4)
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Proof. We construct a subsolution U and a supersolution Ū such that

0 � U � Ū � U∗ and U = Ū = ψ on ∂K.

The existence of a solution Uψ
∗ between U and Ū then follows via the classical sub- and

supersolution argument (see [14, Theorem 38.1] or [4]).

Subsolution U . Let hψ > 0 be the minimal positive solution to the problem

−Δh +
ν2 − ν2

∗
|x|2 h = pUp−1

∗ h in R
N \ K, h = U∗ − ψ on ∂K. (4.5)

The existence of such a solution is ensured by the Lax–Milgram theorem: indeed, by the
assumptions

pUp−1
∗ (x) � pUp−1

∞ (x) � pCp−1
p,ν |x|−2 � ν2|x|−2. (4.6)

Hence, the corresponding quadratic form to (4.5) is coercive on the Sobolev space
D1

0(R
N \ K). Moreover, from Lemma 2.6 we conclude that given a large R > 0 there

exists m ∈ (0, ν2] such that

pUp−1
∗ (x) � m|x|−2 (|x| > R).

A standard application of the comparison principle for Hardy operators (see Lemma 2.5
and [15, Lemma A.8]) then implies the two-sided bound

c|x|α′
− � hψ � C|x|α∗

− (|x| > R),

where α∗
− is the smallest root of

−(α + ν∗ − ν)(α + ν∗ + ν) = pCp−1
p,ν

and α′
− is the smallest root of

−(α + ν∗ − ν)(α + ν∗ + ν) = m.

Note that 0 < m � pCp−1
p,ν � ν2, so both equations have real roots and

−ν∗ − ν < α′
− � α∗

− < −ν∗ < − 2
p − 1

.

Set
U := U∗ − hψ.

Then,

lim
|x|→∞

U(x)
U∗(x)

= 1,

and by convexity a direct computation shows that

−ΔU = Up
∗ − pUp−1

∗ hψ � (U∗ − hψ)p = Up in R
N \ K,

that is, U is the required subsolution. In addition,

lim
|x|→∞

U∗(x) − U(x)
|x|−ν∗

= lim
|x|→∞

hψ(x)
|x|−ν∗

= 0,

which implies (4.4).
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Supersolution Ū . Let ηψ > 0 be the minimal solution to the problem

−Δη +
ν2 − ν2

∗
|x|2 h = Up−1

∗ η in R
N \ K, η = U∗ − ψ on ∂K.

Note that Up−1
∗ � pUp−1

∗ . Hence, solution ηψ exists simply because (4.6) applies. More-
over, a comparison argument similar to the ones above shows that

0 < ηψ < hψ in R
N \ K.

Define
Ū := U∗ − ηψ.

Then,

lim
|x|→∞

Ū(x)
U∗(x)

= 1

and
−ΔŪ = Up−1

∗ (U∗ − ηψ) � (U∗ − ηψ)p−1(U∗ − ηψ) = Ūp in R
N \ K,

that is, Ū is the required supersolution. �

The next result shows that under suitable assumptions on the boundary data the
exterior problem (4.3) admits a continuum of distinct slow-decay positive solutions, which
in a certain sense could be interpreted as a perturbation of the family of slow-decay
solutions (Uλ)λ>0 constructed in Theorem 3.1.

Corollary 4.6. Let p > pS , let ν > 0 and let pCp−1
p,ν � ν2. Then, for every ψ ∈ C(∂K)

such that
0 � ψ(x) < U∞(x) on ∂K, (4.7)

problem (4.3) admits a continuum of distinct positive slow-decay solutions.

Proof. Consider the family of slow-decay solutions (Uλ)λ>0, constructed in Theorem
3.1. In view of (4.7) there exists λψ > 0 such that, for all λ > λψ,

0 � ψ(x) < Uλ(x) < U∞(x) on ∂K.

Let λ1 ∈ (λψ, ∞]. In Theorem 4.5, choose U∗ := Uλ1 and note that in view of (4.4) and
(3.4) the solution Uψ

λ1
given by Theorem 4.5 is distinct, with Uλ for any λ > λψ, or with

Uψ
λ2

for any λ2 > λψ, λ2 �= λ1. In such a way, we have obtained a family of distinct
slow-decay solutions (Uψ

λ )λ∈(λψ,∞]. �

Remark 4.7. In particular, if p > pS and pCp−1
p,ν � ν2, then the problem

−Δu +
ν2 − ν2

∗
|x|2 u = up in R

N \ K, u = 0 on ∂K (4.8)

admits a continuum of distinct positive slow-decay solutions (U0
λ)λ∈(0,∞]. This partially

extends the result in [6, Theorem 1], obtained in the pure Laplacian case ν = ν∗. Note,
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however, that in [6] the existence of a continuum of slow-decay solutions was proved
for the whole range of supercritical exponents p > pS , including the most challenging
unstable regime pCp−1

p,ν∗ > ν2
∗ . The techniques in [6] (see also [5] and a survey [7]) are based

on linearization and perturbation arguments combined with a sophisticated machinery
of harmonic expansions. Such considerations go beyond the scope of the present work.

Remark 4.8. In the pure Laplacian case ν = ν∗ it is known that if K is star shaped
with respect to ∞, then (4.8) has no positive solutions in the subcritical range 1 < p � pS

(see [18, Theorem 2]). This suggests that the non-uniqueness statement of Corollary 4.6
cannot be extended beyond the supercritical range of exponents.
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