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Abstract

We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry
over general fields F of characteristic zero as a normalised F-linear functional on F[α1,α2] that maps
polynomials that evaluate to zero on C to zero and is SO(2,F)-invariant. This allows us to not only build a
purely algebraic integration theory in an elementary way, but also give the super Catalan numbers

S(m, n) =
(2m)! (2n)!

m! n! (m + n)!

an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the
monomials α2m

1 α2n
2 .

2020 Mathematics subject classification: primary 12E05; secondary 05E14.
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1. Introduction

This is the second of our series of papers building an integration theory of polynomials
over unit circles over a general field F. The first paper [9] deals with the case where F
is finite of odd characteristic; the family of integers S(m, n) called the super Catalan
numbers and their closely related family of rational numbers Ω(m, n) called the
circular super Catalan numbers play a prominent role. These numbers are defined by

S(m, n) :=
(2m)! (2n)!

m! n! (m + n)!
, Ω(m, n) :=

S(m, n)
4m+n

and are indexed by two elements in N (the nonnegative integers including 0).
The super Catalan numbers were first introduced by Catalan [3] in 1874 and the first

modern study of these numbers was initiated by Gessel [7] in 1992. They generalise the
Catalan numbers cn since S(1, n) = 2cn. The integrality of S(m, n) can be observed from
the relation 4S(m, n) = S(m + 1, n) + S(m, n + 1) which yields the Pascal-like property
Ω(m, n) = Ω(m + 1, n) + Ω(m, n + 1).
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No combinatorial interpretation of S(m, n) is known for general m and n, in contrast
to over 200 interpretations of the Catalan numbers [12]. However, for m = 2, there
are some interpretations in terms of cubic trees by Pippenger and Schleich [10] and
blossom trees by Schaeffer [11], and when m = 2, 3, as pairs of Dyck paths with
restricted heights by Gessel and Xin [8]. When n = m + s for 0 ≤ s ≤ 3, Chen and
Wang showed that there is an interpretation in terms of restricted lattice paths [4].
There is also a weighted interpretation of S(m, n) as a certain value of Krawtchouk
polynomials by the work of Georgiadis et al. [6], and another in terms of positive and
negative 2-Motzkin paths by Allen and Gheorghiciuc [1].

The aim of this paper is twofold. The first is to build, in a rather elementary way,
a polynomial integration theory over circles in the Euclidean geometry over general
fields of characteristic zero without recourse to the usual Riemann integral and limiting
processes. We shall see that this allows us to give the super Catalan numbers a purely
algebraic interpretation, which is our second objective.

Here and throughout, F is a general field of characteristic zero with multiplicative
identity 1F or sometimes just 1 if the context is clear. We denote by F[α1,α2] the
algebra of polynomials in α1 and α2 over F with multiplicative identity 1. Our
algebraic integral over a circle C is a linear functional φ on F[α1,α2], called a circular
integral functional with respect to C, which satisfies three conditions: φ(1) = 1F
(Normalisation), φ(π) = 0 whenever π evaluates to the zero function on C (Locality)
and φ is rotationally invariant (Invariance).

When F = R, there is a well-known formula for the integral of polynomials on the
unit sphere Sn−1 (see [2] or [5]).

THEOREM 1.1. Let n ≥ 2 and Sn−1 denote the (n − 1)-dimensional unit sphere in Rn.
If μ is the usual rotationally invariant measure on Sn−1, then by writing bi =

1
2 (di + 1),

∫
Sn−1

xd1
1 xd2

2 · · · x
dn
n dμ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

Γ(b1 + b2 + · · · + bn)

n∏
i=1

Γ(bi) if each di is even,

0 otherwise.

We may obtain from Theorem 1.1, when n = 2, d1 = 2m and d2 = 2n, that

2Γ(b1)Γ(b2)
Γ(b1 + b2)

=
2Γ

(
m + 1

2
)
Γ
(
n + 1

2
)

Γ(m + n + 1)
= 2π

(2m)! (2n)!
4m+nm! n! (m + n)!

= 2πΩ(m, n).

So if the integral is normalised, we get just the circular super Catalan numbers.
In [9], we showed that the polynomial integration theory over a finite field of odd

characteristic is analogous to the F = R case, which we summarise in the next theorem.

THEOREM 1.2. Let p > 2 be a prime and q = pr for some r ∈ N. In the Euclidean
geometry over Fq with multiplicative identity 1q, the unit circle is defined by
S1 = {(x1, x2) ∈ F2

q : x2
1 + x2

2 = 1q}. Let k and � be any natural numbers for which
0 ≤ k + � < q − 1. Then the functional ψb,q on Fq[α1,α2] given by
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ψb,q(αk
1α

�
2) = −

(−1
p

)r ∑
(x1,x2)∈S1

xk
1x�2 =

⎧⎪⎪⎨⎪⎪⎩
Ω(m, n) mod p if k = 2m and � = 2n,
0 otherwise,

is the unique circular integral functional with respect to S1. Here (−1
p ) is the usual

Legendre symbol.

Now we present our main result. For a ∈ Q, we denote by a1F the embedding of a
in F. The unit circle S1 in this setting will be defined in the next section.

THEOREM 1.3. For any k, l ∈ N, the linear functional ψ on F[α1,α2] defined by

ψ(αk
1α

�
2) =

⎧⎪⎪⎨⎪⎪⎩
Ω(m, n)1F if k = 2m and � = 2n,
0 otherwise,

is the unique circular integral functional with respect to S1.

2. Circular integral functional

Denote by A = A(F) the two-dimensional affine plane {(x1, x2) : x, y ∈ F}, with the
objects (x1, x2) called points. The space FA consists of functions from A to F, and is
an F-algebra under pointwise addition and multiplication and with the evaluation map
ε : F[α1,α2]→ FA which is an algebra homomorphism. Clearly we may regard F[α1]
as a subalgebra of F[α1,α2]. Recall that any nonzero polynomial in F[α1] of degree d
has at most d roots.

The group GL(2, F) of invertible 2 × 2 matrices with entries in F left-acts on
F[α1,α2] as follows: if π = π(α1,α2), then

h · π =
(
h11 h12
h21 h22

)
· π := π(h11α1 + h21α2, h12α1 + h22α2). (2.1)

Additionally, GL(2, F) right-acts on A and left-acts on FA as follows:

(x1, x2) · h := (h11x1 + h21x2, h12x1 + h22x2),
(h · f )(x1, x2) := f ((x1, x2) · h) = f (h11x1 + h21x2, h12x1 + h22x2).

The group SO(2, F) of matrices h that satisfy h−1 = hT of determinant 1F is a
subgroup of GL(2, F) and is called the rotation group. The action of SO(2, F) on
F[α1,α2] is induced as the restriction of the action of GL(2, F) on F[α1,α2]. This
action respects evaluation: for any h ∈ SO(2, F) and π ∈ F[α1,α2],

ε(h · π) = h · ε(π). (2.2)

In a similar manner, we also get an action of SO(2, F) on A and FA.
We define a symmetric bilinear form onA, given by (x1, x2) · (y1, y2) := x1y1 + x2y2.

The associated quadratic form gives rise to the (Euclidean) unit circle

S1 = S1(F) := {(x1, x2) ∈ A : x2
1 + x2

2 = 1F}.
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LEMMA 2.1. Each point on S1 except (−1, 0) can be written as(1 − u2

1 + u2 ,
2u

1 + u2

)

for some u ∈ F such that 1 + u2 � 0. Consequently, S1 is an infinite set.

PROOF. The identity ((1 − u2)/(1 + u2))2 + (2u/(1 + u2))2 = 1F holds for all u ∈ F for
which u2 � −1. The line x2 = ux1 + u through the points (−1, 0) and (0, u) intersects S1

at exactly two points, (−1, 0) and ((1 − u2)/(1 + u2), 2u/(1 + u2)). Hence, every point
on S1 except (−1, 0) corresponds to exactly one u ∈ F for which u2 � −1. Since there
are infinitely many u ∈ F for which u2 � −1, S1 is an infinite set. �

COROLLARY 2.2. The rotation group SO(2, F) admits a parametrisation

SO(2, F) =
{

hu =
1

1 + u2

(
1 − u2 −2u

2u 1 − u2

)
: u ∈ F, u2 � −1

}
∪ {−I}.

We now introduce the central object of this paper: a linear functional on F[α1,α2]
that generalises normalised integration over the Euclidean unit circle over R. We say
that a linear functional φ : F[α1,α2]→ F is a circular integral functional on F[α1,α2]
with respect to S1 precisely when it satisfies the following three conditions.

(Normalisation) For the multiplicative identity 1 of F[α1,α2], we have φ(1) = 1F.

(Locality) If π ∈ F[α1,α2] such that ε(π) is the zero function on S1, then φ(π) = 0.

(Invariance) The functional φ is SO(2, F)-invariant: φ(h · π) = φ(π) holds for any
π ∈ F[α1,α2] and h ∈ SO(2, F).

3. Existence and uniqueness

Our strategy to prove Theorem 1.3 is divided into two main steps. First, we
show that ψ satisfies the Normalisation, Locality and Invariance conditions. Next,
we demonstrate that if such a circular integral functional F[α1,α2] with respect to
S1 exists, it is uniquely determined.

It is easy to see that the Normalisation condition holds. The next two lemmas are
needed to prove the Locality of ψ.

LEMMA 3.1. Both S1
x1
= {x2 ∈ F : (x1, x2) ∈ S1} and S1

x2
= {x1 ∈ F : (x1, x2) ∈ S1} have

infinitely many elements.

PROOF. For any (x1, x2) ∈ S1, we have that (x2, x1) ∈ S1, so S1
x1
= S1

x2
. If S1

x1
= S1

x2
is

finite, then so is S1
x1
× S1

x2
and consequently S1. This contradicts the fact that S1 is

infinite from Lemma 2.1. �

The crucial property of polynomials in F[α1,α2] that evaluate to the zero function
on S1 is that they must lie in 〈α2

1 + α
2
2 − 1〉, the ideal generated by α2

1 + α
2
2 − 1. We

offer an elementary proof below by using the multivariate polynomial division which
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requires a choice of monomial ordering. This has a flavour of Hilbert’s Nullstellensatz
which usually works over algebraically closed fields, although our argument does not
assume that F is an algebraically closed field.

LEMMA 3.2. If π ∈ F[α1,α2] satisfies ε(π) = 0 on S1, then π ∈ 〈α2
1 + α

2
2 − 1〉.

PROOF. Fix a monomial ordering � such that αk1
1 α

�1
2 � α

k2
1 α

�2
2 if either k1 < k2 or

k1 = k2 and �1 < �2. With respect to this ordering, any π ∈ F[α1,α2] can be written
as π = (α2

1 + α
2
2 − 1)π0 + α2ω + ρ for some π0 ∈ F[α1,α2] and ω, ρ ∈ F[α1].

Since π evaluates to the zero function on S1,

0 = ε(π)(x1, x2) = x2ε(ω)(x1, x2) + ε(ρ)(x1, x2) = x2ε(ω)(x1, 0) + ε(ρ)(x1, 0) (3.1)

for all (x1, x2) ∈ S1, where the last equation holds because ω, ρ ∈ F[α1]. Now con-
sider the set S1

∗ = {(x1, x2) ∈ S1 : x2 � 0} which is nonempty since (0, 1) ∈ S1
∗ . For

any (x1, x2) ∈ S1
∗ , the point (x1,−x2) ∈ S1

∗ is different from (x1, x2) so (3.1) forces
ε(ω)(x1, 0) = ε(ρ)(x1, 0) = 0 for all (x1, x2) ∈ S1. By Lemma 3.1,ω and ρ have infinitely
many roots, so they must be the zero polynomial. �

THEOREM 3.3 (Locality of ψ). The linear functional ψ satisfies the Locality condition.

PROOF. If π ∈ F[α1,α2] evaluates to the zero function on S1, then π ∈ 〈α2
1 + α

2
2 − 1〉

from Lemma 3.2. By linearity, it suffices to show that

ψ((α2
1 + α

2
2 − 1)αk

1α
�
2) = ψ(αk+2

1 α�2) + ψ(αk
1α

�+2
2 ) − ψ(αk

1α
�
2)

vanishes. Clearly it does if either k or � is odd, and if k = 2m and � = 2n, the right-
hand side simplifies to Ω(m + 1, n) + Ω(m, n + 1) −Ω(m, n) = 0 by the Pascal-like
property. �

Finally, to prove the Invariance of ψ, we need the following three lemmas.

LEMMA 3.4. For any h ∈ SO(2, F) and natural numbers k, �, each term of h · αk
1α

�
2 has

degree k + �.

PROOF. By using (2.1), h · αk
1α

�
2 = (h11α1 + h21α2)k(h12α1 + h22α2)�. Expanding this

using the binomial theorem, we see that the degree of each term is always k + �. �

LEMMA 3.5. For any natural numbers m and h ∈ SO(2, F), we have ψ(h · α2m
1 ) =

ψ(α2m
1 ) and ψ(h · α2m−1

1 α2) = ψ(α2m−1α2).

PROOF. The statement is obviously true for h = −I. Now for h = hu defined in
Corollary 2.2,

ψ(hu · α2m
1 ) =

2m∑
s=0

(
2m
s

)(1 − u2

1 + u2

)s( 2u
1 + u2

)2m−s
ψ(αs

1α
2m−s
2 ).
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However, since the odd indices do not contribute to the sum, we just need to consider
the even indices:

ψ(hu · α2m
1 ) =

m∑
s=0

(
2m
2s

)(1 − u2

1 + u2

)2s( 2u
1 + u2

)2m−2s
ψ(α2s

1 α
2m−2s
2 )

=

m∑
s=0

(
2m
2s

)
Ω(s, m − s)

(1 − u2

1 + u2

)2s( 2u
1 + u2

)2m−2s
1F

=
(2m)!

4mm! m!

m∑
s=0

(
m
s

)(1 − u2

1 + u2

)2s( 2u
1 + u2

)2m−2s
1F. (3.2)

Using the binomial theorem, (3.2) simplifies to

ψ(α2m
1 )

((1 − u2

1 + u2

)2
+

( 2u
1 + u2

)2)m
= ψ(α2m

1 )1F.

The proof that ψ(hu · α2m−1
1 α2) = ψ(α2m−1

1 α2) is more involved but done similarly. �

LEMMA 3.6. If π ∈ F[α1,α2] evaluates to the zero function on S1, then so does h · π
for any h ∈ SO(2, F).

PROOF. For an arbitrary h ∈ SO(2, F), the map (x1, x2) 
→ (x1, x2) · h is a bijection
on S1. Choose any (x1, x2) ∈ S1. Then (x1, x2) = (u1, u2) · h−1 for some (u1, u2) ∈ S1.
Using (2.2),

ε(h · π)(x1, x2) = (h · ε(π))(x1, x2) = ε(π)((x1, x2) · h) = ε(π)(u1, u2) = 0,

where the last equality follows from the assumption on π. Consequently, h · π evaluates
to the zero function on S1. �

THEOREM 3.7 (Invariance of ψ). The linear functional ψ satisfies the Invariance
condition.

PROOF. It is sufficient to show that ψ(h · αk
1α

�
2) = ψ(αk

1α
�
2) for any k, � ∈ N and

h ∈ SO(2, F). As before, the statement is obviously true for h = −I, so we will only
show that ψ(hu · αk

1α
�
2) = ψ(αk

1α
�
2). If k + � is odd, then by Lemma 3.4, each term of

hu · αk
1α

�
2 has an odd degree and therefore ψ(hu · αk

1α
�
2) = 0 = ψ(αk

1α
�
2).

The polynomial π = α2m
1 α2n

2 − α
2m
1 (1 − α2

1)n evaluates to the zero function on S1 and
therefore by Lemma 3.6,

ψ(hu · α2m
1 α2n

2 ) =ψ(hu · α2m
1 (1 − α2

1)n) =
n∑

s=0

(−1)s
(
n
s

)
ψ(hu · α2m+2s

1 ).

Now by Lemma 3.5, ψ(hu · α2m+2s
1 ) = ψ(α2m+2s

1 ) and therefore this lets us retrace the
steps:

ψ(hu · α2m
1 α2n

2 ) =
n∑

s=0

(−1)s
(
n
s

)
ψ(α2m+2s

1 ) = ψ(α2m
1 (1 − α2

1)n) = ψ(α2m
1 α2n

2 ),
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where in the last equality, we used the Locality of π again. The case when k and � are
both odd is treated similarly. The conclusion thus follows by the linearity of ψ. �

Next, we proceed to show that ψ is the only circular integral functional on F[α1,α2]
with respect to S1.

THEOREM 3.8 (Existence implies uniqueness). If φ is any circular integral functional
on F[α1,α2] with respect to S1, then φ is uniquely determined.

PROOF. By linearity, it suffices to show that φ(αk
1α

�
2) is uniquely determined for

any k, � ∈ N. Using the Invariance property with h = −I, we obtain φ(αk
1α

�
2) =

φ(−I · αk
1α

�
2) = (−1)k+�φ(αk

1α
�
2), so φ(αk

1α
�
2) = 0 whenever k + � is odd.

For m ≥ 1, another application of the Invariance property with h = hu from
Corollary 2.2 gives

φ(α2m
1 ) = φ(hu · α2m

1 ) =
1

(1 + u2)2m

2m∑
s=0

(
2m
s

)
(1 − u2)s(2u)2m−sφ(αs

1α
2m−s
2 ).

We multiply both sides by (1 + u2)2m and split the summation depending on the parity
of s to obtain

(1 + u2)2mφ(α2m
1 ) =

m∑
s=0

(
2m
2s

)
(1 − u2)2s(2u)2m−2sφ(α2s

1 α
2m−2s
2 )

+

m∑
s=1

(
2m

2s − 1

)
(1 − u2)2s−1(2u)2m−2s+1φ(α2s−1

1 α2m−2s+1
2 ). (3.3)

The two polynomials π1 = α
2s
1 α

2m−2s
2 − α2s

1 (1 − α2
1)m−s and π2 = α

2s−1
1 α2m−2s+1

2 −
α2s−1

1 (1 − α2
1)m−sα2 both evaluate to the zero function on S1 so by Locality,

φ(α2s
1 α

2m−2s
2 ) = φ(α2s

1 (1 − α2
1)m−s) =

m−s∑
t=0

(−1)t
(
m − s

t

)
φ(α2s+2t

1 ), (3.4)

φ(α2s−1
1 α2m−2s+1

2 ) = φ(α2s−1
1 (1 − α2

1)m−sα2) =
m−s∑
t=0

(−1)t
(
m − s

t

)
φ(α2s+2t−1

1 α2), (3.5)

respectively. By (3.4) and (3.5), (3.3) becomes

(1 + u2)2mφ(α2m
1 )

=

m∑
s=0

m−s∑
t=0

(−1)t
(
2m
2s

)(
m − s

t

)
(1 − u2)2s(2u)2m−2sφ(α2s+2t

1 )

+

m∑
s=0

m−s∑
t=0

(−1)t
(

2m
2s − 1

)(
m − s

t

)
(1 − u2)2s−1(2u)2m−2s+1φ(α2s+2t−1

1 α2).
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Now the following polynomial of degree at most 4m in F[β], namely

π = (1 + β2)2mφ(α2m
1 ) −

m∑
s=0

m−s∑
t=0

(−1)t
(
2m
2s

)(
m − s

t

)
(1 − β2)2s(2β)2m−2sφ(α2s+2t

1 )

−
m∑

s=0

m−s∑
t=0

(−1)t
(

2m
2s − 1

)(
m − s

t

)
(1 − β2)2s−1(2β)2m−2s+1φ(α2s+2t−1

1 α2),

has infinitely many roots, so π is identically zero. By extracting the coefficient of β and
β2, respectively we get 4mφ(α2m−1

1 α2) = 0 and 8m2φ(α2m
1 ) − 4m(2m − 1)φ(α2m−2

1 ) = 0.
Since m is arbitrary, for any m ≥ 1, we must have φ(α2m−1

1 α2) = 0 and the first-order
recurrence relation 2mφ(α2m

1 ) = (2m − 1)φ(α2m−2
1 ) with the initial condition φ(1) = 1F.

Thus, we see that φ(α2m
1 ) and φ(α2m−1

1 α2) are uniquely determined for all m ≥ 1.
Finally, by using the Locality condition again, both φ(α2m+1

1 α2n+1
2 ) and φ(α2m

1 α2n
2 )

are uniquely determined since

φ(α2m+1
1 α2n+1

2 ) = φ(α2m+1
1 (1 − α2

1)nα2) =
n∑

s=0

(−1)n
(
n
s

)
φ(α2m+2s+1

1 α2),

φ(α2m
1 α2n

2 ) = φ(α2m
1 (1 − α2

1)n) =
n∑

s=0

(−1)n
(
n
s

)
φ(α2m+2s

1 ).

This concludes the proof. �

4. Generalisation to arbitrary circles

Fix a point (a, b) ∈ A and a nonzero r ∈ F. We define S1
r,(a,b) to be the col-

lection of points (x1, x2) ∈ A such that (x − a)2 + (y − b)2 = r2. A linear functional
φr,(a,b) : F[α1,α2]→ F is a circular integral functional on F[α1,α2] with respect to
S1

r,(a,b) if the following conditions are satisfied.

(Normalisation) For the multiplicative identity 1 of F[α1,α2], we have φr,(a,b)(1) = r.

(Locality) If π ∈ F[α1,α2] such that ε(π) = 0 on S1
r,(a,b), we have φr,(a,b)(π) = 0.

(Invariance) For any π ∈ F[α1,α2] and h ∈ SO(2, F), φr,(a,b)(h · π) = φr,(a,b)(π).

By employing the same analysis, the existence and uniqueness of a circular integral
functional on F[α1,α2] with respect to S1

r,(a,b) can be derived from that of ψ.

THEOREM 4.1. There is one and only one circular integral functional on F[α1,α2]
with respect to S1

r,(a,b), given by

ψr,(a,b)(αk
1α

�
2) = rψ((a + rα1)k(b + rα2)�),

where ψ is the circular integral functional on F[α1,α2] with respect to S1.
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Now we are finally able to give an algebraic interpretation of the super Catalan
numbers S(m, n).

THEOREM 4.2 (An algebraic interpretation of S(m, n)). Over Q, for any m, n ∈ N, we
have 2S(m, n) = ψ2,(0,0)(α2m

1 α2n
2 ).

PROOF. The result follows immediately from Theorem 4.1 since

ψ2,(0,0)(α2m
1 α2n

2 ) = 2ψ((2α1)2m(2α2)2n) =
22m+2n+1

4m+n S(m, n)1Q = 2S(m, n). �
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