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Abstract

Background. Motor activity fluctuations in healthy adults exhibit fractal patterns character-
ized by consistent temporal correlations across wide-ranging time scales. However, these pat-
terns are disrupted by aging and psychiatric conditions. This study aims to investigate how
fractal patterns vary across the sleep–wake cycle, differ based on individuals’ recency of
depression diagnosis, and change before and after a depressive episode.
Methods. Using actigraphy from two cohorts (n = 378), we examined fractal motor activity
patterns both between individuals without depression and with varying recencies of depres-
sion and within individuals before and after depressive symptom recurrence. To evaluate frac-
tal patterns, we quantified temporal correlations in motor activity fluctuations across different
time scales using a scaling exponent, α. Linear mixed models were utilized to assess the influ-
ence of the sleep–wake cycle, (recency of) depression, and their interaction on α.
Results. Fractal activity patterns in all individuals varied across the sleep–wake cycle, showing
stronger temporal correlations during wakefulness (larger α = 1.035 ± 0.003) and more ran-
dom activity fluctuations during sleep (smaller α = 0.784 ± 0.004, p < 0.001). This sleep–wake
difference was reduced in recently depressed individuals (1–6 months), leading to larger α
during sleep (0.836 ± 0.017), compared to currently depressed (0.781 ± 0.018, p = 0.006),
remitted (0.776 ± 0.014, p < 0.001), and never-depressed individuals (0.773 ± 0.016, p <
0.001). Moreover, remitted individuals who experienced depressive symptom recurrence dur-
ing antidepressant tapering exhibited a larger α during sleep after the symptom onset as com-
pared to before (after: α = 0.703 ± 0.022; before: α = 0.680 ± 0.022; p < 0.001).
Conclusions. These findings suggest a link between fractal motor activity patterns during
sleep and depressive symptom recurrence in remitted individuals and those with recent
depression.

Introduction

Depressive disorders are increasingly prevalent mental health conditions that are linked to
reduced quality of life and increased morbidity and mortality (World Health Organization,
2019). As a leading cause of disability, depression increases the risks for cardiovascular disease,
hypertension, diabetes, dementia, and other chronic conditions (Byers & Yaffe, 2011; Kessler
et al., 2009). However, timely detection and treatment of depression remain challenging, espe-
cially in primary care settings where many individuals initially present with depressive symp-
toms (van Weel, van Weel-Baumgarten, & van Rijswijk, 2009), which often leads to untreated
cases and prolonged suffering for patients (Fernández et al., 2010). Thus, it is urgent to
improve the detection of depression in ambulatory settings (Smagula, 2016).

One barrier to timely intervention is the absence of objective and scalable measures for
assessing depression and its progression reliably (Campbell et al., 2018). Such measures
would be of great value not only for detecting a depressive episode but also for evaluating
the response to treatment. Recent advances in wearable devices, such as actigraphy, have trig-
gered the discussion about their utility in clinical research and practice (Inan et al., 2020).
However, effectively translating ambulatory recordings into meaningful clinical insights
remains a complex task due to the lack of robust algorithms and target variables resilient to
external influences (e.g. scheduled daily activities and environmental conditions) (Rykov,
Thach, Bojic, Christopoulos, & Car, 2021).
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Fractal physiology – an emerging field of medicine (Li et al.,
2017b) – offers potential approaches to addressing this challenge.
Outputs from healthy biological systems, including motor activity,
display fractal temporal fluctuations with similar temporal struc-
tures across different time scales (Hu, Scheer, Ivanov, Buijs, &
Shea, 2007). Independent of scheduled daily events and environ-
mental conditions, these fractal fluctuations, characterized by a
balance between randomness and excessive regularity, are believed
to reflect the system’s adaptability and integrity (Hu et al., 2004).
Supporting this concept in fractal physiology, fractal patterns were
found to be altered with aging and under pathological conditions,
in which systems become less adaptive to perturbations and more
vulnerable to catastrophic events (Pittman-Polletta, Scheer,
Butler, Shea, & Hu, 2013). For instance, fractal patterns in
human motor activity are degraded with aging, and the degrad-
ation is accelerated during the progression of Alzheimer’s disease
(Li et al., 2019b). Additionally, degraded fractal motor activity
fluctuations are linked to the neuropathology of Alzheimer’s dis-
ease (Gao et al., 2021) and precede many adverse health outcomes
such as dementia, disability, frailty, and mortality (Li et al.,
2019a).

The relationship between fractal activity patterns and depres-
sion remains unclear. A pilot study reported altered fractal activity
patterns between 10 AM and 4 PM in 10 individuals with major
depression as compared to 10 matched controls (Aybek et al.,
2012). Replication and further validation of the results require
studies of larger samples. In addition, no studies have examined
how fractal activity patterns vary in individuals with depression
across the sleep–wake cycle, and change across various recencies
of depression (i.e. current, recent, or remitted depression) or dur-
ing antidepressant tapering. Addressing these questions might
help determine the potential of using fractal activity patterns as
a diagnostic measure or early warning sign for a depression epi-
sode (Cramer et al., 2016).

To address these gaps, we studied motor activity recordings in
two cohorts: (1) the Netherlands Study of Depression and Anxiety
(NESDA) (Penninx et al., 2021) and (2) The TRANSitions In
Depression (TRANS-ID) Tapering study (Kunkels et al., 2023;
Smit et al., 2020). NESDA provides a large sample with different
recencies of a depression diagnosis (i.e. current, recent, or remit-
ted depression) and a group of never-depressed individuals, which
is suitable for between-subject comparisons. TRANS-ID provides
ultra-long motor activity recordings of remitted individuals when
tapering their antidepressant medication, which allows for exam-
ining within-subject changes during the tapering. Using the two
databases, we examined fractal activity patterns during sleep
and wakeful periods and tested two hypotheses: (1) fractal pat-
terns in motor activity are disrupted in individuals with
(a history of) depression, especially with more recent depression
diagnoses or symptom recurrence (NESDA: between-subject
approach, TRANS-ID: within-subject approach), and (2) fractal
activity patterns predict subsequent development of depressive
symptoms in remitted individuals (TRANS-ID: between-subject
approach).

Methods

Participants

We studied 378 individuals in the NESDA and TRANS-ID
cohorts.

NESDA is an ongoing multisite longitudinal cohort study
aimed at comparing individuals with varying recency of depres-
sion diagnoses. It included 2981 participants (18–65 years old)
with or without depressive and anxiety disorders who were
recruited from the community, primary care, and specialized
mental healthcare settings (Penninx et al., 2021). A subset of par-
ticipants from the Ecological Momentary Assessment &
Actigraphy sub-study (n = 384) who underwent actigraphy assess-
ment at the 9-year follow-up wave of NESDA (Difrancesco et al.,
2019) was used in this study. The inclusion process of the current
study is provided in Supplementary Material 1 (Fig. S1a). The
final sample (n = 327) consisted of four groups: 43 participants
with a depression diagnosis within the past month (‘current
depression’), 47 with a depression diagnosis within the past 6
months but not within the past 1 month (‘recent depression’),
151 with a depression history but no diagnosis within the last 6
months (‘remitted depression’), and 86 participants who never
had a depression diagnosis (‘never depressed’). These groups of
participants were used to determine the differences in fractal
activity patterns between individuals with different recencies of
depression and never-depressed participants (hypothesis 1).

TRANS-ID sample included 69 remitted individuals with
a past depressive episode who tapered their antidepressant medi-
cation during the study timeframe and were, therefore, at high
risk of developing depressive symptoms (Geddes et al., 2003).
The inclusion process of the current study is shown in
Supplementary Material 1 (Fig. S1b). We included 50 participants
with up to 4 months of actigraphy recording (Kunkels et al., 2023)
which included 1 month before the end of tapering and 3 months
after that (Smit et al., 2020). Such a design was chosen to capture
the time window when any depressive symptoms were most likely
to return (especially in the first month after tapering) (Smit,
Snippe, Bringmann, Hoenders, & Wichers, 2022).

Depression diagnosis and depressive symptom evaluation

In NESDA, depression diagnosis (MDD and/or dysthymia) was
based on DSM-IV criteria (Bell, 1994) and assessed with the
Composite International Diagnostic Interview (CIDI), version
2.1 (Wittchen, 1994). During a regular NESDA interview (sched-
uled no more than 31 days before the actigraphy assessment), the
CIDI assessment was conducted to determine participants’ previ-
ous and current depression status. Depression severity was
assessed with the self-reported 30-item Inventory of Depressive
Symptomatology (IDS) (Rush et al., 1996): a score of 0–13 for
no to mild, 14–25 for mild, 26–38 for moderate, and 39 or higher
for (very) severe depressive symptoms.

In TRANS-ID, depressive symptoms were assessed with the
Symptom Checklist (SCL)-90 depression subscale (Derogatis &
Unger, 2010). Participants filled out the questionnaires on their
smartphones weekly for 6 months (∼26 assessments per partici-
pant). Measurements started simultaneously with the actigraphy
assessment and continued for 2 months after the end of the
4-month actigraphy assessment. Depressive symptom recurrence
was identified using a combination of quantitative and qualitative
criteria (Smit et al., 2022). Quantitatively, recurrence was fulfilled
if there was a consistent increase in the Symptom Checklist-90
(SCL-90) depression subscale score over three consecutive
weeks, with an increase of 8.5 points or more from the average
score of the initial 2 weeks. The increase of at least 8.5 points
on the SCL-90 was based on the Reliable Change Index (RCI),
indicating the significant change at α = 0.05, calculated using
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the standard error of measurement (S.E.M. = 3.55 or 3.50)
(Arrindell & Ettema, 2003; Jacobson & Truax, 1991).
Qualitative criteria were assessed through participant self-reports
and researcher evaluations, using data from questionnaires, phone
calls, and interviews, which were independently rated by two psy-
chologists and one psychiatrist based on predefined guidelines.
Both quantitative and qualitative criteria needed to be met to con-
firm the incidence of ‘depressive symptom recurrence’. Upon
identifying a recurrence period, the timeline was segmented into
three phases: before, during, and after the onset. The period pre-
ceding the onset of recurrence was labeled ‘before the onset’, the
initial week of recurrence as ‘during the onset’, and the subse-
quent time window as ‘after the onset’. For individuals without
depressive symptom recurrence, the entire duration of actigraphy
monitoring was categorized as ‘before the onset’.

Actigraphy assessment and preprocessing

The motor activity of NESDA participants was monitored con-
tinuously for 14 days using the wrist-worn GENEActiv acceler-
ometer (Activinsights Ltd., Kimbolton, UK) (Pavey, Gomersall,
Clark, & Brown, 2016). This device captured three-axis acceler-
ation data sampled at 30 Hz, producing activity counts (AC) in
1 min epochs. Participants were instructed to wear the accelerom-
eter continuously throughout the day and night, removing it only
when safety concerns arose, such as during activities like sauna
sessions or contact sports. For the NESDA sample, the entire
14-day actigraphy monitoring period was used for analysis.

Raw data preprocessing was performed using Matlab version
R2021B, with detailed steps outlined in Supplementary Material
2. Calibration error was checked against local gravity, and abnormal
values and non-wear periods were identified and addressed.
Objective motor activity measures were then extracted, and AC
were calculated using a dedicated Matlab program (Supplementary
Material 3). Missing or invalid data, such as suspected non-wear
periods, were marked as ‘gaps’ and excluded from subsequent ana-
lyses. Only respondents with valid actigraphy data for a minimum of
five consecutive days were included (n = 327). Missing data ranged
from 0 to 76.2 h per person (0–22.7%), with the majority of partici-
pants experiencing minimal missing data.

The motor activity of TRANS-ID participants was monitored
continuously for 4 months using the MotionWatch 8
(CamNTech, UK). The device sampled tri-axis acceleration at
3–11 Hz and generated AC with an epoch length of 1 min, which
sampled tri-axis acceleration at 3–11 Hz and generated AC with
1min epochs. Similar to NESDA participants, TRANS-ID partici-
pants were instructed to wear the device continuously throughout
the day and night, with exceptions for safety-related situations
(Kunkels et al., 2023). In the TRANS-ID study, the full 4-month
monitoring period was used to capture long-term fluctuations
and patterns in motor activity. Thus, for participants who experi-
enced recurrence (n = 31), data before, during, and after the
onset of depressive symptoms were included. For the comparison
between individuals with and without a recurrence (n = 50), data
before the onset of depressive symptoms were used for those par-
ticipants with recurrence, while the entire actigraphy recording
was analyzed for those without recurrence.

Preprocessing of TRANS-ID data was conducted using the
native MotionWare software (v. 1.2.28). Due to battery limita-
tions, the MotionWatch 8 devices were replaced midway through
monitoring for each participant, and the resulting actigraphy files
were merged for analysis. Missing data periods were marked as

‘gaps’ and excluded from subsequent analyses, with no data
imputation performed. Only respondents with valid actigraphy
data for at least seven uninterrupted days were included (n =
50). Missing data varied from 0 to 675.7 h per person (0–24.1%;
median: 12.2 h or 0.4%; IQR: 110.5 h or 3.8%).

Sleep–wake schedule

Times of going to bed and waking up for each day were deter-
mined using actigraphy data (NESDA) or combining actigraphy
data and even markers (TRANS-ID). Based on the derived
sleep/wake schedules, each of the six non-overlapping 4 h seg-
ments in each day was assigned to one of four states: sleep, sleep–-
wake transition, wake, and wake–sleep transition.

This was accomplished through an algorithm developed by
Van Hees for sleep detection (Van Hees et al., 2015). To validate
these estimates, we compared them to the habitual sleep–wake
schedules reported on working and weekend days in the
Munich Chronotype Questionnaire (MCTQ) (Roenneberg,
Wirz-Justice, & Merrow, 2003). Adequate agreement was defined
as being within a ±1 h window. Any sleep estimates lacking this
agreement were excluded from the analysis, accounting for
20.8% of nights in total.

For TRANS-ID participants, we determined daily sleep–wake
patterns similarly, utilizing both actigraphy recordings and
event markers. Participants were instructed to use an event
marker to indicate when they attempted to fall asleep and when
they woke up. These markers, along with actigraphy data, were
analyzed using MotionWare software version 1.3.17.

Assessment of fractal activity patterns

To assess fractal activity patterns and their alterations, we per-
formed detrended fluctuation analysis (DFA) that quantifies the
temporal correlation property in motor activity fluctuations across
different time scales (Hu, Ivanov, Chen, Carpena, & Stanley,
2001). The DFA algorithm is implemented in the ezActi software
(Li, 2023), which was specifically designed for analyzing actigra-
phy data. The DFA algorithm includes five key steps: (i) integrat-
ing the AC after removing the global mean; (ii) dividing the
integrated signal into non-overlapping windows of the same
size with a given time scale (n); (iii) removing trends within
each window using second-order polynomial fitting; (iv) calculat-
ing the root mean square of residuals to obtain the fluctuation
amplitude F(n) at the time scale n. The four steps were repeated
across different time scales; and (v) obtaining a scaling exponent,
α, within a selected range of time scales by fitting the fluctuation
amplitude function with a power-law function: F(n)∼nα. α esti-
mates the temporal correlation in the activity fluctuations within
the timescale region: α = 0.5 indicates white noise (total random-
ness), α > 0.5 indicates positive correlations, where large AC are
more likely followed by large values and vice versa, α close to
1.5 indicates excessive correlations or ‘too regular’, and α around
1.0 indicates the most complex fluctuations (i.e. a balance between
randomness and excessive regularity). This study focused on α
within two distinct time-scale regions: <90 min (α1) and 2–8 h
(α2) that showed differential changes with aging and diseases
(Hu, Van Someren, Shea, & Scheer, 2009; Li et al., 2019b).

To examine the overall fractal regulation across both timescale
regions, weekly α1 and α2 were obtained for each participant by
performing the DFA using the data of the whole week.
Additionally, Δα, representing the difference between α1 and
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α2, was calculated to assess the overall breakdown of fractal activ-
ity regulation. A larger Δα indicates more disrupted fractal regu-
lation, which has been associated with greater neuronal loss in the
central circadian clock (Hu, Harper, Shea, Stopa, & Scheer, 2013).

To explore the variation of fractal activity patterns across the
sleep–wake cycle, α1 was obtained using a 4 h sliding window,
resulting in six α1 values per day. To ensure data quality, we
checked the goodness of fit (i.e. R2 of the power-law fit of
DFA-derived fluctuation amplitude function F(n)) and excluded
those 1-week exponents with fitting goodness less than 0.9 and
those 4 h exponents with fitting goodness less than 0.8 for wake-
fulness and less than 0.4 for sleep. In the NESDA dataset, 3 out of
1292 1-week exponents were excluded based on this criterion, and
2 out of 1549 1-week exponents were excluded from the
TRANS-ID dataset. Additionally, for the 4 h exponents, 305 out
of 27 587 were removed from the NESDA dataset, and 323 out
of 32 344 were removed from the TRANS-ID dataset.
Additionally, we calculated the standard deviation of α1 within
each day as another measure of sleep–wake variation (intra-daily
variation). Consequently, for each participant, five types of fractal
activity metrics were assessed: weekly α1, α2, and Δα, 4 h α1, and
intra-daily variation of α1.

Covariates

Demographics (sex, age, marital status) and socioeconomic status
(level of education, employment) were included in the analysis as
additional covariates (Farmer et al., 1988), as they are associated
with psychopathology and sleep (Droomers, Schrijvers, &
Mackenbach, 2001; Stamatakis, Kaplan, & Roberts, 2007).
Additionally, we controlled for the mean activity level, which is
known to correlate with depression and might contribute to
observed group differences (Burton et al., 2013). For each period
of interest, mean activity levels were estimated by averaging the
total AC recorded by the actigraphy device over the period.
Finally, we controlled for the frequency of zero AC, particularly
significant during nighttime, that could influence the assessment
of temporal correlations in activity fluctuations (Hu et al., 2001).

In the NESDA sample, antidepressant and benzodiazepine use
was based on drug container inspection, with medications classi-
fied according to the World Health Organization Anatomical
Therapeutic Chemical (ATC) coding system. Antidepressant
and benzodiazepine use were considered present if participants
reported usage exceeding 50% of the time (Difrancesco et al.,
2019).

Statistical analysis

We employed three statistical models to test our hypotheses.

Model A (between-subject comparison for hypothesis 1)
To determine differences in fractal activity patterns between the
groups with different recency of depression diagnosis and those
without depression history, we examined the data of the four
NESDA groups (i.e. never-depressed group, current, recent, and
remitted depression groups). We employed mixed ANOVA mod-
els in which fractal metrics (weekly α1, weekly α2, weekly Δα, 4 h
α1, and intra-daily variation in 4 h α1) served as outcomes, the
group as a fixed factor, and subject ID as a random intercept.
Adjustments were made for sex, age, education, mean activity
level, and the number of points with zero value representing
sleep/inactivity periods. Post-hoc analyses were performed to

determine the differences between each pair of groups. In the
models for 4 h α1, sleep/wake state and its interaction with the
group were included as fixed factors, with post-hoc analyses con-
ducted to explore group differences during sleep, wakefulness, and
the sleep–wake transitions.

Model B (within-subject comparison for hypothesis 1)
To examine within-subject alterations in fractal activity patterns
during the onset of a new depressive episode, we analyzed data
from remitted individuals in the TRANS-ID study who experi-
enced depressive symptom recurrence after antidepressant taper-
ing. Data were categorized into three stages: before, during, and
after the onset of depressive symptom recurrence. Mixed
ANOVA models were performed, with fractal metrics as out-
comes, depressive symptom recurrence stage as a fixed factor,
and subject ID as a random intercept. Sleep/wake state effects
and their interaction with the group were considered in models
for 4 h α1. Adjustments were made for sex, age, education,
mean activity level, and the number of points with zero value,
with post-hoc analyses conducted to compare differences between
each pair of stages.

Model C (between-subject comparison for hypothesis 2)
To determine whether euthymic fractal activity patterns predict
the development of subsequent depressive symptoms with anti-
depressant tapering (hypothesis 2), we used data from all remitted
individuals in the TRANS-ID study. For participants who devel-
oped depressive symptoms, only data preceding symptom onset
were included. Mixed ANOVA models were employed, treating
fractal metrics as outcomes and group (with or without subse-
quent depressive symptoms) as a fixed factor, with subject ID
as a random intercept. Sleep/wake state effects and their inter-
action with the group were considered in models for 4 h α1.
Adjustments were made for sex, age, education, mean activity
level, and the number of points with zero value. Post-hoc analyses
were conducted to compare recurrence status differences during
sleep and wakeful periods separately.

All statistical analyses were performed using JMP (Version 16,
SAS Institute Inc.), with statistical significance set at p < 0.05.

Results

Descriptive statistics of NESDA and TRANS-ID samples

Table 1a presents the demographic and clinical characteristics of
NESDA participants. Among the 327 individuals, the mean age
was 50.4 years (range 28–72), with 64.0% being female. No signifi-
cant differences were observed in sex, marital status, or benzodi-
azepine usage between depression groups and controls. However,
depressed individuals were more frequently unemployed, had
lower education levels, higher mean depressive symptom scores,
and a higher prevalence of psychotropic medication usage com-
pared to controls. Participants in the recent depression group
were younger compared to other groups. Assessment of depressive
symptom severity and psychotropic medication usage was con-
ducted up to 31 days prior to the actigraphy assessment.

Table 1b outlines the demographic and clinical characteristics
of TRANS-ID participants. Among the participants, 42 (84%)
were employed, 41 (82%) had a university education, and 40
(80%) were married or in a relationship. No significant differences
were noted in age, sex, education, relationship status, employ-
ment, or baseline SCL-90 score between individuals with and
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without depressive symptom recurrence. However, individuals
experiencing depressive symptom recurrence exhibited signifi-
cantly higher SCL-90 scores averaged across all weeks, compared
to those without recurrence. The average time to symptom recur-
rence after reaching the lowest antidepressant tapering dose was
44 days, ranging from 50 days before to 147 days after reaching
this dose. Notably, some participants experienced symptom
recurrence during tapering while still on a higher antidepressant
dose, achieving the lowest dose later in the tapering process.

Differences between individuals according to depression
recency (model A)

In NESDA participants, weekly mean α1 and α2 of all the groups
approached 1 (current depression: α1 = 1.039 ± 0.010, α2 = 0.888
± 0.017; recent depression: α1 = 1.055 ± 0.010, α2 = 0.851 ± 0.017;
remitted depression: α1 = 1.042 ± 0.007, α2 = 0.851 ± 0.013; con-
trols: α1 = 1.042 ± 0.009, α2 = 0.855 ± 0.015), indicating complex
activity fluctuations with positive temporal correlations. After
adjusting for covariates, no significant overall group differences
were observed in weekly α1, α2, and Δα ( p > 0.16). However,

the current depression group exhibited larger weekly α2 (0.888
± 0.017) compared to the remitted depression group (0.851 ±
0.013, post-hoc p = 0.032). The recent depression group had a
significantly larger Δα (0.204 ± 0.022) than the current depression
group (0.149 ± 0.022, post-hoc p = 0.041).

Analysis of 4 h windows showed that α1 was larger during
wakefulness (1.013 ± 0.008, suggesting a stronger temporal correl-
ation) than during sleep (0.792 ± 0.013, suggesting more random
fluctuations) ( p < 0.001) with variations across groups ( p = 0.080
for the interaction of group and sleep/wake) (Fig. 1). Specifically,
the recent depression group showed higher α1 during sleep
(0.836 ± 0.017) compared to controls (0.773 ± 0.016, post-hoc
p < 0.001), remitted depression (0.776 ± 0.014, post-hoc p < 0.001),
and current depression groups (0.781 ± 0.018, post-hoc p = 0.006).
No significant group difference in α1 was observed during wakeful-
ness and in intra-daily variation of α1 ( p > 0.1).

As a sensitivity analysis, we investigated the potential influence
of employment and marital status on observed group differences.
While employment was associated with lower α1 ( p = 0.001), con-
trolling for both factors did not alter group differences in sleep α1.
These differences also persisted after adjusting for education.

Table 1. NESDA (a) and TRANS-ID (b) sample characteristic

(a) NESDA

Current
depression

N = 43

Recent
depression

N = 47

Remitted
depression
N = 151

Never-depressed
N = 86 p value

Sex, female: n (%)a 29 (67.44) 32 (68.09) 100 (65.79) 49 (56.98) 0.465

Age, years: median (IQR)b 52 (15) 44 (18) 50 (23) 54 (22) 0.039

Employment, yes: n (%)a 15 (34.10) 21 (44.69) 97 (63.82) 47 (75.81) <0.001

Education, university: n (%)a 13 (30.23) 20 (42.55) 66 (43.42) 53 (61.63) 0.005

Marital status, married: n (%)a 22 (51.16) 14 (29.79) 77 (50.66) 35 (56.45) 0.061

IDS, score: median (IQR)b 35 (13) 15 (9) 12 (12) 5 (4) <0.001

Depression diagnosis present, assessment waves:
mean (S.D.)c

4.15 (1.00) 3.56 (1.31) 1.77 (0.93) – <0.001

Psychotropic medication, frequent, any: n (%)a 28 (65.12) 26 (55.32) 47 (30.92) 4 (4.65) <0.001

Antidepressants: n (%)a 21 (48.84)d 20 (42.55)d 28 (18.54) 0 (0) <0.001e

Benzodiazepines: n (%)a 3 (6.98) 2 (4.26) 8 (5.30) 0 (0) 0.153

(b) TRANS-ID
Recurrence group

N = 31 No recurrence group N = 19 p value

Sex, female: n (%)a 26 (83.87) 15 (78.95) 0.562

Age, years: median (IQR)f 49 (35) 46 (19) 0.220

Employment, yes: n (%)a 24 (77.42) 18 (94.74) 0.476

Education, university: n (%)a 27 (87.10) 14 (73.68) 0.095

Relationship, yes: n (%)a 25 (80.65) 15 (78.95) 0.628

SCL-90, all weeks, score: median (IQR)f 28 (12) 22 (10) <0.001

SCL-90, week 1, score: median (IQR)f 23 (11) 25 (10) 0.699

Symptom recurrence after antidepressants tapering, days: mean (min to max) 43.75 (−50g to 147) – –

IQR, interquartile range; IDS, Inventory of Depressive Symptomatology; SCL-90, Symptom Checklist.
aχ2 test.
bKruskal–Wallis test.
cANOVA.
dThere was no significant difference between the current and recent depression groups ( p > 0.05).
eComparison was done between the depression groups excluding the control group.
fWilcoxon test.
gNegative value means the lowest dose of antidepressants was taken after the recurrence of depressive symptoms.
Bold values indicate significant results (p < 0.05).
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Within-subject changes during depressive symptom recurrence
(model B)

Among TRANS-ID participants with depressive symptom recur-
rence, no significant differences were observed in weekly α1, α2,
or Δα across different periods (before, during, and after symptom
onset) ( p > 0.1).

Analysis of 4 h windows revealed a sleep–wake difference in
α1 consistent with that found in NESDA, i.e. α1 during
sleep (0.698 ± 0.022) was smaller than during wakefulness
(1.021 ± 0.021, p < 0.001). We found a significant interaction
between the sleep–wake difference and symptom recurrence
status ( p = 0.017) (Fig. 2) with sleep α1 increasing during the
week of symptom onset from 0.680 ± 0.022 before the onset to
0.711 ± 0.025 ( post-hoc p = 0.011) during the week of onset and

remaining elevated thereafter (0.703 ± 0.022, post-hoc p < 0.001),
with no significant changes during wakefulness ( p > 0.1).
Additionally, intra-daily variation of α1 was higher before
symptom onset (0.178 ± 0.012) compared to the week of onset
(0.169 ± 0.012, post-hoc p = 0.044).

Differences in euthymic fractal activity patterns between
remitted participants with and without subsequent depressive
symptom recurrence (model C)

Among TRANS-ID participants, those who later developed a
recurrence of depressive symptoms did not show significant dif-
ferences in fractal metrics before the onset of these symptoms
when compared to participants who did not experience any recur-
rence ( p > 0.1, Fig. 3 shows α1 only).

Discussion

This study aimed to explore fractal patterns in motor activity
fluctuations among individuals with different recency of depres-
sion diagnoses during both sleep and wakefulness. Our findings
revealed distinct alterations in fractal activity fluctuations during
sleep among participants with recent depression diagnoses
(within 1–6 months before actigraphy assessment) compared to
never-depressed, current depression, and remitted depression
individuals. We also observed changes in fractal activity patterns
during sleep among remitted participants experiencing a recur-
rence of depressive symptoms. However, we did not find differ-
ences in euthymic fractal activity patterns between remitted
individuals with and without subsequent recurrence of depressive
symptoms. These results suggest that changes in fractal activity
patterns during sleep may occur parallel to or following the
onset of depressive symptom recurrence, indicating a complex
interplay between motor activity, sleep–wake patterns, and
depression dynamics.

For the first time, we identified a sleep–wake difference in frac-
tal motor activity fluctuations among individuals diagnosed with
depression. Notably, Aybek et al. (2012) identified differences in

Figure 1. Sleep–wake difference in α1 for never-depressed and depression groups in
the NESDA sample.
Note: **p < 0.01; ***p < 0.001. The vertical comparison only shows the main effect of
wake v. sleep.

Figure 2. Sleep–wake difference in α1 for the remitted individuals with a clinically
relevant recurrence of depressive symptoms in the TRANS-ID sample.
Note: *p < 0.05; **p < 0.01; ***p < 0.001.

Figure 3. Sleep–wake difference in α1 for the remitted individuals before a recur-
rence of depressive symptoms in the TRANS-ID sample.
Note: ***p < 0.001.
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fractal motor activity patterns in individuals with depression;
however, our study further showed the changes in fractal patterns
across different stages of depressive episodes and across sleep and
wakefulness. While one might expect reduced activity correlations
or more random fluctuations during sleep due to suppressed
motor control, we found stronger temporal correlations during
sleep in individuals with recent depression and remitted indivi-
duals experiencing depressive symptom recurrence. This suggests
more ‘wake-like’ activity patterns during sleep in these indivi-
duals. Interestingly, this phenomenon could not simply reflect
increased nighttime awakenings as commonly reported in indivi-
duals with major depression (Medina, Lechuga, Escandón, &
Moctezuma, 2014), as our models were adjusted for mean activity
levels and inactivity duration during sleep. Furthermore, the
alterations did not seem related to transitional periods during
the sleep–wake cycle, as data around sleep onset and waking up
were excluded from the analysis.

The benefits of fractal regulation of motor activity may lie in its
role in promoting adaptability and resilience. Complex systems,
like the human body, thrive on variability and flexibility to respond
to internal and external challenges effectively (Pincus & Metten,
2010). Fractal motor activity patterns provide a balance between
randomness and regularity, allowing for effective adjustments to
changing conditions. The observed alterations in fractal activity
patterns during sleep may reflect adjustments in this balance
based on physiological and psychological conditions. Notably,
the ‘tilted balance’ during sleep in controls did not lead to total
randomness in motor activity fluctuations, indicating partially
active motor control during sleep or the active dynamic control
of sleep–wake stage transitions. The ‘wake-like’ activity patterns
observed during sleep in depression participants may offer new
insights into the effect of depression on sleep dynamics and
could be valuable for clinical assessment of depression progression.

Intriguingly, altered fractal activity patterns during sleep were
observed specifically in individuals with recent (1–6 months) but
not current depression diagnoses (within 1 month). This unex-
pected finding may be attributed to uncontrolled factors influen-
cing motor activity regulation, such as changes in food intake or
exercise, which could differ between groups (Li et al., 2017a).
Additionally, this discrepancy might be a chance finding or indi-
cative of a delayed effect of depression. Future studies are needed
to confirm these observations. Notably, previous research on the
same dataset reported differences in physical activity levels among
different recency groups (Minaeva et al., 2020), suggesting that
fractal activity patterns and physical activity levels offer comple-
mentary information about motor activity regulation during sleep.

Another notable observation was that the group with current
depression appeared to have more ‘favorable’ fractal activity pat-
terns across two time-scale regions (i.e. overall less disrupted frac-
tal activity patterns) than the group with recent depression. These
differences could not be attributed to variations in antidepressant
or benzodiazepine treatment frequency or dosage or the chron-
icity of depression diagnosis. It is plausible that the altered fractal
patterns in the recent depression group reflect a ‘recovery phase’
characterized by energy conservation and altered sleep structure
after a depressive episode (Borbély & Achermann, 1992; Webb,
1988). However, further research, preferably utilizing within-
subject designs, is needed to confirm these interpretations.

Similarly, the changes in fractal activity patterns during and
after the onset of depressive symptom recurrence in remitted par-
ticipants align with the hypothesized ‘delayed’ effect of depres-
sion. This is further supported by the absence of differences in

euthymic fractal patterns between individuals with and without
subsequent depressive symptoms. This dysregulation in motor
system dynamics during sleep may signify an allostatic overload
associated with previous depressive episodes (McEwen &
Karatsoreos, 2015), leading to the re-emergence of depressive
symptoms. The findings underscore the need for comprehensive
assessments of motor activity dynamics in understanding depres-
sion progression and recurrence.

Despite its strengths, including large sample size and long-
term actigraphy assessments, and both cross-sectional design
and within-subject design, our study has limitations. TRANS-ID
participants were not entirely symptom-free at baseline, poten-
tially affecting the detection of differences in fractal patterns
between different periods. Additionally, the TRANS-ID study,
primarily designed for detecting within-person changes, had a
relatively small sample size for between-subject comparisons.
Moreover, considering the heterogeneity of depression, the recent
and current depression groups may represent distinct subtypes,
each with unique underlying neurobiological processes
(Schrijvers, Hulstijn, & Sabbe, 2008). Alterations in fractal pat-
terns in motor activity might be more closely linked to specific
depression subtypes, such as melancholic or atypical depression
(Tonon et al., 2017). Although our study found no differences
between the recent and current depression groups based on mel-
ancholic or atypical IDS scales in NESDA, it is important to note
that these scales provide only an approximation and may not be
precise measures for identifying specific depression subtypes.
Furthermore, differences in actigraphy devices and algorithms
between the NESDA and TRANS-ID datasets prevented direct
comparisons, even though we were able to observe a similar pat-
tern. Finally, all calculations were conducted post-data gathering,
meaning real-time data collection and processing was not pos-
sible. Future research addressing these limitations is warranted
to further elucidate the mechanisms underlying changes in fractal
activity patterns associated with depression.

In conclusion, advances in wearable technology opened up
new possibilities for continuous and unobtrusive monitoring of
physiological signals, such as motor activity, over a longer period.
Harvesting information about depressive symptoms and their
recurrence during normal daily life via smartphones and wearable
devices could potentially provide low-cost, low-burden, yet
powerful tools, potentially facilitating remote medicine in indivi-
duals with depression. Fractal activity patterns may provide
unique insights into the relationship between depression and
motor activity control, independent of traditional behavioral mea-
sures. Incorporating fractal analysis into clinical practice could
facilitate timely diagnosis and treatment of depression, ultimately
improving patient outcomes.
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