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Abstract

Viruses present an amazing genetic variability. An ensemble of infecting viruses, also
called a viral quasispecies, is a cloud of mutants centered around a specific genotype.
The simplest model of evolution, whose equilibrium state is described by the qua-
sispecies equation, is the Moran–Kingman model. For the sharp-peak landscape, we
perform several exact computations and derive several exact formulas. We also obtain
an exact formula for the quasispecies distribution, involving a series and the mean fit-
ness. A very simple formula for the mean Hamming distance is derived, which is exact
and does not require a specific asymptotic expansion (such as sending the length of the
macromolecules to ∞ or the mutation probability to 0). With the help of these formu-
las, we present an original proof for the well-known phenomenon of the error threshold.
We recover the limiting quasispecies distribution in the long-chain regime. We try also to
extend these formulas to a general fitness landscape. We obtain an equation involving the
covariance of the fitness and the Hamming class number in the quasispecies distribution.
Going beyond the sharp-peak landscape, we consider fitness landscapes having finitely
many peaks and a plateau-type landscape. Finally, within this framework, we prove rig-
orously the possible occurrence of the survival of the flattest, a phenomenon which was
previously discovered by Wilke et al. (Nature 412, 2001) and which has been inves-
tigated in several works (see e.g. Codoñer et al. (PLOS Pathogens 2, 2006), Franklin
et al. (Artificial Life 25, 2019), Sardanyés et al. (J. Theoret. Biol. 250, 2008), and Tejero
et al. (BMC Evolutionary Biol. 11, 2011)).
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1. Introduction

Some viruses are very hard to fight because of their genetic diversity: they mutate constantly
and this allows them to escape the attacks of the immune system of their host. At the same
time, the genotypes of an infecting population of viruses are strongly correlated; they look like
a cloud of mutants centered around a specific genotype. This population structure, called a
quasispecies, can be observed experimentally for viruses (in vivo studies have been conducted
for HIV [17] and the hepatitis C virus [12]). Nowadays, deep sequencing techniques make it
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2 M. BERGER AND R. CERF

possible to collect data on the structure of viral quasispecies. Yet the various biological mech-
anisms involved in the creation and evolution of quasispecies are far from being understood
(see [8] for a recent review or the book [9] for a more comprehensive account). The design of
simple mathematical models of quasispecies may be helpful in developing efficient antiviral
therapies. In principle, a quasispecies can occur in any biological population whose evolution
is driven by mutation and selection. In the next subsection, we present a very simple model
for the evolution of a population under mutation and selection. We then write the equations
describing the equilibrium of this model, thereby recovering directly the quasispecies equa-
tions associated with the equilibrium of Eigen’s model. All the results presented afterwards
concern the solutions of these equations.

1.1. The quasispecies equations

We consider a population of haploid individuals evolving under the conjugate effects of
mutation and selection. We suppose that the population has reached an equilibrium around a
specific well-adapted individual, called the wild type, and denoted by w∗. Individuals repro-
duce, yet the reproduction mechanism is error-prone, and mutations occur constantly. These
mutations drive the genotypes away from w∗. Yet w∗ has a selective advantage because it
reproduces faster.

We would like to characterize this kind of equilibrium mathematically. We denote by E the
set of possible genotypes, which we assume to be finite. Generic elements of E are denoted
by the letters u, v. The Darwinian fitness of an individual having genotype u is denoted by
f (u); it can be thought of as its mean number of offspring. In addition, mutations occur in
each reproduction cycle: an individual of type u might appear as the result of mutations from
offspring of other types. Let us denote by M(v, u) the probability that the offspring of an
individual of type v is of type u. For simplicity, we will assume that all the coefficients of the
mutation matrix M are positive. Of course, we have

∀ v ∈ E
∑
u∈E

M(v, u) = 1.

We introduce next the linear model, one of the simplest models for the evolution of a popu-
lation with selection and mutation. We suppose that the successive generations do not overlap,
and we denote by Nn(u) the number of individuals of type u in generation n. The linear model
assumes that an individual of type v produces a number of offspring proportional to its fitness
f (v), and that a proportion M(v, u) of the offspring mutates and becomes of type u; thus Nn+1(u)
is given by the formula

∀ u ∈ E Nn+1(u) =
∑
v∈E

Nn(v)f (v)M(v, u).

The trouble with this formula is that the sum is not necessarily an integer. A natural way
to circumvent this problem is to develop stochastic population models, in such a way that the
above formula describes the evolution of the mean number of individuals. The archetype of this
kind of model is the Galton–Watson branching process. If we introduce in addition a constraint
on the total size of the population, then we arrive at the classical Wright–Fisher model. Yet the
randomness adds an extra layer of complexity; stochastic models are considerably harder to
study. Another, simpler, possibility is to consider the proportion of each type of individual
in the population, instead of the number, as Moran and Kingman did in the late seventies
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[16, 18]. Let us denote by xn(u) the proportion of individuals of type u in generation n. The
model proposed by Moran is given by

∀ u ∈ E xn+1(u) =
∑

v∈E xn(v)f (v)M(v, u)∑
v∈E xn(v)f (v)

.

The denominator has been chosen to ensure that
∑

u∈E xn+1(u) = 1. In fact, this model consists
in iterating a deterministic map on the function encoding the proportion of each type present
in the population. The possible equilibria of the model correspond to the fixed points of this
map, that is, the solutions of the following equations:

∀ u ∈ E x(u)
∑
v∈E

x(v)f (v) =
∑
v∈E

x(v)f (v)M(v, u) (1.1)

subject to the constraint

∀ u ∈ E x(u) ≥ 0 ,
∑
u∈E

x(u) = 1. (1.2)

We call these equations the quasispecies equations. They also characterize the equilibrium in
the model originally developed by Eigen [10], which led to quasispecies theory. Some of our
results are derived for the general quasispecies equations (1.1). To go further, we will focus on
a particular choice of the set of genotypes E and of the mutation matrix M. For both practical
and historical reasons, we make the same choice as Eigen and Schuster [11], which leads to
the sharp-peak landscape.

Genotypes. We consider the different genotypes to be sequences of length � ≥ 1 over an alpha-
bet A of cardinality κ ≥ 1. Standard examples are A= { 0, 1 }, κ = 2, E = { 0, 1 }�, for binary
sequences, and A= { A, C, G, T }, κ = 4, E = { A, C, G, T }�, to model DNA molecules. The
ith component of a genotype u is denoted by u(i). The Hamming distance d counts the number
of differences between two sequences:

∀ u, v ∈ E d(u, v) = card
{

1 ≤ i ≤ � : u(i) �= v(i)
}
.

When we wish to work with the simplest model, we use binary sequences. When we seek to
state a more general result, we use sequences over a finite alphabet.

Mutations. We suppose that mutations happen independently along the sequence with prob-
ability q ∈ ]0, 1[ , and that, upon mutation, a new letter of the alphabet is chosen with equal
probability. For u, v ∈ E, the mutation probability M(u, v) is given by

M(u, v) =
( q

κ − 1

)d(u,v)
(1 − q)�−d(u,v). (1.3)

The final ingredient needed to completely specify the model is the fitness function. We will
consider different types of fitness functions in the following subsections. For the initial models,
for which the fitness function is quite simple, we work with the genotype space E =A� where
A is a finite alphabet. For the more complicated fitness landscapes considered at the end, which
contain a kind of plateau, we work with the genotype space of binary sequences E = { 0, 1 }�.
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4 M. BERGER AND R. CERF

1.2. The sharp-peak landscape

Ideally, we would like to have explicit formulas for x in terms of f and M. Unfortunately,
there is little hope of obtaining such explicit formulas in the general case. So we consider the
simplest non-neutral fitness function which comes to mind, the sharp-peak landscape: there is
a privileged genotype, w∗, referred to as the wild type, which has a higher fitness than the rest.
We work with the genotype space E =A� where A is a finite alphabet of cardinality κ . Let
σ > 1, and let the fitness function fSP be given by

∀ u ∈ E fSP(u) =
⎧⎨
⎩

σ if u = w∗ ,

1 if u �= w∗ .
(1.4)

This is the fitness function that Eigen studied in detail in his article [10]. Despite its apparent
simplicity, this model leads to interesting mathematical questions, and it provides new insight
into the genetic structure of a population. Eigen and Schuster [11] discussed the sharp-peak
landscape (which is fully presented in Section 2.2) with the help of approximation techniques
and in a specific asymptotic regime. We present here a new approach, which is more elemen-
tary. The sharp-peak landscape is studied in detail in Section 2. We perform several exact
computations and derive several exact formulas. In particular, we obtain a remarkable equation
for the mean fitness λ at equilibrium, which was previously discovered by Bratus et al.; see
the formulas 5.5 and 5.6 in [3]. We state next a probabilistic version of this formula. Let S� be
a random variable with distribution the binomial law with parameters � and (κ − 1)/κ . Let E
denote the expectation; then the mean fitness λ at equilibrium satisfies

1

σ − 1
= E

(
1

λ

ρS�
− 1

)
, (1.5)

where we have set

ρ = 1 − κq

κ − 1
. (1.6)

Bratus et al. exploited this equation to derive rigorous bounds on the mean fitness, but this
formula has wider applications. Furthermore, in Section 2.4 we obtain an exact formula for the
quasispecies distribution, involving a series and the mean fitness. A very simple formula for
the mean Hamming distance is derived, which is exact and which does not require a specific
asymptotic expansion, such as sending the length of the macromolecules to ∞ or the mutation
probability to 0 (recall that the Hamming distance between two sequences is the number of
sites where they differ). The mean Hamming distance Q in the quasispecies distribution can
be interpreted as the mean number of ones in a genotype at equilibrium, and the formula is

Q = �q λ

λ − ρ
, (1.7)

where λ is the mean fitness of the population (here we assume that the wild type is the genotype
(0, . . . , 0) and the Hamming distances are computed with respect to the wild type).

We stress that all the formulas obtained in Section 2 are exact and hold for a fixed value
of the length �. In the next subsection and in Section 3, we perform asymptotic expansions of
these formulas in the long-chain regime.
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1.3. The error threshold

We shall demonstrate that the quasispecies equations for the sharp-peak landscape undergo
a phenomenon similar to a phase transition. This is a classical and well-known result. However,
we adopt an original approach for the proof; indeed, we will show that it follows easily from
Equation (1.5). Furthermore, with the help of the exact formulas derived in Section 2.4, we
recover the limiting quasispecies distribution in the long-chain regime in Section 3.3.

We consider the asymptotic regime, called the long-chain regime, where

� → +∞ , q → 0 , �q → a ∈ [0, +∞]. (1.8)

The parameter a is in fact the asymptotic mean number of observed mutations per individual
in each reproduction cycle. We denote by λ the mean fitness at equilibrium and by x(w∗) the
proportion of the wild type w∗ in the population at equilibrium.

Theorem 1. (Error threshold.) For the sharp-peak landscape, we have the following
dichotomy:

• If a > ln σ , then λ → 1, whence x(w∗) → 0.

• If a < ln σ , then λ → σe−a > 1, and

x(w∗) → σe−a − 1

σ − 1
.

Thus the limit of the proportion x(w∗) of the wild type present in the population is positive
only if σe−a > 1, or equivalently, if asymptotically q < �−1 ln σ . The value

q∗ = ln σ

�

is the error threshold, described by Eigen as the critical mutation rate above which the wild
type w∗ disappears from the population. Whenever the occurrence of mutations is negligible
compared to the sequence length, that is, for a = 0, we have x(w∗) = 1 and the only genotype
present in the population is the wild type w∗. In the presence of a small number of mutations,
that is, for a > 0, genetic diversity is constantly reintroduced in the population and there is
a positive proportion of genotypes that differ from w∗. Yet most of the genotypes are very
close to the wild type w∗. In fact, the population looks like a cloud of mutants centered around
the wild type. As the mutation rate q is raised, the proportion of the wild type w∗ present in
the population decreases. When q reaches the error threshold, the wild type disappears from
the population. More precisely, the proportion of the wild type becomes comparable to the
proportions of the other genotypes. This is the error catastrophe: the selective advantage of the
wild type w∗ is annihilated by the mutations.

This kind of equilibrium was discovered within the framework of Eigen’s model and was
called a quasispecies [10, 11], as opposed to a species, which refers to a homogeneous solu-
tion in chemistry. In fact, Eigen’s model is a model for the evolution of a population of
macromolecules governed by a system of chemical reactions, and the laws of kinetics yield a
differential system of equations whose equilibrium is described by the quasispecies equation.
This system was historically analyzed with approximation and expansion techniques, which in
the asymptotic regime (1.8) led to the discovery of the error threshold.

Although the original goal of Eigen was to understand the first stages of life on Earth, the
notion of quasispecies and the error threshold had a profound impact on the understanding
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6 M. BERGER AND R. CERF

of molecular evolution [8]. Indeed, many living organisms seem to satisfy approximately the
scaling relation

mutation rate ∼ 1

genome length
.

Unfortunately, for complex creatures, it is very difficult to estimate the mutation rate, which is
usually extremely small. Viruses, however, have a rather high mutation rate, and the orders of
magnitude of their genome length and their mutation rate are compatible with this scaling law.
Moreover, some RNA viruses, such as HIV, evolve with a high mutation rate which seems to
be close to an error threshold [8]. Why is that so?

In order to survive, a virus must achieve two goals. First, its genetic information must be
preserved from one generation to another; hence its mutation rate has to be below the error
threshold. Second, it has to escape the attacks of the immune system of its host, and to do so, it
should mutate as fast as possible. The most efficient strategy is therefore to adjust the mutation
rate to the left of the error threshold: this will achieve simultaneously a huge genetic variability,
and the preservation of the pertinent genetic information across generations. Some promising
antiviral strategies, called lethal mutagenesis, consist in using mutagenic drugs which slightly
increase the mutation rate of the virus in order to induce an error catastrophe [1, 7, 8].

Most of the rigorous mathematical analysis of Eigen’s model deals with the sharp-peak
landscape, or with landscapes presenting a lot of symmetries (see [2] for the analysis of a
permutation-invariant fitness landscape and [4] for a review of the literature).

1.4. Extension to a general landscape

We try to extend the formulas obtained in Section 2 to a general fitness landscape. Here we
work with the genotype space E =A� where A is a finite alphabet of cardinality κ . We make
the following hypothesis on the fitness function f .

Hypothesis 1. The fitness function f is larger than or equal to 1, and it is not identically equal
to 1.

In Theorem 2, we obtain an interesting equation involving the covariance of the fitness
and the sum of an arbitrary function g over the letters of the sequences in the quasispecies
distribution. This formula is a considerable generalization of the formula (1.7).

Theorem 2. Let A be a finite alphabet of cardinality κ and let E =A�. Let g be a function
defined on A with values in R, and let G : E →R be defined by

∀u ∈ E G(u) =
�∑

i=1

g(u(i)).

For any fitness function f over the genotype set E which is larger than or equal to 1, and which
is not identically equal to 1, we have

f G = ρ fG + �(1 − ρ)f g, (1.9)

where ρ is given in (1.6) and

fG =
∑
u∈E

f (u) G(u) x(u) , g = 1

κ

∑
a∈A

g(a) ,

f =
∑
u∈E

f (u)x(u) , G =
∑
u∈E

G(u)x(u) .
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Let us look at the specific case of the sharp-peak landscape. We take κ = 2, E = { 0, 1 }�,
and the fitness function defined in the formula (1.4). For the function g, we take the identity
function on { 0, 1 }, so that, for any u ∈ E, the value G(u) is simply the Hamming class of u
(that is, the number of ones present in u). In particular, we have fG = G and g = 1/2, so that
the formula (1.9) becomes

f G = ρ G + �

2
(1 − ρ)f , (1.10)

which is precisely the formula (1.7) that we obtained previously in this context. We can also
consider the neutral case. If the fitness function is constant, then the quasispecies distribution
is in fact the uniform distribution over the genotype space, so that G = �/2, and the above
relation (1.10) still holds. This is not too surprising, because it amounts to the case where the
fitness σ of the wild type w∗ is equal to 1.

The proof of Theorem 2 is given in Section 4, where we also perform several useful compu-
tations valid for a general state space E. The various formulas obtained in Section 4 shed new
light on the classical phenomenon of the error threshold and the notion of quasispecies, which
are discussed in Section 3.2. Finally, in Section 4, we outline a robust strategy for analyz-
ing more general fitness landscapes. This strategy will be used to study the fitness landscapes
introduced in the following subsections.

1.5. Finitely many peaks

Now that we have thoroughly understood the case of the sharp-peak landscape, we are
ready to consider more complex landscapes. Here we work with the genotype space E =A�

where A is a finite alphabet of cardinality κ . We make the following hypothesis on the fitness
function f .

Hypothesis 2. There exist a fixed integer k and k fixed values σ1, . . . , σk such that the following
holds: for any values of �, q, there exist k peaks w∗

1, · · · , w∗
k in E (whose locations may vary

with � and q) such that the fitness function fFP is given by

∀ u ∈ E fFP(u) =
⎧⎨
⎩

σi if u = w∗
i , 1 ≤ i ≤ k ,

1 otherwise .
(1.11)

We consider again the long-chain regime

� → +∞ , q → 0 , �q → a ∈ [0, +∞].

To simplify the proofs, we suppose that a < +∞. Indeed, the case a = +∞ should be
considered separately. We shall prove the following theorem.

Theorem 3. (Error threshold for finitely many peaks.) Let us set

σ = max
1≤i≤k

σi.

Let λFP(�, q) be the mean fitness for the model associated with the fitness function fFP and the
parameters �, q. We have the following dichotomy:

• If a > ln σ , then λFP(�, q) → 1.

• If a < ln σ , then λFP(�, q) → σe−a > 1.
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8 M. BERGER AND R. CERF

We see that the situation is very similar to the case of the sharp-peak landscape. The critical
parameter depends now on the fitness of the highest peak. The conclusion is that, when there
are finitely many peaks, the lower peaks do not really interfere with the highest peak. Two
proofs of Theorem 3 are presented in Section 5.

1.6. Plateau

We have seen that a finite number of small peaks do not interact significantly with the high-
est peak. We consider here a fitness landscape which contains a kind of plateau, that is, a large
subset of genotypes having a fitness σ > 1. More precisely, we consider the genotype space
of binary sequences E = { 0, 1 }� and the usual mutation kernel M. To simplify the formulas,
we suppose that the length � is even. The Hamming class number H(u) of u ∈ { 0, 1 }� is the
number of ones present in u, that is,

H(u) =
∑

1≤i≤�

u(i).

We consider the fitness function fPL defined as follows.

Hypothesis 3. The fitness function fPL is given by

∀ u ∈ { 0, 1 }� fPL(u) =
⎧⎨
⎩

σ if H(u) = �/2 ,

1 otherwise .
(1.12)

The plateau associated with the fitness function fPL(u) consists of the sequences having
�/2 zeroes and �/2 ones. In particular, it contains sequences which are very far away in the
Hamming distance. This might go against the intuitive notion of a plateau, especially in low-
dimensional spaces, where we would usually take for a plateau a closed neighborhood around
a fixed connected set. However, our goal is to find a subset of { 0, 1 }� which is very stable
with respect to mutations, and the plateau of fPL(u) is the simplest example of such a set. We
could also modify this set so that it is closer to our intuition of a plateau, by adding to it all
the sequences which are at Hamming distance less than

√
� from it. All the results presented

here and in the subsequent section would hold for this larger set as well (but the proofs would
become more complicated).

We consider again the long-chain regime with a finite:

� → +∞ , q → 0 , �q → a ∈ [0, +∞[.

Theorem 4. Let λPL(�, q) be the mean fitness for the model associated with the fitness function
fPL and the parameters �, q. For any a > 0, we have

lim
�→∞, q→0

�q→a

λPL(�, q) = λ(a, σ ) ,

where λ(a, σ ) is the unique real number λ > 1 such that

1

σ − 1
=
∑
n≥1

e−an

λn

∑
k≥0

(an)2k

22k(k!)2
. (1.13)

The situation for the fitness landscape fPL with the huge plateau is very different from the
sharp-peak landscape. Indeed, the error threshold phenomenon described in Theorem 1 does
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not occur, and there is no phase transition in the long-chain regime. It turns out that, if we shift
the plateau away from �/2, then an error threshold phenomenon reappears. We consider the
fitness function fPL defined as follows.

Hypothesis 4. Let σ > 1 and α ∈ [0, 1]. The fitness function fPL is given by

∀ u ∈ { 0, 1 }� fPL(u) =
⎧⎨
⎩

σ if H(u) = �α�
 ,

1 otherwise ,
(1.14)

where �α�
 is the integer part of α�.

The cases α = 0 and α = 1 correspond in fact to the sharp-peak landscape, which has already
been studied. We shall therefore exclude these cases.

Theorem 5. Suppose that α �∈ { 0, 1/2, 1 }. Let λPL(�, q) be the mean fitness for the model
associated with the fitness function fPL and the parameters �, q. There exist two positive values
a1

c(σ, α) ≤ a2
c(σ, α) such that the following holds: if a ≥ a2

c(σ, α), then

lim
�→∞, q→0

�q→a

λPL(�, q) = 1.

If a < a1
c(σ, α), then

lim inf
�→∞, q→0

�q→a

λPL(�, q) > 1.

Of course, it would be more satisfactory to know that a1
c(σ, α) = a2

c(σ, α). This would be
a consequence of the monotonicity of the function φα(a) defined in (6.14); unfortunately this
fact does not seem so obvious.

The proofs of Theorems 4 and 5 are presented in Section 6. The reason underlying these
two results is the following. In the neutral fitness landscape, the most likely Hamming class is
already the class �/2. By installing a plateau precisely on this Hamming class, we reinforce its
stability. When we shift the plateau away from the Hamming class �/2, we create competition
between two Hamming classes, and this leads to the occurrence of a phase transition.

1.7. Survival of the flattest

We finally prove rigorously within our framework the possible occurrence of the survival of
the flattest, a phenomenon previously discovered by Wilke et al. [21], which has been investi-
gated in several works (see e.g. [6, 14, 19, 20]). We now state the precise mathematical result
we obtain. Here we will combine the sharp-peak landscape with a plateau. We consider the
genotype space of binary sequences E = { 0, 1 }� and the usual mutation kernel M, with the
following fitness function. To simplify the formulas, we suppose that the length � is even.

Hypothesis 5. Let δ, σ ≥ 1 and let fSP/PL be the fitness function given by

∀ u ∈ { 0, 1 }� fSP/PL(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ if u = 0 · · · 0 ,

σ if u contains �
2 zeroes and �

2 ones ,

1 otherwise .

(1.15)
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10 M. BERGER AND R. CERF

Theorem 6. Let a > 0, and let λ(a, σ ) be the unique real number λ > 1 such that

1

σ − 1
=
∑
n≥1

e−an

λn

∑
k≥0

(an)2k

22k(k!)2
. (1.16)

Let λSP/PL(δ, σ, �, q) be the mean fitness for the model associated with the fitness function
fSP/PL and the parameters �, q. We have the following convergence in the long-chain regime:

lim
�→∞, q→0

�q→a

λSP/PL(δ, σ, �, q) = max
(
δe−a, λ(a, σ )

)
.

Let us denote by y(0) the fraction of the sequence 0 · · · 0 in the population at equilibrium, and
by y(�/2) the fraction of the sequences having �/2 zeroes and �/2 ones in the population at
equilibrium.

• If λ(a, σ ) > δe−a, then y(0) → 0, y(�/2) → λ(a,σ )−1
σ−1 .

• If δe−a > λ(a, σ ), then y(�/2) → 0, y(0) → δe−a−1
δ−1 .

A plateau is always more stable than a peak of the same height; that is, for any a > 0, any
σ > 1, we have λ(a, σ ) > σe−a. However, for a fixed value a > 0, there exist positive values
σ < δ such that λ(a, σ ) > δe−a. Indeed, let us compute the right-hand side of Equation (1.16)
with λ replaced by δe−a:

∑
n≥1

e−an(
δe−a

)n ∑
k≥0

(an)2k

22k(k!)2
=
∑
n≥1

1

δn

∑
k≥0

(an)2k

22k(k!)2

≥
∑
n≥1

1

δn

(
1 + (an)2

4

)
= 1

δ − 1
+ a2

4

δ(δ + 1)

(δ − 1)3
.

So, for any value of δ > σ such that

1

σ − 1
<

1

δ − 1
+ a2

4

δ(δ + 1)

(δ − 1)3
,

we will indeed have λ(a, σ ) > δe−a. For such values, the quasispecies will be located on the
plateau, despite the fact that the height σ of the plateau is strictly less than the height of the
peak. In this situation, we witness the survival of the flattest.

Theorem 6 is proved in Section 7. The route to proving Theorems 3 and 6 is quite long.
It rests on the exact formulas proved in Section 4.2 and the general strategy developed in
Section 4.

2. The sharp-peak landscape

Our first goal is to develop an exact formula for the quasispecies on the sharp-peak
landscape. All our subsequent study of the sharp-peak landscape will rely on this formula.

2.1. A representation formula for the quasispecies

The computations performed in this subsection are in fact valid without any assump-
tion on the geometry of the genotype space E. We merely suppose that E is finite and that
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the coefficients of the matrix M are all positive. Suppose that (x(u), u ∈ E) is a solution of
the system (1.1) satisfying the constraint (1.2). Let λ be the mean fitness of this solution,
defined by

λ =
∑
v∈E

x(v)f (v) = σx(w∗) + 1 − x(w∗). (2.1)

Obviously, the mean fitness λ satisfies 1 ≤ λ ≤ σ and λ = 1 if and only if x(w∗) = 0. By hypoth-
esis, all the coefficients of the mutation matrix M are positive, and it follows from Equation
(1.1) that

∀ u ∈ E x(u) σ ≥
∑
v∈E

x(v)f (v)M(v, u) > 0. (2.2)

Therefore x(u) > 0 for all u ∈ E. Equation (1.1) for a generic genotype u reads as follows:

λx(u) = σx(w∗)M(w∗, u) +
∑

v �=w∗
x(v)M(v, u). (2.3)

We rewrite this equation as

x(u) = σ − 1

λ
x(w∗)M(w∗, u) + 1

λ

∑
v∈E

x(v)M(v, u). (2.4)

Using this very formula for x(v), we replace x(v) in the sum, thereby getting

x(u) = σ − 1

λ
x(w∗)M(w∗, u) + σ − 1

λ2

∑
v∈E

x(w∗)M(w∗, v)M(v, u)

+ 1

λ2

∑
v,v′∈E

x(v′)M(v′, v)M(v, u) .

We iterate this process. After N − 1 steps, we get

x(u) =
∑

1≤n≤N

σ − 1

λn

∑
v1,...,vn−1∈E

x(w∗)M(w∗, v1) · · · M(vn−1, u)

+ 1

λN

∑
v1,...,vN∈E

x(v1)M(v1, v2) · · · M(vN, u) .

The sums of products involving the matrix M have a natural probabilistic interpretation. Let
(Xn)n∈N be the Markov chain on E with transition matrix M. The previous formula for x(u) can
now be rewritten as

x(u) =
∑

1≤n≤N

σ − 1

λn
x(w∗)P

(
Xn = u

∣∣ X0 = w∗)

+ 1

λN

∑
v1∈E

x(v1)P
(
XN = u

∣∣ X0 = v1
)

.

By (2.1) and (2.2), the mean fitness λ is strictly larger than 1; therefore the last term goes to 0
as N goes to ∞. Sending N to ∞, and using the fact that

λ − 1 = (σ − 1)x(w∗), (2.5)

we get the following result.
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Proposition 1. Any solution (x(u), u ∈ E) of the quasispecies equations (1.1) for the sharp-
peak function fSP defined in (1.4) satisfies

x(u) =
∑
n≥1

λ − 1

λn
P
(
Xn = u

∣∣ X0 = w∗), (2.6)

where (Xn)n≥0 is the Markov chain on E with transition matrix M.

Let us take u = w∗ in the formula (2.6). Using (2.5) again, we obtain

1

σ − 1
=
∑
n≥1

1

λn
P
(
Xn = w∗ ∣∣ X0 = w∗). (2.7)

The right-hand side of this equation is a continuous decreasing function of λ, which is equal to
+∞ when λ = 1 and is less than or equal to 1/(σ − 1) when λ = σ . Therefore there exists
exactly one value of λ in [1, σ ] which satisfies this equation. Our next goal is to obtain
an explicit expression for P

(
Xn = w∗ ∣∣ X0 = w∗) and to perform the summation of the series

appearing in (2.7). To do so, we shall make additional assumptions on the geometry of the
fitness landscape.

2.2. Mutation dynamics

We now turn our attention to the genotype space E =A� where A is a finite alphabet of
cardinality κ , and we consider the mutation scheme (1.3). In this model, the mutations occur
independently at each site. An important consequence of this structural assumption is that
the components (Xn(i), 1 ≤ i ≤ �) of the Markov chain Xn are themselves independent Markov
chains with state space A and transition matrix

⎛
⎜⎜⎜⎜⎝

1 − q q
κ−1 · · · q

κ−1

q
κ−1 1 − q

. . . q
κ−1

...
. . .

. . .
...

q
κ−1 · · · q

κ−1 1 − q

⎞
⎟⎟⎟⎟⎠ .

The non-diagonal terms in this matrix are all equal to q/(κ − 1). Since we want to compute
P
(
Xn = w∗ ∣∣ X0 = w∗), we shall lump together the letters which differ from the wild type w∗,

and we shall do this for each component. More precisely, we define a process (Vn)n≥0 by
setting

∀i ∈ { 1, . . . , � } Vn(i) =
⎧⎨
⎩

0 if Xn(i) = w∗(i) ,

1 if Xn(i) �= w∗(i) .

The binary word Vn indicates the sites where Xn and w∗ differ. In particular, Vn is a determin-
istic function of Xn. Thanks to the specific form of the transition matrix, it turns out that Vn(i)
is still a Markov chain. This is a particular case of the lumping theorem of Kemeny and Snell
(see Theorem 6.3.2 of [15]). To see why, consider for instance the first two steps of the first
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component Vn(1), and let us make the following computation:

P(V2(1) = 0, V1(1) = 1
∣∣ V0(1) = 0

)
=

∑
x1∈A\{ w∗(1) }

P(X2(1) = w∗(1), X1(1) = x1
∣∣ V0(1) = 0

)

=
∑

x1∈A\{ w∗(1) }
P(X2(1) = w∗(1) | X1(1) = x1)

× P(X1(1) = x1 | X0(1) = w∗(1)) = (κ − 1) × q

κ − 1
× q

κ − 1
= q

q

κ − 1
.

The simplification in the final result comes from the fact that the probabilities of finding or
losing a letter from the wild type w∗ are the same for all the letters in A \ { w∗(1) }. A similar
computation can be made for a finite number of steps. We conclude that Vn(i) is the two-state
Markov chain that we define and study next. Let (En)n≥0 be the Markov chain with state space
{0, 1} and transition matrix

T =
(

1 − q q
q

κ−1 1 − q
κ−1

)
.

The eigenvalues of T are 1 and

ρ = 1 − κq

κ − 1
. (2.8)

We will study some asymptotic regimes in which q is sent to 0, so we can suppose that
q ≤ 1 − 1/κ (otherwise ρ might be negative, which would create additional complications).
It is a standard exercise to compute the powers of T:

∀n ≥ 1 Tn =
⎛
⎝ 1

κ
+ κ−1

κ
ρn κ−1

κ

(
1 − ρn

)
1
κ

(
1 − ρn

)
κ−1
κ

+ 1
κ
ρn

⎞
⎠ .

Here is a simple, illuminating way to realize the Markov chain (En)n≥0 and to understand the
expression for the nth power Tn. Let (εn)n≥1 be a sequence of independent and identically
distributed Bernoulli random variables with parameter ρ. Suppose that En−1 = e ∈ { 0, 1 }. If
εn = 1, then we set En = e. If εn = 0, then we choose a letter uniformly over A, independently
of the past history up to time n, and we set En = 0 if the chosen letter is the one of the wild
type and En = 1 otherwise. Now, the event En = E0 can occur in two different ways. Either
ε1 = · · · = εn = 1, or one of ε1, . . . , εn is zero, in which case En = 0 with probability 1/κ and
En = 1 with probability (κ − 1)/κ; thus

P(En = 0 | E0 = 0) = ρn + (
1 − ρn) 1

κ
,

P(En = 1 | E0 = 1) = ρn + (
1 − ρn)κ − 1

κ
,

and we recover the expression for the diagonal coefficients of Tn. In words, the status En at
step n is the same as at time 0 if no mutation has occurred, or if the last mutation results in the
same letter as the wild type (case E0 = 0) or in a different letter (case E0 = 1). Similarly, the
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event En �= E0 can occur only if one of ε1, . . . , εn is zero, and the last mutation event yields
the adequate letter; thus

P(En = 1 | E0 = 0) = (
1 − ρn)κ − 1

κ
,

P(En = 0 | E0 = 1) = (
1 − ρn) 1

κ
.

Now the probability P
(
Xn = w∗ ∣∣ X0 = w∗) can be rewritten with the help of Vn and En as

P
(
Xn = w∗ ∣∣ X0 = w∗) = P

(
Xn(i) = w∗(i), 1 ≤ i ≤ �

∣∣ X0 = w∗)
= P

(
Vn(i) = 0, 1 ≤ i ≤ �

∣∣ X0 = w∗)
=

∏
1≤i≤�

P
(
Vn(i) = 0

∣∣ X0 = w∗)

=
(
P
(
En = 0

∣∣ E0 = 0
))� =

( 1

κ
+ κ − 1

κ
ρn
)�

. (2.9)

2.3. The equation for the mean fitness

We now have all the material necessary to obtain Equation (1.5). Substituting the expression
obtained in (2.9) into the formula (2.7), we get

1

σ − 1
=
∑
n≥1

1

λn

( 1

κ
+ κ − 1

κ
ρn
)�

. (2.10)

We expand the power in �, exchange the summations, and re-sum the series as follows:

1

σ − 1
=
∑
n≥1

1

λn

∑
0≤k≤�

(
�

k

)( 1

κ

)�−k(κ − 1

κ
ρn
)k

= 1

κ�

∑
0≤k≤�

(
�

k

)
(κ − 1)k

∑
n≥1

ρkn

λn

= 1

κ�

∑
0≤k≤�

(
�

k

)
(κ − 1)k 1

λ

ρk − 1
.

Thus the equation satisfied by the mean fitness λ reads

1

σ − 1
= 1

κ�

∑
0≤k≤�

(
�

k

)
(κ − 1)k 1

λ

ρk − 1
. (2.11)

This equation was discovered by Bratus et al. (see the formulas (5.5) and (5.6) in [3]), who
exploited it to derive rigorous bounds on the mean fitness. This formula calls naturally for a
probabilistic interpretation. Let S� be a random variable with distribution the binomial law with
parameters � and (κ − 1)/κ . Denoting the expectation by E, we can rewrite Equation (2.11) as

1

σ − 1
= E

⎛
⎝ 1

λ

ρS�
− 1

⎞
⎠ . (2.12)
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Our analysis of the quasispecies equations on the sharp-peak landscape rests on the identity
(2.10) or its equivalent form (2.12). Indeed, if we manage to estimate the mean fitness λ, then
we will also have an estimate for the proportion x(w∗) of the wild type present in the popula-
tion. Moreover, once we know λ or x(w∗), the proportions of the other types are completely
determined by the formula (2.6).

2.4. An exact formula for the quasispecies

Loosely speaking, a quasispecies is a cloud of mutants centered around a specific genotype.
The structure of this cloud depends on the parameters σ and q. In fact, the proportion of the
wild type w∗ decreases as the mutation rate q increases, and it becomes comparable to the
proportions of the other genotypes when q reaches the error threshold q∗. This fascinating
phenomenon will be established rigorously in Section 3.2. When q is a little below q∗, we
observe a cloud of mutants centered around w∗ which contains a very small proportion of the
wild type w∗; the vast majority of the genotypes present in the population will differ from w∗.
Yet the genetic information carried out by w∗ is still present in the population and determines its
structure. This paradoxical situation has led several biologists to argue that selection operates
at the level of the quasispecies, and not at the level of individuals [8]. Thus an important goal
is to understand better the statistical composition of the cloud of mutants. In order to do so, we
classify the genotypes according to their Hamming distance from the wild type w∗. For k ≥ 1,
we define the Hamming class k as the set Hk of the genotypes which differ from w∗ at exactly
k indices, i.e.,

Hk = {
u ∈ E : d(u, w∗) = k

}
. (2.13)

We shall exploit further the formula (2.6) in order to derive an exact formula for the proportion
Q(k) of the genotypes belonging to the Hamming class k. For k ≥ 1, we have, thanks to the
formula (2.6),

Q(k) =
∑

u∈Hk

∑
n≥1

λ − 1

λn
P
(
Xn = u

∣∣ X0 = w∗)

=
∑
n≥1

λ − 1

λn

∑
u∈Hk

P
(
Xn = u

∣∣ X0 = w∗)

=
∑
n≥1

λ − 1

λn
P
(
Xn ∈Hk

∣∣ X0 = w∗). (2.14)

We have already noticed that the components of Xn, (Xn(i), 1 ≤ i ≤ �), are independent Markov
chains. Therefore, using the notation of Section 2.2, we have

P
(
Xn ∈Hk

∣∣ X0 = w∗) = P

( ∑
1≤i≤�

Vn(i) = k
∣∣ X0 = w∗)

=
(

�

k

)(
P
(
En = 1

∣∣ E0 = 0
))k(

P
(
En = 0

∣∣ E0 = 0
))�−k

=
(

�

k

)((
1 − ρn)κ − 1

κ

)k(
ρn + (

1 − ρn) 1

κ

)�−k

. (2.15)
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16 M. BERGER AND R. CERF

Recall that ρ = 1 − κq/(κ − 1). Plugging (2.15) into (2.14), we get an exact formula for the
quasispecies distribution, in terms of a series involving λ and ρ:

Q(k) =
∑
n≥1

λ − 1

λn

(
�

k

)((
1 − ρn)κ − 1

κ

)k(
ρn + (

1 − ρn) 1

κ

)�−k

. (2.16)

We can even compute the sum of the series, by developing the powers, and obtain a finite
algebraic formula:

Q(k) = (λ − 1)

(
�

k

)
(κ − 1)k

κ�

k∑
i=0

�−k∑
j=0

(
k

i

)(
� − k

j

)
( − 1)i(κ − 1)jρi+j

λ − ρi+j
. (2.17)

Of course this formula is complicated, yet it expresses completely the dependence of Q(k)
on λ and q, and it shows the complexity of the sharp-peak landscape. Surprisingly, the mean
and the variance of the Hamming distance of the quasispecies distribution have very simple
expressions. Indeed, the mean of the Hamming distance of the distribution Q is given by

Q=
�∑

k=0

k Q(k) = �q λ

λ − ρ
. (2.18)

To compute this mean, we rely on the formula (2.16) to write

Q =
�∑

k=0

k Q(k)

=
∑
n≥1

λ − 1

λn

�∑
k=0

k

(
�

k

)((
1 − ρn)κ − 1

κ

)k(
ρn + (

1 − ρn) 1

κ

)�−k

. (2.19)

In the inner sum we recognize the expectation of a binomial law, whence

Q =
∑
n≥1

λ − 1

λn
�
(
1 − ρn)κ − 1

κ
.

By summing the geometric series and using the definition of ρ, we obtain the formula (2.18).
In fact, all the successive moments of the quasispecies distribution can be computed in this
way.

3. The error threshold

We continue to consider the case of the sharp-peak landscape described in Section 1.2. In
Section 2, we performed exact computations with the length � fixed. Here we shall perform
asymptotic expansions in the long-chain regime. We will revisit the classical error threshold
phenomenon and compute the limiting quasispecies distribution.

3.1. An upper bound on λ

The goal of this subsection is to prepare the ground for the technical proof of the error
threshold result. We start from the identity (2.12), and we wish to obtain an upper bound

https://doi.org/10.1017/apr.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.39


Survival of the flattest 17

on λ. From the weak law of large numbers, we know that the most likely values for S� are
those around its mean (κ − 1)�/κ , so we pick a positive number ε and split the expectation as
follows:

1

σ − 1
=
∑

0≤k≤�

P(S� = k)
1

λ

ρk − 1

=
∑

k:|k−(κ−1)�/κ|>ε�

P(S� = k)
1

λ

ρk − 1
+

∑
k:|k−(κ−1)�/κ|≤ε�

P(S� = k)
1

λ

ρk − 1
. (3.1)

Taking advantage of the fact that ρ ≤ 1, we bound ρk by 1 in the first sum and by ρ(κ−1)�/κ−ε�

in the second; this leads to the inequality

1

σ − 1
≤ 1

λ − 1
P

(∣∣∣S� − κ − 1

κ
�

∣∣∣> ε�
)

+ 1
λ

ρ(κ−1)�/κ−ε� − 1
. (3.2)

We apply the Chebyshev inequality to the binomial random variable S� to obtain the classical
estimate

P

(∣∣∣S� − κ − 1

κ
�

∣∣∣> ε�
)

≤ variance(S�)

ε2�2
= κ − 1

κ2ε2�
. (3.3)

Plugging the Chebyshev inequality into (3.2), we conclude that

∀ε > 0
1

σ − 1
≤ κ − 1

κ2ε2�(λ − 1)
+ 1

λ

ρ(κ−1)�/κ−ε� − 1
. (3.4)

Let us pause for one moment to look at this inequality. Obviously, as λ goes to ∞, the right-
hand side goes to 0, and the inequality cannot hold. In other words, for this inequality to hold,
λ must not be too large. Thus, from this inequality, we should be able to derive an upper bound
on λ. To get the best possible upper bound, we could rewrite it as a polynomial inequality of
degree two in λ and compute the associated roots, but this leads to messy expressions. Instead,
after a few trials (hidden from the reader), we obtain the following inequality.

Lemma 1. The mean fitness λ satisfies

λ ≤ max

(
1 + 4σ

�1/4
, σ
(

1 − κq

κ − 1

)(κ−1)�/κ−�2/3(
1 + 1

�1/13

))
. (3.5)

Proof. Suppose that λ is larger than the upper bound in (3.5). We check that this is not
compatible with the inequality (3.4) with the choice ε = �−1/3. Indeed, we have on the one
hand

λ > 1 + 4σ

�1/4
=⇒ 1

�1/3(λ − 1)
≤ 1

4σ�1/12
.

On the other hand,

λ > σ
(

1 − κq

κ − 1

)(κ−1)�/κ−�2/3(
1 + 1

�1/13

)
=⇒

1
λ

ρ(κ−1)�/κ−�2/3 − 1
≤ 1

σ
(

1 + 1
�1/13

)
− 1

.
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Applying the mean value theorem to the function x �→ 1/(σ − 1 + x) on the interval
[0, σ/�1/13], we have

1

σ
(

1 + 1
�1/13

)
− 1

≤ 1

σ − 1
− 1

(2σ − 1)2

σ

�1/13
≤ 1

σ − 1
− 1

4σ�1/13
. (3.6)

Combining the previous inequalities, we obtain that

κ − 1

κ2�1/3(λ − 1)
+ 1

λ

ρ(κ−1)�/κ−�2/3 − 1
≤ 1

σ − 1
+ 1

4σ

( 1

�1/12
− 1

�1/13

)
<

1

σ − 1
,

which stands in contradiction to the inequality (3.4) with ε = �−1/3. �

3.2. Revisiting the error threshold

Because of its importance, we shall give two proofs of Theorem 1. The first proof is a
soft proof based on a compactness argument, whose starting point is the initial quasispecies
equation. The second proof is a more technical proof, whose starting point is the Equation
(2.10) discovered by Bratus et al. Naturally, the second proof is more informative: it yields a
control on the speed of convergence and opens the way to performing an asymptotic expansion
of λ with respect to � and q.

From Equation (2.1), we can express x(w∗) as

x(w∗) = λ − 1

σ − 1
. (3.7)

Therefore it is enough to study the asymptotic behavior of λ. We shall prove that

λ −→ max
(
1, σe−a). (3.8)

Soft proof. In the long-chain regime, we have

σ
(
1 − q

)� −→ σe−a. (3.9)

The quasispecies equation (1.1) associated with w∗ reads

λx(w∗) = σx(w∗)M(w∗, w∗) +
∑

v∈E\{w∗}
x(v)M(v, w∗). (3.10)

We know that x(w∗) > 0; therefore we deduce from (3.10) that

λ ≥ σM(w∗, w∗) = σ (1 − q)�. (3.11)

Using the lower bound (3.11) and the fact that λ ≥ 1, we see that

lim inf λ ≥ max
(
1, σe−a). (3.12)

Suppose that λ does not converge towards max
(
1, σe−a

)
. In this case, there exist ε > 0 and

two sequences of parameters (�n)n≥0, (qn)n≥0 such that
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�n → +∞ , qn → 0 , �nqn → a,

∀n ≥ 0 λ(�n, qn) ≥ max
(
1, σe−a)+ ε. (3.13)

Using (3.7) and (3.13), we obtain a lower bound on x(w∗):

x(w∗) ≥ ε

σ − 1
. (3.14)

We bound from above the quasispecies equation (3.10) associated with w∗, as follows:

λx(w∗) ≤ σx(w∗)(1 − q)� + (
1 − x(w∗)

)
q, (3.15)

where we have used the fact that M(v, w∗) ≤ q whenever v �= w∗. Using (3.14) and (3.15)
together, we obtain that

∀n ≥ 0 λ(�n, qn) ≤ σ (1 − qn)�n + σ − 1

ε
qn.

Sending n to ∞, we see that this inequality is not coherent with the inequality (3.13). Therefore
it must be the case that λ converges towards max

(
1, σe−a

)
.

Technical proof. This proof is entirely based on the equation (2.10) discovered by Bratus
et al. (see the formulas 5.5 and 5.6 in [3]) and its probabilistic interpretation (2.12). Let us start
with a simple yet interesting inequality on λ. The map

φ : x ∈ [0, +∞[ �→ 1
λ
ρx − 1

is convex (recall that we suppose that ρ > 0). The equation (2.10) (or rather (2.12)) can be
rewritten with the help of the function φ as

1

σ − 1
= E (φ(S�)) , (3.16)

where S� is a random variable with distribution the binomial law with parameters � and
(κ − 1)/κ . By the classical Jensen inequality, we therefore have

1

σ − 1
≥ φ

(
E(S�)

) = φ
(κ − 1

κ
�
)

. (3.17)

This yields the inequality

λ ≥ σρ(κ−1)�/κ = σ
(

1 − κq

κ − 1

)(κ−1)�/κ
. (3.18)

Notice that this inequality is not better than the lower bound (3.11) used in the soft proof.
However, it can certainly be improved with additional work. In the long-chain regime, we have

σ
(

1 − κq

κ − 1

)(κ−1)�/κ −→ σe−a. (3.19)

We combine the lower bound (3.18) and the upper bound (3.5) (which were both derived from
the equation (2.10)) with the limit stated in (3.19) to obtain the desired conclusion.
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3.3. The limiting quasispecies distribution

In Section 2.4, we computed an exact expression for the mean Hamming distance under the
quasispecies distribution, which was

Q =
�∑

k=0

k Q(σ, a)(k) = �q λ

λ − ρ
. (3.20)

This formula is particularly illuminating for the error threshold phenomenon. We consider
again the long-chain regime

� → +∞ , q → 0 , �q → a ∈ [0, +∞]. (3.21)

We have the following dichotomy:

• If a > ln σ , then λ → 1, λ − ρ → 0, whence Q→ +∞.

• If a < ln σ , then λ → σe−a > 1, and

Q −→ aσe−a

σe−a − 1
. (3.22)

We can go even further; indeed we can perform the expansion of the formula (2.15) in the
regime (3.21). From this we obtain

P
(
Xn ∈Hk

∣∣ X0 = w∗) ∼ �k

k! (nq)k(1 − nq)� ∼ (na)k

k! e−na ;

thus the asymptotic distribution of Xn is the Poisson distribution with parameter na. Combined
with the formula (3.8), this yields that, for any fixed n ≥ 1,

1

λn
P
(
Xn ∈Hk

∣∣ X0 = w∗) ∼ (na)k

σ nk! .

Through brute substitution of this expansion into the formula (2.14), and again applying (3.8),
we finally get

Q(k) ∼ (σe−a − 1)
ak

k!
∑
n≥1

nk

σ n
.

Some steps in this computation must be made rigorous, but this can be done by a routine appli-
cation of the dominated convergence theorem. In fact, this formula was obtained in [5] while
studying the quasispecies arising in a stochastic model for the evolution of a finite population.
Thanks to the formula, we can easily plot the quasispecies distribution (Figures 1 and 2) and
study its dependence on the parameters σ, a. In the quasispecies literature, this was previously
done by numerically integrating the differential system (see for instance [9, Figure 3, p. 9]). In
addition, we can now perform simple theoretical computations with the help of this distribu-
tion. For instance, the mutation rate at which the proportion of the Hamming class 1 becomes
larger than the proportion of the wild type w∗ is a = 1 − 1/σ .
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FIGURE 1. Fractions of the different types as functions of a for σ = 5.

FIGURE 2. Fractions of the different types as functions of a for σ = 106.
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4. Extension to a general landscape

Our starting point is the quasispecies equation (1.1), rewritten in the following form:

∀ u ∈ E λx(u) =
∑
v∈E

x(v)f (v)M(v, u) (4.1)

subject to the constraint

∀ u ∈ E x(u) ≥ 0 ,
∑
u∈E

x(u) = 1, (4.2)

where

λ =
∑
v∈E

x(v)f (v)

is the mean fitness, or equivalently the Perron–Frobenius eigenvalue of the matrix
(f (v)M(v, u))u,v∈E.

4.1. Reformulation of the quasispecies equations

The computations performed in this subsection are in fact valid without any assumption on
the geometry of the genotype space E. Thanks to the hypothesis on the fitness function, we
have that λ ≥ 1. Moreover, since the matrix M has only positive entries and since the fitness
function is not identically equal to 1, the Perron–Frobenius eigenvalue is strictly larger than 1,
i.e., λ > 1. We rewrite the equation (4.1) as

∀ u ∈ E λx(u) −
∑
v∈E

x(v)M(v, u) =
∑
v∈E

x(v)
(
f (v) − 1

)
M(v, u). (4.3)

We denote by xt the row vector which is the transpose of the column vector x, and we introduce
the square matrix whose diagonal coefficients are the fitness values (f (u), u ∈ E):

F =

⎛
⎜⎜⎝

. . . 0 0
0 f (u) 0

0 0
. . .

⎞
⎟⎟⎠ . (4.4)

After dividing by λ (recall that λ > 1), we can rewrite Equation (4.3) in matrix form as

xt
(

I − 1

λ
M
)

= xt 1

λ

(
F − I

)
M. (4.5)

Now the matrix M is a stochastic matrix, so its spectral radius is equal to 1. Since λ > 1, the
matrix I − 1

λ
M is invertible, and its inverse is given by the geometric series

(
I − M

λ

)−1 =
∑
n≥0

Mn

λn
.

Plugging this identity into Equation (4.5), we obtain

xt = xt(F − I
)∑

n≥1

Mn

λn
. (4.6)
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Let us introduce the set W∗ of the genotypes where the fitness function is strictly larger
than 1:

W∗ = {
u ∈ E : f (u) > 1

}
.

We call the set W∗ the set of wild types. We define the matrix Nλ, indexed by the elements of
W∗, as follows:

∀v, w ∈ W∗ Nλ(v, w) =
((

F − I
)∑

n≥1

Mn

λn

)
(v, w). (4.7)

With this notation, the linear system (4.6) of size κ� can be split into the system of size |W∗|
given by

∀v ∈ W∗ x(v) =
∑

w∈W∗
x(w) Nλ(w, v) (4.8)

and the κ� − |W∗| remaining equations

∀v ∈ E \ W∗ x(v) =
∑

w∈W∗
x(w)(f (w) − 1)

∑
n≥1

Mn

λn
(w, v). (4.9)

The system (4.8) expresses that the vector (x(v), v ∈ W∗) is a left Perron–Frobenius eigenvector
of the matrix Nλ, and that the Perron–Frobenius eigenvalue of Nλ is equal to 1. The equations
(4.9) show that the remaining coordinates (x(v), v ∈ E \ W∗) are completely determined by
(x(v), v ∈ W∗). These considerations suggest that the quasispecies equation can in principle be
solved through the following procedure.

General strategy. We start by isolating the set W∗ of the wild types, and we form the matrix
(Nλ(w, v))v,w∈W∗ , defined in the formula (4.7), where λ > 1 is considered as a parameter. Now,
the Perron–Frobenius eigenvalue of Nλ is a decreasing function of λ which tends to 0 as λ goes
to +∞ and to +∞ as λ goes to 1. We choose for λ the unique value such that the Perron–
Frobenius eigenvalue of Nλ is equal to 1. Once this value is fixed, we solve the system (4.8) on
W∗. The remaining coordinates of x on E \ W∗ are determined by the equations (4.9).

A general lower bound on λ. We close this section with a general lower bound on λ. The
quasispecies equations imply that

∀u ∈ E λx(u) ≥ x(u) f (u) M(u, u) = x(u)f (u) (1 − q)�.

Since x(u) > 0 for any u ∈ E, this readily implies that

λ ≥ (
max

E
f
)

(1 − q)�. (4.10)

4.2. Computation of
∑

n≥1 Mn/λn

From now on, we work with the genotype space E =A� where A is a finite alphabet of
cardinality κ , and we consider the mutation scheme (1.3). We start by computing Mn. We use
the notation and the technique of Section 2.2, and we generalize the formula (2.9) as follows:

Mn(u, v) = P
(
Xn = v

∣∣ X0 = u
) = P

(
Xn(i) = v(i), 1 ≤ i ≤ �

∣∣ X0 = u
)

=
∏

1≤i≤�

P
(
Xn(i) = v(i)

∣∣ X0(i) = u(i)
)
. (4.11)
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Now, we have

P
(
Xn(i) = v(i)

∣∣ X0(i) = u(i)
) =

⎧⎪⎨
⎪⎩

1
κ

+ κ−1
κ

ρn if u(i) = v(i) ,

1
κ

(
1 − ρn

)
if u(i) �= v(i) ,

(4.12)

where

ρ = 1 − κq

κ − 1
.

Coming back to the formula (4.11), we conclude that

Mn(u, v) =
( 1

κ
+ κ − 1

κ
ρn
)�−d(u,v)( 1

κ

(
1 − ρn))d(u,v)

. (4.13)

We wish now to compute

∑
n≥1

Mn

λn
.

Our first strategy consists of expanding the formula (4.13). We end up with several geometric
series, from which we obtain a closed finite formula. So, starting from (4.13) and setting
d = d(u, v) to simplify the notation, we have

Mn(u, v) =
�−d∑
i=0

d∑
j=0

(
� − d

i

)( 1

κ

)�−d−i(κ − 1

κ

)i
ρni
(

d

j

)
1

κd
( − 1)jρnj. (4.14)

We can now sum the geometric series to get

∑
n≥1

Mn

λn
(u, v) =

�−d∑
i=0

d∑
j=0

(
� − d

i

)( 1

κ

)�−d−i(κ − 1

κ

)i
(

d

j

)
1

κd

( − 1)j

λ
ρi+j − 1

. (4.15)

4.3. Probabilistic interpretation

We provide furthermore a probabilistic interpretation of the apparently complex formula
(4.15). Let S�−d be a binomial random variable with parameters � − d, 1 − 1/κ . We have

∑
n≥1

Mn

λn
(u, v) = E

(
1

κd

d∑
j=0

(
d

j

)
( − 1)j

λ

ρS�−d+j − 1

)
. (4.16)

The above formula is quite nice. Its drawback is that it contains negative terms, so it is not
obvious that the global result is non-negative. We present next a third formula, which avoids
this problem.

4.4. Third formula

The trick is to expand the factor (1 − ρn)d in the formula (4.13) in a more complicated way,
as follows:

Mn(u, v) =
�−d∑
i=0

(
� − d

i

)( 1

κ

)�−d−i(κ − 1

κ

)i
ρni 1

κd
(1 − ρ)d

(
n−1∑
j=0

ρj

)d

. (4.17)
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We wish to compute the series
∑

n≥1 Mn/λn. From now on, we deal with the case d ≥ 1 (for
d = 0, we use the expression obtained in (4.15), where all the terms are positive). Focusing on
the two terms which depend on n in the formula (4.17), we end up with the series

∑
n≥1

ρni

λn

(
n−1∑
j=0

ρj

)d

=
∑
n≥1

ρni

λn

n−1∑
j1=0

· · ·
n−1∑
jd=0

ρj1+···+jd

=
∑

j1,...,jd≥0

∑
n>max(j1,...,jd)

ρni

λn
ρj1+···+jd

=
∑

j1,...,jd≥0

(
ρi

λ

)max(j1,...,jd)+1

1 − ρi

λ

ρj1+···+jd . (4.18)

Notice that this formula is not quite legitimate for d = 0, unless we adopt the convention that
for d = 0 there is only one term in the sum, corresponding to j1 = · · · = jd = 0. Therefore it
seems safer to perform the above computation only when d ≥ 1. Let us set γ = ρi/λ and focus
on the sum ∑

j1,...,jd≥0

γ max(j1,...,jd) ρj1+···+jd . (4.19)

We shall decompose the sum according to the number r of distinct indices among j1, · · · , jd,
their different values i1, . . . , ir, and the number of times n1, . . . , nr each value appears. We
get

d∑
r=1

∑
0≤i1<···<ir

∑
n1,...,nr≥1

n1+···+nr=d

∑
j1,...,jd∈J

γ max(j1,...,jd) ρj1+···+jd , (4.20)

where the innermost sum extends over the set J defined by

J =
{

j1, . . . , jd ≥ 0 : for 1 ≤ k ≤ d, ik appears nk times in j1, . . . , jd
}

.

The number of terms appearing in the last summation corresponds to the number of placements
of d balls in r cells with occupancy numbers given by n1, . . . , nr (see for instance the classical
book of Feller [13, Section II.5]), that is, d!/(n1! · · · nr!). For each of these placements, we
have

max(j1, . . . , jd) = ir , j1 + · · · + jd = n1i1 + · · · + nrir ;

therefore the formula (4.20) becomes

d∑
r=1

∑
0≤i1<···<ir

∑
n1,...,nr≥1

n1+···+nr=d

d!
n1! · · · nr!γ

ir ρn1i1+···+nrir . (4.21)

We can perform the summation over ir, which yields∑
0≤i1<···<ir

γ ir ρn1i1+···+nrir =

γρnr

1 − γρnr

∑
0≤i1<···<ir−1

(
γρnr

)ir−1 ρn1i1+···+nr−1ir−1 . (4.22)
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The number of indices i1, . . . , ir−1 has decreased by 1, and γ has been replaced by γρnr .
Proceeding in the same way, we perform successively the summations over ir−1, . . . , i1 until
we obtain∑

0≤i1<···<ir

γ ir ρn1i1+···+nrir =

γρnr

1 − γρnr

γρnr+nr−1

1 − γρnr+nr−1
· · · γρnr+···+n2

1 − γρnr+···+n2

∑
0≤i1

(
γρnr+···+n2

)i1ρn1i1 .

Recalling that n1 + · · · + nr = d, we can compute the last sum∑
0≤i1

(
γρnr+···+n2

)i1ρn1i1 = 1

1 − γρd

and conclude that∑
0≤i1<···<ir

γ ir ρn1i1+···+nrir =

γρnr

1 − γρnr

γρnr+nr−1

1 − γρnr+nr−1
· · · γρnr+···+n2

1 − γρnr+···+n2

1

1 − γρd
. (4.23)

Putting together the formulas (4.21) and (4.23), we obtain a finite formula for the
sum (4.19):∑

j1,...,jd≥0

γ max(j1,...,jd) ρj1+···+jd =

d∑
r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!
n1! · · · nr!

1

γρd

ρrnr+(r−1)nr−1+···+n1∏r
k=1

(
1
γ

− ρnr+···+nr−k+1

) . (4.24)

Plugging this formula into (4.18) and (4.17) yields that, for d = d(u, v) ≥ 1,

∑
n≥1

Mn

λn
(u, v) =

�−d∑
i=0

(
� − d

i

)( 1

κ

)�−i(κ − 1

κ

)i(1 − ρ

ρ

)d 1

1 − ρi

λ

×
d∑

r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!
n1! · · · nr!

ρrnr+(r−1)nr−1+···+n1∏r
k=1

(
λ
ρi − ρnr+···+nr−k+1

) . (4.25)

We can further rewrite this formula using the expectation with respect to a binomial random
variable S�−d with parameters � − d and 1 − 1/κ . Indeed, we have

∑
n≥1

Mn

λn
(u, v) = 1

κd

(1 − ρ

ρ

)d×

E

(
1

1 − ρS�−d

λ

d∑
r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!
n1! · · · nr!

ρrnr+(r−1)nr−1+···+n1∏r
k=1

(
λ

ρS�−d
− ρnr+···+nr−k+1

)
)

. (4.26)
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Each of the previous formulas is of interest on its own and may be useful in certain contexts.
For instance, with the formula (4.15), we see directly that the coefficients of the matrix Nλ

are rational functions of the parameter λ, and that there exists a unique choice for λ such
that the Perron–Frobenius eigenvalue of Nλ becomes equal to 1. The analysis of the error
threshold conducted in Section 3.2 rests entirely on the probabilistic representation presented
in the formula (4.16) in the specific case where u = v = w∗ and d = 0. Finally, the third formula
(4.26) will be useful for analyzing the asymptotic behavior of the non-diagonal entries of the
matrix Nλ for the landscape with finitely many peaks, in Section 5.

4.5. Proof of Theorem 2

Let G : E →R be an additive functional, that is, a function given by

∀u ∈ E G(u) =
�∑

i=1

g(u(i)) ,

where g is a function defined on A with values in R. We consider an arbitrary fitness function
satisfying Hypothesis 1, and we denote by (x(u), u ∈ E) the solution of the quasispecies equa-
tion associated with f . Our goal here is to relate the mean value G of G in the quasispecies
(x(u), u ∈ E), defined by

G =
∑
u∈E

G(u)x(u) ,

to the mean fitness λ or f , defined by

f =
∑
u∈E

f (u)x(u).

Our starting point is the formula (4.6), which yields

G =
∑
u∈E

G(u)
∑
v∈E

x(v)
(
f (v) − 1

)∑
n≥1

1

λn
Mn(v, u)

=
∑
v∈E

x(v)
(
f (v) − 1

)∑
n≥1

1

λn

∑
u∈E

Mn(v, u) G(u). (4.27)

We compute next the innermost sum. By the definition of G,

∑
u∈E

Mn(v, u) G(u) =
�∑

i=1

∑
u∈E

Mn(v, u) g(u(i)). (4.28)

Moreover, the formulas (4.11) and (4.12) yield that, for 1 ≤ i ≤ �,∑
u∈E

Mn(v, u) g(u(i)) =
( 1

κ
+ κ − 1

κ
ρn
)

g(v(i)) +
( 1

κ

(
1 − ρn)) ∑

a∈A\{v(i)}
g(a)

= ρng(v(i)) + (
1 − ρn)g , (4.29)

where g is the mean value of g over the alphabet A, i.e.,

g = 1

κ

∑
a∈A

g(a). (4.30)
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Plugging the formula (4.29) into the formula (4.28), we obtain

∑
u∈E

Mn(v, u) G(u) = ρnG(v) + �
(
1 − ρn)g. (4.31)

Inserting this last formula into (4.27), we obtain

G =
∑
v∈E

x(v)
(
f (v) − 1

)∑
n≥1

1

λn

(
ρnG(v) + �

(
1 − ρn)g)

=
∑
v∈E

x(v)
(
f (v) − 1

)( ρ

λ − ρ
G(v) + �g

λ − 1
− �gρ

λ − ρ

)

= ρ

λ − ρ

(
fG − G

)+ (
f − 1

)
�g

λ(1 − ρ)

(λ − 1)(λ − ρ)
, (4.32)

where we have introduced the notation

fG =
∑
u∈E

f (u) G(u) x(u). (4.33)

Recalling that f = λ, we have proved the curious formula stated in Theorem 2.

5. Finitely many peaks

As we did for the sharp-peak landscape, we shall give two proofs of Theorem 3: a soft
one, whose starting point is the initial quasispecies equation, and a technical one, based on
the strategy explained at the end of Section 4. Again, the soft proof might look easier, but the
technical proof is more informative and could potentially yield more accurate estimates. We
define first the set W∗ of the wild types as

W∗ = {
wi : 1 ≤ i ≤ k

}
.

Throughout the proofs, we write simply λ(�, q) or even λ instead of λFP(�, q).

5.1. Soft proof

We start as in the case of the sharp-peak landscape. In the long-chain regime, we have that
σ
(
1 − q

)� → σe−a. Using the lower bound (4.10) and the fact that λ ≥ 1, we see that

lim inf λ ≥ max
(
1, σe−a). (5.1)

Suppose that λ does not converge towards max
(
1, σe−a

)
. In this case, there exist ε > 0 and

two sequences of parameters (�n)n≥0, (qn)n≥0 such that

�n → +∞ , qn → 0 , �nqn → a,

∀n ≥ 0 λ(�n, qn) ≥ max
(
1, σe−a)+ ε. (5.2)

For 1 ≤ i ≤ k, we bound from above the quasispecies equation (1.1) associated with w∗
i , as

follows:
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λx(w∗
i ) ≤

∑
v∈W∗

σx(v)M(v, w∗
i ) +

∑
v∈E\W∗

x(v)M(v, w∗
i ). (5.3)

We sum Equation (5.3) over i ∈ { 1, . . . , k }. Setting

x(W∗) =
∑

1≤i≤k

x(w∗
i ) ,

∀v ∈ E M(v, W∗) =
∑

1≤i≤k

M(v, w∗
i ) ,

we obtain
λx(W∗) ≤

∑
v∈W∗

σx(v)M(v, W∗) +
∑

v∈E\W∗
x(v)M(v, W∗) . (5.4)

Next, using the fact that M(v, w∗
i ) ≤ q whenever v �= w∗

i , we obtain that

∀v ∈ W∗ M(v, W∗) ≤ M(v, v) + kq = (1 − q)� + kq ,

∀v ∈ E \ W∗ M(v, W∗) ≤ kq.

Inserting these inequalities into (5.4), we obtain that

λx(W∗) ≤ σx(W∗)
(
(1 − q)� + kq

)+ (
1 − x(W∗)

)
kq

≤ σx(W∗)(1 − q)� + σkq. (5.5)

In addition, we have that

λ ≤ σx(W∗) + 1 − x(W∗) ≤ σx(W∗) + 1. (5.6)

Equation (5.6) and the condition (5.2) yield that

1

x(W∗)
≤ σ

λ − 1
≤ σ

ε
. (5.7)

Using (5.5) and (5.7) together, we obtain that

∀n ≥ 0 λ(�n, qn) ≤ σ (1 − qn)�n + σ

ε
σkqn.

Sending n to ∞, we see that this inequality is not coherent with the inequality (5.2). Therefore
it must be the case that λ converges towards max

(
1, σe−a

)
.

5.2. Technical proof

For this proof, we shall implement the strategy explained at the end of Section 4. So we
consider the matrix

(
Nλ(i, j)

)
1≤i,j≤k defined by

∀i, j ∈ { 1, . . . , k } Nλ(i, j) =
((

F − I
)∑

n≥1

Mn

λn

)
(w∗

i , w∗
j ), (5.8)
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where the matrix F was introduced in the formula (4.4). The advantage is that the size of the
matrix Nλ is k × k and this size does not vary with � and q. The diagonal elements of the matrix
are given by

Nλ(i, i) = (σi − 1)
∑
n≥1

1

λn
Mn(w∗

i , w∗
i ) , 1 ≤ i ≤ k .

In fact, the above series does not depend on i. Using the formula (4.16) with d = 0, we have

∀i ∈ { 1, . . . , k } Nλ(i, i) = (σi − 1) E

(
1

λ

ρS�
− 1

)
, (5.9)

where S� is a binomial random variable with parameters �, 1 − 1/κ . The parameter λ is
adjusted so that the Perron–Frobenius eigenvalue of the matrix Nλ is equal to 1. This Perron–
Frobenius eigenvalue is always larger than or equal to any diagonal element; thus we must
have Nλ(i, i) ≤ 1. Proceeding exactly as in the technical proof of Theorem 1, we obtain with
the help of Jensen’s inequality that

∀i ∈ { 1, . . . , k } λ ≥ σiρ
(κ−1)�/κ . (5.10)

Taking the maximum over i ∈ { 1, . . . , k }, we get

λ ≥ σρ(κ−1)�/κ . (5.11)

Next we seek an upper bound on the value of λ. The Perron–Frobenius eigenvalue of the matrix
Nλ is equal to 1, and all its entries are non-negative; thus

1 ≤ max
1≤i≤k

∑
1≤j≤k

Nλ(i, j).

In particular, there exists an index i ∈ { 1, . . . , k } such that

1 ≤
∑

1≤j≤k

Nλ(i, j). (5.12)

Let us study the non-diagonal elements of the matrix Nλ. For i �= j, we have

Nλ(i, j) = (σi − 1)
∑
n≥1

1

λn
Mn(w∗

i , w∗
j ) .

In fact, the series depends only on the Hamming distance between w∗
i and w∗

j , as we can see
from the formula (4.13). The same formula shows also that Mn(w∗

i , w∗
j ) is a non-increasing

function of d(w∗
i , w∗

j ). Therefore, using the formula (4.26) with d = 1, we have the inequality

Nλ(i, j) ≤ (σi − 1)
λ(1 − ρ)

κ
E

(
1

ρS�−1

(
λ

ρS�−1
− 1

)(
λ

ρS�−1
− ρ

)
)

, (5.13)

where S�−1 is a binomial random variable with parameters � − 1, 1 − 1/κ . Moreover we know
that 1 ≤ λ ≤ σ , so

Nλ(i, j) ≤ (σi − 1)σ
(1 − ρ)

κ
E

(
1(

λ

ρS�−1
− 1

)(
λ − ρS�−1+1

)
)

. (5.14)
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Plugging (5.9) and (5.14) into the inequality (5.12), and recalling that σ ≥ σi, we get

1

σ − 1
≤ E

(
1

λ

ρS�
− 1

)
+ kσ

(1 − ρ)

κ
E

(
1(

λ

ρS�−1
− 1

)(
λ − ρS�−1+1

)
)

. (5.15)

We proceed in a way similar to what we did for the sharp-peak landscape. Namely, we pick a
positive number ε and split the expectations according to the values of S� and S�−1, as follows:

1

σ − 1
≤ 1

λ − 1
P

(∣∣∣S� − κ − 1

κ
�

∣∣∣> ε�
)

+ 1
λ

ρ(κ−1)�/κ−ε� − 1

+ kσ (1 − ρ)

κ(λ − 1)(λ − ρ)
P

(∣∣∣S�−1 − κ − 1

κ
(� − 1)

∣∣∣> ε(� − 1)
)

+ kσ (1 − ρ)

κ

1(
λ

ρ(κ−1)(�−1)/κ−ε� − 1
)(

λ − ρ(κ−1)(�−1)/κ−ε�
) . (5.16)

Using the estimate given by Chebyshev’s inequality (3.3), we obtain

1

σ − 1
≤ 1

λ − 1

κ − 1

κ2ε2�
+ 1

λ

ρ(κ−1)�/κ−ε� − 1
+ kσ (1 − ρ)

κ(λ − 1)(λ − ρ)

κ − 1

κ2ε2(� − 1)

+ kσ (1 − ρ)

κ

1(
λ

ρ(κ−1)(�−1)/κ−ε� − 1
)(

λ − ρ(κ−1)(�−1)/κ−ε�
) . (5.17)

Finally, regrouping the first and the third term together, as well as the second and the fourth
term, and using that 1 − ρ ≤ λ − ρ and ρ ≤ 1, we get

1

σ − 1
≤ κ + kσ

κ(λ − 1)

κ − 1

κ2ε2(� − 1)

+ 1
λ

ρ(κ−1)(�−1)/κ−ε� − 1

(
1 +

kσ (1−ρ)
κ(

λ − ρ(κ−1)(�−1)/κ−ε�
)
)

. (5.18)

By making an appropriate choice for ε, we shall now deduce an upper bound on λ from this
inequality.

Lemma 2. There exists a positive constant c such that, in the long-chain regime, the mean
fitness λ satisfies

λ ≤ max

(
1 + c

�1/4
, σ
(

1 − κq

κ − 1

)(κ−1)(�−1)/κ−�2/3(
1 + 1

�1/13

))
. (5.19)

Before proving Lemma 2, we explain the end of the technical proof. The lower bound
(5.11) on λ and the upper bound (5.19) on λ yield the desired conclusion, which terminates
the technical proof. We have also obtained estimates on the speed of convergence of λ, which
could be improved with some additional work.

Proof of lemma 2. Suppose that λ is larger than the upper bound in (5.19). We check that
this is not compatible with the inequality (5.18) with the choice ε = �−1/3. Indeed, we have on
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the one hand

λ > 1 + c

�1/4
=⇒ κ + kσ

κ(λ − 1)

κ − 1

κ2�−2/3(� − 1)
= O

( 1

�1/12

)
.

On the other hand,

λ > σ
(

1 − κq

κ − 1

)(κ−1)(�−1)/κ−�2/3(
1 + 1

�1/13

)
=⇒

∃c′ > 0
1

λ

ρ(κ−1)(�−1)/κ−�2/3 − 1
≤ 1

σ − 1
− c′

�1/13
+ o

( 1

�1/13

)
.

We have also that
kσ (1−ρ)

κ(
λ − ρ(κ−1)(�−1)/κ−�2/3

) = O
(1

�

)

(notice that we use here the fact that a is finite). Combining the previous inequalities, we find
that the right-hand side of the inequality (5.18) has the following expansion:

O
( 1

�1/12

)
+ 1

σ − 1
− c′

�1/13
+ o

( 1

�1/13

)
+ O

(1

�

)
.

This quantity becomes strictly less than 1/(σ − 1) for � large enough, and this is not compatible
with the inequality (5.18). �

6. Plateau

This section is devoted to the proof of Theorems 4 and 5. We first show that the value
λ(a, σ ) is well-defined. Then we perform a lumping procedure and study the asymptotics of
the reduced equations. This yields the convergence of λ towards λ(a, σ ). The other claims of
the theorem are proved by similar arguments.

6.1. Definition of λ(a, σ )

We start by proving that Equation (1.13) admits a unique solution. Let us define the function
φn by

φn(a) = e−an
∑
k≥0

(an)2k

22k(k!)2
. (6.1)

For any a > 0, we have

φn(a) = e−an
∑
k≥0

(
1

k!
(an

2

)k
)2

≤ e−an

(∑
k≥0

1

k!
(an

2

)k
)2

= 1 .

It follows that the map

λ �→
∑
n≥1

φn(a)

λn
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is continuous and decreasing on ]1, +∞[. Moreover it converges to 0 when λ goes to ∞ and
to +∞ when λ goes to 1, because

∑
n≥1

φn(a) ≥
∑
n≥1

e−an
∑
k≥0

(an)2k

(2k + 1)!

=
∑
n≥1

e−an

an

∑
k≥0

(an)2k+1

(2k + 1)! =
∑
n≥1

e−an

an
sh(an) = +∞ .

Thus there exists a unique value λ(a, σ ) satisfying Equation (1.13). We prove next the main
claim of the theorem. Throughout the proof, we write simply λ(�, q) or even λ instead of
λPL(�, q).

6.2. Lumping

We are dealing with a fitness function which depends only on the Hamming classes. So
we lump together the genotypes according to their Hamming classes and introduce the new
variables y(h), 0 ≤ h ≤ �, given by

∀h ∈ { 0, . . . , � } y(h) =
∑

u:H(u)=h

x(u).

Using the formula (4.6), we have

∀h ∈ { 0, . . . , � } y(h) =
∑

u:H(u)=h

∑
v

x(v)
(
f (v) − 1

)∑
n≥1

1

λn
Mn(v, u)

=
∑

v

x(v)
(
f (v) − 1

)∑
n≥1

1

λn

∑
u:H(u)=h

Mn(v, u) . (6.2)

Now, the point is that the innermost sum depends only on the Hamming class of v. Indeed,
let us fix b ∈ { 0, . . . , � } and let v be such that H(v) = b. After n mutation steps starting from
v, we obtain a genotype Xn whose components are � independent Bernoulli random variables.
Among them, exactly b have parameter (1 + ρn)/2, and � − b have parameter (1 − ρn)/2 (this
is a consequence of the computations performed in Section 2.2). Therefore the Hamming class
of Xn is distributed as the sum of two independent binomial random variables with respective
parameters (b, (1 + ρn)/2) and (� − b, (1 − ρn)/2). We conclude that

∀ b, c ∈ { 0, . . . , � } , ∀v ∈ { 0, 1 }� ,

H(v) = b =⇒
∑

u:H(u)=c

Mn(v, u) = Mn
H(b, c) , (6.3)

where the matrix Mn
H(b, c) is given by

Mn
H(b, c) = P

(
Bin

(
b,

1 + ρn

2

)
+ Bin

(
� − b,

1 − ρn

2

)
= c

)
, (6.4)

Bin(n, p) being a generic binomial random variable with parameters (n, p), and the two bino-
mial random variables appearing above being independent. From the definition (1.12), we see
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that the fitness fPL depends only on the Hamming class, i.e., there exists a function f such that
fPL(v) = f (H(v)) for any v. With a slight abuse of notation, we denote this function also by fPL.
Rearranging the sum in the formula (6.2) according to the Hamming class of v and using (6.3),
we get

∀h ∈ { 0, . . . , � } y(h) =
∑

0≤k≤�

∑
v:H(v)=k

x(v)
(
fPL(v) − 1

)∑
n≥1

1

λn
Mn

H(k, h)

=
∑

0≤k≤�

y(k)
(
fPL(k) − 1

)∑
n≥1

1

λn
Mn

H(k, h). (6.5)

Equation (6.5) is in fact valid as long as the fitness function depends only on the Hamming
classes. In the case of the plateau landscape, the equation for h = �/2 yields

1

σ − 1
=
∑
n≥1

1

λn
Mn

H

(�

2
,
�

2

)
. (6.6)

This is the counterpart of Equation (2.7) for the sharp-peak landscape.

6.3. Asymptotics of Mn
H(�/2, �/2)

We shall rely on Equation (6.6) to analyze the asymptotic behavior of λ in the long-chain
regime. Let us begin with the term Mn

H(�/2, �/2).

Lemma 3. In the long-chain regime, we have the convergence

∀n ≥ 1 lim
�→∞, q→0

�q→a

Mn
H

(�

2
,
�

2

)
= φn(a), (6.7)

where the sequence of functions φn is defined in (6.1).

Proof. From the formula (6.4) with b = c = �/2, we have

Mn
H

(�

2
,
�

2

)
= P

(
Bin

(�

2
,

1 + ρn

2

)
+ Bin

(�

2
,

1 − ρn

2

)
= �

2

)

= P

(
Bin

(�

2
,

1 − ρn

2

)
= Bin

(�

2
,

1 − ρn

2

))
,

with the understanding that the two binomial random variables appearing above are indepen-
dent. Moreover, for a > 0 we have

�

2

1 − ρn

2
= �

2

1 − (1 − 2q)n

2
∼ �

2
nq ∼ na

2
;

hence we are in the regime where these binomial laws converge towards the Poisson distribu-
tion P(na/2) with parameter na/2. If a = 0, the limit distribution is a Dirac mass at 0. Let us
fix K ≥ 1. We have

Mn
H

(�

2
,
�

2

)
≥

∑
0≤k≤K

P

(
Bin

(�

2
,

1 − ρn

2

)
= k

)2

,

https://doi.org/10.1017/apr.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.39


Survival of the flattest 35

whence, passing to the limit,

lim inf
�→∞, q→0

�q→a

Mn
H

(�

2
,
�

2

)
≥ e−an

∑
0≤k≤K

(an)2k

22k(k!)2
.

Sending K to ∞, we obtain that

lim inf
�→∞, q→0

�q→a

Mn
H

(�

2
,
�

2

)
≥ e−an

∑
k≥0

(an)2k

22k(k!)2
= φn(a). (6.8)

Let us look for the reverse inequality. We again fix K ≥ 1 and write

Mn
H

(�

2
,
�

2

)
≤

∑
0≤k≤K

P

(
Bin

(�

2
,

1 − ρn

2

)
= k

)2

+ P

(
Bin

(�

2
,

1 − ρn

2

)
> K

)
.

We bound the last term with the help of Markov’s inequality:

P

(
Bin

(�

2
,

1 − ρn

2

)
> K

)
≤ 1

K

�

2

1 − ρn

2
≤ an

K
,

where the last inequality holds asymptotically. From the previous two inequalities, we conclude
that

lim sup
�→∞, q→0

�q→a

Mn
H

(�

2
,
�

2

)
≤ e−an

∑
0≤k≤K

(an)2k

22k(k!)2
+ an

K
.

Finally, we send K to ∞ to complete the proof of the lemma. �

6.4. Convergence of λ

Let λ∗ be an accumulation point of λ. By definition, there exist two sequences of parameters
(�m)m≥0, (qm)m≥0 such that

�m → +∞ , qm → 0 , �mqm → a , λ(�m, qm) → λ∗.

By Lemma 3 and Fatou’s lemma, we have

∑
n≥1

φn(a)

(λ∗)n
=
∑
n≥1

lim
m→∞

1

λ(�m, qm)n
Mn

H

(�m

2
,
�m

2

)

≤ lim
m→∞

∑
n≥1

1

λ(�m, qm)n
Mn

H

(�m

2
,
�m

2

)
= 1

σ − 1
, (6.9)

where the last equality comes from (6.6). This inequality and the very definition of λ(a, σ ) (see
Equation (1.13)) imply that λ∗ ≥ λ(a, σ ) > 1. In particular, there exist ε > 0 and M ≥ 1 such
that

∀m ≥ M λ(�m, qm) ≥ 1 + ε. (6.10)
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This last inequality ensures that the series

∑
n≥1

1

λ(�m, qm)n
Mn

H

(�m

2
,
�m

2

)

converges uniformly with respect to m, so that we can interchange the limits and the infinite
sum to get

1

σ − 1
= lim

m→∞
∑
n≥1

1

λ(�m, qm)n
Mn

H

(�m

2
,
�m

2

)

=
∑
n≥1

lim
m→∞

1

λ(�m, qm)n
Mn

H

(�m

2
,
�m

2

)
=
∑
n≥1

φn(a)

(λ∗)n
. (6.11)

Thus we see that λ∗ has to be the solution λ(a, σ ) of Equation (1.13). In conclusion, the only
possible accumulation point for λ in the long-chain regime is λ(a, σ ). Therefore λ converges
towards λ(a, σ ) as stated, and this completes the proof of Theorem 4.

6.5. Asymptotics of Mn
H

(�α��, �α��)

The next lemma is the missing ingredient needed to complete the proof of Theorem 5.

Lemma 4. In the long-chain regime, we have the convergence

∀n ≥ 1 lim
�→∞, q→0

�q→a

Mn
H

(�α�
, �α�
) = φn,α(a), (6.12)

where the sequence of functions φn,α is defined by

φn,α(a) = e−an
∑
k≥0

(
√

4α(1 − α)an)2k

22k(k!)2
. (6.13)

Proof. From the formula (6.4) with b = c = �α�
, we have

Mn
H

(�α�
, �α�
) = P

(
Bin

(
�α�

⌋
,

1 + ρn

2

)
+ Bin

(
� − �α�
, 1 − ρn

2

)
= �α�


)
= P

(
Bin

(
� − �α�
, 1 − ρn

2

)
= Bin

(
�α�
, 1 − ρn

2

))
,

with the understanding that the two binomial random variables appearing above are indepen-
dent. Moreover, we have

�
1 − ρn

2
= �

1 − (1 − 2q)n

2
∼ �nq ∼ na ,

so we are in the regime where the first binomial law converges towards the Poisson distribu-
tion with parameter (1 − α)na while the second binomial law converges towards the Poisson
distribution with parameter αna. We proceed as in the proof of Lemma 3 to conclude that

∀n ≥ 1 lim
�→∞, q→0

�q→a

Mn
H

(�α�
, �α�
) = e−an
∑
k≥0

((1 − α)an)k

k!
(αan)k

k! ,

and we rewrite the right-hand quantity as in the formula (6.13). �
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6.6. Completion of the proof of Theorem 5

Let φα(a) be the function defined by

φα(a) =
∑
n≥1

φn,α(a) =
∑
n≥1

e−an
∑
k≥0

(
√

4α(1 − α)an)2k

22k(k!)2
. (6.14)

In order to study the behavior of φα(a) as a goes to 0 or ∞, we take advantage of the sim-
ple inequalities (2k)! ≤ 22k(k!)2 ≤ (2k + 1)! to bound φn,α(a) from above and from below as
follows:

e−an sinh
(√

4α(1 − α)an
)

√
4α(1 − α)an

≤ φn,α(a) ≤ e−an cosh
(√

4α(1 − α)an
)
.

From these inequalities, we deduce that, when α �= 1/2, we have

lim
a→0

φα(a) = +∞ , lim
a→+∞ φα(a) = 0 . (6.15)

Moreover, for any a0 > 0, we have

∀a ≥ a0 φn,α(a) ≤ exp
(−a0n(1 −√

4α(1 − α))
)
.

Thus, when α �= 1/2, the series
∑

n≥1 φn,α(a) is uniformly convergent over [a0, +∞[ for any
a0 > 0, and therefore the function φα is continuous on ]0, +∞[. We consider the equation

1

σ − 1
= φα(a) ,

and we denote by a1
c(σ, α) (respectively a2

c(σ, α)) the smallest (respectively the largest) solu-
tion to this equation in ]0, +∞[. These two real numbers are well-defined, thanks to the limits
(6.15) and the continuity of φα on ]0, +∞[.

We use a strategy similar to that of the proof of Theorem 4. Suppose that a ≥ a2
c(σ, α). The

equation for h = �α�
 in the system (6.5) yields

1

σ − 1
=
∑
n≥1

1

λn
Mn

H

(�α�
, �α�
). (6.16)

Let λ∗ be an accumulation point of λ. If λ∗ > 1, then, proceeding as in the proof of Theorem
4, we pass to the limit along a subsequence in Equation (6.16) to get

1

σ − 1
=
∑
n≥1

1

(λ∗)n
φn,α(a) < φα(a), (6.17)

but this contradicts the fact that a ≥ a2
c(σ, α). Suppose that a < a1

c(σ, α). Let λ∗ be an
accumulation point of λ. Suppose that λ∗ = 1. By Fatou’s lemma, we would have

φα(a) =
∑
n≥1

φn,α(a) ≤ lim inf
�→∞, q→0

�q→a

∑
n≥1

1

λn
Mn

H

(�α�
, �α�
) = 1

σ − 1
, (6.18)

where the last equality comes from (6.16). Yet the inequality (6.18) stands in contradiction to
the fact that a < a1

c(σ, α). Therefore the infimum limit of λ has to be strictly larger than 1.
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7. Survival of the flattest

This final section is devoted to the proof of Theorem 6.

7.1. Lower bound on λSP/PL(δ, σ, �, q)

The mean fitness λSP/PL(δ, σ, �, q) is also the Perron–Frobenius eigenvalue of the matrix(
fSP/PL(u)M(u, v), u, v ∈ E

)
. As such, it is a non-decreasing function of the entries of this

matrix. Therefore

λSP/PL(δ, σ, �, q) ≥ max
(
λSP/PL(δ, 1, �, q), λSP/PL(1, σ, �, q)

)
.

With the help of Theorems 3 and 4, we conclude that

lim inf
�→∞, q→0

�q→a

λSP/PL(δ, σ, �, q) ≥ max
(
δe−a, λ(a, σ )

)
.

Let us prove next the reverse inequality.

7.2. Lumping

Let (x(u), u ∈ { 0, 1 }�) be the solution to the quasispecies equations associated with fSP/PL.
We are dealing with a fitness function which depends only on the Hamming classes. So
we lump together the genotypes according to their Hamming classes and introduce the new
variables y(h), 0 ≤ h ≤ �, given by

∀h ∈ { 0, . . . , � } y(h) =
∑

u:H(u)=h

x(u).

We use the same computations that led us from (6.2) to (6.5) (these computations relied on
the fact that the fitness function depended only on the Hamming classes) to conclude that the
variables y(h), 0 ≤ h ≤ �, satisfy

∀h ∈ { 0, . . . , � } y(h) =
∑

0≤k≤�

y(k)
(
fSP/PL(k) − 1

)∑
n≥1

1

λn
Mn

H(k, h), (7.1)

where the matrix MH(k, h) is defined in (6.4). Again, with a slight abuse of notation, we
denote by fSP/PL(k) the common value of the fitness function fSP/PL for all the sequences in
the Hamming class H(k). In the rest of the proof, we write simply λ(�, q) or even λ instead of
λSP/PL(δ, σ, �, q). The value λ and the variables y also satisfy

λ = δy(0) + σy(�/2) + 1 − y(0) − y(�/2) (7.2)

and

∑
0≤k≤�

y(k) = 1.

https://doi.org/10.1017/apr.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.39


Survival of the flattest 39

7.3. The two main equations

Let us rewrite the two equations of the system (7.1) corresponding to h = 0 and h = �/2:

y(0) = y(0)
(
δ − 1

)∑
n≥1

1

λn
Mn

H(0, 0) + y
(�

2

)(
σ − 1

)∑
n≥1

1

λn
Mn

H

(�

2
, 0
)

,

y
(�

2

)
= y(0)

(
δ − 1

)∑
n≥1

1

λn
Mn

H

(
0,

�

2

)
+ y

(�

2

)(
σ − 1

)∑
n≥1

1

λn
Mn

H

(�

2
,
�

2

)
. (7.3)

Let us examine the possible limits of λ, y(0), and y(�/2) along a subsequence in the long-chain
regime. Suppose that, along a subsequence, the following convergences take place:

λ → λ∗ , y(0) → y∗
0 , y(�/2) → y∗

1. (7.4)

In the remainder of the argument, all the limits are taken along this subsequence. Passing to
the limit in (7.2), we get

λ∗ = δy∗
0 + σy∗

1 + 1 − y∗
0 − y∗

1. (7.5)

Since λ∗ ≥ λ(a, σ ) > 1, necessarily y∗
0 + y∗

1 > 0. Moreover, the following convergences take
place:

Mn
H(0, 0) → e−na , Mn

H

(�

2
,
�

2

)
→ φn(a) , (7.6)

while

Mn
H

(�

2
, 0
)

→ 0 , Mn
H

(
0,

�

2

)
→ 0. (7.7)

The convergences (7.6) have already been proved. The first one is obvious and the second one
is the purpose of Lemma 3. To prove the convergences (7.7), we use the expression for MH

computed in (6.4) and get

Mn
H

(�

2
, 0
)

= P

(
Bin

(�

2
,

1 + ρn

2

)
+ Bin

(�

2
,

1 − ρn

2

)
= 0

)

≤ P

(
Bin

(�

2
,

1 + ρn

2

)
= 0

)
≤ P

(
Bin

(�

2
,

1

2

)
= 0

)
,

Mn
H

(
0,

�

2

)
= P

(
Bin

(
�,

1 − ρn

2

)
= �

2

)
≤ P

(
Bin

(
�,

1

2

)
= �

2

)
.

It is well known that the right-hand quantities go to 0 as � goes to ∞.

7.4. Upper bound on λSP/PL(δ, σ, �, q)

Proceeding as in the proof of Theorem 4 (see Lemma 3 and thereafter), we take advantage
of the fact that λ∗ > 1 to interchange the limit and the four sums appearing in (7.3). So, passing
to the limit in (7.3), and using the convergences (7.4), (7.6), (7.7), we get

y∗
0 = y∗

0

(
δ − 1

)∑
n≥1

e−na

(λ∗)n
= y∗

0
δ − 1

λ∗ea − 1
,

y∗
1 = y∗

1

(
σ − 1

)∑
n≥1

φn(a)

(λ∗)n
. (7.8)

https://doi.org/10.1017/apr.2024.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.39


40 M. BERGER AND R. CERF

If y∗
0 > 0, then the first equation implies that λ∗ = δe−a. If y∗

1 > 0, then the second equation
is equivalent to Equation (1.13). Therefore λ∗ has to be equal to the unique solution λ(a, σ )
of this equation. In conclusion, there are only two possible limits along a subsequence for λ,
namely δe−a and λ(a, σ ); thus

lim sup
�→∞, q→0

�q→a

λSP/PL(δ, σ, �, q) ≤ max
(
δe−a, λ(a, σ )

)
.

The final conclusions of the theorem are obtained as a by-product of the previous argument.
Indeed, if δe−a �= λ(a, σ ), then it follows from (7.8) that we cannot have simultaneously y∗

0 > 0
and y∗

1 > 0. This remark, in conjunction with the identity (7.5), yields the convergences stated
at the end of the theorem.
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