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Abstract
We show via �2-homology that the rational homological dimension of a lattice in a product of simple simply con-
nected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the
dimension of the associated Bruhat–Tits building.

1. Introduction

Let k be the function field of an irreducible projective smooth curve C defined over a finite field Fq. Let
S be a finite non-empty set of (closed) points of C. Let OS be the ring of rational functions whose poles
lie in S. For each p ∈ S, there is a discrete valuation νx of k such that νp(f ) is the order of vanishing of f
at p. The valuation ring Op is the ring of functions that do not have a pole at p, that is

OS =
⋂

p�∈S

Op.

Let k̄ denote the algebraic closure of k. Let G be an affine group scheme defined over k̄ such that G(k̄)
is almost simple. For each p ∈ S, there is a completion kp of k and the group G(kp) acts on the Bruhat–
Tits building Xp. Thus, we may embed G(OS) diagonally into the product

∏
p∈S G(kp) as an arithmetic

lattice.
The rational cohomological dimension of a group � is defined to be

cdQ(�) := sup{n : Hn(�;M) �= 0, M a Q�-module},
the rational homological dimension is defined completely analogously as

hdQ(�) := sup{n : Hn(�;M) �= 0, M a Q�-module}.
In [5], it is shown that cdQ(G(OS)) = ∏

p∈S dim (Xp). In light of this, Ian Leary asked the author what
is hdQ(G(OS))?

Theorem A. Let G be a simple simply connected Chevalley group. Let k and OS be as above. Then

hdQ(G(OS)) = cdQ(G(OS)) =
∏

p∈S

dim (Xp).

More generally, we obtain the following.

Corollary B. Let � be a lattice in a product of simple simply connected Chevalley groups over global
function fields with associated Bruhat–Tits building X. Then hdQ(�) = cdQ(�) = dim (X).
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The author expects these results are well-known; however, they do not appear in the literature so we
take the opportunity to record them here.

2. �2–homology and measure equivalence

Let � be a group. Both � and the complex group algebra C� act by left multiplication on the
Hilbert space �2� of square-summable sequences. The group von Neumann algebra N� is the ring of
�-equivariant bounded operators on �2G. The non-zero divisors of NG form an Ore set and the Ore
localization of N� can be identified with the ring of affiliated operators U�.

There are inclusions Q� ⊆N� ⊆ �2� ⊆ U�, and it is also known that U� is a self-injective ring
which is flat over N�. For more details concerning these constructions, we refer the reader to [12]
and especially to Theorem 8.22 of Section 8.2.3 therein. The von Neumann dimension and the basic
properties we need can be found in [12, Section 8.3].

The �2-Betti numbers of a group �, denoted b(2)
i (�), are then defined to be the von-Neumann

dimensions of the homology groups Hi(�; U�). The following lemma is a triviality.

Lemma 2.1. Let � be a discrete group and suppose that b(2)
i (�) > 0. Then the homology group Hi(�;U�)

is non-trivial.

Two countable groups � and � are said to be measure equivalent if there exist commuting, measure-
preserving, free actions of � and � on some infinite Lebesgue measure space (�, m), such that the
action of each of the groups � and � admits a finite measure fundamental domain. The key examples
of measure equivalent groups are lattices in the same locally compact group [6]. The relevance of this
for us is the following deep theorem of Gaboriau.

Theorem 2.2. (Gaboriau’s Theorem [4]) Suppose a discrete group � is measure equivalent to a discrete
group �. Then bp(�) = 0 if and only if bp(�) = 0.

3. Proofs

Proof of Theorem A. We first note that the group �: = G(OS) is measure equivalent to the product
�: = ∏

p∈S G(Fq[tp]) for some suitably chosen tp ∈Op. By [13, Theorem 1.6] (see also [2,3,1]), the group
G(Fq[tp]) has one non-vanishing �2-Betti number in dimension dim (Xp). Hence, by the Künneth for-
mula � has one non-vanishing �2-Betti number in dimension d = ∏

p∈S dim (Xp). Thus, by Gaboriau’s
Theorem, the group � has exactly one non-vanishing �2-Betti number in dimension d. It follows from
Lemma 2.1 that hdQ(�) ≥ d. The reverse inequality follows from the fact that � acts properly on the
d-dimensional space

∏
p∈S dim (Xp).

Proof of Corollary B. The proof of the corollary is entirely analogous. First, we split G into a product
of simple groups

∏n
i=1 Gi corresponding to the decomposition of the Bruhat–Tits building X = ∏n

i=1 Xi.
Let �i be a lattice in Gi and let � = ∏n

i=1 �i. Each �i has a non-vanishing �2-Betti number in dimension
dim (Xi). In particular, � has a non-vanishing �2-Betti number in dimension dim (X) = ∏n

i=1 dim (Xi).
By Gaboriau’s Theorem, � also has non-vanishing �2-Betti number in dimension dim (X). It follows
from Lemma 2.1 that hdQ(�) ≥ d. The reverse inequality follows from the fact that � acts properly on
the d-dimensional space

∏
p∈S Xp.

Remark 3.1. A similar argument can be applied to lattices in products of simple simply connected
algebraic groups over locally compact p-adic fields. One obtains the analogous result for such a lattice
� that cdQ(�) = hdQ(�) = dim (X), where X is the associated Bruhat–Tits building.
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