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2 C. Jiang and Y. Zou

1. Introduction

Throughout this paper, we work over the field of complex numbers C.
A normal projective variety X is a Fano variety if −KX is ample. According to

the minimal model program, Fano varieties form a fundamental class in the birational

classification of algebraic varieties. One recent breakthrough in birational geometry is the
proof of the Borisov–Alexeev–Borisov conjecture by Birkar [3, 4], which states that for

a fixed positive integer d and a positive real number ε, the set of d -dimensional Fano

varieties with ε-klt singularities forms a bounded family. During the proof, one important
step is to establish the upper bound for the anti-canonical volume (−KX)d for an ε-klt

Fano variety X of dimension d ([3, Theorem 1.6]).

Motivated by the classification theory of threefolds, we mainly focus on the anti-

canonical volume (−KX)3 for an ε-klt Fano threefold X. In this direction, Lai [13] gave
an upper bound for those X which are Q-factorial and of Picard rank 1, which is over

O(( 4ε )
384/ε5); later, the first author [10] showed the existence of a nonexplicit upper bound;

recently, Birkar [5] gave the first explicit upper bound, which is about O( 2
1536/ε3

ε9 ).

The main goal of this paper is to provide a reasonably small explicit upper bound with

a sharp order, for the anti-canonical volume of an ε-klt Fano threefold. Here, we state the
result for a larger class of varieties containing ε-klt Fano threefolds. Recall that a normal

projective variety X is said to be of ε-Fano type if there exists an effective R-divisor B,

such that (X,B) is ε-klt and −(KX +B) is ample.

Theorem 1.1. Fix a real number 0< ε < 1
3 . Let X be a threefold of ε-Fano type. Then

Vol(X,−KX)<
3200

ε4
.

The following example shows that the order O( 1
ε4 ) in Theorem 1.1 is sharp.

Example 1.2. Ambro [2, Example 6.3] showed that for each positive integer q, there

exists a projective toric threefold pair (X,B), such that

• (X,B) is 1
q -lc,

• −(KX +B) is ample (in fact, −KX is ample as ρ(X) = 1), and
• (−KX)3 > (−(KX +B))3 =

u4,q

q4 = O(q4), where u4,q = (q2 + q+ 1)2(q2 + q)2 +

(q2+ q+1)(q2+ q).

Remark 1.3. The ideas of this paper originate from [9, 10], which we briefly explain in
the following. Given a threefold X of ε-Fano type, in order to give an upper bound of

the anti-canonical volume of X, we may reduce to the case that X admits a Mori fiber

structure X → T . Then we can split the discussion according to dimT ∈ {0,1,2}. The case
dimT = 0 was solved in [17] (or [13]) and other two cases were solved in [10]. The main
obstructions of getting a reasonably small explicit upper bound in [10] are the following

two issues:

(1) when dimT = 1, we reduce the upper bound problem to finding a lower bound of

certain log canonical thresholds on surfaces, called μ(2,ε), but the lower bound in

[10] is extremely small so that the resulting upper bound is extremely large;
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An effective upper bound for anti-canonical volumes of singular Fano threefolds 3

(2) when dimT = 2, we reduce the upper bound problem to the boundedness of such

surfaces T (more precisely, the existence of very ample divisors on T with bounded

self-intersection numbers), but the geometry of those T is quite complicated, which
makes the upper bound nonexplicit; in fact, even if we can classify those surfaces

T, then the resulting upper bound will be explicitly computable but still extremely

large.

This paper is devoted to solving these two issues, and we put two main ingredients into

the recipe.
The first one is a new reduction originated from [11] (Proposition 4.1), which shows

that we may further assume that X admits a better fibration structure X → S so that if

dimS = 2, then there exists a free divisor on S with small self-intersection number. This

solves the second issue.
The second one is a more detailed estimate on the lower bound μ(2,ε) (Theorem 3.1),

which solves the first issue. We significantly improve the lower bound from about

O(2−64/ε3) in [10] to O(ε3) (Theorem 3.1).

Remark 1.4. We shall also compare our result with [5]. The method used in [5, Theorem

1.2] is a slight modification of [3, Theorem 1.6], which is different from our method (but it

is a more general strategy that works in any dimension). One thing we share in common

is that, [5, Theorem 1.2] also reduces the problem to finding some kind of lower bound
of log canonical thresholds on surfaces ([5, Lemma 2.2]). Here, note that the constant

μ(2,ε) in [5, Lemma 2.2] is 1
μ(2,ε) in our terminology. If we replace [5, Lemma 2.2] by

Theorem 3.1 in the proof of [5, Theorem 1.2], then we get an explicit upper bound about

O( 1
ε12 ).

2. Preliminaries

We adopt standard notation and definitions in [12] and will freely use them. We use

∼Q , ∼R , ≡ to denote Q-linear equivalence, R-linear equivalence, and numerical equiva-

lence respectively.

2.1. Singularities of pairs

Definition 2.1. A pair (X,B) consists of a normal variety X and an effective R-divisor
B on X, such that KX +B is R-Cartier.

Definition 2.2. Let (X,B) be a pair. Let f : Y →X be a log resolution of (X,B), write

KY = f∗(KX +B)+
∑

aiEi,

where Ei are distinct prime divisors on Y satisfying f∗(
∑

aiEi) =−B. The number ai+1

is called the log discrepancy of Ei with respect to (X,B), and is denoted by a(Ei,X,B).

The pair (X,B) is called

(1) Kawamata log terminal (klt, for short) if ai+1> 0 for all i ;

(2) log canonical (lc, for short) if ai+1≥ 0 for all i ;
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(3) ε-klt if ai+1> ε for all i and for some 0< ε < 1;

(4) ε-lc if ai+1≥ ε for all i and for some 0< ε < 1;

(5) terminal if ai > 0 for all f -exceptional divisors Ei and for all f.

Usually, we write X instead of (X,0) in the case when B = 0.

2.2. Varieties of Fano type

Definition 2.3. A variety X is said to be of ε-Fano type if X is projective and there

exists an effective R-divisor B, such that −(KX +B) is ample and (X,B) is ε-klt for some

0< ε < 1.

2.3. Volumes

Definition 2.4. Let X be a normal projective variety of dimension n, and let D be a

Cartier divisor on X. The volume of D is defined by

Vol(X,D) = limsup
m→∞

h0(X,OX(mD))

mn/n!
.

Moreover, by the homogeneous property of volumes, the definition can be extended to
Q-Cartier Q-divisors. Note that if D is a nef Q-Cartier Q-divisor, then Vol(X,D) =Dn.

We refer to [14, Section 2.2.C] for more details and properties on volumes of divisors.

3. A lower bound of log canonical thresholds on surfaces

The main goal of this section is to prove the following theorem on certain log canonical

thresholds on surfaces. This is the main ingredient of this paper and the most technical

part. Note that in this paper, by a curve, we always mean an irreducible one.

Theorem 3.1. Fix 0 < ε < 1
3 . Let S be a smooth projective surface. Suppose that there

exists a real number 0< t < 1 and effective R-divisors B,D on S, such that

• (S,B) is ε-lc;
• (S,(1− t)B+ tD) is not klt;
• B ∼R D ∼R −KS and −KS is big.

Then t > 3ε3

400 .

As an immediate corollary, we confirm the generalized Ambro’s conjecture ([10,

Conjecture 2.7]) in dimension 2 with a greatly improved lower bound.

Corollary 3.2 (cf. [10, Theorem 2.8]). The generalized Ambro’s conjecture ([10,

Conjecture 2.7]) holds in dimension 2 with μ(2,ε)> 3ε3

400 .

The reduction from Corollary 3.2 to Theorem 3.1 is standard (see [10, Section 5, Page

1583]).
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Remark 3.3. While the constant term might be improved slightly, the order ε3 in

Theorem 3.1 is sharp. In fact, Ambro [2, Theorem 1.1, Example 6.3] showed that for
each positive integer q, there exists a projective toric surface pair (X,Δ), such that

• (X,Δ) is 1
q -lc,

• −(KX +Δ) is ample, and
• there exists an effective Q-divisor H ∼Q −(KX +Δ), such that (X,Δ+ tH) is not

klt for t= 1
(q+1)(q2+q+1) =O( 1

q3 ).

We can modify this example to satisfy assumptions in Theorem 3.1. Take A∼Q −(KX+Δ)

to be a sufficiently general ample effective Q-divisor, such that (X,Δ+A) is still 1
q -lc.

Take π : S →X to be the minimal resolution of X, then −KS is big as −KX is big. We
may write

KS +B = π∗(KX +Δ+A)∼Q 0

for some effective Q-divisor B≥ π∗A. Then (S,B) is 1
q -lc. In this case,D :=B−π∗A+π∗H

is an effective Q-divisor, such that D∼Q B ∼Q −KS and the pair (S,(1− t)B+ tD) is not

klt as

KS +(1− t)B+ tD = π∗(KX +Δ+ tH+(1− t)A).

3.1. Weighted dual graphs

In this subsection, we recall basic knowledge of weighted dual graphs of resolutions of

surface singularities from [1] or [12, 4.1].
Let Y be a normal surface, and let π : Y ′ → Y be a resolution with π-exceptional

curves {Ei}i. The weighted dual graph Γ of π is defined as the following: each vertex vi of

Γ corresponds to a π-exceptional curve Ei, and it has a positive weight −E2
i ; two vertices

vi and vj are connected by an edge of weight m = (Ei ·Ej) if (Ei ·Ej) �= 0. If Y is klt

and has a unique singular point, then Γ is a tree with simple edges and all π-exceptional

curves are smooth rational curves by [1, Lemma 3.2.7] or [12, Theorem 4.7]. In this case,

denote by vivj the path from vi to vj , that is, the unique shortest chain in Γ joining vi
and vj .

For any subgraph Γ′ ⊂ Γ, define Δ(Γ′) to be the absolute value of the determinant of

the matrix [(Ei ·Ej)], made up by vertices in Γ′. Here, Δ(∅) = 1 by default.
We will often use the following lemma to compute log discrepancies and multiplicities

of exceptional divisors.

Lemma 3.4 (cf. [1, (3.1.10)]). Let π : Y ′ → Y be a resolution of a klt surface singularity
P ∈ Y . Suppose that the set of π-exceptional curves is {E1,E2, . . . ,En}. Denote by Γ the

weighted dual graph of π.

(1) Then for each 1≤ k ≤ n,

a(Ek,Y ,0) =

∑n
j=1(2− (

∑
i�=jEi ·Ej)) ·Δ(Γ\vkvj)

Δ(Γ)
.
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(2) If C is an irreducible curve on Y, then for each 1≤ k ≤ n,

multEk
π∗C =

∑n
j=1(π

−1
∗ C ·Ej) ·Δ(Γ\vkvj)

Δ(Γ)
.

Proof. (1) is just [1, (3.1.10)] and (2) can be deduced in the same way by applying

[1, Lemma 3.1.9] and the Cramer’s rule.

The following lemma will be used to deal with the weighted dual graph of the minimal

resolution of a cyclic quotient singularity.

Lemma 3.5. Let Γ be a chain with vertices v1, . . . ,vn ordering in the natural sense that

vi is connected to vi+1 by an edge for 1≤ i≤ n−1. Suppose that for each 1≤ i≤ n, the

weight of vi is mi with mi ≥ 2. Then the following assertions hold:

(1) Δ(Γ) =m1 ·Δ(Γ\{v1})−Δ(Γ\v1v2);
(2) Δ(Γ\v1vk) =mk+1 ·Δ(Γ\v1vk+1)−Δ(Γ\v1vk+2) for 1≤ k ≤ n−2;

(3) Δ(Γ)>Δ(Γ\{v1})>Δ(Γ\v1v2)> · · ·>Δ(Γ\v1vn) = 1;

(4) Δ(Γ)≥ n+1 and Δ(Γ\v1vk)≥ n−k+1 for 1≤ k≤ n; moreover, the equalities hold
if all mi = 2;

(5) if Δ(Γ) = Δ(Γ\{v1})+1, then Δ(Γ) = n+1;

(6) if mi0 ≥ 3 for some 1≤ i0 ≤ n, then Δ(Γ)> (i0+1)Δ(Γ\v1vi0).

Proof. Assertions (1) and (2) can be calculated easily from computing determinants. By
Assertions (1)(2) and the fact that mi ≥ 2, we have

Δ(Γ)≥ 2Δ(Γ\{v1})−Δ(Γ\v1v2) (3.1)

and

Δ(Γ\v1vk)≥ 2Δ(Γ\v1vk+1)−Δ(Γ\v1vk+2) (3.2)

for 1≤ k ≤ n−2. So Assertion (3) follows inductively from the fact that

Δ(Γ\v1vn−1)−Δ(Γ\v1vn) =mn−1> 0.

Assertion (4) follows from Assertion (3) and a direct computation.
For Assertion (5), the assumption combining with Eqs. (3.1) and (3.2) implies that

Δ(Γ\v1vk+1)−Δ(Γ\v1vk+2) = 1

for 1≤ k ≤ n−2. Moreover, Eqs. (3.1) and (3.2) become equalities, and hence, all mi = 2.

So Δ(Γ) = n+1 by Assertion (4).
By applying Eqs. (3.1) and (3.2) inductively, one can see that

Δ(Γ)≥ jΔ(Γ\v1vj−1)− (j−1)Δ(Γ\v1vj)

for 1≤ j ≤ n. Here, we set Γ\v1v0 = Γ. Then, by Assertions (1)(2)(3), for 1≤ j ≤ n, we

have
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Δ(Γ)≥ j(mjΔ(Γ\v1vj)−Δ(Γ\v1vj+1))− (j−1)Δ(Γ\v1vj)
= (jmj − j+1)Δ(Γ\v1vj)− jΔ(Γ\v1vj+1)

> (jmj −2j+1)Δ(Γ\v1vj).

Here, we set Δ(Γ \ v1vn+1) = 0. In particular, if mi0 ≥ 3, then Δ(Γ) > (i0 + 1)
Δ(Γ\v1vi0).

3.2. Geometric structure of δ-lc surface pairs

Lemma 3.6. Fix a real number 0 < δ < 1
6 and a positive integer N. Let Y be a normal

surface, and let C be an irreducible curve on Y, such that (Y ,(1−δ)C) is δ-lc. Let π : Y ′ →
Y be the minimal resolution of Y. Suppose that ρ(Y ′/Y ) ≤ N . Then multE π∗C > δ

N+1

for any prime divisor E on Y ′, such that E is π-exceptional and π(E) ∈ C.

Proof. By shrinking Y if necessary, we may assume that P ∈ Y is the only singular point

on Y and P ∈C. Denote by Γ the weighted dual graph of π. For any π-exceptional prime

divisor E, clearly multE π∗C is a positive rational number and its denominator divides
Δ(Γ) by Lemma 3.4. So it suffices to show that Δ(Γ)< N+1

δ .

By [16, Corollary 6.0.9], (Y ,C) is lc. Then the weighted dual graph Γ of the minimal

resolution π : Y ′ → Y are classified into three cases, as in [12, Theorem 4.15]. We split the
discussion into these three cases. Denote by m = ρ(Y ′/Y ) the number of π-exceptional

curves on Y ′.
As (Y ,(1− δ)C) is δ-lc, a(E,Y ,(1− δ)C) ≥ δ for any prime divisor E over Y. We will

apply this fact to some specially chosen E.

Case (1): For the case [12, Theorem 4.15(1)], Γ is a chain with vertices v1, · · · ,vm
corresponding to π-exceptional curves E1, · · · ,Em, such that π−1

∗ C intersects E1 and Em.

If m≥ 2, by Lemma 3.4, we have

a(E1,Y ,0) = multE1
π∗C =

Δ(Γ\{v1})+Δ(∅)
Δ(Γ)

.

Then

a(E1,Y ,(1− δ)C) = a(E1,Y ,0)− (1− δ)multE1
π∗C

= δ · Δ(Γ\{v1})+1

Δ(Γ)
.

Therefore, a(E1,Y ,(1−δ)C)≥ δ implies that Δ(Γ\{v1})+1≥Δ(Γ). So, by Lemma 3.5(5),
Δ(Γ) =m+1≤N +1.

If m= 1, then a similar computation by Lemma 3.4 shows that

a(E1,Y ,(1− δ)C) = δ · 2Δ(Γ\{v1})
Δ(Γ)

=
2δ

Δ(Γ)
.

Therefore, a(E1,Y ,(1− δ)C)≥ δ implies that Δ(Γ)≤ 2.

https://doi.org/10.1017/S1474748024000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000070


8 C. Jiang and Y. Zou

Case (2): For the case [12, Theorem 4.15(2)], we have m≥ 3.

If m ≥ 4, then Γ is a tree with only one fork. Let Ef be the π-exceptional curve

corresponding to the fork vertex vf. Then Γ \ {vf} = Γ′ ∪ {v1} ∪ {v2}, where v1,v2
correspond to (−2)-curves intersecting Ef and Γ′ is the chain corresponding to curves

connecting Ef and π−1
∗ C.

Then, by Lemma 3.4,

a(Ef,Y ,0)

=
Δ(v1) ·Δ(v2)−Δ(Γ′) ·Δ(v1) ·Δ(v2)+Δ(Γ′) ·Δ(v2)+Δ(Γ′) ·Δ(v1)

Δ(Γ)

=
4

Δ(Γ)

and

multEf
π∗C =

Δ(v1) ·Δ(v2)

Δ(Γ)
=

4

Δ(Γ)
.

Then a(Ef,Y ,(1− δ)C) = 4δ
Δ(Γ) . Therefore, a(Ef,Y ,(1− δ)C)≥ δ implies that Δ(Γ)≤ 4.

If m = 3, then Γ is a chain consisting of three vertices v1,v2,v3 corresponding to

E1,E2,E3, such that E1 and E3 are (−2)-curves and π−1
∗ C intersects E2. Then a

similar computation by Lemma 3.4 shows that a(E2,Y ,(1− δ)C) = 4δ
Δ(Γ) . Therefore,

a(E2,Y ,(1− δ)C)≥ δ implies that Δ(Γ)≤ 4.

Case (3): For the case [12, Theorem 4.15(3)], Γ is a chain with vertices v1, · · · ,vm
corresponding to π-exceptional curves E1, · · · ,Em, such that π−1

∗ C intersects E1. If all Ei

are (−2)-curves for 1≤ i≤m, then by Lemma 3.5(4), Δ(Γ) =m+1≤N +1. If −E2
i0
≥ 3

for some 1≤ i0 ≤m, take i0 to be the minimal one, then by Lemmas 3.4 and 3.5(4),

a(Ei0,Y ,(1− δ)C) =
Δ(Γ\vi0vm)

Δ(Γ)
+ δ · Δ(Γ\v1vi0)

Δ(Γ)

=
i0

Δ(Γ)
+ δ · Δ(Γ\v1vi0)

Δ(Γ)

<
i0

Δ(Γ)
+

δ

i0+1
.

Here, the last inequality is by Lemma 3.5(6). Therefore, a(Ei0,Y ,(1− δ)C) ≥ δ implies

that Δ(Γ)< i0+1
δ ≤ N+1

δ .

Lemma 3.7 (cf. [10, Claim 2]). Fix 0< δ < 1. Let X be a smooth projective surface, and
let (X,B) be a δ-lc pair, such that KX +B ≡ 0. Then C2 ≥− 2

δ for any irreducible curve

C on X.

Proof. We may assume that C2 < 0. Then, by the genus formula,

−2≤ 2pa(C)−2 = (KX +C) ·C
= δC2+(KX +(1− δ)C) ·C
≤ δC2+(KX +B) ·C = δC2.
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Lemma 3.8. Let X be a normal projective surface, such that KX is Q-Cartier and not
pseudo-effective. Then either X � P2 or X is covered by a family of rational curves C,

such that (−KX ·C)≤ 2.

Proof. Take π : X ′ → X to be the minimal resolution of X, then KX′ +G = π∗KX ,

where G is an effective Q-divisor. Then KX′ is not pseudo-effective as KX is not pseudo-
effective. Suppose that X �� P2, then clearly X ′ �� P2. By the standard minimal model

program, there exists a morphism X ′ → T whose general fibers are P1. Therefore, X ′ is
covered by a family of rational curves C ′, such that (−KX′ ·C ′) = 2. So (−KX ·π(C ′))≤
(−KX′ ·C ′) = 2.

3.3. Proof of Theorem 3.1

In this subsection, we give the proof of Theorem 3.1.

By [8, Lemma 3.1], there is a birational morphism g : S → S′, where S′ is P2 or the

n-th Hirzebruch surface Fn with n≤ 2
ε . Since B ∼R D ∼R −KS , we may write

KS +B = g∗(KS′ +g∗B);

KS +(1− t)B+ tD = g∗(KS′ +(1− t)g∗B+ tg∗D).

Hence, (S′,g∗B) is ε-lc and (S′,(1− t)g∗B + tg∗D) is not klt. By replacing the triple

(S,B,D) with (S′,g∗B,g∗D), we may assume that S is P2 or Fn for some n≤ 2
ε .

Fix a positive real number 0< δ < ε, such that δ < 1
6 . Take

t0 =max{s ∈ R | (S,(1−s)B+sD) is δ-lc}.

Then clearly 0< t0 < t. In the following, we will show that

t0 >
δ2(ε− δ)

16+4δ+ δ2(ε−1)
. (3.3)

In particular, we can take δ = ε
2 , then Eq. (3.3) implies that t > t0 >

3ε3

400 .
By the definition of t0, there exists a prime divisor E over S, such that

a(E,S,(1− t0)B+ t0D) = δ.

If E is a prime divisor on S, then as (S,B) is ε-lc, we have

multEB ≤ 1− ε;

multE((1− t0)B+ t0D) = 1− δ.

So

t0 ≥
ε− δ

multED−1+ ε
≥ ε(ε− δ)

2+3ε+ ε2
,

which implies Eq. (3.3). Here, we used the fact that

multED ≤
{
3 if S = P2;

n+4≤ 2
ε +4 if S = Fn,

by applying [10, Lemma 3.3] to a general point on E.
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So, from now on, we may assume that E is exceptional over S. By [6, Corollary 1.4.3],

there exists a projective birational morphism f : Y → S, such that E is the unique

π-exceptional divisor on Y. We have

KY +(1− t0)BY + t0DY +(1− δ)E = f∗(KS +(1− t0)B+ t0D). (3.4)

Here, BY and DY are strict transforms of B and D on Y. Write

KY +BY + bE = f∗(KS +B)≡ 0,

KY +DY +dE = f∗(KS +D)≡ 0.

Then (1− t0)b+ t0d= 1− δ. Since b≤ 1− ε as (S,B) is ε-lc, we have

t0 ≥
ε− δ

d+ ε−1
. (3.5)

So, in order to bound t0 from below, we need to bound d from above.

By Eq. (3.4), we know that (Y ,(1− t0)BY + t0DY +(1− δ)E) is δ-lc, and

KY +(1− t0)BY + t0DY +(1− δ)E ≡ 0.

We can run a (KY +(1− t0)BY + t0DY )-MMP (which is also a (−E)-MMP) on Y to

get a Mori fiber space Y ′ → Z, such that E′ is ample over Z, where E′ is the strict

transform of E on Y ′. Here, (Y ′,(1− δ)E′) is again δ-lc by the negativity lemma. We
have −KY ′ ≡DY ′ +dE′, where DY ′ is the strict transform of DY on Y ′.
If dimZ = 1, then a general fiber of Y ′ → Z is a smooth rational curve. By restricting

−KY ′ ≡DY ′ +dE′ on a general fiber, we get d≤ 2.

If dimZ = 0, then Y ′ is of Picard rank 1. In this case, −KY ′ ≡ eE′ for some e ≥ d. If
Y ′ � P2, then clearly d≤ e≤ 3. So, we may assume that Y ′ �� P2. By Lemma 3.8, there is a

general rational curve C, such that (−KY ′ ·C)≤ 2. Take π′ : Y ′
min → Y ′ to be the minimal

resolution of Y ′, and take Ymin to be the minimal resolution of Y. Then the morphism
Ymin → Y ′ factors through Y ′

min.

Claim 3.9. We have ρ(Ymin/Y )≤ 8
δ −1.

We grant Claim 3.9 for this moment and continue the proof of Theorem 3.1. The proof
of Claim 3.9 will be provided later. By Claim 3.9,

ρ(Y ′
min/Y

′)≤ ρ(Ymin/Y
′) = ρ(Ymin/Y )+ρ(Y )−1

≤ ρ(Ymin/Y )+2≤ 8

δ
+1.

Here, we used the fact that ρ(Y ) = ρ(S)+ 1 ≤ 3. Recall that (Y ′,(1− δ)E′) is δ-lc and

δ < 1
6 , then, by Lemma 3.6, π′∗E′ is an effective Q-divisor with all coefficients larger than

δ2

8+2δ . As C is general, by the projection formula, (E′ ·C)> δ2

8+2δ , which implies that

eδ2

8+2δ
< (eE′ ·C) = (−KY ′ ·C)≤ 2.

Hence, d≤ e≤ 16+4δ
δ2 .
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In summary, we always have d≤ 16+4δ
δ2 . Therefore, by Eq. (3.5),

t0 ≥
ε− δ

d+ ε−1
≥ δ2(ε− δ)

16+4δ+ δ2(ε−1)
.

Proof of Claim 3.9. Denote by π : Ymin → Y the minimal resolution of Y. Denote by E0

the strict transform of E on Ymin. Denote by f0 = f ◦π : Ymin → S the induced morphism.
Denote P = f(E) ∈ S. Then Y \E � S \ {P} is smooth. Therefore, Ymin and Y are

isomorphic over Y \E and

Exc(f0) = f−1
0 (P ) = Exc(π)∪E0.

Note that f0 : Ymin → S can be decomposed into successive blow-ups along smooth points
and Exc(π) does not contain any (−1)-curves, so E0 is the unique (−1)-curve in Exc(f0).

In other words, if we denote the last blow-up by Ymin → S1, then E0 is the exceptional

divisor over S1.

Denote by Γ the weighted dual graph of f0, and denote by v0 the vertex corresponding
to E0. Then Γ is a tree and Γ\{v0} is the weighted dual graph of π. Since the weighted

dual graph of S1 →S is also a tree, Γ\{v0} has at most two connected components (which

implies that Y has at most two singular points).

Claim 3.10. Γ is a chain.

Proof of Claim 3.10. Take Γ′ to be a connected component of Γ \ {v0}, then it

corresponds to exceptional curves over a singular point on Y. Recall that (Y ,(1− δ)E)

is δ-lc by Eq. (3.4). As δ < 1
6 , (Y ,E) is lc by [16, Corollary 6.0.9]. Then the weighted

dual graph Γ′ and its relation with v0 are classified into three cases, as in [12, Theorem

4.15]. We shall rule out [12, Theorem 4.15(1)(2)]. In the case of [12, Theorem 4.15(1)], Γ

contains a loop, which is absurd; in the case of [12, Theorem 4.15(2)], Γ contains a fork

with two (−2)-curves on two tails of the fork, so, by contracting (−1)-curves in the graph
successively, we will reach some model with two (−1)-curves over P ∈ S, which is also

absurd. Hence, we conclude that Γ′ is a chain connecting to v0 by one edge at one end.

Therefore, Γ is a chain.

If Γ\{v0} is empty, then clearly Y is smooth and ρ(Ymin/Y ) = 0. So, in the following,

we split the discussion into two cases, depending on the number of connected components

of Γ\{v0}.

Case (a). Γ\{v0} has one connected component.
In this case, denote the π-exceptional curves by E1, . . . ,EN , such that E0 intersects E1,

where N = ρ(Ymin/Y ). Then all Ei are (−2)-curves for 1≤ i≤N .

Suppose that Ymin → S is decomposed into successive blow-ups at smooth points as

Ymin = Y0 → Y1 → ·· · → YN → YN+1 = S,

then Ei is the strict transform of the exceptional divisor of Yi → Yi+1. For each i, denote

by Gi the strict transform of (1− t0)B+ t0D on Yi and denote by Pi ∈ Yi the blow-up

center on Yi.
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Write

KYmin
+G0+(1− δ)E0+

N∑
i=1

biEi = f∗
0 (KS +(1− t0)B+ t0D). (3.6)

Then, the coefficient of E0 is computed from G1 and E1 by the formula

1− δ =multP1
G1+ b1−1.

Since b1 ≤ 1−δ as (S,(1− t0)B+ t0D) is δ-lc, we have multP1
G1 ≥ 1, hence, multPi

Gi ≥
multP1

G1 ≥ 1 for 1≤ i≤N +1. Hence, the intersection number G2
i decreases at least by

1 after each blow-up for 1≤ i≤N +1. Therefore,

N +1≤G2
N+1−G2

0 =K2
S −G2

0. (3.7)

Since Ymin is the minimal resolution of Y, we have bi ≥ 0 for 1≤ i≤N in Eq. (3.6). In
particular, (Ymin,G0+(1− δ)E0+

∑N
i=1 biEi) is a δ-lc pair, such that

KYmin
+G0+(1− δ)E0+

N∑
i=1

biEi ≡ 0.

Write G0 =
∑

k ckCk, where Ck are distinct prime divisors, then ck ≤ 1−δ. By Lemma 3.7,
C2

k ≥− 2
δ .

If S = Fn, then
∑

k ck ≤ 4 by [10, Lemma 3.3]. Hence

G2
0 = (

∑
k

ckCk)
2 ≥ (

∑
k

c2k) · (−
2

δ
)≥ (

∑
k

ck) · (1− δ) · (−2

δ
)

≥ 4(1− δ) · (−2

δ
) = 8− 8

δ
.

Combining with Eq. (3.7), we have

N +1≤K2
S −8+

8

δ
=

8

δ
.

If S = P2, then we have
∑

k ck ≤ 3, and by the same argument, we get

N +1≤K2
S −G2

0 ≤ 9−6+
6

δ
≤ 8

δ
.

Case (b). Γ\{v0} has two connected components.

In this case, suppose that the two connected components are two chains Γ1,Γ2 consisting
of vertices v1, . . . ,vp and u1, . . . ,uq, corresponding to exceptional divisors E1, . . . ,Ep and

F1, . . . ,Fq, respectively, where E1 and F1 intersect E0. Here, p+ q = ρ(Ymin/Y ).

Set mi =−E2
i and lj =−F 2

j for 1≤ i≤ p and 1≤ j ≤ q. Recall that Γ is the weighted
dual graph of a resolution over the smooth point P ∈ S, so after blowing down E0, there

is exactly one (−1)-curve among the strict transforms of E1 and F1. So without loss of

generality, we may assume that m1 ≥ 3 and l1 = 2. Again, by the fact that a contraction
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of a (−1)-curve in the graph induces another unique (−1)-curve, we know that lj = 2 for

1≤ j ≤m1−2≤ q, and lm1−1 ≥ 3 if m1−1≤ q.

Since Ymin is the minimal resolution of Y, we may write

KYmin
+G′ = f∗

0 (KS +(1− t0)B+ t0D)≡ 0,

where (Ymin,G
′) is a δ-lc pair. By Lemma 3.7, we conclude that m1 =−E2

1 ≤ 2
δ .

By Lemma 3.4, we have

a(Ei,Y ,(1− δ)E) =
Δ(Γ1 \vivp)

Δ(Γ1)
+ δ · Δ(Γ1 \v1vi)

Δ(Γ1)
; (3.8)

a(Fj,Y ,(1− δ)E) =
Δ(Γ2 \ujuq)

Δ(Γ2)
+ δ · Δ(Γ2 \u1uj)

Δ(Γ2)
(3.9)

for 1≤ i≤ p and 1≤ j ≤ q.
To finish the proof, we need to show the following claim.

Claim 3.11. We have p≤ 1
δ and q ≤ 3

δ −2.

Proof of Claim 3.11. Recall that (Y ,(1− δ)E) is δ-lc.

First, we show that p≤ 1
δ . We may assume that p≥ 2. By Eq. (3.8),

a(E1,Y ,(1− δ)E) =
1

Δ(Γ1)
+ δ · Δ(Γ1 \{v1})

Δ(Γ1)
.

Therefore, a(E1,Y ,(1− δ)E)≥ δ implies that

1

δ
≥Δ(Γ1)−Δ(Γ1 \{v1})>Δ(Γ1 \{v1})≥ p.

Here, the second inequality is from Lemma 3.5(6) with i0 = 1 and the third is from

Lemma 3.5(4).
Next, we show that q ≤ 3

δ −2. If q =m1−2, then clearly q ≤ 2
δ −2. If q > m1−2, then

take j0 =m1−1, we have lj0 ≥ 3. By Eq. (3.9),

a(Fj0,Y ,(1− δ)E) =
Δ(Γ2 \uj0uq)

Δ(Γ2)
+ δ · Δ(Γ2 \u1uj0)

Δ(Γ2)

=
j0

Δ(Γ2)
+ δ · Δ(Γ2 \u1uj0)

Δ(Γ2)
.

Therefore, a(Fj0,Y ,(1− δ)E)≥ δ implies that

j0
δ

≥Δ(Γ2)−Δ(Γ2 \u1uj0)> j0Δ(Γ2 \u1uj0)≥ j0(q− j0+1).

Here, the second inequality is from Lemma 3.5(6) with i0 = j0 and the third is from
Lemma 3.5(4). Recall that m1 = j0+1, so q ≤ 1

δ +m1−2≤ 3
δ −2.

In summary, ρ(Ymin/Y ) = p+ q ≤ 4
δ −2.

https://doi.org/10.1017/S1474748024000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000070


14 C. Jiang and Y. Zou

4. Upper bound of anti-canonical volumes

In this section, we prove the main theorem.

4.1. A reduction step

The following proposition is a refinement of [10, Theorem 4.1] by the idea of [11,

Proposition 4.1].

Proposition 4.1. Fix 0< ε< 1. Let X be a threefold of ε-Fano type. Then X is birational

to a normal projective threefold W satisfying the following:

(1) W is Q-factorial terminal;

(2) Vol(X,−KX)≤Vol(W,−KW );

(3) W is of ε-Fano type;

(4) there exists a projective morphism f :W → Z with connected fibers, such that one
of the following conditions holds:

(a) Z is a point and W is a Q-factorial terminal Fano threefold with ρ(W ) = 1;

(b) Z = P1;

(c) Z is a del Pezzo surface with at worst Du Val singularities and ρ(Z) = 1, and
general fibers of f are P1.

Proof. By [10, Theorem 4.1], X is birational to W with a Mori fiber structure (see [10,

Definition 2.1]), in particular, W satisfies Properties (1)(2)(3). So here, we only need to

explain how to get Property (4) by the proof of [11, Proposition 4.1(5)].
Denote by W → T the Mori fiber structure on W. Note that dimT ∈ {0,1,2}. By [18,

Theorem 1], W is rationally connected, which implies that T is also rationally connected.

If dimT = 0, then take Z = T and W is a Q-factorial terminal Fano threefold with
ρ(W ) = 1. In this case, we get (a).

If dimT = 1, then T � P1. In this case, we get (b).

If dimT = 2, then T is a rational surface as it is rationally connected, and T has at

worst Du Val singularities by [15, Theorem 1.2.7]. We can run a KT -MMP on T which
ends up with a surface T ′, such that either

• T ′ is a del Pezzo surface with at worst Du Val singularities and ρ(T ′) = 1, or
• there is a morphism T ′ → P1 with connected fibers.

In the former case, take Z = T ′ and take f :W → Z to be the induced morphism W →
T → T ′, then general fibers of f are smooth rational curves as −KW is ample over T,

then we get (c). In the latter case, take Z = P1 and take f :W → Z to be the induced
morphism W → T → T ′ → P1, then we get (b).

4.2. Proof of Theorem 1.1

According to Proposition 4.1, we can split the discussion into three cases. We essentially

follow the proof in [10].
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Proposition 4.2 (cf. [10, Corollary 6.3]). Suppose that 0< ε < 1
3 . Keep the setting as in

Proposition 4.1. Assume that case (b) holds. Then

Vol(W,−KW )<
3200

ε4
.

Proof. By [10, Theorem 6.1],

Vol(W,−KW )≤ 6M(2,ε)

μ(2,ε)
,

whereM(2,ε)≤ 2
ε +4+ 2

3 <
4
ε by [8] or [10, Corollary 4.5] and μ(2,ε)> 3ε3

400 by Corollary 3.2.

Proposition 4.3 (cf. [10, Theorem 6.6]). Keep the setting as in Proposition 4.1. Assume

that case (c) holds. Then

Vol(W,−KW )≤ 1152

ε2
.

Proof. By the classification of del Pezzo surfaces with at worst Du Val singularities and

Picard rank 1 (see [7, Theorem 8.3.2]), there exists a base point free linear system H on Z
which defines a generically finite map, such that H2 ≤ 6 (see also [11, Proposition 4.3]).

Take a general element H ∈ H and denote G = f−1(H). Consider the self-intersection

number d=H2.
By [10, Lemma 6.5], we have Vol(G, −KW |G) ≤ 8(d+2)

ε . Then by [10, Theorem 6.6],

Vol(W,−KW )≤ 144(d+2)
ε2 . This proves the proposition as d≤ 6.

Here, we remark that in [10, Lemma 6.5, Theorem 6.6], the assumptions are

• W → Z is a Mori fiber space and dimZ = 2;
• H is very ample.

But those assumptions can be slightly weakened as in our setting without any other

changes to the proofs:

• general fibers of W → Z are P1;
• H is base point free and defines a generically finite map.

Proof of Theorem 1.1. By Proposition 4.1, it suffices to bound Vol(W,−KW ). If case

(a) holds, then Vol(W,−KW ) = (−KW )3 ≤ 64 by [17]. If case (b) or (c) holds, then the

conclusion follows from Propositions 4.2 and 4.3.
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