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Abstract
In this paper, we propose an approach to tune optimal parameters of a robust PID controller by means of computed
torque control (CTC) strategy for trajectory tracking of a Delta parallel robot, using a hybrid optimization algorithm
of Particle Swarm Optimization (PSO) and differential evolution (DE). It differs from previous works that they
propose robust PID controller parameters tuning based on conventional gradient-based optimization algorithms and
apply them to process control. First, we reduce the tuning problem of a robust PID controller with CTC strategy
satisfying requirements including robustness and disturbance attenuation to an optimization problem with nonlinear
constraints by considering the nonlinear dynamic model of a Delta parallel robot. Second, we set up the design
characteristics for the trajectory tracking of a Delta parallel robot. Then, we propose a robust PID controller in a
way of obtaining the global optimization solution of the nonlinear optimization problem by running a PSO-DE
hybrid optimization algorithm of finding the global optimal solution by maintaining the diversity of swarm during
evolution based on the evolution of cognitive experience. Simulation and experimental results demonstrate that
the proposed controller outperforms previous works with respect to robust performance and active disturbance
attenuation when it is applied to tracking control of a Delta parallel robot.

1. Introduction
Recent years have witnessed ever-increasing applications of high-speed pick-and-place parallel robots
such as Delta parallel robot in fields of electronics, food, pharmaceutical, packaging and other light
industries [1–3]. For the parallel robots, it is difficult to design the control system with high control
performance due to the presence of nonlinearity in the dynamic model, the high interaction and the
kinematical constraints between the robot links [1].

To enhance the trajectory tracking performance of a robot manipulator, some traditional control
strategies have been employed such as the independent PID control on each axis, the PID control with
an acceleration feedforward component, the PID control with gravity compensation and nonlinear PID-
based control [4, 5]. Since these strategies never or partially use the dynamic model of the Delta parallel
robot, dynamic interaction between robot links could not be considered. Hence, one cannot expect the
high control performance when high speed and accuracy of a parallel robot are of concern.

Otherwise, the computed torque control (CTC) strategy has been proposed which employs all the
dynamic model of the manipulator [6]. However, the CTC strategy provides a good control performance
only when the obtained model is accurate enough, and it does not consider model uncertainties and
external disturbances that affect the control performances of the robot manipulator.

Robust control strategies such as H infinity control theory have been suggested to achieve the good
control performances despite the presence of model uncertainties and external disturbances. But the
controller design and implementation based on the approach is complex [7, 8].
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Therefore, some researchers have investigated the robust control techniques using PID controller with
simple and easy-to-implement structure. These techniques mainly focus on how to tune the parameters of
the PID controller so that the closed-loop system guarantees robustness and disturbance attenuation. In
refs. [9–12], the authors discussed the controller parameter tuning by using system identification method.
In ref. [13], PID controller tuning for a planar parallel robot is stated as a nonlinear optimization problem
which is solved by differential evolution (DE) algorithm. However, these techniques consider only one
or two factors such as the stability and tracking performance to tune the controller parameters.

Recently, active researches on the fractional order PID control have been conducted. The fractional
order PID controller provides the improvement of stability and performance of the system although
model uncertainties and external disturbances appear. A typical method of the fractional order PID
controller tuning is Monje’s method [14, 15]. It has an advantage of tuning a controller so that the closed-
loop system meets several conditions regarding robustness to plant uncertainties, load disturbances and
high-frequency noise. In Monje’s method, tuning is reduced to a nonlinear optimization problem with
nonlinear constraints. However, it is unlikely to obtain the accurate global minimum. Normally, the opti-
mization problem was solved out by using the function FMINCON in MATLAB Optimization Toolbox,
which employs the traditional gradient-based paradigm [2, 14, 15].

For a nonlinear optimization problem, however, the gradient-based approaches reveal the drawbacks
of the premature convergence to local minimum, high sensitivity to selection of the initial condition
and the failure of convergence when discontinuities exist. Therefore, the obtained solution may not be a
global optimal solution. It implies that it is necessary to overcome these issues. This motivates the study
of this paper.

To the best of the authors’ knowledge, the robust PID controller design approaches based on Monje’s
method are mainly applied to process control [16, 17]. In this paper, to enhance the convergence in
Monje’s method, we propose a method based on a hybrid algorithm of particle swarm optimization
(PSO) and DE rather than FMINCON used in previous works. This PSO-DE hybrid optimization
algorithm has advantage of global search capability which was shown in refs. [7, 8].

The main contribution of this paper is to design a robust PID controller that meets some requirements
such as robustness, high-frequency noise attenuation and disturbance rejection by using PSO-DE and
to apply it to the trajectory tracking control of Delta parallel robot. In this paper, the design problem of
the robust PID controller for the parallel robot has been investigated in the following stages:

• The design specifications are set concretely.
• The design problem is referred to an optimization problem with several constraints regarding

design specifications using Monje’s method.
• To obtain global solution, this optimization problem is solved using the PSO-DE.
• For comparison, another PID controller is also tuned using the method in ref. [2].

Simulation and Experimental results show that the designed robust PID controller has a robust perfor-
mance and active disturbance attenuation when it is applied to tracking control of the Delta parallel robot.
The rest of this paper is organized as follows. Section 2 shows the structure, the kinematic and dynamic
models of the developed Delta parallel robot. Section 3 presents the control structure of robust PID
controller with CTC strategy, design specifications and PSO-DE-based tuning algorithm of the robust
PID controller. Simulation and experimental results are discussed in Section 4. Finally, conclusions are
given in Section 5.

2. Modeling of the Delta parallel robot
The Delta parallel robot is a 3-degree-of-freedom robot, which consists of a fixed platform, a mobile
platform and three identical RUU (Revolution, Universal, Universal) legs between the fixed platform
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Figure 1. Prototype of the Delta parallel robot.
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Figure 2. The base coordinate systems and physical parameters.

and the mobile one. The revolute joints are actuated by fixed rotational actuators. Since actuators are
placed in the fixed platform, the Delta parallel robot can achieve high speed and acceleration [2, 18].

Figure 1 shows prototype of the Delta parallel robot on which experiments were carried out. Figures 2
and 3 show physical parameters, a base coordinate system (O − xyz) and chain coordinate systems (Oi −
xiyizi, i = 1, 2, 3) established in the Delta parallel robot. In addition, the physical parameters of the Delta
parallel robot are listed in Table I.

As shown in Fig. 2, the robot has a base coordinate system O − xyz located at the center of the fixed
platform, in which z-axis is in the reverse direction of the gravity, x-axis is directed to the upper leg
of the first kinematic chain and y-axis is chosen to be the right-handed coordinated system. Over each
kinematic chain, a chain coordinate system Oi − xiyizi, i = 1, 2, 3) is located at distance R from O − xyz
and rotated an angle φi(0◦, 120◦, 240◦), respectively.

For simplicity, upper legs and lower legs of the three kinematic chains are translated to the origin of
the base coordinate system by radius r of the mobile platform, as shown in Fig. 3.
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Figure 3. The structure after simplification.

2.1. Kinematic model
In general, the kinematic model of the robot consists of the inverse kinematic model and the direct
kinematic model. The kinematic model of delta robot has been widely researched [2, 18–20].

Given the coordinates P = [xp, yp, zp]T of the mobile platform in the base Cartesian coordi-
nate system, the inverse kinematic model computes actuated revolute joint angles θ = [θ1, θ2, θ3]T of
upper legs. The inverse kinematic model can be summarized as follows [2]. Given the coordinates
P = [xp, yp, zp]T of the mobile platform on the O − xyz, its position in each chain coordinate system
Oi − xiyizi (i = 1, 2, 3) is converted using a rotation transformation matrix as follows:

⎡
⎢⎣

xpi

ypi

zpi

⎤
⎥⎦ =

⎡
⎢⎣

cos φi − sin φi 0

sin φi cos φi 0

0 0 1

⎤
⎥⎦

−1 ⎡
⎢⎣

xp

yp

zp

⎤
⎥⎦ , (φi = 0,

2π

3
,

4π

3
; i = 1, 2, 3) (1)

Since the upper leg link L1 can rotate only on the plane xiOizi, the joint Ji is located on the circular
trajectory with the center at Ai and a L1 radius.

(xi − d)2 + z2
i = L2

1, (i = 1, 2, 3) (2)

Moreover, the joint Ji is also located on a spherical surface centered in Bi with radius L2.

(xi − xpi )
2 + (yi − ypi )

2 + (zi − zpi )
2 = L2

2, (i = 1, 2, 3) (3)

Then, Ji is located on the intersection between (2) and (3) in the following plane

yi = 0, (i = 1, 2, 3). (4)

From (2) to (4), the position of joint Ji in each chain coordinate system can be stated as

xJi =
(d − AiBi) ± √

(1 + A2
i )L2

1 − (Aid + Bi)
2

1 + A2
i

, yJi = 0, zJi = AixJi + Bi, (5)

where

Ai = −d − xpi

zpi

, Bi = −x2
pi

+ y2
pi

+ z2
pi

+ L2
1 − L2

2 − d2

2zpi

Considering [21, 22], we have the revolute joint angle of the upper leg as below:

θi = arctan 2
(
zJi , xJi − d

)
, i = 1, 2, 3. (6)

In the Delta parallel robot, the direct kinematic model is the reverse process of the inverse kine-
matic model, which calculates the Cartesian position P = [xp, yp, zp]T of the mobile platform in the base
coordinate system, given the revolute joint angles θ = [θ1, θ2, θ3]T of the upper legs.
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Table I. Physical parameters for the Delta parallel robot.

Symbol Parameter Value
R Radius of the fixed platform (m) 0.155
r Radius of the mobile platform (m) 0.045
d R − r 0.11
L1 Length of the upper leg (m) 0.3
L2 Length of the lower leg (m) 0.65
θ Joint position angle of the upper legs θ = [θ1, θ2, θ3]
Im Inertia moment of motor shaft (kg · m2) 1.8 × 10−4

m1 Mass of the upper leg (kg) 0.457
m1j Mass of the upper leg joint (kg) 0.05
m2 Mass of the lower leg (kg) 0.313
m3 Mass of the mobile platform(kg) 0.406
m4 Mass of the load (kg) 0.1

The position of joint Ji in each chain coordinate system is obtained as follows:

x′
Ji

= d + L1 cos θi, y′
Ji

= 0, z′
Ji

= −L1 sin θi. (7)

Then, the position of Ji in base coordinate system is obtained using the matrix of revolution
transformation as follows:

⎡
⎢⎣

xJi

yJi

zJi

⎤
⎥⎦ =

⎡
⎢⎣

cos φi − sin φi 0

sin φi cos φi 0

0 0 1

⎤
⎥⎦

−1 ⎡
⎢⎣

x′
Ji

y′
Ji

z′
Ji

⎤
⎥⎦ , (φi = 0,

2π

3
,

4π

3
; i = 1, 2, 3). (8)

Moreover, the joint Ji is also located on a spherical surface centered in p with radius L2.

(xJi − xp)2 + (yJi − yp)2 + (zJi − zp)
2 = L2

2, (i = 1, 2, 3). (9)

From (7) to (9), ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(xJ1 − xp)2 + y2
p + (zJ1 − zp)

2 = L2
2

(xJ2 − xJ1 )xp + yJ2 yp + (zJ2 − zJ1 )zp = 1

2
(ρ2 − ρ1)

(xJ3 − xJ1 )xp + yJ3 yp + (zJ3 − zJ1 )zp = 1

2
(ρ3 − ρ1)

(10)

where ρi = x2
Ji

+ y2
Ji

+ z2
Ji

, (i = 1, 2, 3).
From last two equations of (10),

xp = K1zp + H1, yp = K2zp + H2, (11)

where

K1 = yJ3 (zJ2 − zJ1 ) − yJ2 (zJ3 − zJ1 )

(xJ3 − xJ1 )yJ2 − (xJ2 − xJ1 )yJ3

, H1 = 1

2
· yJ2 (ρ3 − ρ1) − yJ3 (ρ2 − ρ1)

(xJ3 − xJ1 )yJ2 − (xJ2 − xJ1 )yJ3

K2 = (xJ2 − xJ1 )(zJ3 − zJ1 ) − (xJ3 − xJ1 )(zJ2 − zJ1 )

(xJ3 − xJ1 )yJ2 − (xJ2 − xJ1 )yJ3

, H2 = 1

2
· (xJ3 − xJ1 )(ρ2 − ρ1) − (xJ2 − xJ1 )(ρ3 − ρ1)

(xJ3 − xJ1 )yJ2 − (xJ2 − xJ1 )yJ3

From first equation of (10) and (11),

(1 + K2
1 + K2

2 )z2
p + 2(K1H1 + K2H2 − K1xJ1 − zJ1 )zp + (H1 − xJ1 )2 + H2

2 + z2
J1

− L2
2 = 0. (12)
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Then, the position of P is obtained as follows:

xp = K1zp + H1, yp = K2zp + H2, zp = −b + √
b2 − 4ac

2a
, (13)

where

a = (1 + K2
1 + K2

2 ), b = 2(K1H1 + K2H2 − K1xJ1 − zJ1 ), c = (H1 − xJ1 )2 + H2
2 + z2

J1
− L2

2.

2.2. Dynamic model
The dynamic equation can be expressed as follows:

M(θ )θ̈ + C(θ , θ̇ )θ̇ + N(θ ) = τ , (14)

where M(θ ) is the inertia matrix, C(θ , θ̇ ) is the Coriolis matrix, N(θ ) is the gravity vector, and τ =
[τ1, τ2, τ3]T is the torque vector applied at the upper leg joints.

The inertia matrix M(θ ) in (14) is defined as

M(θ ) =
⎡
⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎦ = Ibt + (m3 + m4 + 1

3
m2)J

TJ, (15)

where Ibt is the inertia matrix of the driving axis and is defined as follows:

Ibt =
⎡
⎢⎣

Ibti 0 0

0 Ibti 0

0 0 Ibti

⎤
⎥⎦ , Ibti = Im + L2

1

(
m1

3
+ m1j + 2

3
m2

)
.

And J in (15) is Jacobian matrix defined as follows:

J = −
⎡
⎢⎣

sT
1

sT
2

sT
3

⎤
⎥⎦

−1 ⎡
⎢⎣

sT
1 b1 0 0

0 sT
2 b2 0

0 0 sT
3 b3

⎤
⎥⎦ , si =

⎡
⎢⎣

x

y

z

⎤
⎥⎦ − Ti

⎛
⎜⎝

⎡
⎢⎣

d

0

0

⎤
⎥⎦ +

⎡
⎢⎣

L1 cos θi

0

−L1 sin θi

⎤
⎥⎦

⎞
⎟⎠ ,

bi = Ti

⎡
⎢⎣

L1 sin θi

0

L1 cos θi

⎤
⎥⎦ , Ti =

⎡
⎢⎣

cos φi − sin φi 0

sin φi cos φi 0

0 0 1

⎤
⎥⎦ , (φi = 0,

2π

3
,

4π

3
; i = 1, 2, 3).

X = [x, y, z]T = f (θ ): Position of the mobile platform center
The matrix C(θ , θ̇ ) in (14) is calculated as follows:

C(θ , θ̇ ) = −JT(m3 + m4 + 1

3
m2)

⎡
⎢⎣

sT
1

sT
2

sT
3

⎤
⎥⎦

−1 ⎛
⎜⎝

⎡
⎢⎣

ṡT
1

ṡT
2

ṡT
3

⎤
⎥⎦ J + Msb

⎞
⎟⎠ , (16)

Msb =

⎡
⎢⎢⎣

ṡT
1 b1 + sT

1 ḃ1 0 0

0 ṡT
2 b2 + sT

2 ḃ2 0

0 0 ṡT
3 b3 + sT

3 ḃ3

⎤
⎥⎥⎦ , ṡi = Ẋ + biθ̇i = Jθ̇ + biθ̇i,

ḃi = Ti

⎡
⎢⎣

L1 cos θi

0

−L1 sin θi

⎤
⎥⎦ θ̇i, (i = 1, 2, 3).
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In addition, N(θ ) in (14) is calculated as follows:

N(θ ) = JT

(
m3 + m4 + 3

2
m2

) ⎡
⎢⎣

0

0

g

⎤
⎥⎦ − L1

(
1

2
m1 + m1j + 1

2
m2

)
g

⎡
⎢⎣

cos θ1

cos θ2

cos θ3

⎤
⎥⎦ . (17)

3. Robust PID control based on a PSO-DE hybrid optimization algorithm
3.1. Control structure for robust PID controller with CTC strategy
The CTC is a control strategy, which obtains a linearized and decoupled model of robot manipulator
using a feedback linearization approach. Applying this strategy, the robot system can be controlled by
the linear control techniques.

Consider the following linearization law:

τ = M̂(θ )u + Ĉ(θ , θ̇ )θ̇ + N̂(θ ), (18)

where u is an input of new system and M̂(θ ), Ĉ(θ , θ̇ ), N̂(θ ) are estimations of M(θ ), C(θ , θ̇ ), N(θ ),
respectively.

Assuming that Eq. (18) is exact enough to describe a dynamic model of the robotic system

M(θ ) = M̂(θ ), C(θ , θ̇) = Ĉ(θ , θ̇ ), N(θ ) = N̂(θ ).

Then, we get the Eq. (19) from (14) and (18).

M̂(θ )u = M(θ )θ̈ . (19)

If the inertia matrix M(θ ) is invertible, the dynamic model (14) is linearized and decoupled.

θ̈ (t) = u(t). (20)

The obtained system is a linearized and decoupled system for joint variables θ (t).
In practice, however, model uncertainties and external disturbances should not be ignored, which

affect the control performances of robotic system. These influences and errors can be attenuated by the
feedback control for linear system (20).

For the linearized system (20), the following PID control strategy is proposed:

u(t) = θ̈d(t) + kpe(t) + ki

∫
e(t)dt + kdė(t), (21)

where e(t) = θd(t) − θ (t) is the joint error, ė(t) is the joint velocity error, θ̈d(t) is the desired joint
acceleration, and kp, ki and kd are the controller parameters to be determined.

If we replace the ideal derivative controller in (21) with the real derivative controller, then the
resulting PID controller can be expressed as follows:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
1

Tf s + 1
, (22)

where Kp is the proportional coefficient, Ti and Td are the integral and derivative time constants, respec-
tively. In addition, an output first-order filter with the time constant Tf makes the PID controller proper,
and it filters the high-frequency noise. Tf is determined as in ref. [23].

Tf = min{Ti/10, Td/10} . (23)

Figure 4 shows the control structure of the robust PID controller with CTC strategy for the Delta
parallel robot. Most controllers for Delta parallel robot use joint sensors that allow us to easily measure
joint angles. The trajectory is planned in Cartesian space, and the trajectory in joint space is obtained
using inverse kinematic model. The controller uses the trajectory in joint space and measured joint
position. Then, the position in Cartesian space is obtained using direct kinematic model.
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Figure 4. Structure for the robust PID controller with CTC strategy for Delta parallel robot.

In Fig 4, θ is measured joint position and θd is desired joint position. The error in joint position is
reduced by individual PID controller with first-order filter. And the torque vector τ is calculated using
(18). This calculation is performed in low-level controller equipped with ARM processor.

3.2. Design specifications for the robust PID controller
In this section, we discuss how to design the robust PID controller with CTC strategy to simultaneously
meet several specifications regarding frequency domain.

Robustness to gain variations of the plant is one of the most common specifications that attribute
performance of the robust PID controller [24]. The robustness forces the phase of the open-loop system
to be flat at the gain crossover frequency ωcg and to be almost constant within an interval around ωcg.
Then, the system will be more robust to the gain variations and the overshoot of the transient response
is almost constant within the range of gain variations.

Therefore, the robust PID controller design can be referred to solve an optimization problem, which
minimizes the following cost function as follows for each possible solution [14].

J(Kp, Ti, Td) =
ωf∫

ωi

e2
FD(ω)dω =

ωf∫
ωi

(ϕ(ω) − (ϕm − π ))2dω, (24)

where error eFD(ω) is calculated in a predefined interval between ωi and ωf around ωcg. ϕ(ω) is the phase
of the open-loop system at frequency ω and ϕm is the phase margin.

The advantage of this approach is that the frequency band [ωi, ωf ] in which the closed-loop system
is robust to the gain variations can be selected according to user requirements. More specifications can
be included in the cost function (24) with the following constraints [14, 15].

• The gain crossover frequency ωcg must be within frequency interval [ωcgl, ωcgh], and the phase
margin must be at least ϕm. Then, these constraints can be described as follows:

ωcgl ≤ ωcg ≤ ωcgh, (25)

arg (C(jωcg)G(jωcg)) ≥ −π + ϕm, (26)

where C(jωcg) and G(jωcg) are transfer functions of controller (22) and plant (20), respectively.
• To attenuate the high-frequency noise, the complementary sensitivity function needs to fulfill

the following condition:∣∣∣∣T(jω) = C(jω)G(jω)

1 + C(jω)G(jω)

∣∣∣∣
dB

≤ Mt dB, ∀ω ≥ ωt rad/s, |T(jωt)|dB = Mt dB, (27)

where Mt means the desired noise attenuation for frequencies ω ≥ ωt rad/s.
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• To ensure a good output disturbance rejection, the sensitivity function S(jω) is constrained by
the following condition:∣∣∣∣S(jω) = 1

1 + C(jω)G(jω)

∣∣∣∣
dB

≤ Ms dB, ∀ω ≤ ωsrad/s, |S(jωs)|dB = Ms dB, (28)

where Ms is the desired value of the sensitivity function for frequencies ω ≤ ωs.

Therefore, the design problem of the robust PID controller can be referred to a nonlinear optimization
problem with nonlinear constraints as follows:

min J(Kp, Ti, Td) =
ωf∫

ωi

(ϕ(ω) − (ϕm − π ))2dω. (29)

Subject to (25)-(28).
In refs. [1, 15], the FOPID controller design is referred to as the similar nonlinear optimization prob-

lem, and it was solved using the function FMINCON of MATLAB. For the optimization problem (29),
however, it is hard to find the global optimal solution with traditional approximation optimization meth-
ods such as gradient method since the cost function and constraints are complex nonlinear function on
the design parameters (Kp, Ti, Td).

Therefore, in the next section, the nonlinear optimization problem with nonlinear constraints is to be
solved effectively by a PSO-DE hybrid optimization algorithm, which is one of the swarm intelligent
optimization techniques [7, 8].

3.3. PSO-DE-based tuning algorithm of the robust PID controller
The feature of the PSO algorithm is to achieve the optimal solution by sharing of information among
particles in the swarm. It is assumed that the swarm consists of NP particles in D-dimensional search
space (i.e., solution space). Each particle is a D-dimensional vector and its position represents a candi-
date solution in the solution space. Since it needs to identify three parameters in consideration of (29)
in our case, the dimension of the particle is D = 3.

If j is the current time step (generation), then the position of the i-th particle in the swarm can be
represented as ηi

j = (ηi,1
j , η

i,2
j , . . . , ηi,D

j ), and it corresponds to

ηi
j = [Ki

p, Ti
i , Ti

d]

considering (22) and (24)-(29), where the subscript j is omitted for description brevity. The velocity of
each particle is denoted by Vi

j = (Vi,1
j , Vi,2

j , . . . , Vi,D
j ). The best current position (i.e., the best personal

position of the particle) of the i-th particle is denoted by Pi
j = (pi,1

j , pi,2
j , . . . , pi,D

j ), and it is known as
the cognitive experience. The best particle in the swarm (that is, in minimization problems, the particle
with the smallest cost function value) is indicated by Pbest

j = (pbest,1
j , pbest,2

j , . . . , pbest,D
j ), and it is known

as the social experience.
We discuss the PSO version proposed by Clerc and Kennedy [25], which uses a new parameter χ ,

known as the constriction factor that improves the convergence. For each time step j (generation), the
velocities and the positions of each particle in the swarm are represented as follows:

Vi
j+1 = χ (Vi

j + c1r1(P
i
j − ηi

j) + c2r2(P
best
j − ηi

j)), (30)

ηi
j+1 = ηi

j + Vi
j+1, (31)

for i = 1, 2, . . . , NP, where χ is the above-mentioned constriction factor parameter, c1 and c2 are
positive constants which are referred to as cognitive and social parameters, respectively, r1 and r2 denote
random numbers that are uniformly distributed in [0, 1] and are randomly chosen in each generation.
This scheme is typically utilized for the constant χ = 0.72984 and c1 = c2 = 2.05 [25, 26].

https://doi.org/10.1017/S0263574722001606 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001606


1168 Yong-Ju Pak et al.

The DE algorithm is a population-based stochastic parallel direct search method, and it requires
few control parameters. However, it has better convergence behavior than other well-known algorithms
such as Evolution Algorithm [26]. Like PSO, the population consists of NP individuals that are the D-
dimensional vector and is initialized at random in the search space. The individuals are evolved over
successive iterations (generations) to find the optimal solution of the cost function in the solution space.
At each generation, the evolution of individuals is conducted through mutation, crossover and selection
operations [27].

Nowadays, numerous PSO-DE hybrid approaches have been developed to improve the accuracy of the
optimal solution and the convergence behavior of PSO and DE algorithms. The evolutionary algorithms
are known to be still efficient, but it requires a great computational cost due to a large number of function
evaluations. The incorporation of DE algorithm in each generation of PSO algorithm may cause an
increase of the function evaluations. So, we adopt a PSO-DE hybrid algorithm based on the evolution of
cognitive and social experiences in order to suggest an approach of the parameter tuning of the robust
PID controller, since it costs smaller amount of computation along with better convergence behavior
than other hybrid versions [7, 8].

In the tuning algorithm, we define a set of the best personal experience (i.e., the cognitive experiences)
of each particle at the j-th time step (generation) as Sp

j = (P1
j , P2

j , . . . , PNP
j ). After each time step of

PSO algorithm according to (30) and (31), DE procedure of one generation is applied to the elements
Pi

j, i = 1, . . . , NP, in the Sp
j set (i.e., the cognitive experience of each particle is evolved). It implies

that the best personal positions Pi
j, i = 1, . . . , NP correspond to the individuals xi

j, i = 1, . . . , NP,
of the DE algorithm. The DE mutation operation uses individuals from the Sp

j set. In particular, three
evolution steps of DE algorithm (mutation, crossover and selection) are applied only to the ‘promising’
cognitive experiences which have been changed (i.e., improved) during the previous PSO step. From the
viewpoint of the computational cost, this turns out to be more effective than the procedure of evolving
all particles in the swarm.

The algorithmic scheme of the proposed approach to tune the parameters of the robust PID controller
for the Delta parallel robot is as follows:

1: Individuals in the swarm (i.e., the controller parameters ηi
j0 = [Ki

p0, Ti
i0, Ti

d0], i = 1, . . . , NP) are
randomly initialized in the given range. The population size NP should be chosen in the range from 5 to
10 times D. In order to improve the global convergence, it is set to NP = 50.

2: For each particle ηi
j0 = [Ki

p0, Ti
i0, Ti

d0](i = 1, . . . , NP), if it agrees with inequalities of the stability
and constraints (25)-(28), initialize the particle again.

3: For each particle ηi
j0 = [Ki

p0, Ti
i0, Ti

d0](i = 1, . . . , NP), compute the cost function value J(ηi
0)

using (29) and let the best personal position Pi
0 be the value. Then, let the social experience Pbest

0 be
the minimum of Pi

0, i = 1, 2, . . . , NP.
4:for each time step j do
5:for each particle i in the swarm do
6: Update the particle ηi

j = [Ki
pj, Ti

ij, Ti
dj] (parameter vector of the controller) using (30) and (31).

If the updated parameter vector ηi
j disagrees with the inequalities constraints (25)-(28), then updating

process should be repeated until it does.
7: Evaluate particle ηi

j = [Ki
pj, Ti

ij, Ti
dj], i.e., compute the cost function value for the current

parameter vector ηi
j = [Ki

pj, Ti
ij, Ti

dj] using (29).
8: If J(ηi

j) < J(Pi
j−1), then update the cognitive experience as Pi

j = ηi
j, else Pi

j = Pi
j−1 (i.e., do not

update value of the previous generation). Also, if J(Pi
j) < J(Pbest

j−1), then update the social experience as
Pbest

j = Pi
j, else Pbest

j = Pbest
j−1 .

9: If Pi
j has been changed then

10: /∗ Evolve Pi
j utilizing one DE step in Sp

j ∗/
11: Mutate Pi

j and generate the corresponding mutant vector vi
j through the mutation strategy.

12: Crossover the mutant vector vi
j and target vector Pi

j, and generate the corresponding trial
vector ui

j.
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Table II. Parameter values of PSO-DE, PSO and DE algorithms.

Parameter Value Parameter Value
D 3 c2 2.05
NP 50 F 0.5
χ 0.72984 CR 0.9
c1 2.05 g∗

max 50
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Figure 5. Convergence behavior of the tuning algorithm based on PSO-DE.

13: Evaluate the trial vector ui
j, that is, under the trial vector ui

j agrees with the inequalities
constraints (25)-(28) (If it disagrees with the constraints, then mutation and crossover should be repeated
until it does), compute the cost function value for ui

j using (29).
14: If J(ui

j) < J(Pi
j), then update the best personal position Pi

j. Also, if J(Pi
j) < J(Pbest

j ), then
update the best position Pbest

j .
15: end if
16: end for
17: end for

4. Experimental results and analysis
4.1. Robust PID controller design for the Delta parallel robot
Considering the specifications of the Delta parallel robot and results in refs. [14, 23], the design specifi-
cations in the frequency domain mentioned in the inequalities constraints (25)-(28) of the optimization
problem (29) are listed in (a)-(e):

(a) Minimum phase margin ϕm is equal to 45◦.
(b) Gain crossover frequency ωcg must be in the interval [ωcgl, ωcgh] = [50 rad/s, 150 rad/s].
(c) An interval (ωf − ωi) where the phase is intended to be flat about the gain crossover frequency

is equal to 0.25 dec.
(d) High-frequency noise attenuation: ωt = 350 rad/s, Mt = −15 dB that is, ∀ω ≥ ωt, |T(jω)|dB ≤

−15 dB.
(e) Disturbance rejection: ωs = 10 rad/s, Ms = −15 dB, that is, ∀ω ≤ ωs, |S(jω)|dB ≤ −15 dB.
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Figure 6. Bode diagram of open-loop system (PM = 54.9◦, ωcg = 76.6 rad/s).
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Figure 7. Frequency specification of the complementary sensitivity function T(jω) (ωt = 350 rad/s,
|T(jωt)|dB = −17.1 dB).
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Figure 8. Frequency specification of the sensitivity function S(jω) (ωs = 10 rad/s,
|S(jωs)|dB = −25.6 dB).

In order to find the parameters (Kp, Ti, Td, Tf ) of the robust PID controller, this problem is converted
into an optimization problem (29). And the controller is designed by the algorithm mentioned in the
previous section. All the parameters used in our PSO-DE-based tuning algorithm are listed in Table II.
PSO algorithm and DE algorithm also use the same parameters in Table II.
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Table III. Path point of control simulation trajectory for Delta robot.

Path Pass Position Path Pass Position
point time(s) (m) point time(s) (m)
Waypoint 1 0 (0, 0, −0.508) Waypoint 10 6.3 (0, 0.2, −0.75)
Waypoint 2 0.7 (0, 0, −0.6) Waypoint 11 7 (−0.2, 0, −0.6)
Waypoint 3 1.4 (0.2, 0, −0.75) Waypoint 12 7.7 (0, −0.2, −0.75)
Waypoint 4 2.1 (0, 0, −0.6) Waypoint 13 8.4 (−0.2, −0.2, −0.75)
Waypoint 5 2.8 (−0.2, 0, −0.75) Waypoint 14 9.1 (0, 0, −0.6)
Waypoint 6 3.5 (0, 0.2, −0.75) Waypoint 15 9.8 (0.2, 0.2, −0.75)
Waypoint 7 4.2 (0, 0, −0.6) Waypoint 16 10.5 (−0.2, 0.2, −0.75)
Waypoint 8 4.9 (0, −0.2, −0.75) Waypoint 17 11.2 (0, 0, −0.6)
Waypoint 9 5.6 (0.2, 0, −0.6) Waypoint 18 12 (0.2, −0.2, −0.75)
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Figure 9. Trajectories of x, y, z axes in the Cartesian space.
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Figure 10. Desired trajectory θd(t) in joint space.
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Figure 11. Tracking error in Cartesian space (Orange: method in ref. [2], blue: robust PID).
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Figure 12. Tracking error in joint space (Orange: method in [2], blue: robust PID).

Figure 5 shows the convergence behaviors of the robust PID controller tuning algorithm for the Delta
parallel robot based on the PSO-DE, DE and PSO. PSO-DE has better global search capability than
PSO and DE.

After 50 generations, the parameters of the robust PID controller are obtained as follows:

Kp = 1853.4, Ti = 1073.7, Td = 0.0413, Tf = 0.0041. (32)

The bode diagram of the open-loop system of designed controller is shown in Fig. 6. Two diagrams
demonstrate that the designed controller meets the design specifications (a), (b) and (c).

The frequency responses of the complementary sensitivity T(jω) and the sensitivity function S(jω)
of the designed closed-loop system are shown in Figs. 7 and 8, respectively. As shown in these figures,
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Table IV. Simulation results.

RMS position error RMS joint error

X Y Z θ1 θ2 θ3
Robust PID 0.539 0.423 0.370 0.095 0.090 0.092
Method in ref. [2] 1.662 1.388 1.118 0.283 0.268 0.280

Table V. Real mass of the Delta robot.

Symbol Parameter Value
m1r Real Mass of the upper leg (kg) 0.357
m1jr Real Mass of the upper leg joint (kg) 0.1
m2r Real Mass of the lower leg (kg) 0.353
m3r Real Mass of the mobile platform (kg) 0.456
m4r Real Mass of the load (kg) 0.3
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Figure 13. Tracking error in Cartesian space in robustness analysis simulation (Orange: method in
ref. [2], blue: robust PID).

the complementary sensitivity function meets the design specification (d) and the sensitivity function
meets the design specification (e).

Consequently, we can make sure that the robust PID controller designed by the proposed approach
satisfies the above-mentioned design specifications in frequency domain.

4.2. Simulation results
In order to analyze the control performance of the designed robust PID controller in the time domain,
a trajectory planning was implemented using the modified trapezoidal acceleration curve method, in
which acceleration and jerk is small for pick-and-place task [28, 29].
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Figure 14. Tracking error in joint space in robustness analysis simulation (Orange: method in ref. [2],
blue: robust PID).

Table III shows the waypoints of the track for the control simulation of the Delta parallel robot. The
desired trajectories on x, y, z axes and in joint space are shown in Figs. 9 and 10, respectively.

The desired trajectories on x, y, z axes are obtained from waypoints in Table III using modified
trapezoidal acceleration curve method, and the trajectories in joint are obtained from trajectories on
task space using inverse kinematic model.

The following waypoints are determined as considering pick-and-place tasks in workspace.
To analyze the performance of the robust PID controller designed in the previous section, the

MATLAB/Simulink model is built using the physical parameters of the Delta parallel robot in Table I,
the nonlinear dynamic model (14) and the control structure of Fig. 4.

Another robust PID controller with CTC [2] is implemented and used for comparative analysis. The
design specifications of the closed-loop system are set as follows:

ζ = 0.9, ts = 0.3 s, ωn = 14.2 rad/s, β = 15.

Then, the obtained parameters are

Kp = 583.42, Ti = 3012.1, Td = 40.5073, Tf = 0.0069.

Figures 11 and 12 show that the tracking errors of the controllers in this paper and [2] and Table IV
show the RMS of tracking errors. As shown in these figures and table, the controller in this paper has a
smaller tracking error for the desired trajectory.

To analyze the robustness of controllers, real mass of delta robot is setup in Table V, which is different
from Table I. Moreover, we assume that random noises of [-0.1 deg, 0.1 deg] arise in feedback loop and
disturbances are present in the torque driving each upper leg in interval [4 s, 8 s].

0.5 sin (10t), 0.5 sin (15t), 0.5 sin (20t).

Figures 13 and 14 show tracking errors of controllers in this paper and in ref. [2] for robustness analysis.
Table VI shows RMS of tracking errors. As shown in these figures and table, the controller proposed in
this paper has better robustness and good disturbance attenuation.
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Table VI. Simulation results for robustness.

RMS position error RMS joint error

X Y Z θ1 θ2 θ3
Robust PID 0.518 0.502 0.449 0.225 0.227 0.226
Method in [2] 1.739 1.570 1.529 0.344 0.343 0.316

Figure 15. Tracking error in Cartesian space when m4 = 100 g.

Figure 16. Tracking error in the joint space when m4 = 100 g.

4.3. Experimental results
First, we built the Delta parallel robot to be controlled by the robust PID controller designed in
Section 4.1. Then, the tracking performances for the desired trajectory in the Cartesian space and the
joint space are shown in Figs. 15 and 16 when mass of load is 100 g. Figures 17 and 18 show tracking
errors when mass of load is 300 g. Table VII shows RMS of tracking errors.
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Figure 17. Tracking error in Cartesian space when m4 = 300 g.

Figure 18. Tracking error in the joint space when m4 = 300 g.

In conclusion, the robust PID controller designed in this paper tracks the desired trajectory with a
small error, and a slight tracking error occurs when the desired value changes. At the same time, our
experimental results show a slight increase of the tracking error than that of simulation results. It follows
from the fact that the control performance is affected by nonlinearities as backlash of reduction gears,
which is connected with the driving motors. If the load mass is less than 100g, the position tracking
error is less than ±3.5 mm.
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Table VII. Experiment results.

RMS position error RMS joint error

X Y Z θ1 θ2 θ3
Mass of load = 0.1 kg 0.951 0.770 1.648 0.210 0.338 0.244
Mass of load = 0.3 kg 1.172 0.940 1.760 0.245 0.343 0.259

5. Conclusions
In this paper, we propose an approach to tune an optimal robust PID controller with CTC strategy
for trajectory tracking of a Delta parallel robot by adopting a PSO-DE hybrid optimization algorithm.
Considering the nonlinear dynamic model of the Delta parallel robot, the design problem of a robust
PID controller with CTC strategy that guarantees robustness and disturbance attenuation has been for-
mulated as a nonlinear optimization problem with nonlinear constraints. To obtain a more accurate
global optimum of the nonlinear optimization problem, an algorithm based on a PSO-DE hybrid opti-
mization algorithm has been newly proposed. Simulation and experimental results carried out on the
Delta parallel robot show that the designed robust PID controller has robust performance and active
disturbance attenuation despite the presence of model uncertainties and external disturbances.

The proposed method needs much calculations, but it is solved by hardware that has good computing
power. FOPID has 5 parameters, so FOPID has better performances such as robustness than PID. In
future works, the FOPID and ADRC (active disturbance rejection control) are proposed and applicated
in other parallel robots.
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