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Abstract

In this paper we obtain some sharp L” — L7 estimates and the restricted weak-type endpoint estimates
for the multiplier operator of negative order associated with conic surfaces in R? which have finite type
degeneracy.
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1. Introduction and statement of results

Lety : [-1, 1] — R be a smooth function. In this paper, we consider the cone multiplier
problem associated with the conic surface

Iy={¢ e RZxR: (£, 1) = At y(1), 1), te[-1,1], 1> 0},

which is generated by the curve C = {(t, y(1)) € R? : t € [-1, 1]}. To do this, let us define
a cone-type multiplier operator S of order @ by

S*F) 1) = % x@e - w(‘%))j(f, D (1)=&, 1) €R2XR,
(1.1)

where ¢ € C°(1,2) and yx is a smooth function compactly supported in a small
neighborhood of (0, y(0)). Here I'(z) is the gamma function, and r, =r if r > 0 and
ry =0 if r <0. By analytic continuation, this definition makes sense even when
Re(a) < -1.

When I, is a subset of the light cone, S becomes essentially the standard cone

multiplier operator. We may represent this by the smooth surface generated by the
parabola C(¢) = (¢, ), t € [~1, 1], whichis a simple model of curves with nonvanishing
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curvature. In this case, when a > 0, the problem of L” boundedness has been studied
by several authors [4, 20, 24, 25, 27] and the most recent result in this direction is
due to Garrigds and Seeger [8] (see also [12, 13] for higher dimensions). When « < 0,
Lee [16] obtained some sharp range of L” — L7 boundedness and showed that the cone
multiplier operator of negative order in R? can be bounded from L”(R?) to LY(R?) only
in the range where the Bochner-Riesz operator in R? of the same order is bounded.
However, the problems of L” and L? — L? boundedness of the cone multiplier operator
are still open for both positive and negative orders.

On the other hand, one may consider the problem of L? — L? boundedness
associated with the conic surface I', which is generated by a curve C having
degeneracy at some points where the curvature of C vanishes. In fact, it turns out
that the L” — L7 boundedness of S~ of negative order —a depends on the degeneracy
of the curve C. The purpose of this note is to show certain sharp L” — L? estimates for
S ™% when the conic surface I, is generated by a curve C whose curvature vanishes at
a single point.

We need the following definition to specify the type of the curve C at a point.

DeriniTioN 1.1. Let m > 2 be an integer and a € R. Let y be a smooth function defined
in a neighborhood of a. We say that y is of finite type m at a if y®(a) =0 for2 <k <m
and y"(a) # 0. We also say that the curve C is of finite type m at (a, y(a)) if vy is of
finite type m at a.

We may assume that y is of finite type m at zero and y(0) =y’(0) = 0. Indeed,
translation on the Fourier transform side and discarding some harmless smooth factor
of the multiplier do not affect the boundedness of S ~* except for a constant multiple.

Now we introduce some notation. Let m > 2 and, for 0 < a < (m + 1)/m, let us set

1 ma
q m+1

11 11
Ag’z{(—,—)e[o,l]x[o,l]: —s-4 2
P q p 4 2

1
p
Also we define points A,, BY, Ci, A,,, B)) and C/" contained in [0, 1] X [0, 1] by

(1« m_ (1 a1 (m—l)a/) m_( ma )
A"_(4+2’0)’ B“‘(4+2’4 mr2 ) S )

and

, 3 «a , 3 m—-Da 3 «a ma')
A =(1,-—= B'=|-+—"7"—,-—— m=1,1- .
@ (’4 2)’ @ (4+ 2m+2 4 2)’ Co ( mi

(See Figure 1.) Note that if 0 <a < (m+ 1)/[2(m — 1)], A is the closed pentagon
with vertices A,, Bl, B/, A/, and (1, 0), from which closed line segments [A,, B ],
[A],, B)"] are removed. If o> (m+ 1)/[2(m —1)], A is the closed triangle with

vertices Cf, C/" and (1, 0). If @ = (m + 1)/[2(m — 1)], A is the closed triangle with
vertices Cy, C;" and (1, 0), from which two points C};, C." are removed.
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Figure 1. L? — L? boundedness of S ~* with vy of finite type m.

In order to predict the mapping properties of S ™%, let us consider a Bochner—Riesz
type operator 7~% of negative order —« defined by

(& —yED)"”

£ — 2
TCaa) NOf@. E=@ &R

(TN =
When C is a part of the circle (more generally, a curve with y” # 0), T~ is essentially
the Bochner—Riesz operator. In this case, the sharp range of L” — L? boundedness
was proved by Bak [1] (see also [2, 5]). There are also some restricted weak-type
endpoint estimates in [11]. Recently, Lee and Seo [19] showed the sharp L? — L4
boundedness of 77 of negative order —a when the curve C is of finite type m. More
precisely, they showed that for 0 <a < (m+ 1)/m, [T fllpsw2) < Cllfllrr2y if and
only if (1/p, 1/q) € A. They also obtained some restricted weak-type results.

As was shown in [16], the cone multiplier operator of negative order is closely
related to the Bochner—Riesz operator of the same order. In other words, the results
of the cone multiplier operator of negative order in R* are parallel to those of the
Bochner-Riesz operator of the same order in R>. Thus we can also expect that
the type set of S~ is the same as that of 77% when the curve C is of finite type
m (see Section 3). Furthermore, as with the Bochner—Riesz type operator 7°¢
of negative order —a when the curve C is of finite type m, it can be conjectured
that for 0 < < (m + D)/m, IS fllpewrs) < Cllfllrey if and only if (1/p, 1/q) € AY.
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The following is a partial answer to this question. We denote by L””" the Lorentz space
equipped with norm || - ||, ,.

THEOREM 1.2. Let y be of finite type m > 2 at zero and let (m + 1)/[2(4m - 1)] < a <
(m + 1)/m. Then the following hold.

1) When(m+ 1D)/[24m -] <a<@m+ 1)/[2(m - 1)]:
@ NS~ fllg < Clifll, if (1/p, 1/ q) € AT
(®) 1187 fllgeo < ClIfllp if (1/p, 1/q) € (B, AL
©  NS™ fllgeo < CllfNlp1 if (1/p, 1/ q) = By or By
(i) When (im+ D)/[2m - D] <a<(m+ 1)/m:
(A 1187 fllg < Clifllp if (1/ p, 1/q) € AG\ACE, CF%;
© 187 fllgeo < ClIfllp if (1/p, 1/q) = C3" and @ # (m + 1)/[2(m — 1)].
To obtain the results of Theorem 1.2, we decompose S~ dyadically away from
its singularities on I'y. Thus, we consider a multiplier operator 75 whose Fourier

multiplier is essentially supported in a §-neighborhood of the cone I',. More precisely,
for 0 <0 < 1, define

£-EID) @ fe . (1.2)

where ¢ € C°(1,2), y € Cy(=1, 1) (or S(R)) and yx is a smooth function compactly
supported in a small neighborhood of (0, y(0)). Here S is the Schwartz class.

ProrosiTioN 1.3. Let Ts be defined by (1.2) with y € C5’(—1, 1) and let 'y be of finite
type m at zero. Then for p>2, (m—1)/p+(m+1)/qg<m/2, g>5p/3 and (p, q) #
(2,2(m + 1)), there is a constant C such that

()€ = oo

ITs£ll, < CS*P~ 2| £l (1.3)

Moreover, if Y is a smooth function satisfying the condition
;@ is supported in {t e R : |t| ~ 1}, (1.4)

then for 1 < p <2(m — 1)/m, there is a constant C such that
IT5flleo < CET DI 1] (1.5)

The constant C may depend on the norms ||y|lcv((—1, 1)), |W|lcv((=1,1)) and
l|¢llcv ((—1, 1)) for some large N.

Remark 1.4. When I, is a subset of the light cone, if 1/p +3/g=1and 14/3<g <6
then (1.3) is due to Lee [16]. In particular, the estimate (1.3) with m =2 is covered
by Proposition 2.1 which additionally contains the point (p, g) = (2, 6) in the (p, q)
range. For this reason, it suffices to show the case m > 3 of the estimates (1.3) after
proving Proposition 2.1. Moreover, (1.3) shows that the L7 — L7 bounds for T5 are not
influenced by the degeneracy of the curve C when p>2, 1/p+1/g<1/2, g>5p/3
and (p, q) # (2, c0).
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We would like to remark that the condition ¢ > 5p/3 in Proposition 1.3 has been
dictated by the restriction r > 5/3 in the bilinear cone restriction estimate (stated below
as Theorem 4.1) and the use of the L™ estimate ||Ts flleo < CO~'/?||f|lo. One can relax
this condition a little and prove some (almost optimal) estimates outside that region
(g > 5p/3) by using the so-called ‘plate decomposition estimates’ due to Wolft [27]
and Garrigds and Seeger [8] instead of the L™ estimate. We get the following e-loss
version of (1.3).

Proposition 1.5. Let T be defined by (1.2) with € C’(—1, 1) and 'y be of finite type
m at zero. Then for all € > 0, there is a constant C. such that

ITs£ll, < CS*P71274I£1l, (1.6)

in the (additional) range given by (m — 1)/p + (m + 1)/qg < m/2 and

isl<M(l_L)+L.
5p7q 172-1/pw\p  pw/ pw
RemMark 1.6 (Comments on Proposition 1.5). When m = 2, the estimate (1.6) can be
obtained from the results due to Wolff [27] (also Garrigés and Seeger [8]) and a bilinear
cone restriction estimate (stated below as Theorem 4.1).

To be more precise, Wolff established an important inequality [27, Theorem 1] on
the plate decompositions related to the (circular) cone multipliers. Let us temporarily
denote by W the operator T; corresponding to the light cone (that is, y(¢) = £*). WolfF’s
inequality leads to the following almost sharp L? bounds: for all sufficiently large p,
say p > p,, and all € > 0, there exists a constant C such that

(1.7)

IWs fll, < C*P 2 £l (1.8)

Wollff obtained these estimates for p > p,, = 74 (see [27, Corollary 2]). More recently,
Garrigés and Seeger [8, Remark 1.4 and Corollary 1.5 in Section 1] improved this
range to p > p,, with p,, = 63% (for a generalized version of Us corresponding to
the case |y”(#)| = ¢ > 0). Further progress (p > p,, with p,, = 20) has been made by
Garrigos et al. [9].

The following L? — L7 estimate was deduced in [16] (in the case y(¢) = £*) from
(1.8) and a bilinear cone restriction estimate (stated below as Theorem 4.1):

IWsflly < C8*P 224 1l

for some constant Ce, € > 0, where p, ¢ satisfy (1.7). Then, the estimate (1.6) with
m =2 may be easily obtained by applying the arguments in [16, Section 5].

When m > 3, one can use a scaling argument and (1.6) with m = 2. Notice that this
does not include the critical line (m — 1)/p + (m + 1)/q = m/2, because of the presence
of the 67¢ factor in (1.6) with m = 2. We omit the details of this argument, since it is
similar to the argument used to prove (1.3) from Proposition 2.1 (see Section 2 below).
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Furthermore, the estimates (1.6) give the following extended range of « in (a) of

Theorem 1.2:
g < m+ 1
a L ———
Puan 2(4m - 1)
where
2 1
Ap,. = - =
P D 2

and (1/pyw.m, 1/qwm) is the point of intersection of the lines (m — 1)/p + (m + 1)/q =
m/2 and
1 3/10—1/pw(1 B 1 )+ 1
g 1/2-1/py\p p) ps

which is the line joining the points (1/py, 1/py) and (1/2,3/10). This is because
Theorem 1.2 is a consequence of Proposition 1.3 and a summation method (see
Section 3 below). For more details, we refer the reader to [16, Section 5].

In order to obtain the sharp L” — L? boundedness for S =%, the estimates (1.5) play
a crucial role. However, it is impossible to prove (1.5) without imposing an additional
condition (1.4) on . To see this, suppose that (1.5) holds for a function ¢ which does
not satisfy (1.4). We may choose an interval Iy away from zero satisfying v’ # 0 on I
because 7y is of finite type m at zero. Choose a smooth function f € S(R?) satisfying

& -1y /1)

(Taf)" (€0 = 42—

e/
where x; € C3° with y; =1 on interval /. By the simple change of variables & =
& + y(£1/7) and integration in &, we see that

Tsf(x, 1) = Y(6x2) f e I(x, T)(7) dé dr,

where I(x, 1) = fez”i(xlfl”277(51/7»)(,0(51/T) dé,. Since y” #0 on Iy and 7~ 1, by
using the stationary phase method, we have |I(x, 7)| > C|x|"/? for sufficiently large
|x2| and |x;| < Clx,|. Note that for ¢ with |f| < ¢, we have ™™ = 1 + O(c). Hence, for
sufficiently large R and sufficiently small c,

ITs L > Cs4 f W (6x)|9|x]74? dx dt > C5% f W (er1r > dr

AR R

where Ag.={(x,1) € R2 X R :|x2] > R, |x1] < Clx2l, |[t| < ¢}. This means that if ¢ >4
then ||T5f1l, > Cé. By duality and (1.5),if 1 < p <4/3 then C6 < |T5f1l, < Cm*D/mp)
for any g > 1. This says that (1.5) is no longer valid for 1 < p < (m + 1)/m. Therefore,
we conclude that the condition (1.4) on ¢ plays an important role in deriving the
boundedness of T.
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RemMark 1.7. We obtain the estimates (1.5) from interpolation between the following
estimates;

ITs flloo < €S 2D 111y 1, (1.9)
IT5fllo < CS™DMI£]];. (1.10)

Then an interpolation between (1.3) and (1.9) gives
ITsflly < C8*P~ 2111, (1.11)

for p>2(m—-1)/m, ¢g>5p/3, and m/2>(m—1)/p+ (m+ 1)/q. Note that 2/p —
1/2=0+1/m)(1/p—-1/q)if (1/p, 1/q) is on the line (m — 1)/p + (m + 1)/q = m/2.
By interpolation between (1.3) for p, g satisfying (im—1)/p + (m+ 1)/g=m/2 and
(1.5), we see that

ITsfllg < CSH A=) 1), (1.12)

for (1/p,1/q) € A\{A, B}, where A is the closed triangle with vertices A =
Sm/[4(4m — D], 3m/[4(4m — 1)]), B= (m/[2(m — 1)],0) and C = (1, 0), from which
the line segment (A, C) is removed. In fact, we use the estimates (1.5), (1.11), and
(1.12) to prove Theorem 1.2.

The organization of this paper is as follows. In Section 2 we prove Proposition 1.3.
First, we obtain (1.3) from Proposition 2.1 by using a scaling argument which
depends on stability of estimates (see Remark 2.2). We also verify (1.5) by showing
the estimates (1.9) and (1.10). Actually, the good condition (1.4) on ¢ makes it
possible to prove (1.9) and (1.10) by using the kernel estimates (see Lemma 2.6). In
Section 3 we give the proof of Theorem 1.2 by combining Proposition 1.3 and a dyadic
decomposition of S~ (see Lemma 3.1). Then we prove the necessary conditions for
S 7. In Section 4 we give the proof of Proposition 2.1 which is similar to the arguments
that were used by Lee [16] (see also [15]). We will also use the bilinear restriction
estimates for some conic surfaces, which are a generalized version of the bilinear cone
restriction estimates due to Wolff [28] and Tao [23].

Throughout this paper, C is a positive constant which may vary from line to line. Let
A < B or A =O(B) denote the estimates A < CB and let A ~ B denote C"'A<B<CA
for some C. In addition to the symbol ~, we use 7 (-), F~1(-) to denote the Fourier
transform and the inverse Fourier transform, respectively. Finally, supp f, supp f (or
the support of f) mean the support of f and the Fourier support of f, respectively.

2. Estimate for Ts

In this section we prove Proposition 1.3. Before we begin, let us choose a smooth
function y( supported in / =[—1, 1]. For 0 < § < 1, define Us by

& -1y /7)

s (€7 = o 2%

Jxo&r /e o, @.1)
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where ¢ € C°(1, 2) and ¢ € C(—1, 1). (Note that the only difference between Us and
Ts in (1.2) is in the cutoff function.) We need the following proposition which will be
shown in Section 4.

ProrosiTion 2.1. Let Us be defined by (2.1) and let y be a smooth function defined on
I=[-1,11withly”|=c>0o0nl Thenforp=>2,q>5p/3and 1/p+3/q<]1,

NUs flla@sy < C8*P~ 21| fll o ey (2.2)

where the constant C is stable under ‘small smooth perturbations’ of vy (in a sense
made precise in Remark 2.2).

RemArk 2.2. The stability of estimates under small smooth perturbation of y plays
an important role in the proof of our results. Let ¥ be a smooth function defined on
I=[-1,1]. Suppose that there exist a large positive integer N, a constant B = By
(depending on N) and a small ¢y > O such that forall0 <e < g and 0 <n < N,

n

%(W) —y@®)|<Be, tel (2.3)

Then the stability of estimates means that the constant C in the estimate in (2.2) is
uniform in the functions ¥ satisfying (2.3).

However, in our problem, we need to treat y(£;/7) which is a function of two
variables. Thus, in this case we need to replace (2.3) by

n+1

0x"0y!

F(x/y) —y(x/y)| < Be, x/yel,yel[l,2],

for all [ + n < N. But this follows from (2.3) by the chain rule and product rule in the
given range of x, y. O

The fact that a function v is of finite type m at a makes it possible to use a scaling
argument which relies on this type of stability of estimates. More precisely, let us set

Ya, )=yt +a) —y(a) -y (ar
For 0 < ¢ < 1 and vy of finite type m at a, we also set
vs(a, 1) =6""y(a, 61)

and
X
Gs(a, x,y) = ya(a, ;)

The following lemma means that G is a smooth function uniformly in a, 6. Thus, it
gives the stability of estimates for ;.
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Lemma 2.3. Let y be of finite type m at a. Then for sufficiently small 6 > 0, if |t| ~ 1,
lyi(a, )l =c>0 2.4)

and

Gs(a,-) € CN(V)
uniformly in a, 6, where N is a large constant and V = {(x, y) : x/y € [-1,1],1 <y <2}.
Proor. By a Taylor expansion, we see that

Y"(a)
m!

ys(a, 1) = "+ 51, a) (2.5

with |Z5(t, @)l < Colt|™*!. This gives the estimate (2.4). If x/y is contained in [—1, 1]
and 1 <y <2, by replacing ¢ by x/y in (2.5), we see that

6n+l ,ym(a) x\™"
(9x”6yl(G6(a’x’y)_ m! (;))

<Cyo

for all I, n < N. This means that G is a smooth function contained in CN(V) uniformly
ina,o. m|

2.1. Proof of Proposition 1.3. As mentioned above, interpolation between (1.9) and
(1.10) gives (1.5). Therefore, we only need to show (1.3), (1.9) and (1.10).

First, in order to prove (1.3), we decompose Ts dyadically away from its degeneracy.
We treat decomposed parts by using Proposition 2.1 and a rescaling argument. Then
it remains to treat the part of T containing the degeneracy. To control it, we need the
following kernel estimate.

For 0 < ¢ < 1, let us define K, by

fz—T;’(fl/T))p(fl/T_a) (2.6)

(Ko & 0 = 6o o
where ¢ € C7(1, 2), ¥ € S(R) and p € C°[-1, 1].

Lemma 2.4. Suppose y is finite type m at a. Then there is a constant C = C(M),
independent of a, 6, such that

K, (x, D < CS™ DML+ 16" (xy + 9/ (@)x2)] + 16x2] + [t + ax; + y(@xa)™  (2.7)
forall 0 < M < N with large N.

Proor. By the change of variables (£1, &, 7) — (&) + 7a, & + Y/ (a)é) + Ty(a), T) and
rescaling (¢, &, T) — (6'/7&), 6&,, 7), we have that

Ky (x, 1) = 6" DIME (8™ (x) + ¥ (@)x2), 622, t + ax; + y(a)x)

where F(K,) = ¢()(& — Tysim(a, £1/7))p(& /7). Since y is of finite type m at a,
by Lemma 2.3, ys/m is a smooth function contained in CV(V) uniformly in a, 6,
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where V ={(¢1,7):&1/Te€[-1,1],1 <7 <2}. Then by integration by parts, we see
that there is a uniform constant C, independent of a, §, such that |K,(x, )] < C(1 +
|(x, H)™ for all M < N. This gives (2.7). ]

We now state the following interpolation lemma which is a multilinear extension
of a result implicit in [3] (see also [6]). We refer the reader to [16] for a proof of the
lemma. It will be used several times throughout this paper.

Lemma 2.5 (Interpolation lemma). Let €, & > 0. Suppose {T ;} is a sequence of linear
operators satisfying that for 1 < pil, pé <oo,i=1,...,[ (here the superscript i is not
an exponent, but an index), and 1 < q1, g3 < o0,

I s fOllgy < M2V 11£
and

ITi(f s fOllgy < Ma27 T 11
Then forT =37 _ Tj

j:—oo

T s llgeo < CMIMAPTE_ 11 F1Li (2.8)

where 0=e&/(e +e&), 1/g=0/qi+(1-6)/qs, 1/p'=0/p|+(1~-0)/p} for i=
1,..., L Furthermore, if g1 = q2 = q, then

T s fOllg < CMIMy ™ T 11l (2.9)

We now prove (1.3). To decompose T dyadically, let g € C7([-2, —1/2] U [1/2, 2])
satisfying ez B(27)=1 and let By € Cy([-2,2]) satisfying }5-icy B(27-) = Bo(-/ ).

Then
L=Bo(-/)+ ) BRI,
27724
This gives
Ts=T)+ » T,
2-izglm
where

& - T7(§1/T))’30(§1/T

: S Jx©fEn

1) 0 = o

and, for 2=/ > §'/™,
& -1y /7) &1
5 )ﬁ(zl?

Since vy is of finite type m at zero, Tg is supported in a cube of size & x §'/" x 1.
Observe that Tg f =Ko * f, where K, is defined by (2.6). Then using Lemma 2.4 and
Young’s convolution inequality yields that for 1 < p <g¢,

0 1 -
T3 flly < Co /A=) )|

(dﬂ%aﬂ=aﬂ4 )maﬂaﬂ

Here we note that (1 + 1/m)(1/p—1/q) >2/p — 1/2because (m — 1)/p + (m+ 1)/q <
m/2. This gives the desired bound for T(?.
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Next we consider ’y-jssi/m Tési . Let us define

& — 1y2-i(0,&1/7)
A

(1€ = oo )/5’(51 J0fE ).

By setting fj(x, 1) = f(2/x1, 2™ x,, 1) and rescaling Tgf by (&1, &) — (277&,,27M&,)
in frequency space, we have that

T, ) =TL, fi(27x, 27" x, 1),

From Lemma 2.3, we see that |y’ (0, &1/7)| = ¢ > 0 uniformly in j because |¢1/7] ~ 1

on the support of 8. Therefore, applying Proposition 2.1 to Tj f, we see that there is a
uniform constant C, independent of j, such that

IT) flly < €20 Dla(2m > =12 i,
Rescaling again gives
”T(gf“q < Czj((m—1)/p+(m+1)/q—m/2)62/p—1/2||f”p (2.10)

forp>2,g>5p/3and1/p+3/g<1.

If (m-1)/p+(@m+1)/q<m/2, then from direct summation, we obtain the
required estimate for Yp-js51m T3. If (m — 1)/p + (m + 1)/q = m/2, choose (1/p, 1/¢,),
(1/p, 1/q,) satisfying 1/p+3/q;:<1, q;>5p/3 (i=1,2), p>2 and (m—-1)/p+
m+1)/qy >m/2>(m—1)/p+ (m+ 1)/q>. Then by (2.10), we have fori =1, 2,

”Tngq' < C2j((mfl)/p+(m+1)/q,-fm/2)62/p*l/2||f||p‘

Applying (2.8) in Lemma 2.5 with [=1, ¢, =(m—1)/p+(m+ 1)/qy —m/2 and €, =
—((m—-1)/p+ (m+1)/g, — m/2), we obtain the restricted weak-type estimate

2. Tif

27J>g1/m

< C&H P2 £l
q,oo

for(m—-1)/p+ (m+1)/q=m/2,q>5p/3 and p > 2. Then interpolation between the
restricted weak-type estimates leads to the strong-type estimates except for (p, g) =
(2, 2(m + 1)). This completes the proof of (1.3).

We now turn to (1.9) and (1.10). In order to obtain these results, we need certain
estimates for a kernel which has the condition (1.4) imposed on . Let us choose
a smooth function supported in a small neighborhood of the origin in R so that

X(€) = x1(£)x(&). Define K; by

& -1y /1)
5

where ¢y € S(R) and ¢ € C;°(1, 2). Since y is a smooth function compactly supported
in a small neighborhood of (0,vy(0)), we may write that Tsf =Ks* f. By
Young’s convolution inequality, it is enough to show that ||Kjs|l. < C6™+D/™ and
1K sll20m-1)/(m—2).c0 < CTD/2m=DI Thege are obtained from the following Lemma 2.6.

Rote. ) = oo )@ @.11)
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LeEmmA 2.6. Let Ks be defined by (2.11). Suppose that  satisfies (1.4) and vy is of finite
type m at zero. Then for 0 <6 < 1,

IKslleo < CS DM, (2.12)
K sl|20m—1)/m—2).c0 < CSHD/20m=DI, (2.13)

Proor. We first consider the case m = 2. By the change of variables & — & + Ty(&,/7)
and integration in &;,

Ks(x, 1) = 80/(6x2) f eAritadiHmra @)y (£)p (1) dé dr.

Set ©(&), T) = Ty(£1/7). Then @ is homogeneous of degree one and the Hessian matrix
of @ has rank one because v is of finite type 2 at zero. From the well-known oscillatory
integral estimates, we see that

‘f€2ﬂi(XI-f]+tT+XzT)’(§|/T))Xl(§I)¢(T) dé dt| < Cl(x, t)|_1/2

if |x2] > C(x} + 12)'/2. Therefore,
IKslleo < CS3/ (2.14)

because i is supported in {x; € R : |xs| ~ 571}.

Turning to the cases m > 3, the proof of (2.12) is similar to the argument that was
used to prove (1.3). As before, we use S and Sy to decompose Ks dyadically away
from its degeneracy. Then

Ks =K+ Z K
2-i>§l/m
where

£ Tg(fl/‘r))ﬁo(?lfm‘r)/\(l(fl),

& - T?é’(‘fl /T))ﬁ(zjf?l

R =90

ki 7) = ¢(T>w( ) @) for2iz6lm

Since v is of finite type m at zero, Lemma 2.4 shows that Kg satisfies (2.12).
Now consider Y-i551m Kj. By rescaling (€1, &) — (277&;,27&),

KJ(x, 1) = 277 DR 002730, 27, 1) (2.15)

here &~ 0.6 /)
. _ - 1y,-i(0, &1 /T
K= (oo 220 e o)
By (2.14) we see that there is a uniform constant C, independent of j, such that
1K llo < CA*'2, because, from Lemma 2.3, |y} (0, &/7)| = ¢ > 0 on the support of 3
uniformly in j. Therefore,

IK oo < C5%/220m=2i12, (2.16)
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Since m > 3, we may sum over 27/ > 8™ and thus
2 : j 1
“Kglloo < C6(m+ )/m
2—j261/m

This gives the required bound (2.12).

Similarly, we can prove (2.13) by using an analogous argument. To see this, define
K(?, Ké and K, as before. From Lemma 2.4, one can easily see that K(? satisfies the
estimate (2.13).

By Plancherel’s theorem, we have ||K,|l, < CA'/2. Then we obtain from (2.15) that

IKIll> < €622, 2.17)

Using Holder’s inequality together with (2.16) and (2.17),
“Kg“q < C§3/? 2/ im=D)/q=(m=2)[2)

Therefore
Z K; < C(g(m+1)/l2(m—1)l
2-izglim 2(m—1)/(m=2),00
by Lemma 2.5 and hence (2.13) holds. O

Furthermore, we claim that Proposition 1.3 is true if we replace y € C° by ¢ €
S(R). To see this, it is sufficient to show that (1.3) holds when ¢ € S(R) takes the
place of ¥ € C°, because we only used the condition (1.4) to prove (1.9) and (1.10).
For ¢ € S(R), let us define

& - TV(fl/T))BO(é'z —1y(&1/7)

. 220 vofen

(S0 (€ 7) = pou(

and, for 27/ > 6,

(837" = gt 2EED) £ ZTHEIDN 6 e, ),

where 3, By are the same functions as in the proof of (1.3). Then

Ts=8¢p+ Z Sj.
27/>6

By (1.3), we have [IS o fll, < CS*P=172||f1],,.

It remains to consider Y55 S ;. Set Yo-i(1) = B(t/27/W(t/5). Then for 27/ >
8, the smooth function i, is supported in [-27/,27/] and it is easy to see that
I(d'/dt" i (1) < C27'6M2/M for any M. Observe that (1.3) is also valid if the function
(& — Ty(€1/7)/96) in the definition (1.2) with ¢ € C is replaced by ¥s(&2 — Ty(£1/7)),
where 15 is a smooth function supported in [, §] which satisfies |(d'/df )| < C;6~!
for I > 0. Then we have that, for 277/ > 6,

IS 1fll, < C8M2M a1 7,

for the same p, g in Proposition 1.3. Summing these estimates shows our claim.
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3. L? — L1 boundedness of S™¢

In this section we prove Theorem 1.2 by using Proposition 1.3. We also show the
necessary conditions for S 7.

3.1. Proof of Theorem 1.2. First, we need to decompose S ¢ dyadically into T
whose kernel has a good localization property (1.4) to use Proposition 1.3. This is
obtained by the following lemma (see, for example, [7, Lemma 2.1]). Let us define
the distribution D* by

.= [ ETTED e dgdr Re) > -1

When Re(z) < —1, D* is defined by analytic continuation.

Levma 3.1. For Re(z) > 0, there is a smooth function _. satisfying supp f_. C {t € R :
|| ~ 1} such that for all f € S,

T

07 =32 [ foie-of2)porenaar
J

By this lemma, we may write

STf=) Kixf
7

where kj = 2%0y_ o (27(& — Ty(&)/7))p(T)x(€) and supp ¥_, C {¢ : |t| ~ 1}. Since ¢ and
x are compactly supported, by the rapid decay of ¥ _,, for 2/ <1 and 1 < p < o0, we
have ||K ||, < C2%. This gives, for all p <g,

ZKj*f

2i<1

< ClIfllp-
q

Hence we only need to treat the part },;5; K; * f to prove Theorem 1.2. Since y
satisfies the condition (1.4), from Lemma 2.6 and Young’s convolution inequality, we
obtain [|K; * fllew < C2@~m+D/MJ| £]|;. Thus, for 0 < @ < (m + 1)/m,

ZKj*f

27i>1

=i

Therefore, if (m + 1)/[2(4m — 1)] <a < (m + 1)/[2(m — 1)], it is sufficient to prove (b)
and (c), because then we can obtain (a) by interpolation and duality. If (m + 1)/[2(m —
1)] < @ < (m + 1)/m, we also obtain (d) from (e) by interpolation and duality.

We first consider case (i): (m+ 1)/[2(4m - 1)] <a < (m+ 1)/[2(m — 1)]. To show
(c), by duality we only need to show the restricted weak type for )55 K; * f at By.
From (1.11),

K+ flly < 20720220 ) (3.1)
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forp>2(m—-1)/m,(m—-1)/p+(m+1)/q<m/2and g > 5p/3. Choose (1/p1, 1/q1),
(1/p2, 1/q2) satisfying (m — 1)/p; + (m + 1)/q; = m/2 for i=1,2 and
Sm/[4(dm—-1)]<1/py <1/4d+a/2<1/py <m/[2(m —1)]. Then we obtain from
(3.1) that

IK; * flly, < C2%2W/22mdijjf)l 0 i=1,2.

An application of Lemma 2.5 yields that, for (1/p, 1/q) = B,

ZKj*f

2/>1

< Cllfllpa
q,00

because @ + 1/2 - 2/p, <0 <a + 1/2 —2/p,. This gives the desired estimates.
Next we prove (b). By duality it is sufficient to show, for (1/r, 1/s) € (B, A.], that

2i>1
Since (m+ 1)/[2@m - 1)]<a<@m+ 1)/[2(m —1)], we can choose (1/r,1/s),
(1/ry, 1/5) satisfying (m — 1)/r; + (m + 1)/s <m/2 for i =1, 2 and Sm/[4(4m — 1)] <
1/ry <1/4+a/2 <1/ry <m/[2(m — 1)]. Then, by (3.1),

IK; * flly < C2%204/2=2mi| gy, i=1,2.

Noting that @+ 1/2-2/rp<0<a+1/2-2/r; as before and using (2.9) in
Lemma 2.5, we get [|2551K; * flls < ClIf|l-i. This shows (b).

We now consider case (ii): (m+ 1)/[2(m — 1)] <a < (m + 1)/m. To show (e), by
duality it is sufficient to show, for (m + 1)/[2(m — 1)] < @ < (m + 1)/m, that

ZKj*f

2i>1
By (1.5),for 1 < p<2(m—1)/m,

IIK; * flloo < Czﬂ.iz—(m+l)j/(Pm)”f”p‘ (3.2)

< Cliflr1-

‘ < Clflm+1y/ma1-

As before, since (m + 1)/[2(m — 1)] < @ < (m + 1)/m, one can choose p;, p; satisfying
m/[2(m— 1] < 1/py <ma/m+1)<1/py<1.By (3.2),fori=1,2,

IK; * flleo < C20727m+DIlpm)| £1]

Note that ma/(m+ 1) —1/p» <0 <ma/(m + 1) — 1/p,. By applying (2.9) in Lemma
2.5, we obtain the desired estimates for @ # (m + 1)/[2(m — 1)].

Next we prove (d). Since duality and interpolation between (e) and the L! — L*
estimate give (d) except for the case @ = (m + 1)/[2(m — 1)], it is sufficient to prove
that, for 1/p — 1/g=m/[2(m — 1)] and g # oo,

DK f|| < Clifllpa.

2i>1 @

However, this can be obtained by the same argument as before by using (1.12), duality
and interpolation.
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3.2. Necessary conditions.

THeoREM 3.2. Let O < a < (m + 1)/m and let S~ be defined by (1.1). If x(0, 0) # 0 and
a# 1, [IS7flly < Cllfll, may hold only if (1/p, 1/q) € A7.

Proor. For 0 <@ < (m+ 1)/m and « # 1, we want to show that S~ may be bounded
from L? to L9 only if

a
> < - 5, (33)

Bl w

L@
2?

SR
E
-

1 1 am
>

p g m+1’

34

First we prove (3.3). By duality it is sufficient to prove this for 1/g <3/4 — a/2.
Define a smooth function b by

&

T

b, 1) = n(é)¢(§z - TV(

T

JJoorixe

where 7 is a smooth function supported away from zero such thaty”’ # 0 on the support
of n and ¢ € Cj° with ¢ =1 on a small interval around zero. Since (0, 0) # 0, if we
choose 7, ¢ supported in a sufficiently small neighborhood of zero, y # 0 on the support
of n and ¢. Hence we have a smooth function b € L for all 1 < p < co.
Observe that
S7b(x, 1) = L(x, t)By(x2),

where
L(x, 1) = f€2m(x'§'+tT+X2T7(§1/T))77(‘%)¢(T) dé, dt
and )
— 2)+ Zﬂixz{:z
By (x2) f@(fz)—r(_a " 1)6 dé.

First, we want to show that for |x,| > R, |x;| < C|xz| and [¢| < ¢,
IL(x, )| > Cl(x, )72, (3.5)

where R is a sufficiently large constant and ¢ > 0 is a sufficiently small constant. Using
the change of variable & — &7,

L(X, t):feQIIitTfeZﬂi(xlelerzTy(fl))n(gl)d§1T¢(T) dr.

Since y” # 0 on the support of 77, by a well-known asymptotic expansion, we see that
if |x1] < Clxal,

N

f TRt @n(g)) déy = Con) ™2 Y aj(nn) ™ + Ay(ar),
=0

J
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where Ay satisfies |(d/ds)*Ay(s)| = O(s™*N+D/2) Furthermore, for ¢ with |f| < c, we
have ¢*™" = 1 + O(c) because 7 ~ 1. From this and an integration for 7 ~ 1, it follows
that

N
L(x, 1) =C( + O(c)) f((xz‘r)_l/z Z aj()cz‘z')_j/2 + AN(XQT))T¢(T) dr

J=0

N
=C(1 + O(c))(x;”2 + Z ajx; " AN(xz)).

Jj=1
Note that if |x;| is sufficiently large,

N

> a4 Ay
=1

lxol2 > B

for some B > 2. Then the desired estimate (3.5) is obtained.
Now we claim that for sufficiently large |x;|,

|Bo(x2)] = Clxa| 1. (3.6)

We may assume that x, > 0. From the change of variable & — &,/ x>,

By(xy) = x5 f 90(52) 2 e dg,.

% /T(=a + 1)

Since

(SRS o @)
f“’(xz)r(—an)e =7 (F(—a+1))(1)¢0

as xp — oo (see [10, p. 172]), we obtain (3.6).
Combining (3.5) and (3.6) gives that for sufficiently large R and small c,

f f IS™®b|? dx dt > C f f x| gy dy
AR,C

where Ag. = {(x, 1) ER> X R : |xs| >R, |x1| < Clxal, | <c}. If 1/g>3/4 — /2, then

it follows that
ff x| 32D gx de > C f |x|3/2+ @4 gx = oo,
AR [xI>R

and hence the proof is complete.
We now turn to (3.4). Let 0 < ¢y, ¢co < 1 be constants to be chosen later. Let Es be
the set defined by

Es={&1eR?XR:1<1<2,¢16 <& /7<2¢16, c26™ < & < 2¢,6™).
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Since vy is of finite type m at zero, one can choose ¢y, ¢, such that, forall 0 <6 < 1,
dist(Es, T,) ~ 6" and EjcC {(g, 06> Ty(é%)}
where Iy, = {(£, 1) : & = 7y(&1/7)}. This means that E; is supported in the region away
from the cone I',,. Moreover, for £ > 0, we define a dual set E of Es which is given by
E;={(x,h eR*xR: x| <&d !, [xa] <67, |t] < &)
If (£, 7) € Es and (x, t) € E%, then it is obvious that
MED D = 1 4 O(e). 3.7)

Now choose a positive function n € C°(1, 2) and set
. /T
261y = oo 25 o 2,
ci0 0™

Since f; is supported in Es which is away from the cone I',,, we obtain from (3.7) that,
for (x, 1) € E,

S #o (AW
50 =Ca1+06) [ [ 2O vefe-o(2))

&/t ) ( & )

x| == In| == | d¢ dr.
77( c10 1 o™ gdr

This is because the distribution is a function away from the cone I, if & # 1. Then it

is easy to see that for sufficiently small &€ > 0 and (x, ) € E%,

20,8™
IS “xs(x, )| = Co f v dt,

C26m
which implies that
”Sfa)((;”q > C(Sé‘m(fa+l)|E{>;|l/q > C(Sé‘m(fa+l)6—(m+l)/q‘
However, we have that |||, < C6™*15"*D/P by using a change of variables. This
gives condition (3.4). O
4. Proof of Proposition 2.1

To prove Proposition 2.1, we need the bilinear restriction estimates for conic
surfaces. This is a generalized version of the bilinear cone restriction estimates due
to Wolff [28] and Tao [23].

Let I, ={(& 1) eR?XR: & =1y(&1/7), 1 <7 <2} and let V; and V, be closed
subsets of [—1, 1]. We set

li={¢nely:&H/reVi

for i = 1, 2. The following is a bilinear restriction theorem for the conic surfaces I, in
R3. Tt is a special case of Theorem 1.2 given in [18] (see also [17]).
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THEOREM 4.1. Let y be a smooth function defined on I = [—1, 1] with |y"|>c¢>0on I.
If dist(Vy, V) ~ 1, then for r > 5/3,

I(fdur)(gdu)ller < Cll A z2aun gl 2 aus) 4.1)

where duy, duy are the surface measures on 'y, T, respectively, and the constant C is
stable under small smooth perturbations of y.

ReEmArK 4.2. (a) When 1 is the quadratic function given by y(s) = s2, I is a subset
of the light cone. For this case, the bilinear estimate (4.1) was obtained by Wolff [28]
(r>5/3) and Tao [23] (r = 5/3). Recently, Lee [ 18] and Lee [ 14] extended Wolff’s and
Tao’s results, respectively, to oscillatory integral operators with cinematic curvature
condition. These are related to the regularity problem of Fourier integral operators
in [21].

To be more precise, for i = 1, 2, let an oscillatory integral operator be defined by

Wi £z, x2) = f RN g @) dn, (@ %) = (. 1, 1) €REXR.

Here, a;(z, x2,7) is a compactly supported smooth function in R?> x R x R? and 7 =
(é1, 7) € R2. The phase W;(z, x2, n) is a smooth function, homogeneous of degree one
in 77 on the support of a;. Let us consider the L? x L?> — L’ bilinear estimate

W3 fWigll@s) < CA I fllalgll (4.2)

under the following conditions for the phase functions.

(i) Fori=1,2, rank 62,]‘1% =2 and 0,,'¥; # 0 on the support of a;.
(i) From the above conditions and the implicit function theorem, we may assume
that

aquJj(Z, X2, 77) = Qi(Z, X2, 6Z\Pi(z’ X2, 77))
for some ¢;(z, x3, 7). Then rank B%qi =1 on the support of a;. (This is called the

cinematic curvature condition.)
(ii1) Fori=1,2,

K 0. Yi(z, x2, 1)
|aZ‘Iji(Z’ X2, 771)| ’
>c>0

anCIZ(Z’ X2, aZ\PZ(Z’ X2, 772)) - 67]‘]1(1, X2, aZ\Pl (Z7 X2, 771))>’

for all (z, x2, 1) € supp a; and (z, x2, 172) € supp ax.

Then Lee [18] and Lee [14] obtained the estimate (4.2) for r>5/3 and r=5/3,
respectively.

(b) The bilinear estimate (4.1) is a special case of the L?> x L?> — L’ bilinear estimate
(4.2). To verify this, let us set W;(z, x2, 7) = x1&1 + 7 + x7y(&1/7). Then the adjoint
Fourier restriction operator (fdu;) related to the conic surface I'; can be viewed
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as an oscillatory integral operator with the phase function ¥;. Note that we have
0., ¥Y; =1y(& /7). Hence, it is easy to see that for i =1, 2, the phase function ¥;
satisfies conditions (i), (ii) because y” # 0. Moreover, the condition dist(Vy, V;) ~ 1
guarantees that condition (iii) holds. Thus, (4.1) is a consequence of the bilinear
estimate (4.2) in [18].

(c) The stability of the bilinear estimate (4.1) under small smooth perturbations of y
plays an important role in the proof of our result. This comes from the fact that the
L? x L?> — L’ bilinear estimate (4.2) is uniform for small smooth perturbations of the
phase function ¥ in [18]. For more details on the [* x [? = L’ bilinear estimates
for oscillatory integral operators with cinematic curvature condition, we refer readers
to[14, 17, 18].

We actually use the following lemma, which is a ‘thickened’ version of
Theorem 4.1, to prove Proposition 2.1, because the operator Us is essentially supported
in a 6-neighborhood of the cone I',. For this reason, let us define Té by

& -1y /1)
5

where 1, y» are functions supported on [—1, 1].

(i€ = oo )witer ofe. o

Lemma 4.3. Let 0 <6< 1 and let |y”|>¢c>0 on I =[-1,1]. Then if dist(suppyi,
suppx2) ~ 1, then for 5/3 < g <2,

T3 f Tsell, < Collfllallglla,

where the constant C is stable under small smooth perturbations of vy.
Proor. Let T';(0) = {(&, 1) : &1/7 € supp y;, dist((¢, 7),T,) < 6}. Then we decompose
I';(6) into a family of conic surfaces I'} = {(£, 7) € T(6) : & = 7y(§1/7) + s}. That is,
we write
r@= ) fori=1,2
|s|<C§

Let du; be the surface measure of I'} for i =1, 2. Since dist(supp x1, supp x2) ~ 1,
Theorem 4.1 gives that, for all s, u and ¢ > 5/3,

ICfdu)(gdu)llre < Cll M2e den |18llr2rs aps) 4.3)

with C independent of s and u. We notice that the constant C is stable under small
smooth Perturbations, sirlce the same is true for the biline~ar re~stricti0n estimate.

Set f=¢(x1(&1/7)f and g = (T)x2(£1/7)8. Let fy = fIr; and g, = glrs. Since
f. & are supported in Ulsiccs T'§» Ujsizcs T5» respectively, by the change of variables
& = s+ 1y(€1/7) we see that

Tgf(x, t) — erm'(xlfl +tT+x2(S+Ty(§:1/T)))l//(s/é)ﬁ(f’ T) dé‘:l drds

= f Y(s/0)(fdus) ds
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ﬁgmnzj@mwmmmﬁd&

Hence, it follows that

. N N q
IT; f T3l < f f ‘ f f W/ S (s/8) Fidt V(@ sdpss) du ds| dx dt.

Applying Hoélder’s inequality to [ y(u/6)(fudu’) du and [ y(s/6)(Zsdps) ds,
respectively, and using (4.3) yield that

ity vty <o [ i@ dusie ax aousorus/o du s
sc¥*{f|mﬂmmgﬂMQMW®wwamWw
Since g < 2, applying Holder’s inequality again to the last inequality,
T fT3gllE < CollfIIANgI.

This completes the proof of the lemma. O

4.1. Proof of Proposition 2.1. We begin by defining /,, to be an interval centered at
a with length r. Let us set

Aur=1EDER* xR & /1€, 1 <T<2). (4.4)

Decomposing A into small cubes, we may assume that the support of £ is contained
in A, withO <e<x 1.
Observe that the change of variables £} — &) + ta for Usf gives

& -1y /T +a)
0

WKmhf?WW@%m% puﬁhﬂﬁgﬂ@m
where L(x, t) = (x,t+ ax;). Since the translation (x, 1) — (x, t — ax;) does not affect
the boundedness of Usf and |y”| > ¢ > 0 on I = [-1, 1], it is sufficient to consider the
case Ag. Hence, we may assume that f is supported in Ape.

We utilize a Whitney type decomposition (see [26]). Let jy be the integer satisfying
270 < 44/ < 277o*! For each j, 0 < j < jo, we divide the interval 7 = [~1, 1] into 2/*!
disjoint dyadic intervals I of length 27/. When j < jo, we write I; ~ I, to mean that
I,{ and I,{, are not adjacent but have adjacent parent intervals of length 27/*!. So

dist(Z}, I,) ~ 27/. When j = jo, we write I/ ~ I/, to mean dist(l}, I},) < 27/ ~ V5. By

adapting the idea of Whitney type decomposition of / X I away from the diagonal

I X I, we may write
Ixi= ) |J#x1. 4.5)

0<j<jo fj~1),
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Let fk’ be given by
Ren=xy&/nfE .
where y; € Cy° with y = 1 on the interval 1. From (4.5), it follows that
Usf-Usf= Y, D Ust(x 0UsfL(x ).
0<j<jo I]{NI,{,
For each j, we define a bilinear operator B; by
Bi(f, 9)x, 0= Y Usf(x,nUsgl,(x,1).
B~

Then,
WsfP= D Bi(f. ). (4.6)

0<j<jo

So, we want to obtain the operator norm of B; from L? X L? to L2,
First, we consider L™ estimates. More precisely, we claim that

1B;(f, ®)lleo < C2767 Y| flloollgllco- 4.7
Let w € C be supported in (=1, 1) so that } 7 w(- —v) = 1. We set

Eift—v
Vo

where v € V6Z. Since (Ugfij)A is supported in a cube of size 1 X §'/2 x §, from the
kernel estimates, it is easy to see that for p < ¢,

fLe 0= )

Us ]l < C&¥2AP=1) £, (4.8)

Moreover, the number of v is about 277672 for each j because |I/|~27/ 2 V.
Therefore, for 0 < j < jo,

1Us £l < C D MU o < C27967 2| o, 4.9)

Since the number of k&’ associated with & is at most four, the number of pairs (k, k') is
about 2/. Then we obtain, for 0 < j < jo,

IB;(f, Ol <C Y NUsfUsgl I

B~
< C2YQ275 || flleollglloo-

This gives the desired estimates.
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Next, we consider the following lemma which is the main estimate of this section.

Lemma 4.4. Supposethat 1/p+1/q>1/2,2p>q>5p/3, p>2andq=> 4. Then there
is a constant C, independent of j, 6, such that for 0 < j < jo,

IB;(f, @l < C5YP=1 22123140 1] gl (4.10)

Assuming this for the moment, we give the proof of Proposition 2.1. When 1/p +
3/q < 1, interpolation between (4.7) and (4.10) gives

IB;(f, liar < C2-I6 7| £11,llgll,

for some € >0. Summing in j and using (4.6), we have, for 1/p+3/g<1 and
2p>=q>5p/3,
1Us fllzasy < CS* P72 fllpo sy 4.11)

When 1/p+3/g=1, we use Lemma 2.5 as before. Indeed, choose (1/p, 1/g1)
and (1/p, 1/q,) satisfying 1/p+3/q;=1fori=1,2and 1/p+3/q <1< 1/p+3/q>.
Then by (4.10), we obtain fori =1, 2,

IB(f, ®)llpar < C&*P122 P14 £ gl 1.
Using Lemma 2.5 and (4.6), we see that, for 1/p +3/g=1and 2p > g > 5p/3,
||U6f||q,c>o < Cdz/p_l/z”f”p,l-

By real interpolation, these restricted weak-type estimates can be strengthened to
strong type. From this and (4.11), we get, for 1/p+3/g<1, 2p>¢g>5p/3 and
(P, @) #(5/2,95),

NUs flla@sy < C8P7 2| fll ooy 4.12)

On the other hand, it is well known that the L> — L” adjoint restriction estimate
holds for the cone-type operator in R3. Since y” # 0, at least one of the principal
curvatures is nonzero at each point of the cone I',. Thus, for p > 6,

ICFd)llr@sy < ClF 2

where dy is the surface measure on I, (see [22, pp. 365-367]). From this and an
argument similar to one used to prove Lemma 4.3, we obtain, for p > 6,

1Usfll, < €8I fla-
Interpolating this with (4.12) finishes the proof of Proposition 2.1.

Lemma 4.5. Suppose that, for p>2, g>4 and 1/p +1/q > 1/2, there is a constant B,
independent of j, 9, I,{ and I, such that for I}Z ~ I,{,,

||U5fkj : U6g£/||L‘1/2(]R3) < Bl f @) llgi e (4.13)

Then there is a constant C, independent of j and 6, such that

1B;(f, @)llrar®sy < CBIl fller@)lIglr@®3)-
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Proor. Note that the supports of f and & are contained in Ao deﬁned by (4.4). For
fixed j, if I’ the supports of the Fourier transforms of Uy f’ U5gk, are contained
in the set

k”
(€, 1) eR* xR dist(¢ /7, [[) < C277, 16| < C, T ~ 1),

From this, we can easily see that the Fourier transforms of {Uj fkj . U(;gi, Yoy are
K

supported in essentially disjoint cubes. By using Plancherel’s theorem and a standard
argument (see [25, Lemma 7.1]), we have, for ¢/2 > 2,

) ;a2 1-2/q
||Bj<f,g>||Lq/zsC(Z Vs - Usgillg)s ) :
o~r,

By assumption (4.13),

-2/q
IB,(f, )l < CB( PR TA ||gk,||<‘”2)) : (4.14)

I{~Ij

Since the number of / ,f satisfying I,{ ~ I,{, is at most four, using the Schwarz inequality,

> IR N <C(Z i) (Z lelge)

I’~I/

From the condition 1/p +1/g>1/2 and I" C I’ for r < s, we see that the right-hand
side of (4.14) is bounded by C(3; ||fk’||£)”p(zk IIg{CIIﬁ)]/p.
Now it is sufficient to show that, for p > 2,

» IIf,fllﬁ)l/p < CIfl- (4.15)
k

By Plancherel’s theorem, it follows that (3 || fkj |I§)1/ 2 < C|Ifll. From the fact that the

support of f is contained in Ag,, for sufficiently small €, we obtain sup || fkj oo <
Clfllo. Inequality (4.15) follows from interpolation between the above two
estimates. |

4.2. Proof of Lemma 4.4. From Lemma 4.5, it is sufficient to consider Us fk/ . U(;g,{,
when I] ~ I],. More precisely, we claim that for 1/p + 1/qg > 1/2,2p > q > 5p/3,p > 2
and g > 4, _ _ ' A ‘

1Usf! - Usgjllan < C8*P=1 22001401 £ 1) o

with C independent of j, 9, I Ii and I,i
We first handle the case j = jo. Since 27 ~ V8, it is sufficient to show

\Usf! - Usglllgp < CEVPHDY £ lIgd -

However, this is an easy consequence of Holder’s inequality and (4.8).
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We now turn to the case 0 < j < jo. This case follows from interpolation between
the following two estimates:

Usf - Usgl Il < €275 | £ llollgleor (4.16)

1Usf! - Usgl Il < Co27C/ V)| L lIg (4.17)

for 5/3 < r < 2. From (4.9), we obtain (4.16).
To show (4.17), we use the bilinear cone restriction estimates for conic surfaces.
Let a € R be the center of the smallest interval containing both I}f and I,{,. Observe

that by translation & — &) + ta, the intervals I,{ and I,{, are moved to I; and I,
respectively. Here, /; and I, are intervals contained in Iy ,i-; with |[;| ~ 27/ ~ || and
dist(1y, I,) ~ 27/. Recall that 1, , is an interval centered at a with length r. Let us set

& —1y(a, & /1)
0
And fori=1,2, weset A; = {(&,7) €R? xR : &/t €I, 1 <7 <2}. Then by the affine

map (£, 7) = L,(&, 1) = (&) + Ta, & + Y (a)é) + Ty(a), 1), if supp f CAjand supp g C
A,, we see that

(Usaf) (€ 7) = o Jie.o.

U(sfkj ' Uég;{,(x, ) =Usaf - Usa8(x1 + ¥ (@)x2, X2, t + axy + y(a)x2).

Since the change of variables (xi, x3, 1) = (x; — Y’ (@)x2, X2, t — ax; — y(a)xy) in (x, 1)
space does not affect the boundedness, it is sufficient to show that if supp f ¢ A; and
supp & C Ap, then for 5/3 <r <2,

|Usaf - Usagll: < C2°° D) fllallgll (4.18)

with C independent of a, j, [, ,{ and Ik’

Set fi(x, 1) = f(27x1, 2% xy, 1) and gj(x, 1) = g(2/x1, 2% x2, ). Let I, I be intervals
contained in Iy with |[j|~1~|h| and dist(l;, b) ~ 1. Observe that fj, g; are
supported in the sets Aj, A,, respectively, where A; = (£, 7) eRZx R :¢)/tel;, 1<
7<2}. Let 1, x2 be smooth functions supported in Iy, satisfying y; =1 on I; for
i =1, 2 and dist(supp x1, supp x2) ~ 1. Define Uiaf and Uiag by

W], € 0= BT END), 6 fe o,

U], E D = o2 T”"A/(a’ $4/o )@ ogee. .
By rescaling Us, f and Us,g by (1, &, T) — (279, 27%&,, 1) in frequency space, we
see that ‘ ' - .

(Usaf - Usa8) (6, ) = Uy, i+ Uy 8271, 27, 1). (4.19)

Recall that f is supported in Ag . defined by (4.4). Then we may assume that 27/ <
1 and |a| < 1. Since vy is of finite type 2 at a, from Lemma 2.3, |y} ;(a, &1/7)| 2 ¢ >0
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uniformly in a, j on the support of y; for =1, 2. Therefore, applying Lemma 4.3 to
Uia f- Uiag, we see that there is a uniform constant C, independent of a, j, such that
forO<Ad<«land5/3<r<2,

U f - Ul < CAllfllglla.

Since 0 < §2% < 1 for 0 < j < jo, by applying the above inequality to (4.19) and
rescaling, we get (4.18). More precisely,

1Usaf - Usagll- = 22" UL, S Uy, il
< C23j/r(522j”fj”2”gj”2
< 2% 82227311 f 1L gl

This completes the proof of Lemma 4.4. O
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