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On polar convexity in finite-dimensional
Euclidean spaces
Shubhankar Bhatt and Hristo S. Sendov

Abstract. Let R̂n be the one-point compactification of Rn obtained by adding a point at infinity. We
say that a subset A ⊆ R̂n is u-convex if for every pair of points z1 , z2 ∈ A, the arc of the unique circle
through u, z1 and z2 , from z1 to z2 and not containing u, is contained in A. In this case, we call u a
pole of A. When the pole u approaches infinity, u-convex sets become convex in the classical sense.
The notion of polar convexity in the complex plane has been used to analyze the behavior of critical
points of polynomials. In this paper, we extend the notion to finite-dimensional Euclidean spaces.
The goal of this paper is to start building the theory of polar convexity and to show that the
introduction of a pole creates a richer theory. For example, polar convexity enjoys a beautiful duality
(see Theorem 4.3) that does not exist in classical convexity. We formulate polar analogues of several
classical results of the alternatives, such as Gordan’s and Farkas’ lemmas; see Section 5. Finally, we
give a full description of the convex hull of finitely many points with respect to finitely many poles;
see Theorem 6.7.

1 Introduction

Let Rn be the real vector space of dimension n. We compactify R
n by adding an

∞ point, and when we say that u →∞, we mean ∥u∥ → ∞. Denote by R̂
n the one-

point compactification R
n ∪ {∞}. Throughout this work, we identify the geometric

structure of Cn with that of R2n . For example, when we say that something is a
hyperplane in C

n , we mean a hyperplane in R
2n – that is, an affine subspace of real

dimension 2n − 1. Moreover, we use boldface font to differentiate vectors from scalars.
Take a point u ∈ R̂n and a subset A ⊂ R̂

n . Given any two points z1 , z2 ∈ A, different
from u, there is a unique circle passing through u, z1 , and z2. Denote by arcu[z1 , z2]
the arc of this circle between z1 and z2 that does not contain u. We say that A is
u-convex if for every pair of points z1 , z2 ∈ A, the set arcu[z1 , z2] is contained in A.
In other words, we say that A is convex with respect to u, and we say that u is a pole
for A. The observation that some sets are convex with respect to a pole was made by
Pólya and Szegö (see pages 53–56 in [8, Chapter 2]), but to our knowledge, it was not
further developed.

Initial results about polar convexity in the complex plane can be found in [11], [12].
The motivation for developing a theory of polar convexity comes from the observation
that polar convex sets can give refinements of classical results about the location of
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2 S. Bhatt and H. S. Sendov

critical points of polynomials, see for example [9]. For example, in [11], polar convexity
was used to give a refinement of the following classical result by Laguerre: Let p(z) be
a polynomial of degree n ≥ 2 and let u ∈ C. A circular domain containing the zeros of
p(z), but not the point u, contains all zeros of the polar derivative of p(z)with respect
to u.

In [13], polar convexity was used to give a refinement of the Gauss-Lucas theorem,
stating that the critical points of a polynomial are in the convex hull of its zeros. In
particular, [13] shows that the critical points of a polynomial of degree n lie in the
intersection of n + 1 polar convex hulls, one of them being the usual convex hull of the
zeros. In addition, this refines a much older result of Specht [14]. This paper aims to
extend these tools and notions to finite-dimensional Euclidean spaces. This allows us
to see polar convexity as a natural extension of the classical convex analysis. It is certain
that classical convex analysis has revolutionized mathematics, finding applications
in areas such as differential equations [7], geometry [4], optimization [10], matrix
analysis [6], economics [5] [3], and many more. The hope is to see polar convexity
grow in the future and find its niches. While this paper focuses on developing the
initial results in the theory of polar convexity, in a subsequent paper, we will show how
polar convexity has a deep connection with the critical points and polar derivatives of
multivariate polynomials.

In Section 2, we state the basic definitions and prove some preliminary geometric
facts.

In the extended complex plane (see [11] and [12]), the development of the theory of
polar convexity was facilitated by the presence of Möbius transforms. In Section 3, we
go over a specific family of Möbius transformations in R

n and their special properties
that will be important for us. Möbius transformations in R

n have been studied at
length over the years, and we refer the reader to [1, Chapter 3] for a more complete
treatment.

Unlike the classical convexity, polar convexity enjoys a duality property; see The-
orem 4.3. In the complex plane, this was proved in [11], and a very special case of the
duality can be found in Problems 107, 112 on pages 54–55 in [8]. In Section 4, we show
that the duality holds in finite-dimensional Euclidean spaces, and then we explore its
corollaries. As a consequence, we obtain some criteria for checking whether a point is
an extreme point for a given polar convex set.

In Section 5, we talk about separation of sets using spherical domains, and we derive
polar convex analogues of several classical results of the alternative, such as Gordan’s
and Farkas’ lemmas.

In Section 6, we look at sets that are convex with respect to multiple poles. We give
a complete characterization for the convex hull of finitely many points with respect to
finitely many poles. This allows us to prove some relationships between a set and the
set of its poles.

2 Preliminaries and Definitions

For any x ∈ Rn/{0}, let

x∗ ∶= x
∥x∥2 .
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On polar convexity in finite-dimensional Euclidean spaces 3

This notation is motivated by the fact that ⟨x, x∗⟩ = 1 and ⟨x∗ , x∗⟩ = 1/∥x∥2, so x∗ acts
like the inverse of the conjugate of a complex number in C. We note the easy facts that

(x∗)∗ = x, ∥x∗∥ = ∥x∥−1 , and (cx)∗ = c−1x∗ for any c ∈ R/{0}.

With that in mind, we define

x∗ ∶= {∞ if x = 0,
0 if x = ∞,

and let R̂n ∶= R
n ∪ {∞}.

Definition 2.1 For z1 , z2 , u ∈ R̂n with z1 , z2 ≠ u, define

arcu[z1 , z2] ∶= {u + (t(z1 − u)∗ + (1 − t)(z2 − u)∗)∗ ∶ t ∈ [0, 1]}.(2.1)

If z1 = u or z2 = u, define arcu[z1 , z2] ∶= {z1 , z2}.

Geometrically, as we will show in Proposition 3.3, this is the arc of the unique circle
passing through u, z1 , z2 that lies between z1 , z2 and does not include u. For example,
if z1 , z2 , u ∈ C, then (2.1) simplifies to

arcu [z1 , z2] = {u + 1
t

z1−u +
1−t

z2−u
∶ t ∈ [0, 1]}.

Notice that if the points z1, z2, and u are collinear with u in between z1 and z2, then
there is a t ∈ [0, 1] such that t(z1 − u)∗ + (1 − t)(z2 − u)∗ = 0; that is,∞ ∈ arcu [z1 , z2].
If z2 is taken to be ∞ in (2.1), then

arcu [z1 ,∞] = {u + z1 − u
t

∶ t ∈ [0, 1]} = {u + s(z1 − u) ∶ s ∈ [1,∞)} ∪ {∞}.

This is the ray, starting at z1 in the direction of (z1 − u) with ∞ added to the ray.
The next lemma shows that when ∥u∥ → ∞, the arc (2.1) converges to the straight

line segment between z1 and z2. The proof can be found in the appendix.

Lemma 2.1 Given u, z1 , z2 ∈ Rn and t ∈ [0, 1], the point

u + (t(z1 − u)∗ + (1 − t)(z2 − u)∗)∗

converges to tz1 + (1 − t)z2, as u →∞.

Definition 2.2 Given points z1 , . . . , zk ∈ R̂n and a u ∈ R̂n distinct from them, define
the convex hull of z1 , . . . , zk with respect to u to be

convu{z1 , . . . , zk} ∶= {u + (
k
∑
i=1

t i(zi − u)∗)∗ ∶ t i ≥ 0 with
k
∑
i=1

t i = 1}.

If, say z1 = u, we define convu{z1 , . . . , zk} ∶= convu{zi ∶ zi /= u, i = 1, . . . , k} ∪ {u}.

We say that u + (∑k
i=1 t i(zi − u)∗)∗ is a convex combination of z1 , . . . , zk with

respect to the pole u or a u-convex combination for short. A calculation similar to the
one in the proof of Lemma 2.1 shows that as we take the limit u →∞, the expression
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u + (∑k
i=1 t i(zi − u)∗)∗ converges to ∑k

i=1 t i zi , the usual convex combination of
z1 , . . . , zk . Thus, when ∞ /∈ {z1 , . . . , zk}, we have

lim
u→∞

convu{z1 , . . . , zk} = conv{z1 , . . . , zk}.

So, we define

conv∞{z1 , . . . , zk} ∶= {
conv{z1 , . . . , zk} if ∞ /∈ {z1 , . . . , zk},
conv{zi ∶ zi /= ∞, i = 1, . . . , k} ∪ {∞} if ∞ ∈ {z1 , . . . , zk}.

The next lemma shows that the set-valued map u ↦ convu{z1 , . . . , zk} has a closed
graph.

Lemma 2.2 Let z1 , . . . , zk ∈ R̂n and let u ∈ R̂n be distinct from them. Let {um} be a
sequence converging to u. Then, for any sequence vm ∈ convum{z1 , . . . , zk} converging
to some v ∈ R̂n , we have

v ∈ convu{z1 , . . . , zk}.

Conversely, if v ∈ convu{z1 , . . . , zk}, then there is a sequence {vm}, converging to v, such
that vm ∈ convum{z1 , . . . , zk} for every m.

Proof Since u /∈ {z1 , . . . , zk} and {um} converges to u, we may assume that um /∈
{z1 , . . . , zk} for all m. Let vm = um + (∑k

i=1 tm , i(zi − um)∗)
∗ for some tm , i ≥ 0 with

∑k
i=1 tm , i = 1. Without loss of generality, {tm , i}m converges to t i ≥ 0, and ∑k

i=1 t i = 1.
So we can just take the limit to conclude. The converse is straightforward. ∎
Definition 2.3 A set A ⊆ R̂

n is said to be convex with respect to u ∈ R̂n or u-convex if
for any z1 , z2 ∈ A, we have that arcu[z1 , z2] ⊆ A. For a set A ⊆ R̂

n , we define convu(A)
to be the smallest, with respect to inclusion, u-convex set containing A.

Remark 2.3. It is a routine verification similar to the case of usual convexity that
convu{z1 , . . . , zk} as in Definition 2.2 is indeed the smallest u-convex set containing
{z1 , . . . , zk}. It should also be clear that intersection of u-convex sets is u-convex. In
this way, convu(A) is the intersection of all u-convex sets containing A.

Remark 2.4. The reader should note that R̂n/{u} is always u-convex for any u ∈
R̂

n . Now, let A ⊆ R̂
n . If u /∈ A, then A ⊆ R̂

n/{u}, and so convu(A) ⊆ R̂
n/{u}, by the

minimality in Definition 2.3 – that is, u /∈ convu(A). Conversely, if u ∈ A, then since
A ⊆ convu(A), we obtain u ∈ convu(A). This shows

u ∈ convu(A) if and only if u ∈ A.(2.2)

Similarly, for any u-convex set B, the sets B/{u} and B ∪ {u} are u-convex.

Definition 2.4 Given A ⊆ R̂
n , we denote by P(A) the set of poles of A. That is, P(A)

is the set of all points u ∈ R̂n such that A is u-convex.

Example 2.5. Any closed half-space H is convex with respect to any point not in its
interior – that is, P(H) = cl(Hc). Let the closed half-space H ⊂ R̂

n be given by {x ∈
R

n ∶ ⟨x, v⟩ ≥ c} ∪ {∞} for some fixed v ∈ Rn and c ∈ R. Without loss of generality,
we may assume by translation that c = 0. If u = ∞, there is nothing to show since H
is convex in the usual sense. Let u ∈ Rn be such that ⟨u, v⟩ ≤ 0 and let z1 , z2 ∈ H be
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On polar convexity in finite-dimensional Euclidean spaces 5

distinct. If z2 = ∞, then arcu[z1 ,∞] is the ray {tz1 + (1 − t)u ∶ t ≥ 1}, and so ⟨tz1 + (1 −
t)u, v⟩ ≥ 0. If both z1 , z2 are finite, let z = u + (t(z1 − u)∗ + (1 − t)(z2 − u)∗)∗, where
t ∈ [0, 1]. Then, because ⟨z1 , v⟩ and ⟨z2 , v⟩ are both nonnegative, we get the following
inequality:

⟨z, v⟩ = ⟨u, v⟩ + ⟨t(z1 − u), v⟩/∥z1 − u∥2 + ⟨(1 − t)(z2 − u), v⟩/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2

≥ ⟨u, v⟩(1 − t/∥z1 − u∥2 + (1 − t)/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 ).

Since ⟨u, v⟩ ≤ 0, we need only show that

1 − t/∥z1 − u∥2 + (1 − t)/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 ≤ 0.

This expression, following a similar computation as in the proof of Lemma 2.1, is
equal to

−t(1 − t)∥z1 − z2∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2 ,

which is clearly nonpositive. Similarly, one can show that H is not convex with respect
to any pole u in the interior of H.

Example 2.6. Consider the positive Lorentz cone, defined by

L+ ∶= {(x, t) ∈ Rn+1 ∶ x ∈ Rn , t ∈ R, ∥x∥ ≤ t} ∪ {∞}.

For all v ∈ Rn , such that ∥v∥ = 1, we have that

L+ ⊂ H+v ∶= {(x, t) ∈ Rn+1 ∶ ⟨(x, t), (−v, 1)⟩ ≥ 0} ∪ {∞}.

So

P(L+) ⊂ cl((H+v )c) = {(x, t) ∈ Rn+1 ∶ ⟨(x, t), (−v, 1)⟩ ≤ 0} ∪ {∞} =∶ H−v .

That is,

P(L+) ⊆ ⋂
v∈Sn−1

H−v ,(2.3)

and since L+ = ⋂v∈Sn−1 H+v , one sees that equality holds in (2.3). But the right-hand
side of (2.3) is just the negative Lorentz cone

L− ∶= {(x, t) ∈ Rn+1 ∶ x ∈ Rn , t ∈ R, ∥x∥ ≤ −t} ∪ {∞}.

So we get P(L+) = L−, and vice-versa by symmetry.

3 Möbius transformations in R̂n

The general theory of Möbius transformations in R̂
n is outside the scope of this paper,

and we refer the reader to [1]. In this section, we quickly review their properties
relevant for our purposes. Geometrically, they are defined as finite compositions of
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6 S. Bhatt and H. S. Sendov

reflections in spheres and planes. We have already been using the Möbius trans-
formation x ↦ x∗, which is the reflection in the unit sphere centered at the origin.
Translations and rotations are Möbius transformations. The essential property of the
Möbius transformations that allows polar convexity to work in C (see [11]) is that they
send generalized circles to generalized circles. In R

n , they send generalized spheres to
generalized spheres. The Möbius transformations that are important for this paper are
the following family of transformations, indexed by u ∈ Rn :

Tu(z) ∶= { u + (z − u)∗ if z ≠ u,
∞ if z = u,

and let T∞ ∶= Id
R̂n . Geometrically, these transformations can be described as a reflec-

tion in the unit sphere centered at u. Note that it is immediate that if Tu(z) is as
defined above, then T2

u = Id
R̂n , and so Tu is an involution. Moreover, it is shown in

[1, Chapter 3] that Möbius transformations are continuous on R̂
n under the chordal

metric

d(x, y) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2∣x−y∣
(1+∣x∣2)

1
2 (1+∣y∣2)

1
2

if x, y ≠ ∞,

2
(1+∣x∣2)

1
2

if y = ∞,

which one gets by using the stereographic projection from Sn onto R̂
n embed-

ded inside R̂
n+1. The chordal metric restricted to R

n is equivalent to the standard
Euclidean metric, and so Möbius transformations are continuous with respect to the
standard metric as well. In this work, we refer to the standard metric only and not the
chordal metric.

Definition 3.1 We call any hyperplane in R̂
n (with∞ included) or any (n − 1)-sphere

in R̂
n a generalized (n − 1)-sphere. We call half-spaces in R̂

n (with ∞ included) and
(n − 1)-spherical domains, open or closed, as generalized (n − 1)-spherical domains.

The proof of the next proposition is included for completeness.

Proposition 3.1 The transformation Tu, u ∈ R̂n , sends a generalized (n − 1)-sphere to
a generalized (n − 1)-sphere.

Proof Translations preserve generalized (n − 1)-spheres, so it is enough to prove
that the transformation T0 ∶ x ↦ x∗ preserves them. Any generalized (n − 1)-sphere
in R̂

n is the set of points that satisfy the equation

α∥x∥2 − 2⟨x, a⟩ + β = 0,(3.1)

for some parameters α, β ∈ R and a ∈ Rn . By convention, ∞ satisfies this equation if
and only if α = 0, and then the set is a hyperplane. When x ≠ 0, dividing throughout
by ∥x∥2, we get

α − 2⟨x∗ , a⟩ + β∥x∗∥2 = 0,(3.2)

and this is the equation of the image of (3.1) under T0. If 0 satisfies the original
equation, then β = 0, and (3.2) reduces to an equation of a hyperplane. In that case,∞
also satisfies that equation. ∎
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Definition 3.2 We call any k-dimensional affine subspace of R̂n (with ∞ included)
or any k dimensional sphere (the intersection of a (k + 1)-dimensional affine subspace
with an (n − 1)-sphere) in R̂

n a generalized k-sphere.

Proposition 3.2 The transformation Tu, u ∈ R̂n , sends a generalized k-sphere to a
generalized k-sphere.

Proof Any k-sphere in R̂
n can be written as an intersection of a (n − 1)-sphere

with n − k − 1 distinct hyperplanes. Since Tu is bijective, these are sent to distinct
hyperplanes and (n − 1)-spheres, and they intersect in a k-sphere. ∎

Specifically, this says that Tu sends generalized circles to generalized circles, and
any circle passing through u, since Tu sends u to ∞, is mapped to a line.

Proposition 3.3 For z1 , z2 , u ∈ R̂n with z1 , z2 ≠ u, the set arcu [z1 , z2] is the arc of the
unique circle passing through u, z1 , z2 that lies between z1 , z2 and does not include u.

Proof The Möbius transformation Tu sends the circle through u, z1 , z2 to the line
through ∞, Tu(z1), Tu(z2). The arc of the circle lying between z1 , z2 that does not
include u gets sent to the segment between Tu(z1) and Tu(z2) not containing∞. Tak-
ing the inverse image of the points on this segment, the points on the arc can be written
as Tu(tTu(z1) + (1 − t)Tu(z2)) for 0 ≤ t ≤ 1, which is exactly the parametrization in
Definition 2.1. ∎
Proposition 3.4 The transformation Tu, u ∈ R̂n , sends u-convex sets to convex sets and
convex sets to u-convex sets.

Proof Let S be a u-convex set and z1 , z2 ∈ S. Since Tu sends arcu[z1 , z2] to the line
segment {tTu(z1) + (1 − t)Tu(z2) ∶ t ∈ [0, 1]}, we see that it is in Tu(S). As Tu is a
bijection, we see that the segment between any pair of points from Tu(S) is in Tu(S),
so it is convex. A similar argument shows the other half of the lemma. ∎
Definition 3.3 Let S ⊂ R̂

n be a sphere. We call a subset S′ ⊂ S, a spherical domain in
S if S′ = S ∩ S′′ for some spherical domain S′′ in R̂

n . Equivalently, S′ ⊂ S is a spherical
domain in S if for some point u ∈ S, Tu(S′) is a spherical domain in the affine space
Tu(S).

Remark 3.5. For any set A ⊆ R̂
n , both convu(A) and conv(Tu(A)) are minimal

sets among the family of u-convex sets and convex sets, containing A and Tu(A),
respectively. Since Tu sends one family to the other, as a consequence of the last
proposition, we get that

Tu(convu(A)) = conv(Tu(A)).

So, in particular, we have

Tu(convu{z1 , . . . , zk}) = conv{Tu(z1), . . . , Tu(zk)}.(3.3)

A consequence of this fact is the observation that if u, z1 , . . . , zk are distinct points in
R̂

n , then u /∈ convu{z1 , . . . , zk}. Indeed, just note that

∞ /∈ conv{Tu(z1), . . . , Tu(zk)},

since all of the points Tu(zi), i = 1, . . . , k, are finite.
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Example 3.6. Referring back to Example 2.5, we can now see that including the point
∞ in H is crucial. Because if u ≠ ∞ were on the boundary of the half-space H, then
Tu(H/{∞}) is a half-space with one point on the boundary missing, so it cannot be
convex.

However, if u ∈ Hc , then Tu(H/{∞}) is a closed sphere with one point (i.e., u) on
the boundary missing, which happens to be convex, so H/{∞} is convex with respect
to any pole in R̂

n/H.

Example 3.7. Any open half-space is convex with respect to any point not in it. Let
the open half-space H ⊂ R̂

n be given by

H = {x ∈ Rn ∶ ⟨x, v⟩ > c}
for some fixed v ∈ Rn and c ∈ R, and let u /∈ H be any point. The fact is simple if u = ∞.
If ⟨u, v⟩ = 0, then Tu(H) is an open half-space and so it is convex as Tu maps the
boundary hyperplane ∂H ∶= {x ∈ R̂n ∶ ⟨x, v⟩ = 0} ∪ {∞} to a hyperplane. In a similar
fashion, if ⟨u, v⟩ < 0, then u /∈ ∂H. Thus, Tu maps the hyperplane ∂H to a proper
sphere. Since Tu(u) = ∞ /∈ Tu(H), we get that Tu(H) is the bounded open sphere
and is thus convex. Therefore, the open half-space H is u-convex for any u ∈ R̂n/H.

Example 3.8. We show that a spherical domain S ⊆ R̂
n (open or closed) is convex

with respect to any point u ∈ cl(Sc). The cases when S is an open or closed half-
space have been discussed in Examples 2.5 and 3.7. If u lies in ∂S, then Tu(∂S) is
a hyperplane. So, Tu(S) is a half-space and is therefore convex. If u is in (clS)c ,
then Tu(∂S) is a proper sphere. Since u /∈ S, Tu(S) is the (open or closed) bounded
component of R̂n/Tu(∂S). From this, we can conclude that Tu(S) is convex, and
hence, S is u-convex. In other words, for a spherical domain S, we have P(S) = cl(Sc).

From now on, the word generalized (in generalized spherical domains) will be
dropped, and when talking of spherical domains, it will be assumed that we mean
spherical domains of real co-dimension one unless otherwise stated.

Often in situations where we deal with a single pole u, we may use the transform
Tu to send u to∞ and translate the problem to one in the realm of classical convexity.

4 A duality theorem

The goal of this section is to prove the “duality” Theorem 4.3, which gives us a duality
between poles and points in the polar convex hull. Before we state it, we record some
computational results that will aid us in the proof of the theorem.

Lemma 4.1 Let u, z1 , . . . , zk ∈ R̂n be distinct, and let

v = u + (
k
∑
i=1

t i(zi − u)∗)
∗

,

for some t i ≥ 0, 1 ≤ i ≤ k, such that∑k
i=1 t i = 1. Then, we have the following relationships:

(a) ∥v − u∥ = ∥∑k
i=1 t i(zi − u)∗∥−1;

(b) (v − u)∗ = ∑k
i=1 t i(zi − u)∗; and

(c) ∑k
i=1 t i

∥z i−v∥2

∥z i−u∥2 = ∑k
i=1 t i

∥v−u∥2

∥z i−u∥2 − 1.
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Proof (a) This part is straightforward:

∥v − u∥ = ∥(
k
∑
i=1

t i(zi − u)∗)
∗

∥ = ∥
k
∑
i=1

t i(zi − u)∗∥
−1

.

(b) This follows trivially from the fact that (x∗)∗ = x.
(c) We can rewrite the stated expression as

0 =
k
∑
i=1

t i(∥v − u∥2 − ∥zi − u∥2 − ∥zi − v∥2)
∥zi − u∥2 .

Then, we expand the part in the parentheses in the numerator of each summand:

∥v−u∥2 − ∥zi − u∥2 − ∥zi − v∥2

= (⟨v, v⟩ − ⟨v, u⟩ − ⟨u, v⟩ + ⟨u, u⟩) − (⟨zi , zi⟩ − ⟨zi , u⟩ − ⟨u, zi⟩ + ⟨u, u⟩)
− (⟨zi , zi⟩ − ⟨zi , v⟩ − ⟨v, zi⟩ + ⟨v, v⟩)

= −⟨v, u⟩ − ⟨u, v⟩ − ⟨zi , zi⟩ + ⟨zi , u⟩ + ⟨u, zi⟩ − ⟨zi , zi⟩ + ⟨zi , v⟩ + ⟨v, zi⟩
= ⟨v − u, zi − u⟩ + ⟨zi − u, v − u⟩ − 2⟨zi − u, zi − u⟩.

Multiply the last expression by t i and divide it by ∥zi − u∥2. Then, sum over i from
1 to k and use part (b) of the current lemma to obtain

⟨v − u,
k
∑
i=1

t i
zi − u

∥zi − u∥2 ⟩ + ⟨
k
∑
i=1

t i
zi − u

∥zi − u∥2 , v − u⟩ − 2

= ⟨v − u, (v − u)∗⟩ + ⟨(v − u)∗, v − u⟩ − 2
= 0.

This completes the proof. ∎

Part (c) of the last lemma is often helpful in simplifying computations, as demon-
strated by the following example.

Example 4.2. It is well-known that the convex cone Sn
+ of n × n positive semi-definite

matrices is a convex cone. We show here that it is also polar convex with respect to any
matrix in the negative semi-definite cone Sn

−. To see this, take U ∈ Sn
− and A1 , A2 ∈ Sn

+.
Then, for any t ∈ [0, 1], let

A ∶= U + (t(A1 −U)∗ + (1 − t)(A2 −U)∗)∗ .

We show that A is a positive semi-definite matrix. Indeed, by Lemma 4.1, part (a), we
have

A = U + t(A1 −U)∗ + (1 − t)(A2 −U)∗
∥t(A1 −U)∗ + (1 − t)(A2 −U)∗∥2

= U + (t(A1 −U)∗ + (1 − t)(A2 −U)∗)∥A−U∥2

= U + (t A1 −U
∥A1 −U∥2 + (1 − t) A2 −U

∥A2 −U∥2 )∥A−U∥2

= U(1 − t ∥A−U∥2

∥A1 −U∥2 − (1 − t) ∥A−U∥2

∥A2 −U∥2 )
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10 S. Bhatt and H. S. Sendov

+ A1 t ∥A−U∥2

∥A1 −U∥2 + A2(1 − t) ∥A−U∥2

∥A2 −U∥2

= −U(t ∥A1 − A∥2

∥A1 −U∥2 + (1 − t) ∥A2 − A∥2

∥A2 −U∥2 )

+ A1 t ∥A−U∥2

∥A1 −U∥2 + A2(1 − t) ∥A−U∥2

∥A2 −U∥2 ≥ 0,

where the last equality follows from Lemma 4.1, part (c). We see that A is a linear com-
bination of positive semi-definite matrices with nonnegative coefficients. Therefore, A
is a positive semi-definite matrix.

With these identities proved, we proceed to prove the main result in this section,
which gives us a duality between poles and points in the polar convex hull.

Theorem 4.3 (Duality Theorem) Let u, v, z1 , . . . , zk be distinct points in R̂
n . Then,

v ∈ convu{z1 , . . . , zk} if and only if u ∈ convv{z1 , . . . , zk}.

Proof By symmetry, we prove only the necessity. Without loss of generality,
we may assume that none of u, v, z1 , . . . , zk are ∞. (Otherwise, pick a point z /∈
{u, v, z1 , . . . , zk}, and apply Tz.) Let

v = u + (
k
∑
i=1

t i(zi − u)∗)
∗

,

for some t i ≥ 0, ∑k
i=1 t i = 1. Observe that

k
∑
i=1

t i
zi − v

∥zi − u∥2 =
k
∑
i=1

t i(zi − u)∗ + t i
u − v

∥zi − u∥2

= (v − u)∗ +
k
∑
i=1

t i
u − v

∥zi − u∥2

= (v − u)( 1
∥v − u∥2 −

k
∑
i=1

t i

∥zi − u∥2 ).

Thus, we continue

(
k
∑
i=1

t i
zi − v

∥zi − u∥2 )
∗

= (v − u)∗( 1
∥v − u∥2 −

k
∑
i=1

t i

∥zi − u∥2 )
−1

= (v − u)∗∥v − u∥2(1 −
k
∑
i=1

t i
∥v − u∥2

∥zi − u∥2 )
−1

= (u − v)(
k
∑
i=1

t i
∥zi − v∥2

∥zi − u∥2 )
−1

,

where in the last equality, we used part (c) of Lemma 4.1. Define

μ i ∶=
t i∥zi − v∥2∥zi − u∥−2

∑k
j=1 t j∥z j − v∥2∥z j − u∥−2

≥ 0,(4.1)
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and note that ∑k
i=1 μ i = 1. Using the above calculation in the second equality below,

we get

(
k
∑
i=1

μ i(zi − v)∗)
∗

= (
k
∑
i=1

t i
∥zi − v∥2

∥zi − u∥2 )(
k
∑
i=1

t i
zi − v

∥zi − u∥2 )
∗

= (
k
∑
i=1

t i
∥zi − v∥2

∥zi − u∥2 )(u − v)(
k
∑
i=1

t i
∥zi − v∥2

∥zi − u∥2 )
−1

= u − v.

Adding v to the first and last terms of the above equalities, we conclude

u = v + (
k
∑
i=1

μ i(zi − v)∗)
∗

,

and hence, u ∈ convv{z1 , . . . , zk}. ∎

Since a set is unbounded when its closure contains the point∞, we get the following
corollary.

Corollary 4.4 Let u, z1 , . . . , zk be distinct points in R
n . The set convu{z1 , . . . , zk} is

unbounded if and only if u ∈ conv{z1 , . . . , zk}.

Define the relative interior of convu{z1 , . . . , zk} to be the set

ri convu{z1 , . . . , zk} ∶= T−1
u (ri conv{Tu(z1), . . . , Tu(zk)}).

In other words, this is the preimage under Tu of the relative interior of the convex set
Tu(convu{z1 , . . . , zk}). Using Theorem 6.9 in [10], it is not difficult to see that

ri convu{z1 , . . . , zk} = {u + (
k
∑
i=1

t i(zi − u)∗)
∗

∶ t i > 0 with
k
∑
i=1

t i = 1}.

Then, from formulae (4.1) in the proof of Theorem 4.3, we obtain the next corollary.

Corollary 4.5 Let u, v, z1 , . . . , zk ∈ R̂n be distinct points. Then, v is in the relative
interior (resp. boundary) of convu{z1 , . . . , zk} if and only if u is in the relative interior
(resp. boundary) of convv{z1 , . . . , zk}.

Definition 4.1 Let u, z1 , . . . , zk ∈ R̂n be distinct points. We say that
v ∈ convu{z1 , . . . , zk} is a u-extreme point if it cannot be written as a u-
convex combination, with positive coefficients, of any two distinct points in
convu{z1 , . . . , zk}.

Equivalently, v is u-extreme if Tu(v) is an extreme point of the convex set
conv{Tu(z1), . . . , Tu(zk)}. This shows, using classical convex analysis, that the
extreme points of convu{z1 , . . . , zk} are among the points z1 , . . . , zk . Thus, we have
the following corollary.

Corollary 4.6 Let u, z1 , . . . , zk ∈ R̂n be distinct points. Then, zi is a u-extreme point
of convu{z1 , . . . , zk} if and only if u /∈ convzi{z1 , . . . , zi−1 , zi+1 , . . . , zk}.
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Proof To see necessity, fix an i ∈ {1, . . . , k} and assume

u ∈ convzi{z1 , . . . , zi−1 , zi+1 , . . . , zk}.

Since u ≠ zi , there are t j ∈ [0, 1], for j ∈ {1, . . . , k}/{i}, such that

∑
j∈{1,. . . ,k}/{i}

t j = 1 and u = Tzi( ∑
j∈{1,. . . ,k}/{i}

t jTzi (z j)).

Moreover, since u /∈ {z1 , . . . , zk}/{zi}, none of the t j can be 1. So, u is not
a zi-extreme point of convzi{z1 , . . . , zi−1 , zi+1 , . . . , zk}. Using Theorem 4.3, zi ∈
convu{z1 , . . . , zi−1 , zi+1 , . . . , zk}, and by definition, zi is not a u-extreme point. The
argument for the sufficiency is similar. ∎

Remark 4.7. If one takes u = ∞ in Corollary 4.6, we get that zi is a u-extreme
point of conv{z1 , . . . , zk} if and only if ∞ /∈ convzi{z1 , . . . , zi−1 , zi+1 , . . . , zk}. Using
Theorem 4.3, the latter condition is equivalent to zi /∈ conv{z1 , . . . , zi−1 , zi+1 , . . . , zk},
which is equivalent to the definition of an extreme point in classical convex analysis.

Corollary 4.8 Let u ∈ R̂n and Z ⊂ R̂
n be a u-convex set, not containing u. Then, v ∈ Z

is a u-extreme point if and only if u /∈ convv(Z).

Proof If v is not a u-extreme point, then there are points z1 , z2 ∈ Z distinct from
v such that v ∈ convu{z1 , z2}. Therefore, u ∈ convv{z1 , z2} ⊆ convv(Z). Conversely,
if u ∈ convv(Z), then by Carathéodory’s theorem, there are points z1 , . . . , zk ∈ Z, for
some k ≤ n + 1, distinct from u and v, such that u ∈ convv{z1 , . . . , zk}. This implies
that v ∈ convu{z1 , . . . , zk}. Therefore, v cannot be u-extreme. ∎

With the notation from the last corollary, note that if v ∈ int(Z), then convv(Z) =
R̂

n ; therefore, no point in the interior of Z can be a u-extreme point.

Proposition 4.9 Let u, v, z1 , . . . , zk be distinct points in R̂
n , not all on a circle. Then,

neither of the sets convu{z1 , . . . , zk} and convv{z1 , . . . , zk} is contained in the other.

Proof Without loss of generality, we may assume u = ∞, so v, z1 , . . . , zk ∈ Rn . The
assumption that the points are not on a circle now becomes that they are not on a line.
We show that

conv{z1 , . . . , zk} /⊆ convv{z1 , . . . , zk}

with the opposite non-inclusion being analogous. Since the points are not all on
a circle, there are at least two distinct points in z1 , . . . , zk (i.e., k ≥ 2). Since v /∈
{z1 , . . . , zk}, we have that v /∈ convv{z1 , . . . , zk}. If v ∈ conv{z1 , . . . , zk}, then we are
done. Assume this is not the case. Then, there is a closed half-space H containing
conv{z1 , . . . , zk} having at least two points zi , z j on the boundary and not containing
v. (Note that if the points v, z1 , . . . , zk are on a line, such a half-space does not
exist.) Let z ∈ conv{zi , z j}/{z1 , . . . , zk}; that is, z ∈ conv{z1 , . . . , zk}. Since H is also
z-convex, we get that v /∈ convz{z1 , . . . , zk} ⊆ H. By Theorem 4.3, we obtain that
z /∈ convv{z1 , . . . , zk}, concluding the argument. ∎

Note that the proposition fails if the points are on a circle. For example, take z1,
z2, u, and v in this order, clockwise on a circle. Then, according to Proposition 3.3,
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we have
convu [z1 , z2] = arcu [z1 , z2] = arcv [z1 , z2] = convv [z1 , z2] .

5 Theorems of the alternatives

Analogous to classical convexity, we prove a separation theorem involving polar con-
vex sets. This naturally leads into theorems of alternatives. However, where theorems
of alternatives usually imply the existence of 1-forms or solutions to linear systems in
the classical setting, theorems of alternatives in the polar setting imply existence of
2-forms. We start by noting a few simple facts. We refer the reader to [10, Section 11]
to recall the various versions of the hyperplane separation theorem.
Definition 5.1 A spherical domain S ⊆ R̂

n is said to separate two sets A, B ⊆ R̂
n if

either A ⊆ S and B ⊆ cl(Sc) or B ⊆ S and A ⊆ cl(Sc). Such a spherical domain (or
the boundary of the spherical domain) is called a separating spherical domain (or
separating sphere) for the pair A, B. We say that S strongly separates A and B if it
separates these sets and A∩ ∂S = ∅ = B ∩ ∂S.
Lemma 5.1 (Spherical separation) If u ∈ R̂n and A, B are nonintersecting u-convex
sets in R̂

n , then there exists a (n − 1)-spherical domain S, having u on its boundary,
which separates A and B. Moreover, if u /∈ A∪ B and one of the following holds,
(1) A is closed in R̂

n and B is closed in R̂
n/{u}, or

(2) A and B are both open,
then S can be chosen to strongly separate A and B, still having u on its boundary.
Proof Note that Tu(A) and Tu(B) are nonintersecting convex sets. The classical
hyperplane separation theorem implies that there is a hyperplane H that separates
Tu(A) and Tu(B). Then, Tu(H) is an (n − 1)-sphere, having u on its boundary,
separating A and B. Next, note that if u /∈ A∪ B, then Tu(A), Tu(B) ⊆ R

n .
(1) If A is closed as a subset of R̂n , then it is compact. Since u /∈ A, Tu(A) is compact

in R
n . Similarly, if B is closed in R̂

n/{u}, then Tu(B) is closed in R
n .

(2) If A and B are both open, then so are the convex sets Tu(A) and Tu(B).
In both cases, from ordinary convexity, we can find a separating hyperplane H such

that Tu(A) ∩ ∂H = ∅ = Tu(B) ∩ ∂H. We conclude by setting S ∶= Tu(H). ∎
Lemma 5.2 Let Z ⊆ R̂

n be closed and let u ∈ R̂n be such that u /∈ ∂Z. Then, convu(Z)
is closed in R̂

n .
Proof Without loss of generality, we may assume u = ∞. If ∞ /∈ Z, then Z is a
bounded closed set. So we can conclude that conv(Z) is closed. Otherwise, ∞ ∈
int(Z). Then, conv(Z) = R̂

n , so we are done. ∎
Example 5.3. Note that the assumption u /∈ ∂Z in Lemma 5.2 is necessary. Indeed,
take the set

Z = {z ∈ C ∶ ∣z∣ = 1} ∪ {0, (1 + i)/2}
and take the pole u = 1. Notice that both 0 and (1 + i)/2 lie on the circle ∣z − 1/2∣ = 1/2,
which also passes through u. Then, it can be shown that

convu(Z) = Z ∪ {z ∈ C ∶ ∣z∣ < 1, ∣z − 1/2∣ > 1/2} ∪ arcu[0, (1 + i)/2],
which is not closed. The situation is illustrated in Figure 1.
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14 S. Bhatt and H. S. Sendov

Figure 1: The set Z (in black) and its u-convex hull (in orange).

Lemma 5.4 (Gordan’s lemma) Let u, z1 , . . . , zk ∈ R̂n be distinct, such that u ≠ 0,∞.
Then either there are numbers t1 , . . . , tk ∈ [0, 1] with ∑k

i=1 t i = 1 such that

(0 − u)∗ =
k
∑
i=1

t i(zi − u)∗ ,(5.1)

or there exist some a ∈ Rn , α, β ∈ R, with β > 0 such that

α⟨zi , zi⟩ + ⟨zi , a⟩ + β < 0, for all i = 1, . . . , k, and(5.2) α⟨u, u⟩ + ⟨u, a⟩ + β = 0.

Proof Note that Equation (5.1) is the same as saying that 0 ∈ convu{z1 , . . . , zk}.
Assume that this is not the case. Since u /∈ {z1 , . . . , zk}, the set convu{z1 , . . . , zk} is
closed. So, by Lemma 5.1, there is a spherical domain S, having u on its boundary, that
strongly separates {0} and convu{z1 , . . . , zk}; that is,

∂S ∩ convu{z1 , . . . , zk} = ∅ = ∂S ∩ {0}.

Let α⟨x, x⟩ + ⟨x, v⟩ + β = 0 be the equation of the boundary of the spherical domain S.
Since it separates {0} and convu{z1 , . . . , zk}, both of them evaluate to different signs
and neither of them are zero. In particular, since 0 /∈ ∂S, we have

β = α⟨0, 0⟩ + ⟨0, a⟩ + β ≠ 0.

If β > 0, we are done; otherwise, take −a, −α, and −β to get the inequalities in (5.2).
Since u ∈ ∂S, we get the equality in (5.2). ∎

Remark 5.5. Lemma 5.4 implies the classical Gordan’s lemma. Indeed, applying ∗
and adding u to both sides of (5.1) give

0 = u + (
k
∑
i=1

t i(zi − u)∗)
∗

.
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Taking limits as u →∞ and using Lemma 2.1, we see that (5.1) converges to

0 =
k
∑
i=1

t i zi .

This is equivalent to saying that 0 ∈ conv{z1 , . . . , zk}.
However, if 0 /∈ conv{z1 , . . . , zk} and letting u converge to∞, the strongly separat-

ing sphere in the proof of Lemma 5.4 becomes a hyperplane since it is chosen to pass
through the pole u. By case (1) of Lemma 5.1, it can be chosen to be strongly separating.
Let its equation be ⟨z, a⟩ + β = 0. We may choose the sign of a and β so that

⟨zi , a⟩ + β < 0 for all i = 1, . . . , k.

Since the hyperplane is strongly separating the sets {z1 , . . . , zk} and {0}, we must have
⟨0, a⟩ + β > 0; that is, β > 0. Combining with the previous equation, we get

⟨zi , a⟩ < 0 for all i = 1, . . . , k,

thus recovering the equations of the alternative in the classical Gordan’s lemma; see
[2, Theorem 2.2.1].

Lemma 5.6 Let z1 , . . . , zk ∈ R̂n be distinct and not all 0 and let

u ∶= −
k
∑
i=1

t i zi for some t1 , . . . , tk ∈ [0,∞).

Suppose u is distinct from z1 , . . . , zk and let v ∈ R̂n/{∞, u}. Then, either there are
numbers α1 , . . . , αk ∈ [0,∞), such that

v =
k
∑
i=1

α i zi(5.3)

or there exist a ∈ Rn and α, β ∈ R, with α ≥ 0, such that

α⟨zi , zi⟩ + ⟨zi , a⟩ + β > 0, for all i = 1, . . . , k,
α⟨v, v⟩ + ⟨v, a⟩ + β < 0, and(5.4)
α⟨u, u⟩ + ⟨u, a⟩ + β = 0.

Proof If u = −∑k
i=1 t i zi for t i ∈ [0,∞), then u ∈ −cone{z1 , . . . , zk}, and so

cone{z1 , . . . , zk} is u-convex. (The argument for the latter is analogous to the one
in Example 2.6.) Consequently, cone{z1 , . . . , zk} ∪ {∞} is also u-convex. Thus, for
any v ∈ R̂n/{∞, u}, either v ∈ cone{z1 , . . . , zk} or there exists a spherical domain
S, having u on its boundary, separating v and cone{z1 , . . . , zk} ∪ {∞}. Again, since
cone{z1 , . . . , zk} ∪ {∞} is closed, this domain can be chosen so that

∂S ∩ (cone{z1 , . . . , zk} ∪∞) = ∅ = ∂S ∩ {v}.

Let α⟨x, x⟩ + ⟨x, a⟩ + β = 0 be the equation of the boundary of the spherical domain S.
Since cone{z1 , . . . , zk} is an unbounded set, it must lie in an unbounded component
of Rn/∂S. If ∂S happens to be a hyperplane, then α = 0, and we can choose the signs
of a and β to satisfy (5.4). Otherwise, Rn/∂S has only one unbounded component,
and we can choose the coefficient α to be positive. Then, since cone{z1 , . . . , zk} is
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an unbounded set, the quadratic term in α⟨zi , zi⟩ + ⟨zi , a⟩ + β determines the sign
of the whole expression. The inequalities in (5.4) follow. Since v lies in the bounded
component, we have α⟨v, v⟩ + ⟨v, a⟩ + β < 0. Finally, the boundary of the spherical
domain passes through u, giving the third statement in (5.4). ∎

The proof of Lemma 5.6 shows that it is convenient to redefine the cone of
z1 , . . . , zk ∈ Rn from classical convex analysis to include the point at ∞ as follows:

cone{z1 , . . . , zk} ∶= {
k
∑
i=1

t i zi ∶ t1 , . . . , tk ∈ [0,∞)} ∪ {∞}.

This is the union of all rays that pass through 0, z, ∞, for some z ∈ conv{z1 , . . . , zk}.
Extend this definition to z1 , . . . , zk ∈ R̂n by

cone{z1 , . . . , zk} ∶= cone{zi ∶ zi ≠ ∞, i = 1, . . . , k} ∪ {∞}.

Definition 5.2 Given z1 , . . . , zk ∈ R̂n and u ∈ R̂n distinct from them, define the cone
of z1 , . . . , zk with respect to u by

coneu{z1 , . . . , zk} ∶= {u + (
k
∑
i=1

t i(u + (zi − u)∗) − u)
∗

∶ t1 , . . . , tk ∈ [0,∞)} ∪ {u}.

This is the image under Tu of cone{Tu(z1), . . . , Tu(zk)} ∪ {∞}, and so it is u-
convex. Note that Tu(0) = u − u∗. Geometrically, coneu{z1 , . . . , zk} is the union of
all circular arcs that pass through u − u∗, z, u, for some z ∈ convu{z1 , . . . , zk}. Finally,
for any u, z1 , . . . , zk ∈ R̂n , define

coneu{z1 , . . . , zk} ∶= coneu{zi ∶ zi ≠ u, i = 1, . . . , k} ∪ {u}.

Figure 2 shows a u-cone in R
2.

Lemma 5.7 (Farkas’ lemma) Let u, z1 , . . . , zk ∈ R̂n be distinct such that u ≠ ∞ and let
v ∈ R̂n/{u}. Then, either there are numbers t1 , . . . , tk ∈ [0,∞) such that

u + (v − u)∗ =
k
∑
i=1

t i(u + (zi − u)∗)

or there exist an a ∈ Rn and α, β ∈ R such that

α⟨zi , zi⟩ + ⟨zi , a⟩ + β ≤ 0, for all i = 1, . . . , k,
α⟨v, v⟩ + ⟨v, a⟩ + β > 0,(5.5)
α⟨u, u⟩ + ⟨u, a⟩ + β = 0, and

α⟨u, u⟩ − α − β = 0.

Proof The first condition is equivalent to v ∈ coneu{z1 , . . . , zk}. Applying the trans-
form Tu to this inclusion, it is equivalent to Tu(v) ∈ cone{Tu(z1), . . . , Tu(zk)}.
Assume this is not the case. Using the classical Farkas’ lemma, we get that there is a
closed half-space H supporting cone{Tu(z1), . . . , Tu(zk)} at 0 and separating it from
{Tu(v)}. Moreover, H is such that Tu(v) lies in the open complement of H. Apply Tu
to the boundary hyperplane ∂H, which contains ∞ by convention; see Example 3.6.
We get that S ∶= Tu(∂H) is a sphere separating {v} and coneu{z1 , . . . , zk} such that v /∈
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Figure 2: The cone in R
2 , with respect to u, determined by the points z1 , z2, and z3 (in orange)

and the boundary of their u-convex hull (in black).

S and u, u − u∗ ∈ S (since u = Tu(∞) and u − u∗ = Tu(0)). Let α⟨z, z⟩ + ⟨z, a⟩ + β = 0
be the equation of S and choose the signs such that α⟨v, v⟩ + ⟨v, v⟩ + β > 0. Since S is a
separating sphere, we get that α⟨zi , zi⟩ + ⟨zi , a⟩ + β ≤ 0 for all i = 1, . . . , k. Moreover,
since S passes through u, u − u∗, we get

α⟨u, u⟩ + ⟨u, a⟩ + β = 0 and(5.6)
α⟨u − u∗ , u − u∗⟩ + ⟨u − u∗ , a⟩ + β = 0.

Simplifying the second equation and using (5.6) gives

α⟨u, u⟩ + ⟨u, a⟩ + β − 2α + α
∥u∥2 − ⟨u

∗ , a⟩ = 0

or 2α⟨u, u⟩ + ⟨u, a⟩ − α = 0. Subtracting (5.6), one obtains

α⟨u, u⟩ = α + β,

therefore concluding the proof. ∎

Remark 5.8. The proof of Lemma 5.7 shows that when u = ∞, it reduces to the usual
Farkas’ lemma; see Lemma 2.2.7 in [2].

https://doi.org/10.4153/S0008414X24000671 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000671


18 S. Bhatt and H. S. Sendov

6 Polar convexity with multiple poles

Problems in polar convexity involving a single pole can often be reduced to the setting
of classical convexity. However, as the examples above show, a set can be convex with
respect to multiple poles at once. In this section, we look at how multiple poles interact
with each other. We start by defining what a convex hull with respect to multiple
poles is.

Definition 6.1 Given U , Z ⊆ R̂
n , define the convex hull of Z with respect to U, denoted

by convU(Z), to be the smallest set in R̂
n containing Z and convex with respect to each

u ∈ U .

If U = ∅ above, then convU(Z) is simply Z, and if Z = ∅, then convU(Z) is also∅.
Similar to (3.3), for u ∈ Rn , we have

Tu(convU(Z)) = convTu(U)(Tu(Z)).

It is natural to ask what the convex hull of a given set with respect to multiple poles
looks like. For example, given poles u,∞ and points z1 , z2 , z3 in the complex plane,
their {u,∞}-convex hull is displayed in Figure 3.

We are going to prove an inductive procedure for finding the convex hull of a
set, given finitely many poles. Before we do that, we recall the definition of a convex
polytope.

Definition 6.2 (Convex polytope) A convex polytope in R
n is the convex hull of a

finite number of points in R
n . A face of a polytope is an intersection of the polytope

Figure 3: conv{u ,∞}{z1 , z2 , z3}.
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with a hyperplane, such that none of the relative interior points lie in the hyperplane.
Faces of a polytope are partially ordered by inclusion. Maximal faces are those that are
not contained in any other face of the polytope. A polytope P ⊂ R

n has full dimension
if its real span is Rn .

Definition 6.3 Given points z1 , . . . , zk ∈ R̂n and a u ∈ R̂n distinct from them, define
the affine hull of z1 , . . . , zk with respect to u to be

aff u{z1 , . . . , zk} ∶= {u + (
k
∑
i=1

t i(zi − u)∗)
∗

∶ t i ∈ R with
k
∑
i=1

t i = 1} ∪ {u}.

If u ∈ {z1 , . . . , zk}, define aff u{z1 , . . . , zk} ∶= aff u{zi ∶ zi /= u, i = 1, . . . , k} ∪ {u}.

For example, the affine hull of one point is the union of the point and {u}. The
affine hull of two distinct points is the unique circle (or line) passing through them
and the pole u, including u. The affine hull of three distinct points is either a circle,
if they together with u are on a circle, or a two-dimensional sphere (or affine space),
otherwise.

Using Definition 3.2, one can see that aff u{z1 , . . . , zk} is the generalized �-sphere,
with the smallest �, that contains z1 , . . . , zk and u. When u = ∞, then aff u{z1 , . . . , zk}
becomes the affine space, spanned by {z1 , . . . , zk} over R. We denote the latter simply
by aff{z1 , . . . , zk}.

Lemma 6.1 Let u, z1 , . . . , zk ∈ R̂n be distinct, such that convu{z1 , . . . , zk} has
nonempty interior. Consider the family

L ∶= {S ⊂ R̂
n ∶ S closed spherical domain,{z1 , . . . , zk} ⊂ S , u ∈ ∂S

and aff u{{z1 , . . . , zk , u} ∩ ∂S} = ∂S}.

Then, L is finite, and we have

convu{z1 , . . . , zk} = ⋂
S∈L

S/{u}

and

convu{u, z1 , . . . , zk} = ⋂
S∈L

S .

Proof Without loss of generality, we may assume u = ∞. Then, conv{z1 , . . . , zk}
is a convex polytope of full dimension and can be written as the intersection of
supporting half-spaces corresponding to each of its maximal faces. Since the polytope
conv{z1 , . . . , zk} is of full dimension, there are clearly only finitely many half-spaces
H, such that aff{{z1 , . . . , zk} ∩ ∂H} is a hyperplane. The second statement now follows
from Remark 2.4. ∎

Remark 6.2. Notice that the set convu{z1 , . . . , zk} has empty interior if and only
if the polytope conv{Tu(z1), . . . , Tu(zk)} is not a full dimensional polytope. This
happens when the points Tu(z1), . . . , Tu(zk) all lie in a hyperplane – that is,
when aff{Tu(z1), . . . , Tu(zk)} is not the full space. This is equivalent to saying that
affu{z1 , . . . , zk} is not the full space or that the points u, z1 , . . . , zk all lie on a (n − 1)-
sphere.
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Let the points z1 , . . . , zk ∈ R̂n be distinct and let u1 , u2 ∈ R̂n be distinct (but not
necessarily distinct from z1 , . . . , zk). For i ∈ {1, 2}, consider the following two families
of spherical domains:

Si ∶= {S ⊂ R̂
n ∶ S closed spherical domain, {z1 , . . . , zk} ⊂ S ,(6.1)

ui ∈ ∂S and {u1 , u2} ⊂ cl(Sc)}

and

Li ∶={S ∈ Si ∶ aff ui{{z1 , . . . , zk , u1 , u2} ∩ ∂S} = ∂S}.(6.2)

Note that these families contain domains that are convex with respect to both u1
and u2. Also note that Li is necessarily a finite set. With that in mind, we have the
following result. Its proof can be found in the appendix.

Theorem 6.3 Let the points z1 , . . . , zk ∈ R̂n be distinct and let u1 , u2 ∈ R̂n be distinct
(but not necessarily distinct from z1 , . . . , zk). Suppose that not all of {z1 , . . . , zk , u1 , u2}
lie on a (n − 1)-sphere. Then,

convu2(convu1{z1 , . . . , zk}) =
2
⋂
i=1

⋂
S∈Si

S ,(6.3)

where Si , i = 1, 2, are the families of closed spherical domains defined in (6.1).

As a consequence of the above, we have the following convenient fact.

Corollary 6.4 For any distinct z1 , . . . , zk ∈ R̂n and u1 , u2 ∈ R̂n not necessarily distinct
from z1 , . . . , zk , we have

conv{u1 ,u2}{z1 , . . . , zk} = convu1(convu2{z1 , . . . , zk})(6.4)
= convu2(convu1{z1 , . . . , zk}).

Proof Without loss of generality, assume u1 = ∞. If {z1 , . . . , zk} ∪ {u1 , u2} lie on
a hyperplane, the sets in (6.4) will also all lie in this hyperplane. So we can restrict
to this hyperplane to assume that not all of {z1 , . . . , zk} ∪ {u1 , u2} lie on a hyper-
plane. We prove the first equality; the second follows by symmetry. The contain-
ment convu1(convu2{z1 , . . . , zk}) ⊆ conv{u1 ,u2}{z1 , . . . , zk} follows from minimality
in Definition 6.1. We want to show the opposite inclusion

conv{u1 ,u2}{z1 , . . . , zk} ⊆ convu1(convu2{z1 , . . . , zk}).

From Theorem 6.3, we see that convu1(convu2{z1 , . . . , zk}) = ⋂2
i=1 ⋂S∈Si S. All the

domains S lying in either S1 or S2 are convex with respect to both u1 and u2 by
definition. It follows that convu1(convu2{z1 , . . . , zk}) is also convex with respect to
both u1 and u2. Again by minimality in Definition 6.1, we get that

conv{u1 ,u2}{z1 , . . . , zk} ⊆ convu1(convu2{z1 , . . . , zk}),

completing the proof. ∎

Corollary 6.5 For any Z ⊂ R̂
n and distinct u1 , u2 ∈ R̂n , we have

conv{u1 ,u2}(Z) = convu1(convu2(Z)) = convu2(convu1(Z)).
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Proof We prove the first equality; the other one follows by symmetry. The inclusion

convu1(convu2(Z)) ⊆ conv{u1 ,u2}(Z)

follows by minimality. To see the other inclusion, it is sufficient to prove that
convu1(convu2(Z)) is u2-convex. Let x1 , x2 ∈ convu1(convu2(Z)). Then, by repeated
application of Carathéodory’s theorem, we get x1 , x2 ∈ convu1{v1 , . . . , v�} for some
v1 , . . . , v� ∈ convu2(Z). By Carathéodory’s theorem again, we get that x1 , x2 ∈
convu1(convu2{z1 , . . . , zk}) for some z1 , . . . , zk ∈ Z, that may be assumed distinct. By
Corollary 6.4, convu1(convu2{z1 , . . . , zk}) is u2-convex, so

arcu2[x1 , x2] ⊆ convu1(convu2{z1 , . . . , zk}) ⊆ convu1(convu2(Z)).

Therefore, the set convu1(convu2(Z)) is convex with respect to both u1 and u2 and
contains Z. So, by minimality,

conv{u1 ,u2}(Z) ⊆ convu1(convu2(Z)),

concluding the proof. ∎

Corollary 6.6 Given Z ⊆ R̂
n and distinct points u1 , . . . , um in R̂

n , we have

conv{u1 , . . . ,um}(Z) = convum(conv{u1 , . . . ,um−1}(Z)).

Moreover, the polar convex hull on the left does not depend on the order in which we take
the polar convex hulls on the right.

Proof As before, by minimality, we have the following inclusion:

convum(conv{u1 , . . . ,um−1}(Z)) ⊆ conv{u1 , . . . ,um}(Z).

So it is enough to prove that convum(conv{u1 , . . . ,um−1}(Z)) is convex with respect to all
of ui , i = 1, . . . , m. We use induction on the number of poles, m. Note that the base
case, m = 2, is Corollary 6.5. Assume the corollary to be true for m − 1 poles. Then, by
the induction hypothesis

conv{u1 , . . . ,um−1}(Z) = convum−1(conv{u1 , . . . ,um−2}(Z)).

Taking the um convex hull and using Corollary 6.5, we get

convum(conv{u1 , . . . ,um−1}(Z)) = convum(convum−1(conv{u1 , . . . ,um−2}(Z)))
= convum−1(convum(conv{u1 , . . . ,um−2}(Z))).

By a similar reasoning, we may replace um−1 by any other ui for i = 1, . . . , m − 1. There-
fore, we conclude that convum(conv{u1 , . . . ,um−1}(Z)) is indeed convex with respect to
all the ui ’s, so the corollary holds. ∎

Let the points z1 , . . . , zk ∈ R̂n be distinct and let u1 , . . . , um ∈ R̂n be distinct (but
not necessarily distinct from z1 , . . . , zk). To shorten the notation in the proof of the
next theorem, we define

Zk ∶= {z1 , . . . , zk} and Um ∶= {u1 , . . . , um}.
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Analogous to the families considered in (6.2), we consider the following families of
spherical domains, for i ∈ {1, . . . , m}:

Li ∶= {S ⊂ R̂
n ∶ S closed spherical domain, Zk ⊂ S , ui ∈ ∂S and(6.5)

Um ⊂ cl(Sc) and aff ui{(Zk ∪Um) ∩ ∂S} = ∂S}.

In words, the domains in Li are u j-convex, for all j = 1, . . . , m, with the additional
requirement that ui ∈ ∂S. Moreover, the domains in Li are determined by some of the
points Zk ∪Um .

Theorem 6.7 Let the points z1 , . . . , zk ∈ R̂n , n ≥ 2, be distinct and let the points
u1 , . . . , um ∈ R̂n , m ≥ 2, be distinct (but not necessarily distinct from z1 , . . . , zk), such
that convUm(Zk) has nonempty interior. Then the boundary of convUm(Zk) is made up
of pieces of the boundaries of closed spherical domains S with the following properties:

(a) Each S lies in Li , for some i = 1, . . . , m,
(b) Each piece of the boundary is of the form conv∂S∩Um(∂S ∩ Zk), and
(c) We have

convUm(Zk) =
m
⋂
i=1

⋂
S∈Li

S .(6.6)

In other words, given a point z /∈ convUm(Zk), there exists a spherical domain S ∈
Li , such that z /∈ S, for some i = 1, . . . , m.

Proof If convUm(Zk) is the entire R̂
n , then the families Li are empty and the

theorem holds, so assume that this is not the case. The proof is by an induction on the
dimension of the ambient space, n. When the dimension is n = 2, the theorem is simply
[11, Theorem 5.2]. Suppose that n ≥ 3 and the result holds when the dimension of the
space is n − 1 or lower. This assumption means that the result holds in any subspace or
affine space of R̂n of dimension n − 1 or on any sphere in R̂

n of dimension n − 1. To see
the latter, simply send a point of the said sphere to ∞ using a Möbius transformation.

We begin with the following containments:

⋃
S∈L j

j=1, . . . ,m

conv∂S∩Um(∂S ∩ Zk) ⊆ convUm(Zk) ⊆
m
⋂
j=1

⋂
S∈L j

S ,(6.7)

where the inclusions follow by the minimality of the convex hulls. To conclude the
proof, it is sufficient to show that

⋃
S∈L j

j=1,. . . ,m

conv∂S∩Um(∂S ∩ Zk) = ∂(
m
⋂
j=1

⋂
S∈L j

S).(6.8)

Indeed, assume (6.8) holds. Without loss of generality, assume that um = ∞ or else
apply a Möbius transformation to R̂

n that sends um to ∞. Then, ⋂m
j=1 ⋂S∈L j S is a

closed convex set, and so it is equal to the convex hull of its boundary. Taking the
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convex hull of all parts in (6.7), we have

conv( ⋃
S∈L j

j=1, . . . ,m

conv∂S∩Um(∂S ∩ Zk)) ⊆ convUm(Zk) ⊆
m
⋂
j=1

⋂
S∈L j

S

= conv(∂(
m
⋂
j=1

⋂
S∈L j

S)) = conv( ⋃
S∈L j

j=1, . . . ,m

conv∂S∩Um(∂S ∩ Zk)).

Thus, we have equalities throughout, and we are done.
For the remainder of the proof, we show (6.8). Since⋂m

j=1 ⋂S∈L j S is the intersection
of spherical domains, the boundaries of such domains are the sole contributors to the
boundary of⋂m

j=1 ⋂S∈L j S. To see that each domain S contributes exactly a piece of the
form conv∂S∩Um(∂S ∩ Zk), fix some S ∈ Li and restrict to its boundary ∂S. Let

{u′1 , . . . , u′m′} ∶= ∂S ∩Um .

Recalling Definition 3.3, define the following families of spherical domains:

L′j ∶= {S′ ⊂ ∂S ∶ S′ closed spherical domain, ∂S ∩ Zk ⊂ S′ , u′j ∈ ∂S′ ,

∂S ∩Um ⊂ cl(S′c) and aff u′j{∂S ∩ (Zk ∪Um) ∩ ∂S′} = ∂S′},

where in this definition, by ∂S′, we understand the boundary of S′ relative to ∂S, and
by S′c , we understand the complement of S′ relative to ∂S.

Since ∂S is a dimension n − 1 ambient space, the theorem holds by the induction
hypothesis, so

conv∂S∩Um(∂S ∩ Zk) =
m′

⋂
j=1

⋂
S′∈L′j

S′ .(6.9)

In the next two paragraphs, we explain how each domain S′ ∈ L′j can be extended to
a domain S′′ ∈ L j , such that S′′ ∩ ∂S = S′. Without loss of generality, we may assume
that both L′j and L j correspond to the same pole u j ; that is, u′j = u j for j = 1, . . . , m′
(or else we just relabel u1 , . . . , um so that u′1 , . . . , u′m′ are the first m′ of them).

If L′j are all empty, then ⋂m′
j=1 ⋂S′∈L′j S′ = ∂S. So, (6.9) becomes conv∂S∩Um(∂S ∩

Zk) = ∂S, and then, (6.7) shows that

∂S ⊆ convUm(Zk) ⊆
m
⋂
j=1

⋂
S∈L j

S .

In this case, since there is at least one point in Um ∪ Zk not lying on ∂S, and S ∈ Li
implies that aff ui{(Zk ∪Um) ∩ ∂S} = ∂S, we conclude that convUm(Zk) = S. If L′j
are not all empty, then fix S′ ∈ L′j and assume that u j = ∞ or else apply a Möbius
transformation to R̂

n that sends u j to∞. (Abusing notation, we keep the names S and
S′ after that transformation.) Since u j ∈ ∂S′ ⊂ ∂S, ∂S′ becomes a hyperplane in ∂S,
which is our ambient space of dimension n − 1. (Note that ∂S becomes a hyperplane
in R̂

n .) By definition, S′ contains the points ∂S ∩ Zk and separates them from the
points ∂S ∩Um , relative to ∂S. Since ∂S separates Zk and Um , the points Zk/∂S and
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Um/∂S are strictly on different sides of ∂S. Thus, S′ can be extended to a half-space H
in R̂

n that contains the points Zk and separates them from the points Um . (To obtain
this initial half space H, just rotate slightly the half-space S around ∂S′.) That is, the
half-space H is such that

Um ⊂ cl(Hc) and convUm(Zk) ⊂ H.

We show now that H can be chosen in such a way that

aff u j{(Zk ∪Um) ∩ ∂H} = ∂H.

In this way, we have H ∈ L j , and by construction, H ∩ ∂S = S′.
If dim aff u j{(Zk ∪Um) ∩ ∂H} = n − 1, then we are done. So assume

dim aff u j{(Zk ∪Um) ∩ ∂H} ≤ n − 2.(6.10)

Since ∂S ∩ (Zk ∪Um) ∩ ∂S′ ⊆ (Zk ∪Um) ∩ ∂H, we have that

∂S′ = aff u j{∂S ∩ (Zk ∪Um) ∩ ∂S′} ⊂ aff u j{(Zk ∪Um) ∩ ∂H}.

But the dimension of ∂S′ is n − 2, so we conclude that

aff u j{(Zk ∪Um) ∩ ∂H} = ∂S′ ,

and (6.10) holds with equality. Rotate ∂H around ∂S′ until it hits a point in
(Zk ∪Um)/∂S. (Note that the latter set difference is not empty since otherwise,
convUm(Zk) ⊂ ∂S, contradicting the assumption that the polar convex hull has
nonempty interior.) It should be clear now that after the rotation, the dimension of
aff u j{(Zk ∪Um) ∩ ∂H} is n − 1. Finally, let S′′ be the inverse image of H under the
Möbius transformation that sent u j to ∞.

By (6.9), we have that for each point x ∈ ∂S outside of conv∂S∩Um(∂S ∩ Zk), there
is a spherical domain S′ ∈ L′j , for some j = 1, . . . , m, that excludes x, relative to ∂S. By
the above, S′ can be extended to an S′′ ∈ L j that satisfies S′′ ∩ ∂S = S′, and hence, S′′
excludes x.

Returning to (6.8), take a point x ∈ ∂(⋂m
j=1 ⋂S∈L j S). There is an S ∈ Li for

some i = 1, . . . , m such that x ∈ ∂S. By the above observation, we need to have x ∈
conv∂S∩Um(∂S ∩ Zk). So x belongs to the left-hand side of (6.8). Conversely, if x
is in the left-hand side of (6.8), then x ∈ ∂S for some S ∈ Li , i = 1, . . . , m. By (6.7),
x ∈ ⋂m

j=1 ⋂S∈L j S, so x must be on the boundary of that intersection. The proof of (6.8)
is completed. ∎

Remark 6.8. Notice, in the theorem above, that if for some S ∈ Li we have ∂S ∩ Zk =
∅, then the boundary piece conv∂S∩Um(∂S ∩ Zk) contributed by it is also empty. This
means that convUm(Zk) is in the interior of the domain S. Therefore, such an S can
be safely ignored from the intersection (c) to obtain the same result. So, in view of
Theorem 6.7, we may write

convUm(Zk) =
m
⋂
i=1

⋂
S∈Li

∂S∩Zk≠∅

S .(6.11)

https://doi.org/10.4153/S0008414X24000671 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000671


On polar convexity in finite-dimensional Euclidean spaces 25

That is, the families Li are not minimal and contain more spherical domains than
needed.

Remark 6.9. Note that if convUm(Zk) has nonempty interior, then it is necessarily
connected, for m ≥ 2. In this case, the pieces of the boundary, as described in Theorem
6.7 (b), that matter are the ones that are exactly of co-dimension one. Indeed, if for
some spherical domain S ∈ Li , ∂S ∩ Zk = {z j} for some j = 1, . . . , k, then the bound-
ary piece contributed by it is the singleton {z j}. Since this is a closed connected subset
of R̂n , the boundary point cannot be isolated. By Theorem 6.7, the boundary pieces
are finitely many. So, there is a boundary piece that intersects every neighborhood of
z j (since every point in R̂

n has a countable basis). Let S′ ∈ Li′ be the spherical domain
that generates this boundary piece. Then, because ∂S′ is closed, we must have z j ∈ ∂S′,
and thus, z j is in the boundary piece generated by S′. Therefore, we may also ignore
those spherical domains S ∈ Li such that ∣∂S ∩ Zk ∣ < 2. That is,

convUm(Zk) =
m
⋂
i=1

⋂
S∈Li

∣∂S∩Zk ∣≥2

S .(6.12)

We may not be able to ignore more spherical domains without additional hypotheses.
If ∣∂S ∩ Zk ∣ = 2, then the boundary piece generated by S may contribute nontrivially to
the boundary of the Um-convex hull depending on the position and number of poles.

Remark 6.10. If convUm(Zk) has empty interior, then it is contained in some sphere.
We may consider that sphere to be our new ambient space. We can do this repeatedly
until we have an ambient space, such that convUm(Zk) has nonempty interior relative
to it. In this ambient space, we can apply Theorem 6.7 to express it as an intersection
of spherical domains.

Recall Definition 2.4 of the pole set associated to a subset Z of R̂n . Because of
the above description of convUm(Zk) as intersection of finite number of spherical
domains, we obtain the following corollary.

Corollary 6.11 Let the points z1 , . . . , zk ∈ R̂n be distinct and let u1 , . . . , um ∈ R̂n ,
m ≥ 2, be distinct (but not necessarily distinct from z1 , . . . , zk), such that convUm(Zk)
has nonempty interior. Then,

convZk(Um) ⊆ P(convUm(Zk)) =
m
⋂
i=1

⋂
S∈Li

∣∂S∩Zk ∣≥2

cl(Sc).(6.13)

Proof For any S ∈ Li , with ∣∂S ∩ Zk ∣ ≥ 2, we have Um ⊂ cl(Sc) and Zk ∩ Sc = ∅. So
cl(Sc) is convex with respect to all z j , and we get

convZk(Um) ⊆
m
⋂
i=1

⋂
S∈Li

∣∂S∩Zk ∣≥2

cl(Sc).

Next, suppose v does not belong to the right-hand side of (6.13). Then, v ∈ int(S)
for some S ∈ Li with ∣∂S ∩ Zk ∣ ≥ 2, say z1 , z2 ∈ ∂S. Then, arcv[z1 , z2] /⊆ S, so by (6.12),
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Figure 4: Illustrating Example 6.12 when A[0,0,1] = P(A[1,1,0]).

v /∈ P(convUm(Zk)). Therefore,

P(convUm(Zk)) ⊆
m
⋂
i=1

⋂
S∈Li

∣∂S∩Zk ∣≥2

cl(Sc).

Finally, for any v in the right-hand side of (6.13) and any S ∈ Li with ∣∂S ∩ Zk ∣ ≥ 2,
we have v /∈ int(S) and so S is v-convex. Therefore, the right-hand side of (6.12) is
v-convex, and so we conclude that v ∈ P(convUm(Zk)). Thus,

m
⋂
i=1

⋂
S∈Li

∣∂S∩Zk ∣≥2

cl(Sc) ⊆ P(convUm(Zk)).

This completes the proof. ∎

The next example extends Example 4.1(f) from [11].

Example 6.12. Consider spherical domains S1 , . . . , Sk ⊂ R̂
n , such that S i ∩ S j has

nonempty interior and S i ⊈ S j for all i ≠ j. For any v ∈ {0, 1}k , define

Av ∶= {x ∈ R̂n ∶ x ∈ S i if vi = 1 and x ∈ cl(Sc
i ) if vi = 0 for i = 1, . . . , k}.

Let e ∶= [1, . . . , 1] ∈ {0, 1}k . Then, Ae−v ⊆ P(Av) and

Ae−v = P(Av), whenever ∣∂S i ∩ ∂Av∣ ≥ 2 for each i = 1, . . . , k.(6.14)

Example 3.8 shows that P(S i) = cl(Sc
i ), and vice versa. Therefore, it is clear that

Ae−v ⊆ P(Av). Figure 4 illustrates the case when equality holds. However, the equality
does not hold in general, as Figure 5 shows.

Let the condition on the right-hand side of (6.14) hold and fix a point u /∈ Ae−v.
Then, there is some i, such that u /∈ cl(Sc

i ) (the case when u /∈ S i is anaologous), but
Av ⊂ S i . Such an S i would not be convex with respect to u: if {x1 , x2} ⊂ ∂S i ∩ ∂Av, then

https://doi.org/10.4153/S0008414X24000671 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000671


On polar convexity in finite-dimensional Euclidean spaces 27

Figure 5: Illustrating Example 6.12 when A[0,0,1,1] ⊊ P(A[1,1,0,0]).

arcu[x1 , x2] ⊈ S i . Since Av ⊂ S i , this implies that Av cannot be convex with respect to
u. Therefore, Ae−v ⊇ P(Av), establishing (6.14).

Theorem 6.13 For any Z ⊆ R̂
n , we have Z ⊆ P(P(Z)).

Proof Note that if Z is either R̂
n , ∅, or a singleton, then P(Z) = R̂

n , and so
P(P(Z)) = R̂

n . Similarly, if P(Z) is a singleton, then P(P(Z)) = R̂
n .

Thus, we may assume that both Z and P(Z) contain at least two points. We need
to show that if z1 ∈ Z and if u1 , u2 ∈ P(Z), then arcz1[u1 , u2] ⊆ P(Z). Assume that
the points z1 , u1, and u2 are distinct; otherwise, the inclusion arcz1[u1 , u2] ⊆ P(Z)
is trivial. In other words, one has to show that any v ∈ arcz1[u1 , u2] is a pole for
Z; that is, for any z2 , z3 ∈ Z, we have arcv[z2 , z3] ⊆ Z. If z2 , z3 happen to be on the
circle determined by z1 , u1 , u2, and v, then it is easy to see that arcv[z2 , z3] ⊆ Z by
considering several cases (we omit the details). Otherwise, by Remark 6.10, we may
restrict to a smaller dimensional ambient space that has dimension at least two and
where the set conv{u1 ,u2}{z1 , z2 , z3} has nonempty interior. By Corollary 6.11, we have

v ∈ arcz1[u1 , u2] ⊆ conv{z1 ,z2 ,z3}{u1 , u2} ⊆ P(conv{u1 ,u2}{z1 , z2 , z3}).

This shows the first inclusion in

arcv[z2 , z3] ⊆ conv{u1 ,u2}{z1 , z2 , z3} ⊆ Z ,

while the second inclusion follows since u1 , u2 ∈ P(Z). Finally, since z2 , z3 ∈ Z were
arbitrary, we get that v ∈ P(Z). ∎

Remark 6.14. As a consequence of the above theorem, given any set Z ⊆ R̂
n , we get

two increasing chains of sets

Z ⊆ P(P(Z)) ⊆ ⋅ ⋅ ⋅ ⊆ P2n(Z) ⊆ ⋅ ⋅ ⋅ ,
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and

P(Z) ⊆ P(P(P(Z))) ⊆ ⋅ ⋅ ⋅ ⊆ P2n+1(Z) ⊆ ⋅ ⋅ ⋅ .

Let

A ∶=
∞

⋃
i=0

P2i(Z) and B ∶=
∞

⋃
i=0

P2i+1(Z).

Then, we get thatP(A) ⊇ B andP(B) ⊇ A. Indeed, for any z1 , z2 ∈ A and u ∈ B, there is
an integer k, such that z1 , z2 ∈ P2k(Z) and u ∈ P2k+1(Z). This shows that arcu[z1 , z2] ⊆
P2k(Z) ⊆ A.

Open Problem Characterize the pairs of sets (A, B) in R̂
n , such that P(A) ⊇ B and

P(B) ⊇ A. Moreover, characterize the pairs of sets (A, B) in R̂
n , with the stronger

conditions that P(A) = B and P(B) = A.

To conclude, we express Corollary 6.4 algebraically in the special case

convu(conv{z1 , . . . , zk}) = conv(convu{z1 , . . . , zk}).(6.15)

Doing so gives us the following identities.

Corollary 6.15 Given distinct points u, z1 , . . . , zk ∈ Rn−1, and t, α j , β j ∈ [0, 1], for 1 ≤
j ≤ k, such that

k
∑
j=1

α j =
k
∑
j=1

β j = 1,

there exist γ i , δ i , j ∈ [0, 1], for 1 ≤ i ≤ n and 1 ≤ j ≤ k, such that

n
∑
i=1

γ i =
k
∑
j=1

δ i , j = 1 for all 1 ≤ i ≤ n

and satisfying

(t(
k
∑
i=1

α i(zi − u))
∗

+ (1 − t)(
k
∑
i=1

β i(zi − u))
∗

)
∗

=
n
∑
i=1

γ i(
k
∑
j=1

δ i , j(z j − u)∗)
∗

.

Proof Clearly, the points ∑k
i=1 α i zi ,∑k

i=1 β i zi are in conv{z1 , . . . , zk}. For any t ∈
[0, 1], we have

u + (t(
k
∑
i=1

α i zi − u)∗ + (1 − t)(
k
∑
i=1

β i zi − u)∗)
∗

∈ convu(conv{z1 , . . . , zk})

= conv(convu{z1 , . . . , zk}).

By Carathéodory’s theorem, there are points x1 , . . . , xn ∈ convu{z1 , . . . , zk} and
parameters γ1 , . . . , γn ∈ [0, 1], such that ∑n

i=1 γ i = 1 and

u + (t(
k
∑
i=1

α i zi − u)∗ + (1 − t)(
k
∑
i=1

β i zi − u)∗)
∗

=
n
∑
i=1

γ i xi .(6.16)
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Since xi ∈ convu{z1 , . . . , zk}, there must be parameters δ i ,1 , . . . , δ i ,k such that
∑k

j=1 δ i , j = 1 and

xi = u + (
k
∑
j=1

δ i , j(z j − u)∗)
∗

, for all i = 1, . . . , k.(6.17)

Substituting the equations (6.17) back into (6.16) and simplifying gives the stated
identity. ∎

In particular, when n = 3, we get an algebraic relationship in the complex plane.

Corollary 6.16 Given distinct points u, z1 , . . . , zk ∈ C, and t, α j , β j ∈ [0, 1], for 1 ≤ j ≤
k, such that

k
∑
j=1

α j =
k
∑
j=1

β j = 1,

there exist γ i , δ i , j ∈ [0, 1], for 1 ≤ i ≤ 3 and 1 ≤ j ≤ k, such that

3
∑
i=1

γ i =
k
∑
j=1

δ i , j = 1 for all 1 ≤ i ≤ 3

and satisfying

1
t

∑k
i=1 α i(zi−u) +

1−t
∑k

i=1 β i(zi−u)
= γ1

∑k
j=1

δ1, j

z j−u

+ γ2

∑k
j=1

δ2, j

z j−u

+ γ3

∑k
j=1

δ3, j

z j−u

.

7 Conclusions

In conclusion, the paper aims to establish the foundations of a theory of polar con-
vexity in the case of finite-dimensional Euclidean spaces to build on. Polar convexity,
as a generalization of classical convexity, enjoys many unique properties – the Duality
Theorem, for example – that could not be formulated in the classical setting. These
properties, however, are still applicable to the classical setting, and we hope that these
will be exploited to approach many classical problems.

The theory is still in its infancy. One could ask what are the polar convex functions
and if they have applications to optimization problems that parallel those of classical
convex functions. Section 6 looks at convexification of sets with respect to multiple
poles. These sets are convex, in the classical sense, if one of the poles is∞. Thus, if a set
is convex with respect to multiple poles, it is natural to ask what additional properties
do these super convex sets have. Also in Section 6, we give a description of the convex
hull of finitely many points with respect to finitely many poles. It is natural to ask for
similar descriptions when one or both of these sets are infinite. Concrete answers to
such questions are not known even in the case of nicely behaved infinite sets and may
be a topic of further research.
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Appendix

This section contains deferred proofs and results that may distract the reader from
the main development.

Proof of Lemma 2.1 By definition, we have

u + (t(z1−u)∗ + (1 − t)(z2 − u)∗)∗

= u + t(z1 − u)∗ + (1 − t)(z2 − u)∗
∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2

= u(1 − t/∥z1 − u∥2 + (1 − t)/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 )(7.1)

+ tz1/∥z1 − u∥2 + (1 − t)z2/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 .

We look at the two terms of the last displayed expression separately. For the first term,
we have

u(1− t/∥z1 − u∥2 + (1 − t)/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 )

= u∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 − t/∥z1 − u∥2 − (1 − t)/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2

= u
D
(∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2

− t∥z2 − u∥2 − (1 − t)∥z1 − u∥2),

where

D ∶= ∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2 .

In the numerator, expand ∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 as a dot product and mul-
tiply throughout by ∥z1 − u∥2∥z2 − u∥2. After elementary simplifications, we arrive at

u
D
( − t(1 − t)∥z2 − u∥2 − t(1 − t)∥z1 − u∥2 + t(1 − t)⟨z1 − u, z2 − u⟩

+ t(1 − t)⟨z2 − u, z1 − u⟩)

= u
D
( − t(1 − t)∥z1 − z2∥2)

= u −t(1 − t)∥z1 − z2∥2∥z1 − u∥2∥z2 − u∥2

∥t(z1 − u)∥z2 − u∥2 + (1 − t)(z2 − u)∥z1 − u∥2∥2

= u O(∥u∥4)
∥u∥6 .
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Now we look at the second term in (7.1) and multiply its numerator and denominator
by ∥u∥2. Then, it can be developed as

tz1/∥z1 − u∥2 + (1 − t)z2/∥z2 − u∥2

∥t(z1 − u)∗ + (1 − t)(z2 − u)∗∥2 =
tz1∥ z1

∥u∥ −
u
∥u∥∥

−2
+ (1 − t)z2∥ z2

∥u∥ −
u
∥u∥∥

−2

∥t( z1
∥u∥ −

u
∥u∥)

∗ + (1 − t)( z2
∥u∥ −

u
∥u∥)

∗∥2
.

Thus, taking the limit as ∥u∥ → ∞, the first term in (7.1) converges to 0, while the
second converges to tz1 + (1 − t)z2. This completes the proof of the lemma. ∎

Lemma 7.1 Let the points z1 , . . . , zk ∈ R̂n be distinct and let u1 , u2 ∈ R̂n be distinct (but
not necessarily distinct from z1 , . . . , zk). Suppose that not all of {z1 , . . . , zk , u1 , u2} lie on
a (n − 1)-sphere. Then,

⋂
S∈Si

S = ⋂
D∈Li

D for i ∈ {1, 2},(7.2)

where the families Si and Li are defined in (6.1) and (6.2).

Proof By symmetry, we may assume that i = 1. Since L1 ⊆ S1, it is clear that

⋂
S∈S1

S ⊆ ⋂
D∈L1

D.

To see the other containment, without loss of generality, assume u1 = ∞. The set L1
consists of all supporting half-spaces that either correspond to the maximal faces
of the polytope conv{z1 , . . . , zk} separating u2 and conv{z1 , . . . , zk} or those that
correspond to the maximal faces of the cone

u2 + cone{z1 − u2 , . . . , zk − u2},

or both. Since S1 is the set of all half-spaces that separate u2 and conv{z1 , . . . , zk}, we
have that ⋂D∈L1 D ⊆ S for all S ∈ S1. ∎

Proof of Theorem 6.3 Without loss of generality, we may assume u2 = ∞ and write
u1 as u. In the proof, we need both families (6.1) and (6.2). So S1, L1 correspond to u
and S2, L2 correspond to ∞. It is clear that

conv(convu{z1 , . . . , zk}) ⊆
2
⋂
i=1

⋂
S∈Si

S

because the right-hand side is convex with respect to both u and ∞ and contains
{z1 , . . . , zk}. We aim to show the opposite inclusion.

2
⋂
i=1

⋂
S∈Si

S ⊆ conv(convu{z1 , . . . , zk}).

If ∞ ∈ int(convu{z1 , . . . , zk}), then conv(convu{z1 , . . . , zk}) = R̂
n , so the inclusion

is trivial. Thus, we assume that ∞ /∈ int(convu{z1 , . . . , zk}) and consider four cases
based on whether ∞ and u are in {z1 , . . . , zk} or not.

Case 1: Assume that ∞, u /∈ {z1 , . . . , zk}. We consider two sub-cases.
Case 1.a: If ∞ /∈ convu{z1 , . . . , zk}, by Lemma 5.1, part (1), there is a spherical

domain S, containing convu{z1 , . . . , zk} and having u on its boundary, that strongly
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separates convu{z1 , . . . , zk} and {∞}. Since ∞ is in cl(Sc), S is convex with respect
to both ∞ and u, we get that S ∈ S1. So ∞ /∈ ⋂2

i=1 ⋂S∈Si S.
Since∞ /∈ convu{z1 , . . . , zk}, then convu{z1 , . . . , zk} is closed and bounded. Thus,

the set conv(convu{z1 , . . . , zk}) is closed and therefore also closed in R̂
n/{∞}. So, by

Lemma 5.1, part (1), for any x /∈ conv(convu{z1 , . . . , zk}) ∪ {∞}, there is a spherical
domain S, containing conv(convu{z1 , . . . , zk}) and having ∞ on its boundary, that
strongly separates the sets {x} and conv(convu{z1 , . . . , zk}). We want to show that
x /∈ ⋂2

i=1 ⋂S∈Si S.
Indeed, if u ∈ cl(Sc), then since S is convex with respect to both u and ∞, we have

S ∈ S2. So, x /∈ ⋂2
i=1 ⋂S∈Si S. If u /∈ cl(Sc), then cl(Sc) is a closed u-convex spherical

domain containing both x and ∞ and not containing u (in particular, u is not on
the boundary of cl(Sc)). Next, convu{z1 , . . . , zk} is a u-convex set that is closed in
R̂

n/{u}. By Lemma 5.1, part (1), there is a spherical domain S′, having u on its
boundary, containing convu{z1 , . . . , zk} and strongly separating convu{z1 , . . . , zk}
and cl(Sc). Since ∞ ∈ cl(Sc), we have that S′ does not contain ∞ and has u on
its boundary. So, S′ ∈ S1, and since x ∈ cl(Sc), we get that x /∈ S′ and conclude that
x /∈ ⋂2

i=1 ⋂S∈Si S. This concludes the proof in the case when ∞ /∈ convu{z1 , . . . , zk}.
Case 1.b: Suppose now ∞ ∈ ∂convu{z1 , . . . , zk}. Then, by Corollary 4.5, this is

equivalent to u ∈ ∂conv{z1 , . . . , zk}. Every domain S ∈ S1 is u-convex and contains
{z1 , . . . , zk} by definition, so it contains convu{z1 , . . . , zk}. This implies that S also
contains∞, but by definition,∞ ∈ cl(Sc), and therefore,∞ ∈ ∂S. Similarly, u ∈ ∂S for
all S ∈ S2, so we conclude that S1 and S2 contain the same domains. Since a domain
S ∈ L1 or S ∈ L2 is forced to have both u and ∞ on its boundary, they are all half-
spaces. Therefore, for all S ∈ L1 ∪L2, we get that

aff u{{z1 , . . . , zk , u,∞}∩ ∂S} = aff∞{{z1 , . . . , zk , u,∞}∩ ∂S}(7.3)
= aff u{{z1 , . . . , zk , u} ∩ ∂S}.

To see the last equality, note that we have

∞ ∈ ∂convu{z1 , . . . , zk} ⊆ aff u{{z1 , . . . , zk , u} ∩ ∂S}.

The first equality in (7.3) shows that the families L1 and L2 are equal. By assumption,
z1 , . . . , zk , u,∞ are not all on a hyperplane. So, using Lemma 7.1, we have

2
⋂
i=1

⋂
S∈Si

S =
2
⋂
i=1

⋂
S∈Li

S = ⋂
S∈L1

S .

Let L be the family of spherical domains described in Lemma 6.1. Then, the second
equality in (7.3) shows that L1 ⊆ L. Note that if S ∈ L and ∞ ∈ ∂S, then S ∈ L1.
Therefore, if S ∈ L/L1, then∞ /∈ ∂S; in other words, ∂S is a bounded set. Any spherical
domain S ∈ L/L1 contains {z1 , . . . , zk} and has u on its boundary, and hence S
contains convu{z1 , . . . , zk}. Thus, S is unbounded since ∞ ∈ convu{z1 , . . . , zk}, by
Corollary 4.4. Since L/L1 is a finite set, there is an R > 0 such that D(0; R)c ⊂ S/{u}
for all S ∈ L/L1. (Here, D(0; R) is the open ball with center 0 and radius R.) Thus, we
have

D(0; R)c ⊆ ⋂
S∈L/L1

S/{u}.
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Therefore,

⋂
S∈L1

S ∩ D(0; R)c ⊆ ( ⋂
S∈L1

S) ∩ ( ⋂
S∈L/L1

S/{u})

= ⋂
S∈L

S/{u} = convu{z1 , . . . , zk},

where in the last equality, we used Lemma 6.1. Since we are in a case where u /∈
{z1 , . . . , zk} and u ∈ ∂conv{z1 , . . . , zk}, the boundary of the intersection of half-
spaces, ⋂S∈L1 S, contains at least a line, so

conv( ⋂
S∈L1

S ∩ D(0; R)c) = ⋂
S∈L1

S ,

and by Lemma 7.1, we have
2
⋂
i=1

⋂
S∈Si

S =
2
⋂
i=1

⋂
S∈Li

S = ⋂
S∈L1

S ⊆ conv(convu{z1 , . . . , zk}).

Case 2: Assume that ∞ ∈ {z1 , . . . , zk}, but u /∈ {z1 , . . . , zk}. By definition,

conv{z1 , . . . , zk} = conv{zi ∶ zi ≠ ∞, i = 1, . . . , k} ∪ {∞}.

If u ∈ conv{z1 , . . . , zk}, then u ∈ conv{zi ∶ zi ≠ ∞, i = 1, . . . , k}. So we have
∞ ∈ convu{zi ∶ zi ≠ ∞, i = 1, . . . , k}, and convu{zi ∶ zi ≠ ∞, i = 1, . . . , k} =
convu{z1 , . . . , zk}. This, of course, implies that

conv(convu{zi ∶ zi ≠ ∞, i = 1, . . . , k}) = conv(convu{z1 , . . . , zk}).

Therefore, any spherical domain S, convex with respect to both u and∞, that contains
{zi ∶ zi ≠ ∞, i = 1, . . . , k} is forced to contain ∞ because it contains convu{zi ∶ zi ≠
∞, i = 1, . . . , k}. Thus, ∞ ∈ ∂S because S is convex. This implies that the families
S1 , S2 ,L1, andL2 corresponding to the sets {z1 , . . . , zk} and {zi ∶ zi ≠ ∞, i = 1, . . . , k}
are the same. So, we can consider the set {z1 , . . . , zk}/{∞} and argue as in Case 1.

Therefore, we may assume that u /∈ conv{z1 , . . . , zk}. If S ∈ L1, then by definition,
∞ ∈ cl(Sc), but the premise of the current case implies that∞ ∈ S, so we need to have
∞ ∈ ∂S. Since in addition, u ∈ ∂S, one can see that

aff u{{z1 , . . . , zk , u,∞}∩ ∂S} = aff∞{{z1 , . . . , zk , u,∞}∩ ∂S}(7.4)
= aff u{{z1 , . . . , zk , u} ∩ ∂S}.

The first equality shows that L1 ⊆ L2. Therefore, we have
2
⋂
i=1

⋂
S∈Li

S = ⋂
S∈L2

S .(7.5)

The family L1 is the set of all half-spaces that support the maximal faces of the cone
u + cone{z1 − u, . . . , zk − u}. (Note that the latter cone has a nonempty interior, or
else {z1 , . . . , zk , u,∞} lie on a (n − 1)-sphere, contradicting our assumption.) That is,

⋂
S∈L1

S = u + cone{z1 − u, . . . , zk − u}

= {u + t(z − u) ∶ t ≥ 0, z ∈ conv({z1 , . . . , zk}/{∞})} ∪ {∞}.(7.6)
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A domain S ∈ L2 can be of two types: either u ∈ ∂S or u ∈ Sc . In the first case, S is
a half-space that supports a maximal face of the cone u + cone{z1 − u, . . . , zk − u},
while in the second case, S is a half-space that supports a maximal face of the polytope
conv({z1 , . . . , zk}/{∞}) that separates u from {z1 , . . . , zk}. Thus,

⋂
S∈L2

S = {z + t(z − u) ∶ t ≥ 0, z ∈ conv({z1 , . . . , zk}/{∞})} ∪ {∞}.(7.7)

We need to prove that

⋂
S∈L2

S ⊆ conv(convu{z1 , . . . , zk}).

Let again L be the family as described in Lemma 6.1. Then, the second equality in (7.4)
shows that L1 ⊆ L. Note that if S ∈ L and ∞ ∈ ∂S, then S ∈ L1. Therefore, if S ∈ L/L1,
then ∞ /∈ ∂S; in other words, ∂S is a bounded set. Any spherical domain S ∈ L/L1
contains {z1 , . . . , zk} and has u on its boundary; hence, S contains convu{z1 , . . . , zk}.
Thus, S is unbounded since ∞ ∈ convu{z1 , . . . , zk} by Corollary 4.4. Since L/L1 is a
finite set, there is an R > 0 such that D(0; R)c ⊂ S/{u} for all S ∈ L/L1. We get that

{z1 , . . . , zk} ∪ D(0; R)c ⊆ {z1 , . . . , zk} ∪ ⋂
S∈L/L1

S/{u}.

Therefore,

({z1 , . . . , zk} ∪ D(0; R)c) ∩ ⋂
S∈L1

S ⊆ ({z1 , . . . , zk} ∪ ⋂
S∈L

S)/{u}(7.8)

= ⋂
S∈L

S/{u} = convu{z1 , . . . , zk},

where in the last equality, we used Lemma 6.1. Using representations (7.6) and (7.7),
one can see that for large enough R, we have

⋂
S∈L1

S ∩ D(0; R)c = ⋂
S∈L2

S ∩ D(0; R)c .(7.9)

Thus, taking the convex hull from both sides in (7.8), we obtain

conv(convu{z1 , . . . , zk}) ⊇ conv(({z1 , . . . , zk} ∪ D(0; R)c) ∩ ⋂
S∈L1

S)

= conv({z1 , . . . , zk} ∪ (D(0; R)c ∩ ⋂
S∈L1

S))

= conv({z1 , . . . , zk} ∪ (D(0; R)c ∩ ⋂
S∈L2

S))

= ⋂
S∈L2

S .

This concludes the proof in this case.
Case 3: Assume u ∈ {z1 , . . . , zk} but ∞ /∈ {z1 , . . . , zk}. By definition,

convu{z1 , . . . , zk} = convu{zi ∶ zi ≠ u, i = 1, . . . , k} ∪ {u}.

If u ∈ conv{zi ∶ zi ≠ u, i = 1, . . . , k}, then we have ∞ ∈ convu{zi ∶ zi ≠ u, i =
1, . . . , k} and conv{zi ∶ zi ≠ u, i = 1, . . . , k} = conv{z1 , . . . , zk}. Therefore, as
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before, any spherical domain S convex with respect to both u and ∞ that
contains {zi ∶ zi ≠ u, i = 1, . . . , k} is forced to contain u because it contains
conv{zi ∶ zi ≠ u, i = 1, . . . , k}. Thus, u ∈ ∂S because S is u-convex. This implies
that the families S1 , S2 ,L1, and L2 corresponding to the sets {z1 , . . . , zk} and
{zi ∶ zi ≠ u, i = 1, . . . , k} are the same. So we can consider the set {z1 , . . . , zk}/{u}
and argue as in Case 1.

Assume now u /∈ conv{zi ∶ zi ≠ u, i = 1, . . . , k}; that is, u is an extreme point of
conv{z1 , . . . , zk}. By Corollary 4.6, this also implies that ∞ /∈ convu{z1 , . . . , zk},
so convu{z1 , . . . , zk} is closed and bounded. Therefore, conv(convu{z1 , . . . , zk}) is
closed and bounded. We aim to show that

If x /∈ conv(convu{z1 , . . . , zk}), then x /∈
2
⋂
i=1

⋂
S∈Si

S .

If x = ∞, then since ∞ /∈ convu{zi ∶ zi ≠ u, i = 1, . . . , k}, by Lemma 5.1, part (1),
there is a spherical domain S, containing convu{zi ∶ zi ≠ u, i = 1, . . . , k} and having
u on its boundary, that strongly separates convu{zi ∶ zi ≠ u, i = 1, . . . , k} and {∞}.
Since ∞ is in Sc , S is convex with respect to both ∞ and u, we get that S ∈ S1. So
∞ /∈ ⋂2

i=1 ⋂S∈Si S.
If x /∈ conv(convu{z1 , . . . , zk}) ∪ {∞}, then there is a closed half-space S strongly

separating x and conv(convu{z1 , . . . , zk}) and containing the latter set. If u ∈ cl(Sc),
then S is also u-convex, so S ∈ S2 and x /∈ ⋂2

i=1 ⋂S∈Si S. If u ∈ int(S), then cl(Sc) is a
u-convex domain disjoint from convu{z1 , . . . , zk} and containing both ∞ and x. By
Lemma 5.1, part (1), there is a spherical domain S′, having u on its boundary, con-
taining convu{zi ∶ zi ≠ u, i = 1, . . . , k} and strongly separating convu{zi ∶ zi ≠ u, i =
1, . . . , k} and cl(Sc). Also, because u ∈ ∂S′, we get that S′ contains convu{z1 , . . . , zk}.
Since ∞ ∈ cl(Sc), we have that S′ does not contain ∞ and has u on its boundary. So,
S′ ∈ S1. Finally, since x ∈ cl(Sc), we get that x /∈ S′ and conclude that x /∈ ⋂2

i=1 ⋂S∈Si S.
This concludes the proof in this case.

Case 4: Assume that ∞, u ∈ {z1 , . . . , zk}. If u ∈ conv{zi ∶ zi ≠ u, i = 1, . . . , k}, then
u ∈ conv{zi ∶ zi ≠ u,∞, i = 1, . . . , k}. Then, by Theorem 4.3,

∞ ∈ convu{zi ∶ zi ≠ u,∞, i = 1, . . . , k} ⊆ convu{zi ∶ zi ≠ ∞, i = 1, . . . , k}.

Therefore, any spherical domain S, convex with respect to both u and∞, that contains
{zi ∶ zi ≠ ∞, i = 1, . . . , k} is forced to contain ∞ because it contains convu{zi ∶ zi ≠
∞, i = 1, . . . , k}. Thus, ∞ ∈ ∂S, because S is ∞-convex. This implies that the families
S1 , S2 ,L1, andL2 corresponding to the sets {z1 , . . . , zk} and {zi ∶ zi ≠ ∞, i = 1, . . . , k}
are the same. So, we can consider the set {z1 , . . . , zk}/{∞} and argue as in Case 3.

Assume that u /∈ conv{zi ∶ zi ≠ u, i = 1, . . . , k}. Then,

u /∈ conv{zi ∶ zi ≠ u,∞, i = 1, . . . , k} ∪ {∞}.

Then, using Theorem 4.3, we obtain

∞ /∈ convu{zi ∶ zi ≠ u,∞, i = 1, . . . , k} ∪ {u} = convu{zi ∶ zi ≠ ∞, i = 1, . . . , k}.

It follows from definitions (6.1) and (6.2) that S1 = S2 and L1 = L2 because all the
domains S ∈ S1 ∪ S2 are forced to contain both ∞ and u on their boundary. Thus, the
family L1 consists of all supporting half-spaces corresponding to the maximal faces of
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the cone u + cone{z1 − u, . . . , zk − u}. (Note that the latter cone has a nonempty inte-
rior, or else {z1 , . . . , zk , u,∞} lie on a (n − 1)-sphere, contradicting our assumption.)
So, using (7.2), one sees that

2
⋂
i=1

⋂
S∈Si

S =
2
⋂
i=1

⋂
S∈Li

S = ⋂
S∈L1

S = u + cone{z1 − u, . . . , zk − u}.(7.10)

To conclude the argument, it is sufficient to show

u + cone{z1 − u, . . . , zk − u} ⊆ conv(convu{z1 , . . . , zk}).

As before, let L be the family of spherical domains described in Lemma 6.1. Since∞ ∈
{z1 , . . . , zk}, all the domains S in L are unbounded. Note that L1 ⊆ L. There are two
types of domains in L: those with ∞ in their interior and those that have ∞ on their
boundary. The latter ones are those in L1. There are finitely many domains in L, and
since the domains S ∈ L/L1 have bounded boundaries, the boundaries are all in a ball
D(0; R) with large enough radius R > 0. So, we can conclude that D(0; R)c ∪ {u} ⊆ S
for all S ∈ L/L1. Thus, by Lemma 6.1, we have

⋂
S∈L1

S ∩ (D(0; R)c ∪ {u}) ⊆ ( ⋂
S∈L1

S) ∩ ( ⋂
S∈L/L1

S) = ⋂
S∈L

S

= convu{z1 , . . . , zk}.

Therefore, using (7.10), the set convu{z1 , . . . , zk} contains u and all points of u +
cone{z1 − u, . . . , zk − u} beyond a certain radius. So, we conclude

u + cone{z1 − u, . . . , zk − u} ⊆ conv(convu{z1 , . . . , zk}).

This completes the proof. ∎
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