108.37 A parent figure for a family of triangle number identities

 $T_{a_1 + a_2 + a_3 + \dots + a_n} = T_{a_1} + T_{a_2} + T_{a_2} + \dots + T_{a_n} + \sum_{\substack{1 \le i, j \le n \\ i \ne j}} a_i a_j$

In particular:

Reference

1. R. B. Nelsen, *Proofs without Words II*, Mathematical Association of America (2000).

10.1017/mag.2024.121 © The Authors, 2024	PAUL STEPHENSON
Published by Cambridge University Press	Böhmerstraße 66,
on behalf of The Mathematical Association	45144 Essen,
	Germany
	e-mail: pstephenson1@me.com

108.38 A number whose square root is the sum of its digits

The number 81 has the property that its square root is equal to the sum of its digits: $\sqrt{81} = 8 + 1$.

Are there other numbers with the same property?

To answer this question, we, first of all, prove the following Lemma. Lemma: If $n \ge 5$, then $10^{(n-1)/2} > 9n$.

Proof: We use mathematical induction.

For n = 5, (1) is true, since $10^{(5-1)/2} = 100 > 9 \times 5 = 45$. Now we assume that (1) holds for n = k, so that $10^{(k-1)/2} > 9k$. Then

$$10^{k/2} = \sqrt{10} \times 10^{(k-1)/2} > 3 \times 9k = 27k = 9(k+1) + 9(2k-1).$$
(1)

But $k \ge 5$, so $10^{k/2} > 9(k + 1)$, whence (1) holds for n = k + 1.

Now we prove the main Theorem.

Theorem: If A is a positive integer whose square root equals the sum of its digits, then A = 1 or A = 81.

Proof: Let A have n digits. Then $A \ge 10^{n-1}$, so $\sqrt{A} \ge 10^{(n-1)/2}$. If $n \ge 5$, then, by the Lemma, $\sqrt{A} > 9n$. But the sum of the digits of A is at most 9n (reached when each digit is 9). Thus if $n \ge 5$, \sqrt{A} exceeds the sum of the digits of A.

If n = 4, the digit sum of A is at most $9 \times 4 = 36$, so if $A > 1296 = 36^2$, then \sqrt{A} exceeds the sum of the digits of A. But if $A \le 1296$, then the sum of its digits is less than 1 + 2 + 9 + 9 = 21, yet $\sqrt{A} \ge \sqrt{1000} > 21$.

It remains to consider the case $n \leq 3$. Now, by direct verification, it is easy to find that there are only two numbers, 1 and 81, that satisfy the problem:

number	(number) ²	sum of digits	number	(number) ²	sum of digits
1	1	1	16	256	13
2	4	4	17	289	19
3	9	9	18	324	9
4	16	7	19	361	10
5	25	7	20	400	4
6	36	9	21	441	9
7	49	13	22	484	16
8	64	10	23	529	16
9	81	9	24	576	18
10	100	1	25	625	13
11	121	4	26	676	19
12	144	9	27	729	18
13	169	16	28	784	19
14	196	16	29	841	13
15	225	9	30	900	9
			31	961	16

10.1017/mag.2024.122 © The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association VICTOR OXMAN Western Galilee College, Acre, Israel MOSHE STUPEL Shaanan College, Gordon College, Haifa, Israel

108.39 A quick proof that π is less than 2ϕ

The golden ratio ϕ is $\frac{1}{2}(1 + \sqrt{5})$ and $\tan \frac{1}{12}\pi = 2 - \sqrt{3}$. The aim of this Note is to give a quick proof of the well known inequality $\pi < 2\phi$. Our proof is more elementary than Nelsen ([1]).

This proof uses the familiar inequality $\sin x < x < \tan x$ for $0 < x < \frac{1}{2}\pi$. An alternative to the standard proof is given by the following diagram: