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Abstract A central question in Arithmetic geometry is to determine for which polynomials f ∈ Z[t] and
which number fields K the Hasse principle holds for the affine equation f(t) = NK/Q(x) �= 0. Whilst
extensively studied in the literature, current results are largely limited to polynomials and number fields
of low degree. In this paper, we establish the Hasse principle for a wide family of polynomials and number
fields, including polynomials that are products of arbitrarily many linear, quadratic or cubic factors. The
proof generalises an argument of Irving [27], which makes use of the beta sieve of Rosser and Iwaniec. As
a further application of our sieve results, we prove new cases of a conjecture of Harpaz and Wittenberg
on locally split values of polynomials over number fields, and discuss consequences for rational points in
fibrations.
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1. Introduction

Let K be a number field of degree n, and let f ∈ Z[t] be a polynomial. A central problem

in arithmetic geometry is to determine under what conditions f can take values equal to

a norm of an element of K. In order to address this question, we take an integral basis

ω1, . . . ,ωn for K, viewed as a vector space over Q, and define the norm form as N(x) =
NK/Q(ω1x1+ · · ·+ωnxn), where NK/Q(·) is the field norm. We then seek to understand

when the equation

f(t) =N(x) �= 0 (1.1)

has a solution with (t,x1, . . . ,xn) ∈ Qn+1. A necessary condition for solubility over Q is

that (1.1) must have solutions in Rn+1 and in Qn+1
p for every prime p. We say that

the Hasse principle holds if this condition alone is sufficient to guarantee existence of a
solution to (1.1) over Q.

Local to global questions for (1.1) have received much attention over the years. The first

case to consider is when f is a nonzero constant polynomial. Here, the Hasse principle for
(1.1) is known as the Hasse norm principle. More precisely, we say that the Hasse norm

principle holds for the extension K/Q if Q×∩NK/Q(IK) =NK/Q(K
×), where IK =A×

K is

the group of ideles of K. The Hasse norm principle has been extensively studied, beginning

with the work of Hasse himself, who established that it holds for cyclic extensions K/Q
(a result known as the Hasse norm theorem), but does not hold for certain biquadratic

extensions, such as K =Q(
√
13,

√
−3). The Hasse norm principle is also known to hold if

the degree of K is prime (Bartels [1]) or if the normal closure of K has Galois group Sn

(Kunyavskĭı and Voskresenskĭı [32]) or An for n �= 4 (Macedo [35]).

When [K : Q] = 2 and f is irreducible of degree 3 or 4, (1.1) defines a Châtelet

surface. There are now many known counterexamples to the Hasse principle for Châtelet
surfaces, including one by Iskovskikh [28], which we discuss in more detail in Example

5.4. However, Colliot-Thélène, Sansuc and Swinnerton-Dyer [14] prove that the Brauer–

Manin obstruction accounts for all failures of the Hasse principle. A similar result holds

when f is an irreducible polynomial of degree at most 3 and [K : Q] = 3, as proved by
Colliot-Thélène and Salberger [8]. Both of these results make use of fibration and descent

methods.

In the case when f is an irreducible quadratic and K is a quartic extension containing
a root of f, the Hasse principle and weak approximation are known to hold for (1.1)

thanks to the work of Browning and Heath-Brown [4]. This result was generalised by

Derenthal, Smeets and Wei [16, Theorem 2] to prove that the Brauer–Manin obstruction
is the only obstruction to the Hasse principle and weak approximation for irreducible

quadratics f and arbitrary number fields K. Moreover, in [16, Theorem 4], they give an

explicit description of the Brauer groups that can be obtained in this family.
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Polynomials represented by norm forms via the beta sieve 3

Results when f is not irreducible have so far been limited to products of linear
polynomials. Suppose that f takes the form

f(t) = c

r∏
i=1

(t− ei)
mi, (1.2)

for some c ∈ Q∗,e1, . . . ,er ∈ Q and m1, . . . ,mr ∈ N. When r = 1, the Brauer–Manin

obstruction is the only obstruction to the Hasse principle and weak approximation for
any smooth projective model of (1.1). This is a special case of the work of Colliot-

Thélène and Sansuc [9] on principal homogeneous spaces under algebraic tori. Heath-

Brown and Skorobogatov [26] treat the case r=2 by combining descent methods with the
Hardy–Littlewood circle method, under the assumption that gcd(m1,m2, degK) = 1. This

assumption was later removed by Colliot-Thélène, Harari and Skorobogatov [13]. Thanks

to the work of Browning and Matthiesen [5], it is now settled that for any number field K
and polynomial f of the form (1.2) (for arbitrary r � 1), the Brauer–Manin obstruction

is the only obstruction to the Hasse principle and weak approximation for any smooth

projective model of (1.1). Their result is inspired by additive combinatorics results of

Green, Tao and Ziegler [20], [21], combined with vertical torsors introduced by Schindler
and Skorobogatov [40].

In general, it has been conjectured by Colliot-Thélène [7] that all failures of the Hasse

principle for any smooth projective model of (1.1) are explained by the Brauer–Manin
obstruction. Assuming Schinzel’s hypothesis, this holds true for f an arbitrary polynomial

and K/Q a cyclic extension, as demonstrated by work of Colliot-Thélène and Swinnerton-

Dyer on pencils of Severi–Brauer varieties [12]. Recently, Skorobogatov and Sofos also
establish unconditionally that when K/Q is cyclic, (1.1) satisfies the Hasse principle for

a positive proportion of polynomials f of degree d, when their coefficients are ordered by

height [42, Theorem 1.3].

In [27], Irving introduces an entirely new approach to studying the Hasse principle for
(1.1), which rests on sieve methods. Irving’s main result [27, Theorem 1.1] states that if

f ∈Z[t] is an irreducible cubic, then the Hasse principle holds for (1.1) under the following

assumptions:

(1) K satisfies the Hasse norm principle.

(2) There exists a prime q� 7 and a finite set of primes S, such that for all p /∈ S, either

p≡ 1 (mod q) or the inertia degrees of p in K/Q are coprime.

(3) The number field generated by f is not contained in the cyclotomic field Q(ζq).

An example provided by Irving in [27] is the number field Q(α), where α is a root of
xq −2 and q � 7 is prime. We shall comment on this further in Example 5.9.

In this paper, we generalize Irving’s arguments to establish the Hasse principle for a

wide new family of polynomials and number fields. Our results cover for the first time
polynomials of arbitrarily large degree which are not a product of linear factors. In fact,

under suitable assumptions on K, we can deal with polynomials that are products of

arbitrarily many linear, quadratic and cubic factors.
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Throughout this paper, we let K̂ denote the Galois closure of K, and we let G =

Gal(K̂/Q), viewed as a permutation group on n letters. We define

T (G) =
1

#G
#{σ ∈G : the cycle lengths of σ are not coprime}. (1.3)

We now state our main results.

Theorem 1.1. Let K be a number field satisfying the Hasse norm principle. Let f ∈ Z[t]

be a polynomial, all of whose irreducible factors have degree at most 2. Let k denote

the number of distinct irreducible factors of f, and let j denote the number of distinct
irreducible quadratic factors of f which generate a quadratic field contained in K̂. Suppose

that T (G)� 0.39
k+j+1 . Then the Hasse principle holds for (1.1).

In practice, the constant 0.39 can be improved slightly, particularly when the majority

of the factors of f are linear, although it will always be less than 1/2. The precise optimal

constant is obtained by finding the maximal value of κ such that (4.55) holds.
When G= Sn, we shall see in Lemma 5.10 that T (Sn)→ 0 as n→∞, so in the setting

of Theorem 1.1, we can establish the Hasse principle provided n is sufficiently large in

terms of the degree of f. We illustrate this by treating the case when f is a product of
two irreducible quadratics.

Corollary 1.2. Let f ∈ Z[t] be a product of two quadratic polynomials such that the
number field L generated by f is a biquadratic extension of Q. Let K be a number field of

degree n with G= Sn. Suppose that L∩ K̂ =Q. Then the Hasse principle holds for (1.1),

provided that

n �∈ {2,3, . . . ,10,12,14,15,16,18,20,22,24,26,28,30,36,42,48}.

We remark that without the assumption L∩ K̂ = Q, a similar result to Corollary 1.2

still holds, although a larger list of degrees n would need to be excluded. For example, if

L∩ K̂ is quadratic, then the Hasse principle holds for (1.1) for all primes n� 11 and all
integers n > 90, whilst if L∩ K̂ = L, then the Hasse prinicple holds for all primes n� 13

and all integers n > 150.

We cannot hope to deal with all small values of n in Corollary 1.2. For example, the work
of Iskovskikh [28] shows that the Hasse principle can fail when n= 2 (see Example 5.4).

However, as we shall discuss in Appendix A, in the case n� 3, there is no Brauer–Manin

obstruction to the Hasse principle, and so according to the conjecture of Colliot-Thélène

mentioned above, we should expect the Hasse principle to hold.
Our second main result allows f to contain irreducible cubic factors but requires more

restrictive assumptions on the number field K, more similar to Irving’s setup in [27].

Theorem 1.3. Let f ∈Z[t] be a polynomial, all of whose irreducible factors have degree at

most 3. Then the Hasse principle holds for (1.1) under the following assumptions for K.
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(1) K satisfies the Hasse norm principle.

(2) The set P of primes p for which the inertia degrees of p in K/Q are not coprime

satisfies Assumption 2.2.

As an example, Assumption 2.2 is satisfied if there exists a prime q such that
degf+1
q−1 � 0.32380, and such that for all but finitely many primes p �≡ 1 (mod q), the inertia

degrees of p inK/Q are coprime. The constant 0.32380 appearing in Assumption 2.2 could

likely be improved with more work, and in specific examples, the required bounds could
be computed more precisely using (4.59). We remark that we have also dropped the

assumption made in [27] that the number field generated by f is not contained in Q(ζq).

This assumption is not essential to Irving’s argument, but allows for the treatment of
smaller values of q. Reinserting this assumption and optimising (4.59), we could recover

Irving’s result from our work.

We prove Theorems 1.1 and 1.3 by applying the beta sieve of Rosser and Iwaniec [18,

Theorem 11.13]. The main sieve results we obtain are stated in Theorems 2.1 and 2.3.
These results in fact prove the existence of a solution to (1.1) with t arbitrarily close to

a given adelic solution. Consequently, the above results could be extended to prove weak

approximation for (1.1), provided that weak approximation holds for the norm one torus
N(x) = 1. For example, the work of Kunyavskĭı and Voskresenskĭı [32] and Macedo [35]

demonstrates that weak approximation for the norm one torus holds when G = Sn or

G=An and n �= 4, and so weak approximation holds in the setting of Corollary 1.2.
In Section 6, we find a second application of Theorem 2.1 to a conjecture of Harpaz and

Wittenberg [23, Conjecture 9.1], which we restate in Conjecture 6.1 and henceforth refer to

as the Harpaz–Wittenberg conjecture. The conjecture concerns a collection of number field

extensions Li/ki/k, i∈{1, . . . ,n}, where ki ∼= k[t]/(Pi(t)) for monic irreducible polynomials
Pi ∈ k[t]. Roughly speaking, the conjecture predicts, under certain hypotheses, the

existence of an element t0 ∈ k such that P1(t0), . . . ,Pn(t0) are locally split (i.e., each

place in ki dividing Pi(t0) has a degree 1 place of Li above it).
A major motivation for the conjecture is the development of the theory of rational

points in fibrations. Given a fibration π :X → P1
k, a natural question is to what extent we

can deduce arithmetic information about X from arithmetic information about the fibres
of π. A famous conjecture of Colliot-Thélène [7, p.174] predicts that for any smooth,

proper, geometrically irreducible, rationally connected variety X over a number field k,

the rational points X(k) are dense in the Brauer–Manin set X(Ak)
Br. (In other words, the

Brauer–Manin obstruction is the only obstruction to weak approximation.) Applied to
this conjecture, the above question becomes whether density of X(k) in X(Ak)

Br follows

from density of Xc(k) in Xc(Ak)
Br for a general fibre Xc := π−1(c) of π (see [24, Question

1.2]). Applications of the Harpaz–Wittenberg conjecture to this question are studied in
[23] and [24].

Harpaz and Wittenberg [23, Section 9.2] demonstrate that their conjecture follows from

the homogeneous version of Schinzel’s hypothesis (commonly reffered to as (HH1)) in
the case of abelian extensions Li/ki, or more generally, almost abelian extensions (see

[23, Definition 9.4]). Examples of almost abelian extensions include cubic extensions,

and extensions of the form k(c1/p)/k for c ∈ k and p prime. The work of Heath-Brown
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6 A. Shute

and Moroz [25] establishes (HH1) for primes represented by binary cubic forms, from

which the Harpaz–Wittenberg conjecture can be deduced in the case k = Q,n = 1 and

degP1 = 3. Using a geometric reformulation of [23, Conjecture 9.1], the authors establish
their conjecture in low-degree cases – namely, when

∑n
i=1[ki : k] � 2 or

∑n
i=1[ki : k] = 3

and [Li : ki] = 2 for all i.

The Harpaz–Wittenberg conjecture is related to the study of polynomials represented
by norm forms. As a consequence of the work of Matthiesen [36] on norms as products

of linear polynomials, the Harpaz–Wittenberg conjecture holds in the case k1 = · · · =
kn = k =Q [23, Theorem 9.14]. Similarly, we can deduce from [27, Theorem 1.1] that the
Harpaz–Wittenberg conjecture holds in the case n=2,k=Q,k1 =K,k2 =Q,L1 =K(21/q)

and L2 =Q(21/q), where q � 7 is a prime such that K �⊆Q(ζq) [23, Theorem 9.15].

Besides the work of Matthiesen [36] for k1 = · · · = kn = k = Q, the aforementioned

results apply only to the case n � 2. In Section 6, we prove the following theorem,
which establishes the Harpaz–Wittenberg conjecture in a new family of extensions

k1/Q, . . . ,kn/Q, where n may be arbitrarily large, and each extension ki/Q may have

degree up to 3.

Theorem 1.4. Let n� 1. Let k =Q, and for i ∈ {1, . . . ,n}, let ki,Mi be linearly disjoint
number fields over Q. Let Li =Miki be the compositum of ki and Mi. Define

Ti =
1

#Gal(M̂i/Q)
#{σ ∈Gal(M̂i/Q) : σ has no fixed point}. (1.4)

Let d=
∑n

i=1[ki :Q]. Then the Harpaz–Wittenberg conjecture holds in the following cases.

(1) [ki :Q]� 2 for all i ∈ {1, . . . ,n} and
∑n

i=1Ti � 0.39/d.

(2) [ki :Q]� 3 for all i∈ {1, . . . ,n}, and there exist primes qi satisfying
∑n

i=1 1/(qi−1)�
0.32380/d, and integers ti coprime to qi, such that for all but finitely many primes
p �≡ ti (mod qi), there is a place of degree 1 in Mi above p.

Corollary 1.5. Let q1, . . . ,qn be distinct primes, and let r1, . . . ,rn ∈N be such that gi(x) =

xqi −ri is irreducible for all i. Let Mi =Q[x]/(gi) and let ki,Li and d be as in Theorem 1.4.

Suppose that one of the following holds:

(1) [ki :Q]� 2 for all i ∈ {1, . . . ,n} and
∑n

i=1 1/qi � 0.39/d,

(2) [ki :Q]� 3 for all i ∈ {1, . . . ,n} and
∑n

i=1 1/(qi−1)� 0.32380/d.

Then the Harpaz–Wittenberg conjecture holds for k = Q and for such choices of ki and
Li.

We remark that when applied to the setting of [23, Theorem 9.15], the above result

requires a stronger bound on q. However, with a more careful optimisation of (4.58), it

should be possible to recover [23, Theorem 9.15] from our approach.

By combining Theorem 1.4 with [23, Theorem 9.17] (with the choice B = 0,M ′′ = ∅ and
M ′ = P1

k\U), we obtain the following result about rational points in fibrations.

Theorem 1.6. Let X be a smooth, proper, geometrically irreducible variety over Q. Let

π : X → P1
Q be a dominant morphism whose general fibre is rationally connected. Let
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k1, . . . ,kn denote the residue fields of the closed points of P1
Q above which π has nonsplit

fibres, and let Li/ki be finite extensions which split these nonsplit fibres. Assume that

(1) The smooth fibres of π satisfy the Hasse principle and weak approximation.

(2) The hypotheses of Theorem 1.4 hold.

Then X(Q) is dense in X(AQ)
Br(X).

It would be interesting to investigate whether Condition (1) in Theorem 1.6 could be

relaxed to the assumption that the smooth fibres Xc(Q) are dense in Xc(AQ)
Br(Xc), as

in the setting of [24, Question 1.2] discussed above. This would require an extension of
Theorem 1.4 to cover a stronger version of the Harpaz–Wittenberg conjecture, involving

strong approximation of an auxiliary variety W off a finite set of places [24, Proposition

6.1]. Strong approximation of W was studied by Browning and Schindler [6], for example,

who established [24, Question 1.2] in the case when the rank of π is at most 3, and at
least one of its nonsplit fibres lies above a rational of P1

Q.

2. Main sieve results for binary forms

Let f ∈Z[x,y] be a non-constant binary form with nonzero discriminant. We write f(x,y)

as a product of distinct irreducible factors

f(x,y) =
m∏
i=0

fi(x,y)
k∏

i=m+1

fi(x,y), (2.1)

where fi(x,y) are linear forms for 1� i�m, and forms of degree ki � 2 for m+1� i� k.
If y | f(x,y), then we define f0(x,y) = y, and otherwise, we let f0(x,y) = 1. Hence, we have
y � fi(x,y) for all i� 1.

For i ∈ {0, . . . ,k}, we define

νi(p) = #{[x : y] ∈ P1(Fp) : fi(x,y)≡ 0 (mod p)}, (2.2)

ν(p) = #{[x : y] ∈ P1(Fp) : f(x,y)≡ 0 (mod p)}. (2.3)

Let P be a set of primes, and let P�x = {p∈P : p� x}. We denote by π(x) the number of

primes less than x. For all i∈ {0, . . . ,k}, we need to assume P has the following properties,
for some α,θi > 0 and any A� 1:∑

p∈P�x

1 = απ(x)
(
1+OA

(
(logx)−A

))
, (2.4)∑

p∈P�x

νi(p) = αθiπ(x)
(
1+OA

(
(logx)−A

))
. (2.5)

The reason we require explicit error terms in (2.4) and (2.5) is so that the sieve

dimensions, introduced in Section 4.2, exist. We note that for i = 0, we have θ0 = 1
if f0(x,y) = y, and θ0 = 0 if f0(x,y) = 1. Additionally, from (2.5), it follows that∑

p∈P�x

ν(p) = αθπ(x)
(
1+OA

(
(logx)−A

))
, (2.6)

where θ = θ0+ · · ·+θk.
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8 A. Shute

Let B ⊆ [−1,1]2 denote a bounded region whose boundary is a piecewise continuous

simple closed curve of finite length. The perimeter of B will always be assumed to be
bounded by some absolute constant C. In the applications in Sections 5 and 6, we shall

make the choice

B =

{
(x,y) ∈ (0,1]2 :

∣∣∣∣xy − r

∣∣∣∣< ξ

}
, (2.7)

for a fixed real number r > 0 and a small parameter ξ > 0, and so we may choose C = 4,
for example. We also define BN = {(Nx,Ny) : (x,y) ∈ B}.
Let Δ be an integer and let a0,b0 ∈ Z/ΔZ. We now state the main sieve results which

will be used in the proof of Theorem 1.1 and Theorem 1.3. They concern the sifting
function

S(P,B,N) = #

{
(a,b) ∈ BN ∩Z2 :

a≡ a0,b≡ b0 (mod Δ)

p | f(a,b) =⇒ p /∈ P

}
. (2.8)

Theorem 2.1. Let f(x,y) be a binary form consisting of distinct irreducible factors, all

of degree at most 2. Then there exists a finite set of primes S0, depending on f, such that
the following holds:

Let S be a finite set of primes containing S0. Let Δ be an integer with only prime factors

in S, and let a0,b0 ∈ Z/ΔZ. Let P be a set of primes disjoint from S and satisfying

(2.4) and (2.5) for some α,θi > 0. Assume that αθ � 0.39. Then S(P,B,N) > 0 for N
sufficiently large.

We also have a similar sieve result when f may contain irreducible factors of degree up

to 3, but with a less general sifting set P, satisfying the following assumption.

Assumption 2.2. There exists a positive integer n, a finite set of primes S0, primes

q1, . . . ,qn, and integers t1, . . . ,tn with qj � tj for all j ∈ {1, . . . ,n}, such that

P\S0 ⊆
n⋃

j=1

{p≡ tj (mod qj)} (2.9)

and

degf

n∑
j=1

1

qj −1
� 0.32380.

Theorem 2.3. Let f(x,y) be a binary form consisting of distinct irreducible factors, all
of degree at most 3. Then there exists a finite set of primes S0, depending on f, such that

the following holds:

Let P be a set of primes satisfying Assumption 2.2 with the above choice of S0. Let S

be a finite set of primes containing S0. Let Δ be an integer with only prime factors in S,
and let a0,b0 ∈ Z/ΔZ. Then S(P,B,N)> 0 for N sufficiently large.

For brevity, in the remainder of the paper, we shall denote the condition a ≡
a0 (mod Δ),b≡ b0 (mod Δ) by C(a,b).
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3. Levels of distribution

Crucial to the success of the beta sieve in proving Theorems 2.1 and 2.3 is a good level
of distribution result, which provides an approximation of the quantities

#{(a,b) ∈ BN ∩Z2 : p | fi(a,b),d | f(a,b)}

by multiplicative functions, at least on average over p and d. (Here, and throughout this

section, we keep the notation from Section 2.) In this section, we provide such an estimate,

following similar arguments developed by Daniel [15, Lemma 3.3]. We slightly generalise
the setup as follows:

Let g1,g2 be binary forms with nonzero discriminants. Throughout this section, we fix

S,Δ, and C(a,b), and assume that S contains all primes dividing the discriminants of

g1 and g2. We allow all implied constants to depend only the degrees of g1 and g2 and
a small positive constant ε, which for convenience, we allow to take different values at

different points in the argument.

Let R be a bounded region of R2 whose boundary is a piecewise continuous simple
closed curve of finite length. We denote by Vol(R) and P (R) the volume and perimeter

of R, respectively. Let

A(d1,d2) = #{(a,b) ∈ R ∩Z2 : C(a,b),d1 | g1(a,b),d2 | g2(a,b)}, (3.1)

�(d1,d2) = #{(a,b) (mod d1d2) : d1 | g1(a,b),d2 | g2(a,b)}. (3.2)

We define

r(d1,d2) =A(d1,d2)−
�(d1,d2)Vol(R)

d2Δ2
. (3.3)

In what follows, we let d = d1d2, and we assume that gcd(d1,d2) = gcd(d,Δ) = 1. The

main aim of this section is to prove the following proposition.

Proposition 3.1. Suppose that g1 does not contain any linear factors. Then for any

D1,D2 > 0 and any ε > 0, we have∑
d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

sup
P (R)�N

|r(d1,d2)|  (D1D2)
ε(D1D2+N(D1D2)

1/2+ND2).

As a corollary, we obtain the following level of distribution result.

Corollary 3.2. Suppose that g1 does not contain any linear factors. Let B ⊆ [−1,1]2 be

as in Section 2, and let R =BN . Then for any ε > 0, there exists δ > 0 such that for any

D1,D2 > 0 with D2 N1−ε and D1D2 N2−ε, we have∑
d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

∣∣∣∣A(d1,d2)− N2�(d1,d2)Vol(B)

d2Δ2

∣∣∣∣N2−δ. (3.4)

Proposition 3.1 and Corollary 3.2 are generalisations of Irving’s results from [27, Section

3], which can be recovered by taking g1(x,y) = f(x,y) to be the cubic form Irving
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10 A. Shute

considered, and g2(x,y) = yf(x,y). The method of proof is inspired by the pioneering

work of Daniel on the divisor-sum problem for binary forms, which requires a similar

level of distribution result (see [15, Lemma 3.3]). Daniel’s argument is more delicate,
keeping track of powers of logN in place of factors of N ε, and Corollary 3.2 could be

similarly refined, but this yields no advantage for our applications.

Before proceeding with the proof of Proposition 3.1, we recall the following standard
lattice point counting result.

Lemma 3.3. Let Λ ⊆ R2 be a full-rank lattice, and let R ⊆ R2 be as defined before

Proposition 3.1. Then

#(R ∩Λ) =
Vol(R)

detΛ
+O

(
P (R)

λ1
+1

)
,

where λ1 is the length of a shortest nonzero vector in Λ.

Proof. Let F be a fundamental domain of Λ. The translates v+F for v ∈ Λ tile R2.

Define sets

S− = {v ∈ Λ : (v+F )⊆ R}, S+ = {v ∈ Λ : (v+F )∩R �= ∅}.

Then

Vol(S−+Λ)

det(Λ)
= #S− �#(R ∩Λ)�#S+ =

Vol(S++Λ)

det(Λ)
.

Moreover, S−+Λ⊆ R ⊆ S++Λ, so Vol(S−+Λ)�Vol(R)�Vol(S++Λ). Therefore,∣∣∣∣#(R ∩Λ)− Vol(R)

det(Λ)

∣∣∣∣�#S+−#S−.

However, S+−S− = {v ∈ Λ : (v+F )∩∂R �= ∅}, where ∂R denotes the boundary of R.

Each segment of ∂R of length λ1 can intersect at most four translates of F . Therefore,

S+−S−  P (R)/λ1+1, as required.

We now commence with the proof of Proposition 3.1. We introduce the quantities

R∗(d1,d2),�
∗(d1,d2) and r∗(d1,d2) which are defined similarly to A(d1,d2),�(d1,d2) and

r(d1,d2) but with the added condition gcd(a,b,d) = 1. We write (a1,b1)∼ (a2,b2) if there

exists an integer λ such that (a1,b1)≡λ(a2,b2) (mod d). This forms an equivalence relation

on points (a,b) ∈ Z2 with gcd(a,b,d) = 1. Moreover, the properties g1(a,b) ≡ 0 (mod d1)
and g2(a,b)≡ 0 (mod d2) are preserved under this equivalence. We may therefore define

U (d1,d2) =

{
a,b (mod d) :

gcd(a,b,d) = 1

d1 | g1(a,b),d2 | g2(a,b)

}/
∼ .

For C ∈ U (d1,d2), we define

Λ(C ) = {y ∈ Z2 : y ≡ λ(a,b) (mod d) for some (a,b) ∈ C and some λ ∈ Z}.
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It is easy to check that Λ(C ) is a lattice in Z2, and its set of primitive points is C . For

e ∈ Z, we define

Λ(C ,e) = {(a,b) ∈ Λ(C ) : e | gcd(a,b)}.

By Möbius inversion, we have

R∗(d1,d2) =
∑

C∈U (d1,d2)

∑
e|d

μ(e)#{(a,b) ∈ R ∩Λ(C ,e) : C(a,b)}.

Since gcd(d,Δ) = 1, the set {(a,b) ∈ Λ(C ,e) : C(a,b)} is a coset of the lattice Λ(C ,eΔ),
which has determinant deΔ2. Therefore, by Lemma 3.3,

R∗(d1,d2) =
∑

C∈U (d1,d2)

∑
e|d

μ(e)

(
Vol(R)

deΔ2
+O

(
1+

P (R)

λ1(C )

))
, (3.5)

where λ1(C ) denotes the length of the shortest nonzero vector in Λ(C ).

Each equivalence class C ∈ U (d1,d2) consists of ϕ(d) elements, and so∑
C∈U (d1,d2)

∑
e|d

μ(e)

e
=

∑
C∈U (d1,d2)

ϕ(d)

d
=

�∗(d1,d2)

d
.

Moreover, we have #U (d1,d2) dε, as we now explain. We observe that #U (d1,d2) =

�∗(d1,d2)/ϕ(d), and �∗ is multiplicative by the Chinese remainder theorem. For primes

p /∈ S, we may apply Hensel’s lemma to show that �∗(pe,1),�∗(1,pe) = O(pe) for any
integer e � 1. Therefore, by the trivial bound for the divisor function [22, Section 18.1],

we conclude that

#U (d1,d2) =
�∗(d1,d2)

ϕ(d)
 d1+ε

ϕ(d)
 dε. (3.6)

Applying (3.5), and (3.6), we obtain∑
d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

sup
P (R)�N

|r∗(d1,d2)|

ε (D1D2)
ε

⎛⎜⎜⎝D1D2+N
∑

d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

∑
C∈U (d1,d2)

λ1(C )−1

⎞⎟⎟⎠ .

(3.7)

Let v1(C ) denote a shortest nonzero vector of Λ(C ), and let ‖·‖ be the usual Euclidean
norm. Then ‖v1(C )‖2  |detΛ(C )|= d�D1D2. Therefore,∑

d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

∑
C∈U (d1,d2)

λ1(C )−1 
∑

0<a2+b2�D1D2

M(a,b)√
a2+ b2

, (3.8)

where

M(a,b) = #

{
d1 �D1,d2 �D2,C ∈ U (d1,d2) :

gcd(d1,d2) = gcd(d,Δ) = 1,v1(C ) = (a,b)

}
.
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12 A. Shute

For any d1,d2 enumerated by M(a,b), we have d1 | g1(a,b) and d2 | g2(a,b), so

M(a,b)�#{d1 �D1,d2 �D2 : d1 | g1(a,b),d2 | g2(a,b)}.

Since g1 contains no linear factors, we know that g1(a,b) �= 0 whenever (a,b) �= (0,0).

Suppose in addition that g2(a,b) �= 0. Then by the trivial bound for the divisor function,

we have M(a,b) (D1D2)
ε. We deduce that∑

0<a2+b2�D1D2

g2(a,b) �=0

M(a,b)√
a2+ b2

 (D1D2)
ε

∑
0<a2+b2�D1D2

1√
a2+ b2

 (D1D2)
1/2+ε.

Now suppose that g2(a,b) = 0. Then as above, we have O(Dε
1) choices for d1, but now

D2 choices for d2, so that M(a,b)Dε
1D2. We obtain∑

0<a2+b2�D1D2

g2(a,b)=0

M(a,b)√
a2+ b2

Dε
1D2

∑
0<a2+b2�D1D2

g2(a,b)=0

1√
a2+ b2

.

For a fixed b �= 0, g2(a,b) is a nonzero polynomial in a, and so has O(1) roots. Therefore,∑
0<a2+b2�D1D2

g2(a,b)=0

1√
a2+ b2

=
∑

0<a2+b2�D1D2
b �=0

g2(a,b)=0

1√
a2+ b2

+
∑

0<a2�D1D2

g2(a,0)=0

1

a


∑

b�
√
D1D2

1

b
+

∑
a�

√
D1D2

1

a

 (D1D2)
ε.

To summarize, we have established the following generalisation of [27, Lemma 3.2].

Lemma 3.4. Suppose that g1 does not contain any linear factors. Then for any D1,D2 >
0 and any ε > 0, we have∑

d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

sup
P (R)�N

|r∗(d1,d2)|  (D1D2)
ε(D1D2+N(D1D2)

1/2+ND2).

Now we remove the restriction gcd(a,b,d) = 1. Below, we write A(d1,d2) =

A(R,d1,d2;C(a,b)) in order to make the dependence on R and C(a,b) clear. Let k1 =degg1
and k2 = degg2. We work with multiplicative functions ψk for k = k1 and k = k2, which

map prime powers pr to p�r/k	. We follow the same argument as Irving, but with ψk1
,ψk2

in place of ψ3,ψ4. The motivation for this definition of ψk comes from the fact that for
any integers d,e,k � 1 with e | ψk(d), and for any prime p, we have

p | ψk(d)

e
⇐⇒ p | d

gcd(d,ek)
. (3.9)
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Since gcd(d1,d2) = 1, we have

A(R,d1,d2;C(a,b)) =
∑

e1|ψk1
(d1)

e2|ψk2
(d2)

N(d1,d2,e1,e2), (3.10)

where

N(d1,d2,e1,e2) = #

{
(a,b) ∈ R ∩Z2 :

C(a,b),d1 | g1(a,b),d2 | g2(a,b),
gcd(a,b,ψk1

(d1)ψk2
(d2)) = e1e2

}
. (3.11)

We make a change of variables a′ = a/e1e2,b
′ = b/e1e2 in (3.11). Let e1e2 denote

the multiplicative inverse of e1e2 modulo Δ, which exists due to the assumption

gcd(d1d2,Δ) = 1. The congruence condition C(a,b) is equivalent to the congruence

condition a′ ≡ e1e2a0 (mod Δ) and b′ ≡ e1e2b0 (mod Δ), which we denote by C ′(a′,b′).
We have

d1 | g1(a,b) ⇐⇒ d1 | (e1e2)k1g1(a
′,b′)

⇐⇒ d1 | ek1
1 g1(a

′,b′)

⇐⇒ d1

gcd(d1,e
k1
1 )

| g1(a′,b′),

and similarly for d2 | g2(a,b). For convenience, we define

f1 =
d1

gcd(d1,e
k1
1 )

, f2 =
d2

gcd(d2,e
k2
2 )

.

Changing notation from a′,b′ back to a,b, we deduce that N(d1,d2,e1,e2) can be rewritten

as

#

{
(a,b) ∈ R/(e1e2)∩Z2 :

C ′(a,b),f1 | g1(a,b),f2 | g2(a,b),
gcd(a,b,ψk1

(d1)ψk2
(d2)/e1e2) = 1

}
=#

{
(a,b) ∈ R/(e1e2)∩Z2 :

C ′(a,b),f1 | g1(a,b),f2 | g2(a,b),
gcd(a,b,f1f2) = 1

}
.

=R∗ (R/(e1e2),f1,f2;C
′(a,b)) . (3.12)

The above arguments, but with the congruence conditions removed, and with the specific
choice R = [0,d1d2]

2 also demonstrate that

�(d1,d2) =
∑

e1|ψk1
(d1)

e2|ψk2
(d2)

#

{
(a,b) ∈ R/(e1e2)∩Z2 :

f1 | g1(a,b),f2 | g2(a,b),
gcd(a,b,ψk1

(d1)ψk2
(d2)/e1e2) = 1

}

=
∑

e1|ψk1
(d1)

e2|ψk2
(d2)

(
d1d2

e1e2f1f2

)2

�∗(f1,f2). (3.13)
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We denote the quantity

R∗(R/(e1e2),f1,f2;C
′(a,b))− Vol(R/(e1e2))�

∗(f1,f2)

(f1f2Δ)2

by E(e1,e2,f1,f2). Combining (3.10), (3.12) and (3.13), we have∑
d1�D1,d2�D2

(d1,d2)=(d1d2,Δ)=1

sup
P (R)�N

|r(d1,d2)|=
∑

d1�D1,d2�D2

(d1,d2)=(d1d2,Δ)=1

sup
P (R)�N

∑
e1|ψk1

(d1)

e2|ψk2
(d2)

|E(e1,e2,f1,f2)|

(3.14)

�
∑

e1�D1,e2�D2

∑
f1�D1/e1,f2�D2/e2
(f1,f2)=(f1f2,Δ)=1

δ(e1,f1)δ(e2,f2) sup
P (R)�N

|E(e1,e2,f1,f2)|, (3.15)

where for integers e,f,k,D � 1, we have defined

δ(e,f) = #

{
d�D : e | ψk(d),f =

d

gcd(d,ek)

}
.

We claim that δ(e,f) eε. To see this, suppose that p is a prime and let r = νp(d),s=

νp(e) and t = νp(f). There is a unique choice of r for a given k,s and t provided that

t > 0 – namely, r = ks+ t. If t = 0, then we deduce from f = d/gcd(d,ek) that r � ks.
Taking a product over primes, we conclude that each d enumerated by δ(e,f) is a divisor

of ek multiplied by a quantity that is uniquely determined by e and f. The claim follows

since the number of divisors of ek is O(eε). In our situation, where e1 �D1 and e2 �D2,

we obtain δ(e1,f1)δ(e2,f2) (D1D2)
ε. Therefore, applying Lemma 3.4 for each choice of

e1,e2 in (3.15), we conclude that

∑
d1�D1,d2�D2

(d1,d2)=(d1d2,Δ)=1

sup
P (R�N)

|r(d1,d2)|  (D1D2)
ε
∑

e1�D1
e2�D2

(
D1D2

e1e2
+N

(
D1D2

e1e2

)1/2

+
ND2

e2

)

 (D1D2)
ε
(
D1D2+N(D1D2)

1/2+ND2

)
,

which completes the proof of Proposition 3.1.

Remark 3.5. If g2(a,b) �= 0 for all (a,b) �= (0,0), then we do not need to consider the case

g2(a,b) = 0 in the analysis of the sum in (3.8), and so in our final level of distribution
result, we do not require the assumption D2 N1−ε.

When g1(a,b) does contain linear factors, we can still obtain a basic level of distribution

result from the above argument using the trivial estimate λ1(C )−1 � 1 in (3.7). This

establishes the following lemma.
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Lemma 3.6. Let g1,g2 be arbitrary binary forms with nonzero discriminant. Then for
any ε > 0, there exists δ > 0 such that for any D1,D2 > 0 with D1D2 N1−ε, we have∑

d1�D1,d2�D2

gcd(d1,d2)=gcd(d,Δ)=1

sup
P (R)�N

|r(d1,d2)| N2−δ.

4. Application of the beta sieve

In this section, we prove Theorem 2.1 and Theorem 2.3 by combining the level of

distribution results from Section 3 with the beta sieve of Rosser and Iwaniec [18, Theorem
11.12]. We state the precise version of this theorem we need in Theorem 4.1.

We recall some of the notation from Section 2. We fix a region R = BN for some

B ⊆ [−1,1]2 as in Section 2. Then R has volume �N2 and perimeter N . Let d denote
the largest degree among the irreducible factors of f. (We specialise to the cases d = 2

and d = 3 later. The reason our methods are unable to deal with larger values of d is

explained in Remark 4.5.) Then there exists xNd such that the largest prime factor of
f(a,b) for (a,b) ∈ R ∩Z2 is strictly less than x. Let S be a finite set of primes, including

all primes dividing the discriminant of f(x,y). In Section 4.6, we also append to S all

primes bounded by some constant P1. Let Δ be an integer with only prime factors in S.

Without loss of generality, we may assume every prime in S divides Δ because taking a
multiple of Δ can only decrease the sifting function S(P,B,N) from (4.2). Additionally,

by taking an appropriate multiple of Δ and appropriate lifts of a0,b0, we may assume

that νp(f(a0,b0))< νp(Δ) for all p ∈ S.
All implied constants in this section are allowed to depend on Δ. Let P be a set of

primes disjoint from S satisfying (2.4) and (2.5). We also define P ′ to be the set of primes

not in P ∪S. Let P (x) denote the product of primes in P<x, and similarly for P ′(x).
We also define X =Vol(R)/Δ2.

For a sequence of non-negative real numbers A = (an), and a parameter z � 1, we

define the sifting function

S(A ,P,z) =
∑

gcd(n,P (z))=1

an.

We make the choice

an =#{(a,b) ∈ R ∩Z2 : C(a,b),f(a,b) = n}, (4.1)

so that

S(A ,P,x) = #{(a,b) ∈ R ∩Z2 : C(a,b), gcd(f(a,b),P (x)) = 1}
= S(B,P,N),

(4.2)

where S(B,P,N) is as defined in (2.8). Our aim is to prove that S(A ,P,x) > 0 for

sufficiently large N (which may depend on Δ). For a prime p∈P and for any i∈{0, . . . ,k},
we also consider the sequences Ap,A

(i)
p defined similarly to (4.1) but with the additional

conditions p | f(a,b),p | fi(a,b), respectively, so that

S(Ap,P,p) = #{(a,b) ∈ R ∩Z2 : C(a,b),p | f(a,b), gcd(f(a,b),P (p)) = 1},
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16 A. Shute

S(A (i)
p ,P,p) = #{(a,b) ∈ R ∩Z2 : C(a,b),p | fi(a,b), gcd(f(a,b),P (p)) = 1}.

Using the Buchstab identity, we have

S(A ,P,x) = S(A ,P,Nγ)−
∑

Nγ�p<x
p∈P

S(Ap,P,p),

for a parameter γ ∈ (0,1) to be chosen later. We denote S(A ,P,Nγ) by S1. If p | f(a,b),
then p | fi(a,b) for some i. Therefore, we have the decomposition

S(A ,P,x)� S1−
m∑
i=0

S
(i)
2 −

k∑
i=m+1

(
S
(i)
3 +S

(i)
4

)
,

where

S
(i)
2 =

∑
Nγ�p�N

p∈P

S(A (i)
p ,P,p),

S
(i)
3 =

∑
Nγ�p<Nβi

p∈P

S(A (i)
p ,P,p),

S
(i)
4 =

∑
Nβi�p<x

p∈P

S(A (i)
p ,P,p),

(4.3)

for parameters βi � γ to be chosen later.

4.1. The beta sieve

Like most combinatorial sieves, the beta sieve provides a mechanism to estimate sifting
functions of the form S(A ,P,z) given arithmetic information about the related quantities

|Ad| :=
∑

d|n an for squarefree integers d. More specifically, we require an approximation

|Ad| = |A1|g(d)+ r(d), where g(d) is a multiplicative function supported on squarefree
integers and

R(z) :=
∑
d�z

d squarefree

|r(d)|

is small. Define

V (z) =
∑

d|P (z)

μ(d)g(d) =
∏

p∈P�z

(1−g(p)).

We shall assume that for some κ,L� 0, we have

V (w)�
(
logz

logw

)κ(
1+

L

logw

)
V (z) (4.4)

for all 2� w � z.
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Polynomials represented by norm forms via the beta sieve 17

For some choice of sieve weights Λ± = (λ±
d )d�1, define

V ±(z) =
∑

d|P (z)

λ±
d g(d).

We recall that if Λ± are upper and lower bound sieves of level z (i.e., if λ±
d are supported

on squarefree integers d < z and∑
d|m

λ−
d �

∑
d|m

μ(d)�
∑
d|m

λ+
d

for all integers m), then we have

S(A ,P,z)� |A1|V +(z)+R(z),

S(A ,P,z)� |A1|V −(z)−R(z).
(4.5)

The main theorem of the beta sieve we apply is given in [18, Theorem 11.12]. We record
this theorem here for convenience, in the special case s= 1.

Theorem 4.1. Suppose κ,L are such that the assumption (4.4) holds. Then there is a

choice of upper and lower bound sieve weights Λ± (taking values in {−1,0,1}), and explicit

constants A(κ),B(κ)� 0 such that, as z →∞, we have

V +(z)� (A(κ)+o(1))V (z),

V −(z)� (B(κ)+o(1))V (z).
(4.6)

Notation 4.2. Throughout the remainder of this chapter, for a sequence A , a set of

primes P, a multiplicative function g, and a sifting level z � 1, we define Λ±(A ,P,g,z)
to be the corresponding upper and lower bound beta sieves with these parameters.

We sometimes apply (4.6) directly without reference to a sequence, in which case the

parameter A is omitted from the notation.

In our applications of the beta sieve, the required bounds on R(z) are provided by

Corollary 3.2 and Lemma 3.6. For i ∈ {0, . . . ,k}, we define multiplicative functions

�i(d1,d2) = #{a,b (mod d1d2) : d1 | fi(a,b),d2 | f(a,b)},
�i(d) = #{a,b (mod d) : fi(a,b)≡ 0 (mod d)},
�(d) = #{a,b (mod d) : f(a,b)≡ 0 (mod d)}.

We note that the function �i(d1,d2) is the same as the function �(d1,d2) from (3.2) with
g1(x,y) = fi(x,y) and g2(x,y) = f(x,y), but in this section, we add a subscript to keep

track of the dependence on i. When gcd(d1,d2) = 1, we have �i(d1,d2) = �i(d1)�(d2).

Moreover, for any i ∈ {1, . . . ,k} and any prime p /∈ S, we have

�i(p) = νi(p)(p−1)+1, (4.7)

�(p) = ν(p)(p−1)+1, (4.8)

https://doi.org/10.1017/S1474748025000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000076


18 A. Shute

where νi(p) and ν(p) are as defined in (2.2) and (2.3). We define multiplicative functions

g(p) :=
�(p)

p2
, gi(p) :=

�i(p)

p2

and define

V (x) =
∏

p∈P�z

(1−g(p)), Vi(x) =
∏

p∈P′
�z

(1−gi(p)) (4.9)

for i ∈ {1, . . . ,k}.

4.2. Sieve dimensions

We prove in Lemma 4.3 that the functions V ,Vi defined above satisfy the hypothesis (4.4)
with the sieve dimensions

κ := αθ, κi := 1−αθi,

where α,θi and θ are as defined in (2.4), (2.5) and (2.6).

In the notation of Theorem 4.1, we write A = A(κ),B = B(κ) and Ai = A(κi). We

assume throughout this section that κ < 1/2, and so κi > 1/2. Then A and B are defined
in [18, Equations (11.62, 11.63)] (see also Section 4.9), and Ai is defined in [18, Equations

(11.42), (11.57)]. A table of numerical values of these constants can be found in [18,

Section 11.19].

Lemma 4.3. Let x � 1. For i ∈ {1, . . . ,k}, and V ,Vi as in (4.9), there exist constants

c,ci > 0 such that

V (x) =
c

(logx)κ
(
1+O((logx)−1)

)
, (4.10)

Vi(x) =
ci

(logx)κi

(
1+O((logx)−1)

)
. (4.11)

The asymptotic in (4.11) also holds for i= 0 when f0 �≡ 1.

Proof. We follow a similar approach to [27, Lemma 4.2]. Below, we denote by C a

constant which is allowed to vary from line to line. We have
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logV (x) =−
∑

p∈P�x

( ∞∑
m=1

�(p)m

mp2m

)
(4.12)

=−
∑

p∈P�x

ν(p)(p−1)+1

p2
+C+O((logx)−1). (4.13)

=−
∑

p∈P�x

ν(p)

p
+C+O((logx)−1), (4.14)

where in (4.14) we have used that ν(p) � degf for all but finitely many primes p. To
estimate the sum in (4.14), we apply partial summation, together with our assumption

(2.6). For t� 2, we define

At =
∑

p∈P�t

ν(p). (4.15)

Then ∑
p∈P�x

ν(p)

p
=

Ax

x
+

∫ x

2

At

t2
dt

= κ

∫ x

2

π(t)
(
1+O

(
(log t)−1

))
t2

dt+O((logx)−1)

= κ

∫ x

2

dt

t log t
+C+O((logx)−1)

= κ log logx+C+O((logx)−1). (4.16)

We deduce (4.10) by taking the exponential of (4.16).
We can prove (4.11) in a similar way. When i = 0 and f0 �≡ 1, we have �0(p) = p,

and so the result is a consequence of Mertens’ theorem [29, Equation (2.16)]. For any

i ∈ {1, . . . ,k}, we have

logVi(x) =
∑

p∈P′�x

νi(p)

p
+C+O((logx)−1)

=
∑

p�x prime

νi(p)

p
−
∑

p∈P�x

νi(p)

p
+C+O((logx)−1). (4.17)

Similarly to above, using partial summation and (2.5), we have∑
p∈P�x

νi(p)

p
= αθi log logx+C+O((logx)−1). (4.18)

To treat the first sum in (4.17), we define Li to be the number field generated by fi. For

all but finitely many primes p, the quantity νi(p) is equal to the number of degree one

prime ideals p in Li above p. Let πLi
(x) denote the number of prime ideals p in L of norm
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20 A. Shute

at most x. This count is dominated by degree one ideals. In fact, the number of prime
ideals of degree at least 2 enumerated by πLi

(x) is O(x1/2) because such an ideal must

lie over a rational prime p � x1/2 and each rational prime p has at most [Li : Q] prime

ideals in Li lying above it. Therefore,∑
p�x prime

νi(p) = πLi
(x)+O(x1/2).

Using partial summation, as above, together with the Prime ideal theorem [38], we deduce

that ∑
p�x prime

νi(p)

p
= log logx+C+O((logx)−1). (4.19)

Combining this with (4.18) and taking exponentials, we deduce the asymptotic

in (4.11).

In the following lemma, we record three more useful estimates following similar
arguments to Lemma 4.3.

Lemma 4.4. There exists constants C,Ci > 0 such that

∑
p∈P�x

�i(p)

p2
= (1−κi) log logx+C+O((logx)−1), (4.20)

∑
p∈P′

�x

�i(p)

p2
= κi log logx+Ci+O((logx)−1), (4.21)

∑
p∈P′

�x

�i(p)

p2
logp= κi logx+O(1). (4.22)

Proof. The estimates (4.20) and (4.21) are immediate consequences of (4.16), (4.18) and

(4.19), together with fact that

�i(p)

p2
=

(p−1)νi(p)+1

p2
=

νi(p)

p
+O(p−2).

To prove (4.22), we proceed via partial summation in a very similar manner to (4.16).

We recall from the Prime number theorem that

π(t) =
t

log t
+

t

(log t)2
+O

(
t

(log t)3

)
. (4.23)
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For At as defined in (4.15), we have∑
p∈P′

�x

�i(p)

p2
logp=

∑
p∈P′

�x

νi(p)

p
logp+O(1)

=
Ax logx

x
−
∫ x

2

At

(
log t

t

)′
dt+O(1)

= κi

∫ x

2

(log t−1)π(t)(1+O((log t)−A)

t2
dt+O(1)

= κi

∫ x

2

1

t
+O

(
1

t(log t)2

)
dt+O(1) (from (4.3))

= κi logx+O(1),

as required.

4.3. The sum S1

We apply the lower bound sieve Λ−(A ,P,g,Nγ) and the level of distribution result from

Corollary 3.2 with g1(x,y) = 1,g2(x,y) = f(x,y),D1 = 1 and D2 =Nγ . The hypotheses of

Corollary 3.2 require that γ < 1. We obtain

S1 � (B+o(1))XV (Nγ). (4.24)

By Lemma 4.3, we have

V (Nγ)∼ c

(logNγ)κ
.

For any ε > 0, taking γ sufficiently close to 1, we obtain

S1 �
(cB− ε+o(1))X

(logN)κ
. (4.25)

4.4. The sums S
(i)
2

We write fi(a,b) = pr, for p ∈ P and Nγ < p  N . We apply the switching principle,

which transforms the sum over p defining S
(i)
2 into a much shorter sum over the

variable r.
Let R = N1−γ . The sums S

(i)
2 only involve linear factors fi(x,y) since we assume i ∈

{0, . . . ,m}. Therefore, for (a,b) ∈ R ∩Z2, we have fi(a,b) N , and so |r|  R. Let z =

N1/3. We shall take γ arbitrarily close to 1; for now, we assume that γ > 2/3. Then by

definition of S(A
(i)
p ,P,p), we know that gcd(r,P (R)) = 1 and gcd(f(a,b),P (z)) = 1.

Let r′ = |r|/gcd(r,Δ). We now explain why r′ only has prime factors in P ′. Fix l ∈ S.

Recall the assumption that νl(f(a0,b0)) < νl(Δ). Since fi(a0,b0) | f(a0,b0) and fi(a,b) ≡
fi(a0,b0) (mod Δ) (by the condition C(a,b)), we have

νl(r) = νl(fi(a,b))� νl(f(a,b)) = νl(f(a0,b0))< νl(Δ). (4.26)
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22 A. Shute

Therefore, gcd(r′,Δ) = 1, and by the assumption that every prime in S divides Δ, this

implies r′ has no prime factors in S. Moreover, p is the smallest prime in P dividing

fi(a,b). Since r < p, this means that r′ has no prime factors in P, and hence only has
prime factors in P ′.
However, fi(a,b)/r

′ has no prime factors in P ′. Therefore,

S
(i)
2 �

∑
r′�R

gcd(r′,P (R)Δ)=1

S
(i)
2 (r′), (4.27)

where

S
(i)
2 (r′) = #

⎧⎨⎩(a,b) ∈ R ∩Z2 :

C(a,b),r′ | fi(a,b),
gcd(fi(a,b)/r

′,P ′(z)) = 1
gcd(f(a,b),P (z)) = 1

⎫⎬⎭ . (4.28)

Below, for convenience, we change notation from r′ back to r.
Let Λ+

1 ,Λ
+
2 be upper bound sieves of level z. Defining A(dr,e),r(dr,e) as in Section 3

with g1(x,y) = fi(x,y) and g2(x,y) = f(x,y), and writing

m1 = gcd

(
fi(a,b)

r
,P ′(z)

)
, m2 = gcd(f(a,b),P (z)),

we obtain

S
(i)
2 (r)�

∑
(a,b)∈R∩Z2

C(a,b)

∑
d|m1

μ(d)
∑
e|m2

μ(e)

�
∑

(a,b)∈R∩Z2

C(a,b)

∑
d|m1

λ+
1 (d)

∑
e|m2

λ+
2 (e)

�
∑

d|P ′(z)
gcd(d,r)=1

λ+
1 (d)

∑
e|P (z)

A(dr,e)λ+
2 (e)

=
∑

d|P ′(z)
gcd(d,r)=1

λ+
1 (d)

∑
e|P (z)

λ+
2 (e)

(
X�(dr,e)

(dre)2
+ r(dr,e)

)

�

⎛⎜⎜⎝X�i(r)

r2

∑
d|P ′(z)

gcd(d,r)=1

λ+
1 (d)gi(d)

∑
e|P (z)

λ+
2 (e)g(d)

⎞⎟⎟⎠+
∑
d,e�z

gcd(dr,e)=1
gcd(dre,Δ)=1

|r(dr,e)|. (4.29)
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Choose λ+
1 ,λ

+
2 to be the beta sieves Λ+(P ′\{p | r},gi,N1/3),Λ+(P,g,N1/3), respectively.

Then the remainder term in (4.29) can be bounded by∑
d,e�N1/3

gcd(dr,e)=1
gcd(dre,Δ)=1

|r(dr,e)|�
∑

d�N1/3R
e�N1/3

gcd(dr,e)=1
gcd(dre,Δ)=1

|r(d,e)|,

which is negligible by Lemma 3.6 because N2/3R=N5/3−γ N1−ε.

Define a multiplicative function hi(r) supported on squarefree integers r, which is zero
unless all prime factors of r are in P ′ and

hi(r) =
�i(r)

r2

∏
p|r

(
1− �i(p)

p2

)−1

(4.30)

otherwise. Applying Theorem 4.1, we conclude that

S
(i)
2 (r)�Xhi(r)V (N1/3)Vi(N

1/3)(AAi+o(1)).

From Lemma 4.3, we obtain

S
(i)
2 � (cciAAi+o(1))X

(logN1/3)κ+κi

∑
r�R

hi(r).

To deal with the sum over hi(r), we note that

∑
r�R

hi(r)�
∏

p∈P′

p�R

(
1+

∞∑
m=1

hi(p
m)

)
=
∏

p∈P′

p�R

(1−gi(p))
−1

(1+O(p−2)). (4.31)

Applying Lemma 4.3 to the product, we obtain∑
r�R

hi(r) (logR)κi .

Since R=N1−γ , we deduce that

S
(i)
2  cciAAiX

(logN)κ

(
(1−γ)κi

(1/3)κi+κ

)
.

Therefore, S
(i)
2 can be made negligible compared to S1 by taking γ arbitrarily close to 1.

4.5. The sums S
(i)
3

For a fixed prime p and an upper bound sieve λ+ of level z, we have

S(A (i)
p ,P,z)�

∑
d|P (z)

λ+(d)A(p,d),

where A(p,d) is as in Section 3 with g1(x,y) = fi(x,y) and g2(x,y) = f(x,y).
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We first deal with the primes p in the interval I := (Nγ,N2−γ−ε]. For any p ∈ I, let λ+

be the beta sieve Λ+(A
(i)
p ,P,gi(p)g,N

γ). We obtain

S(A (i)
p ,P,p)� S(A (i)

p ,P,Nγ)

� (A+o(1))XV (Nγ)gi(p)+
∑

d�Nγ

gcd(d,pΔ)=1

|r(p,Nγ)|. (4.32)

We apply Corollary 3.2 with D1 =N2−γ−ε and D2 =Nγ . These choices of D1,D2 satisfy
the hypotheses of Corollary 3.2. Taking a sum over p ∈ I, the contribution from the

remainder term in (4.32) is negligible. We obtain∑
p∈I∩P

S(A (i)
p ,P,p)� (A+o(1))XV (Nγ)

∑
p∈I∩P

gi(p). (4.33)

It follows from Lemma 4.4 that∑
Nγ<p�N2−γ−ε

gi(p) = log logN2−γ−ε− log logNγ +o(1)

= log(2−γ− ε)− logγ+o(1).

Therefore, the contribution to S
(i)
3 from this range is negligible if we take γ arbitrarily

close to 1.

In the remaining range N2−γ−ε < p < Nβi , we split into dyadic intervals (R,2R].
Note that for p ∈ (R,2R], the assumption γ < 1 implies that N2−ε/R < p, so

S(A
(i)
p ,P,p) � S(A

(i)
p ,P,N2−ε/R). For each dyadic interval, we apply the beta sieve

Λ+(A
(i)
p ,P,gi(p)g,N

2−ε/R) and the level of distribution result from Corollary 3.2 with

D1 = 2R and D2 = N2−ε/R. At this point, we need to assume that βi < 2 for all i, so
that D2 � 1. We obtain ∑

N2−γ−ε<p<Nβi

p∈P

S(A (i)
p ,P,p) (4.34)

�
∑

R dyadic

N2−γ−ε<R<Nβi

∑
p∈(R,2R]

p∈P

S(A (i)
p ,P,N2−ε/R)

� (A+o(1))X
∑

R dyadic

N2−γ−ε<R<Nβi

V (N2−ε/R)
∑

p∈(R,2R]
p∈P

gi(p)

� (cA+o(1))X

(logN)κ

∑
N2−γ−ε�p<Nβi

p∈P

gi(p)

(2− ε− logp
logN )κ

, (4.35)

where the last line follows from Lemma 4.3 and the fact that V (N2−ε/R) <

V (N2−ε−logp/ logN ) for all p ∈ (R,2R].

https://doi.org/10.1017/S1474748025000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000076


Polynomials represented by norm forms via the beta sieve 25

We denote the sum in (4.35) by T (βi,κ). Since γ < 1, we have 2−γ−ε > 1 for sufficiently

small ε, and so we may upper bound T (βi,κ) by enlarging its range of summation to

N < p <Nβi . Define

A(t) =
∑

p∈P�t

gi(p), h(t) =

(
2− ε− log t

logN

)−κ

.

From Lemma 4.4, we have A(t) = (1− κi) log log t+ C + o(1) for some constant C.

In particular, for any r > 0, we have A(Nr)−A(N) = (1− κi) logr+ o(1). Applying

summation by parts, followed by the substitution t=Ns, we obtain

T (βi,κ)� (A(Nβi)−A(N))h(Nβi)−
∫ Nβi

N

(A(t)−A(N))h′(t)dt

= (A(Nβi)−A(N))h(Nβi)−
∫ βi

1

(A(Ns)−A(N))
∂h(Ns)

∂s
ds

= (1−κi) logβih(N
βi)− (1−κi)

∫ βi

1

(logs)
∂h(Ns)

∂s
ds+o(1)

= (1−κi)

∫ βi

1

h(Ns)

s
ds+o(1). (4.36)

Taking ε sufficiently small and redefining it appropriately, we may replace h(Ns) by

(2− s)−κ at the cost of adding ε in (4.36). Combining with (4.35), we conclude that for
any ε > 0,

S
(i)
3 � (cA+ ε+o(1))X

(logN)κ
· (1−κi)

∫ βi

1

(2−s)−κ ds

s
. (4.37)

Due to the factor 1−κi = αθi appearing in the above estimate, S
(i)
3 becomes negligible

compared to S1 as α → 0. We perform a more precise quantitative comparison in

Section 4.7.

4.6. The sums S
(i)
4

We begin in a similar manner to the sums S
(i)
2 , by writing fi(a,b) = pr, for p ∈ P, where

now Nβi � p < x and R= x/Nβi . Let D1 =Nη1 and D2 =Nη2 for parameters η1,η2 > 0

(which may depend on r and i) to be chosen later. We assume η2 <βi so that the condition
gcd(f(a,b),P (p)) = 1 can be replaced by the weaker condition gcd(f(a,b),P (Nη2)) = 1.

Proceeding as in Section 4.4, we have

S
(i)
4 �

∑
r�R

gcd(r,P (Nβi )Δ)=1

S
(i)
4 (r), (4.38)

where

S
(i)
4 (r) = #

⎧⎨⎩(a,b) ∈ R ∩Z2 :

C(a,b),r | fi(a,b),
gcd(fi(a,b)/r,P

′(Nη1)) = 1

gcd(f(a,b),P (Nη2)) = 1

⎫⎬⎭ . (4.39)

https://doi.org/10.1017/S1474748025000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000076


26 A. Shute

Similarly to (4.29), for any upper bound sieves λ+
1 ,λ

+
2 of levels Nη1,Nη2 , the quantity

S
(i)
4 (r) is bounded above by⎛⎜⎜⎝X�i(r)

r2

∑
d|P ′(Nη1 )
gcd(d,r)=1

λ+
1 (d)gi(d)

∑
e|P (Nη2 )

λ+
2 (e)g(d)

⎞⎟⎟⎠+
∑

d�Nη1,e�Nη2

gcd(dr,e)=1
gcd(dre,Δ)=1

|r(dr,e)|.

In order to ensure the error terms from applying the level of distribution result from

Corollary 3.2 are negligible after summing over r, we need η1,η2 to satisfy

η1,η2 > 0, η2 � 1− δ (for all r �R), (4.40)∑
r�R

Nη1+η2 �N2−δ. (4.41)

Remark 4.5. There are no η1,η2 satisfying (4.40) and (4.41) unless R�N2−δ, i.e., x�
N2−δ+βi . Since we had to assume βi < 2 in the treatment of the sums S

(i)
3 in Section 4.5,

this means our approach cannot handle the case d� 4, in which f(x,y) has an irreducible
factor of degree � 4. Therefore, we proceed with the additional assumption that d� 3.

Choose λ+
1 ,λ

+
2 to be the beta sieves Λ+(P ′\{p | r},gi,Nη1),Λ+(P,g,Nη2), respectively.

Recalling the definition of hi(r) from (4.30), we obtain

S
(i)
4 (r)� (AAi+o(1))Xhi(r)Vi(N

η1)V (Nη2). (4.42)

Using Lemma 4.3 to estimate the products in (4.42), and taking a sum over r, we obtain

S
(i)
4 � (cciAAi+o(1))X

(logN)κi+κ

∑
r�R

hi(r)

ηκi
1 ηκ2

. (4.43)

We divide the sum over r into dyadic intervals r ∈ (R1,2R1], and take η1,η2 depending

only on R1 and i. To obtain a good estimate for (4.43), we maximise ηκi
1 ηκ2 subject to the

constraints

η1,η2 > 0, η2 � 1− δ, η1+η2 � 2− δ− logR1

logN
.

By a similar computation to [27, Section 6.5], the optimal solution is

η1 =
κi

κ+κi

(
2− δ− logR1

logN

)
,

η2 =
κ

κ+κi

(
2− δ− logR1

logN

)
.

We note that for δ > 0 sufficiently small, this solution satisfies η2 � 1− δ due to the

assumption κ < 1/2. Substituting this choice of η1,η2 into (4.43), we obtain∑
r�R

hi(r)

ηκi
1 ηκ2

�
∑
r�R

w(r,δ)hi(r), (4.44)
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where

w(r,δ) =

(
κ

κ+κi

)−κ(
κi

κ+κi

)−κi
(
2− δ− logr

logN

)−(κ+κi)

. (4.45)

We treat the sum in (4.44) using partial summation, for which we require estimates for∑
r�thi(r). For the case d = 2, the estimate already found in (4.31) is sufficient. Below,

we find a more refined estimate which we use in the case d= 3.

We first consider the contribution to (4.44) from squarefree values of r. We would like
to apply [18, Theorem A.5], which states that under certain hypothesis on the function

hi(r), we have ∑
m�x

μ2(m)=1

hi(m) = chi
(logx)κi +O((logx)κi−1), (4.46)

where

chi
=

1

Γ(κi+1)

∏
p

(
1− 1

p

)κi

(1+hi(p)).

In the following lemma, we verify that the function hi(r) satisfies the required hypotheses
for [18, Theorem A.5].

Lemma 4.6. For any x� 1 and any 2�w < z, the function hi(r) satisfies the following

estimates: ∏
w�p<z

(1+hi(p))
(
logz

logw

)κi

, (4.47)

∑
p

hi(p)
2 logp <∞, (4.48)

∑
p�x

hi(p) logp= κi logx+O(1). (4.49)

Proof. To prove (4.47), we note that 1+hi(p) =
(
1− 	i(p)

p2

)−1

for all p ∈ P ′. The result

is then immediate from Lemma 4.3. To prove (4.45), we recall that �i(p)  p, and so

hi(p) p−1. Therefore, ∑
p

hi(p)
2 logp

∑
p

logp

p2
<∞.

Finally, we note that ∑
p�x

hi(p) logp=
∑

p∈P′
�x

�i(p)

p2
logp+O(1),

so that (4.49) follows by applying Lemma 4.4.
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We can now evaluate the sum in (4.44) using partial summation. We obtain

∑
r�R

μ2(r)=1

w(r,δ)hi(r) = w(R,δ)
∑
r�R

μ2(r)=1

hi(r)−
∫ R

1

⎛⎜⎜⎝ ∑
r�t

μ2(r)=1

hi(r)

⎞⎟⎟⎠w′(t,δ)dt

= chi

[
(logR)κiw(R,δ)−

∫ R

1

w′(t,δ)(log t)κidt

]

+o(1)

[
(logR)κiw(R,δ)+

∫ R

1

w′(t,δ)(log t)κidt

]

= chi
κi

∫ R

1

w(t,δ)(log t)κi−1t−1dt+o((logR)κi)

= chi
κi(logN)κi

∫ logR/ logN

0

w(Ns,δ)sκi−1ds+o((logR)κi)

� (chi
κi+o(1))(logN)κi

∫ d−βi

0

W (s)ds,

where W (s) = w(Ns,0)sκi−1.

We now consider the contribution to (4.30) from those r which are not squarefree. Let
di denote the degree of fi. From [15, Lemma 3.1], we have �i(p

α)  p2α(1−1/di) for all

primes p /∈ S and any positive integer α. By the multiplicativity of hi(r), it follows that

hi(r) r−2/di+ε.
We recall that a positive integer n is squareful if for any prime p | n, we also have p2 | n.

Since di � 3, we have∑
r squareful

hi(r)
∑

r squareful

r−2/di+ε �
∑

r squareful

r−2/3+ε <∞,

where the last inequality follows from partial summation together with the fact that there

are O(M1/2) squareful positive integers less than M. Since hi(r) is supported on integers

with no prime factors in S, for any ε > 0, there exists a set of primes S0, depending only

on ε and f, such that for any S ⊇ S0, we have∑
r squareful

r>1

hi(r)< ε.

For the remainder of this section, we assume that S ⊇ S0. Proceeding as in [27, Lemma

6.2], we use that w(r,δ) 1, and decompose each non-squarefree r into r = r1r2, where

r1 is squarefree and r2 > 1 is squareful. We have∑
r�R

μ2(r)=0

w(r,δ)hi(r)
∑
r1�R

μ2(r1)=1

hi(r1)
∑

r2 squareful
right2>1

hi(r2).
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Combining with (4.46), we deduce that for any ε > 0, we have∑
r�R

μ2(r)=0

w(r,δ)hi(r)� (ε+o(1))(logN)κi .

In conclusion, we have the upper bound

S
(i)
4 � (cciAAichi

κi+ ε+o(1))X

(logN)κ

∫ d−βi

0

W (s)ds, (4.50)

where

W (s) =

(
κ

κ+κi

)−κ(
κi

κ+κi

)−κi

(2−s)−(κ+κi)sκi−1. (4.51)

Remark 4.7. Whilst c,ci,chi
all depend on S, the ratio κicichi

AAi/B of the constants

in the bounds for S
(i)
4 and S1 is independent of S, as seen below in (4.52). Therefore, we

may indeed take ε to be arbitrarily small in (4.50) without sacrificing anything in our

comparison of S1 and S
(i)
4 . The o(1) terms in (4.50) and in the bounds for the other sums

S1, S
(i)
2 ,S

(i)
3 also depend on S (via the quantity L in (4.4)), but this does not matter

because we may take N to be sufficiently large in terms of S.

4.7. Proof of Theorem 2.1

We now suppose that d= 2 (i.e., f(x,y) consists of irreducible factors of degree at most

2). We first obtain a qualitative result by considering the limit as α→ 0. As α→ 0, we

have κ → 0 and κi → 1. Therefore, we have Ai → A(1), which is equal to 2eγ , where
γ = 0.57721. . . is the Euler–Mascheroni constant. Moreover, by [18, Equation (11.62)], we

have A(κ),B(κ)→ 1 as κ→ 0. By a very similar computation to [27, p. 248], we have

cichi
=

e−γκi

Γ(1+κi)
. (4.52)

Therefore, the ratio of the constants in the bounds for S1 and S
(i)
4 is κicicchi

AAi/cB,

which is independent of S and tends to zero as α→ 0. Also,

lim
α→0

W (s) = (2−s)−1.

Therefore,

lim
α→0

S
(i)
4  (B+o(1))X

(logN)κ
(log2− logβi) . (4.53)

For all ε > 0, by choosing βi sufficiently close to 2, we have the bound

lim
α→0

S
(i)
4 � (εB+o(1))X

(logN)κ
 εS1. (4.54)

We recall from Sections 4.4 and 4.5 that S
(i)
2 and S

(i)
3 are also negligible compared to S1

as α→ 0. Therefore, we see that S(A ,P,x) > 0 for sufficiently small α and sufficiently

large N.

https://doi.org/10.1017/S1474748025000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000076


30 A. Shute

To obtain the best quantitative bounds, the choices of βi ∈ (1,2) should be optimised so

as to minimise S
(i)
3 +S

(i)
4 . However, in practice, numerical computations suggest that the

optimal choices for βi are extremely close to 2, and little is lost in taking them arbitrarily

close to 2, as above. In this case, the contributions from the sums S
(i)
4 are negligible.

Taking a sum over i of the estimates from (4.37) and combining with (4.25), for any

ε > 0, we have

S(A ,P,x)�
(
(c− ε+o(1))X

(logN)κ

)(
B−Aα

k∑
i=m+1

θi

∫ 2

1

(2−s)−κ ds

s

)
.

Let r(κ) =B/A. Then we have established that S(A ,P,x)> 0 provided that

r(κ)−α

k∑
i=m+1

θi

∫ 2

1

(2−s)−κ ds

s
> 0. (4.55)

We recall that θ = θ0+ · · ·+θk and κ= αθ. Therefore, we may replace α
∑k

i=m+1 θi with

the trivial upper bound κ, after which we find by numerical computations (see Section 4.9

for details) that the largest value of κ we can take in (4.55) is κ = 0.39000. . .. Thus the
condition αθ � 0.39 is enough to ensure that S(A ,P,x)> 0 for sufficiently large N. This

completes the proof of Theorem 2.1.

4.8. Proof of Theorem 2.3

We now discuss the case d= 3, where f(x,y) may contain irreducible factors of degree up

to 3. We recall in the case d= 2, the sums S
(i)
4 could be made negligible compared to S1

by choosing βi arbitrarily close to 2, due to the factor log2− logβi appearing in (4.53).
When d= 3, we obtain the same bound as in (4.53), but with log2− logβi replaced with

log2− log(βi−1). Consequently, S
(i)
4 is no longer negligible, even when α→ 0 and βi is

arbitrarily close to 2. In fact, it can be checked that its limit as α→ 0 and βi → 2 is larger
than S1, and so the above methods break down in this case.

However, we recall the additional hypothesis in Theorem 2.3 that Assumption 2.2 holds.

By enlarging P if necessary, we may assume that equality holds in (2.9) – namely,

P\S =
n⋃

j=1

{p≡ ti (mod qi)}.

By Dirichlet’s theorem on primes in arithmetic progressions, (2.4) holds with α �∑n
j=1

1
qj−1 � 0.32380. Moreover, it follows from Lemma 5.8 (a version of the Chebotarev

density theorem) that (2.5) holds for some θi � 3. We now explain why this choice of P
is easier to handle than arbitrary choices of P of the same density α.

When applying the switching principle for S
(i)
4 , we wrote fi(a,b) = pr for p ∈ P. Since

we may assume q1, . . . ,qn ∈ S0, the congruence condition C(a,b) forces fi(a,b) to lie in a
particular congruence class modulo q1, . . . ,qn. Combined with the fact that p≡ tj (mod qj)

for some j, we see that r lies in a particular congruence class modulo qj for some j ∈
{1, . . . ,n}, and this congruence class depends only on tj,C(a,b) and f. Moreover, by (4.26),
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we have that gcd(r,Δ) = gcd(fi(a0,b0),Δ) depends only on C(a,b) and f. We deduce that

there exist r1, . . . ,rn, depending only on t1, . . . ,tn,C(a,b) and f, such that r′ := |r|/gcd(r,Δ)

lies in the set

T := {r′ ∈ N : r′ ≡ rj (mod qj) for some j ∈ {1, . . . ,n}}.

Adding this condition into (4.43) and (4.44) and changing notation from r′ back to r, we

obtain

S
(i)
4 � (cciAAi+o(1))X

(logN)κi+κ

∑
r∈T�x

w(r,δ)hi(r). (4.56)

As demonstrated by Irving [27, Lemma 6.1], the argument based on [18, Theorem A.5]

we used to obtain (4.46) can be generalised to give∑
r∈T�x

μ2(r)=1

hi(r)�
n∑

j=1

∑
r�x

r≡rj (mod qj)

hi(r) = chi
(logx)κi

n∑
j=1

1

qj −1
+O((logx)κi−1). (4.57)

Proceeding as before, we deduce the same estimate for S
(i)
4 as in (4.50), but with an

additional factor α0 :=
∑n

j=1
1

qj−1 . It is now clear qualitatively that for sufficiently large

q1, . . . ,qn (i.e., as α0 → 0), the sums S
(i)
4 are once again negligible compared to S1.

We now make the above discussion more quantitative in order to complete the proof of
Theorem 2.3. Combining everything, we see that S(A ,P,x) > 0 for sufficiently large N

provided that

r(κ)−
∑

i :degfi=2

αθi

∫ 2

1

(2−s)−κ ds

s
−

∑
i :degfi=3

α0Aiκicichi

∫ 1

0

W (s)ds > 0. (4.58)

We denote the left-hand side of (4.58) by F (θ). Recalling (4.51) and (4.52), we have

Aiκicichi

∫ 1

0

W (s)ds=
Aiκie

−γκiκ−κκ−κi
i (κ+κi)

κ+κi

Γ(1+κi)

∫ 1

0

(2−s)−(κ+κi)sκi−1ds.

(4.59)

For a fixed choice of κ < 1/2, the integrand is a decreasing function of κi because 0�
s

(2−s) � 1 for any s ∈ [0,1]. The functions Γ(1+κi)
−1, κ−κi

i and e−γκi are also decreasing

in κi in the range κi ∈ (1/2,1). Let t = α0degf . Since κi � 1−κ � 1− t, we therefore

obtain an upper bound by replacing κi with 1− t in all these terms. The remaining terms

in (4.59) are all increasing in κi, and we apply the trivial bound κi � 1. Finally, we note
that κ−κ(κ+κi)

κ+κi is an increasing function in κ for κ < 1/2, and so we may replace κ

by t in this expression. Therefore, (4.59) can be bounded by

A(1)eγ(t−1)t−t(t+1)t+1

Γ(2− t)

∫ 1

0

(2−s)−1s−κds. (4.60)

We denote the factor outside the integral in (4.60) by H(t). The integral in (4.60) is

equal to the first integral in (4.58), as can be seen by making the substitution u= 2− s.
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Therefore,

F (θ)� r(κ)−

⎛⎝ ∑
i :degfi=2

αθi+
∑

i :degfi=3

α0H(t)

⎞⎠∫ 1

0

(2−s)−1s−κds.

Recalling that A(1) = 2eγ , it can be checked that H(t) > 4 for all t > 0.2, and so in

particular, H(t) > 2θi whenever degfi = 2. Moreover, r is a decreasing function of κ, so
r(κ)� r(t). We obtain

F (θ)� r(t)−H(t)

∫ 1

0

(2−s)−1s−tds

⎛⎝ ∑
i :degfi=2

α/2+
∑

i:degfi=3

α0

⎞⎠
� r(t)− tH(t)

3

∫ 1

0

(2−s)−1s−tds (4.61)

for any t > 0.2. We find by numerical computations that the above expression is positive
provided that t � 0.32380.. Since t = α0degf , this is implied by the condition (2.9)

assumed in Theorem 2.3.

4.9. Details of the numerical computations

We now explain how we obtained numerical values with guaranteed error bounds in the
proofs of Theorem 2.1 and Theorem 2.3. From [18, Equations (11.62), (11.63)], we have

for 0< κ < 1/2 that

A(κ) =
2eγκ

Γ(1−κ)

q(κ)

p(κ)+ q(κ)
, B(κ) =

2eγκ

p(κ)+ q(κ)
,

where

p(κ) =

∫ ∞

0

z−κ exp(−z+κEi(−z))dz

q(κ) =

∫ ∞

0

z−κ exp(−z−κEi(−z))dz

and where Ei(−z) = −
∫∞
z

e−u

u du is the standard exponential integral. For any 0 < κ <
1/2, the integrand defining p(κ) is monotonically decreasing, decays exponentially as

z→∞, and is bounded above by 2. Similarly, the integrand defining q(κ) is monotonically

decreasing and decays exponentially as z → ∞, but diverges as z → 0. To analyse its
behaviour near 0, we note that for δ ∈ (0,1) and κ < 0.4, we have∫ δ

0

z−κe−z exp(−κEi(−z))dz

�
∫ δ

0

z−0.4 exp

(
0.4

∫ ∞

z

e−u

u
du

)
dz

�
∫ δ

0

z−0.4 exp

(
0.4

∫ 1

z

du

u
+0.4

∫ ∞

1

e−udu

)
dz
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�
∫ δ

0

z−0.4 exp(−0.4log(z)+0.4e−1)dz

� 2

∫ δ

0

z−0.8dz

� 10δ0.2.

Therefore, we can obtain estimates for p(κ),q(κ) (and hence also A(κ),B(κ) with provable

error bounds using standard numerical integration methods such as the trapezoid rule.

The functions from (4.55) and (4.61) are bounded, continuous, and monotonically

decreasing in κ, and so it is straightforward to find their roots to the desired precision.
This was implemented in Sage, which produced the values 0.39000,0.32380 correct to five

decimal places in 12.3 seconds on a standard laptop with 2 cores.

5. Application to the Hasse principle

In this section, we apply the main sieve results (Theorem 2.1 and Theorem 2.3) obtained

in Section 4 in order to prove Theorem 1.1 and Theorem 1.3.

5.1. Algebraic reduction of the problem

Let K be a number field of degree n satisfying the Hasse norm principle. In [27, Lemma

2.6], Irving turns the problem of establishing the Hasse principle for

f(t) =N(x1, . . . ,xn) �= 0 (5.1)

into a sieve problem. Irving assumes that f(t) ∈ Z[t] is an irreducible cubic polynomial.

However, in the following result, we demonstrate that Irving’s strategy can be applied
to establish a similar result for an arbitrary polynomial f ∈ Z[t]. We recall that f(x,y)

denotes the homogenisation of f. Throughout this section, we make the choice

P = {p /∈ S : the inertia degrees of p in K/Q are not coprime} (5.2)

for a finite set of primes S containing all ramified primes in K/Q.

Proposition 5.1. Suppose that (5.1) has solutions over Qp for every p and over R. Let

P and S be as in (5.2). Then there exists Δ ∈ N, divisible only by primes in S, integers

a0,b0, and real numbers r,ξ > 0 such that the following implication holds:
Suppose that a,b are integers for which

(1) a≡ a0 (mod Δ) and b≡ b0 (mod Δ),

(2) |a/b− r|< ξ,

(3) bf(a,b) has no prime factors in P.

Then (5.1) has a solution over Q.

By multiplicativity of norms, it suffices to find integers a,b such that b and f(a,b) are

in NK/Q(K
∗). Since K satisfies the Hasse norm principle, we have Q∗ ∩NK/Q(IK) =
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NK/Q(K
∗), where IK denotes the ideles of K. Consequently, to show that c ∈ Q∗ is a

norm from K, it suffices to find elements xv ∈K∗
v for each place v of K, such that

(1) For all but finitely many places v ofK, we have xv ∈O∗
v (this ensures that (xv)∈ IK).

(2) For all places w of Q, we have ∏
v|w

NKv/Qw
(xv) = c. (5.3)

The arguments in [27, Lemma 2.2, Lemma 2.3, Lemma 2.4] go through without changes.
We summarise them below.

Lemma 5.2. Suppose c �= 0 is an integer. Then

(1) If p � c and K/Q is unramified at p, then there exist xv ∈ O∗
v for each place v of K

above p, such that
∏

v|pNKv/Qp
(xv) = c.

(2) Suppose that K/Q is unramified at p, and that the inertia degrees above p in K

are coprime. Then there exist xv ∈ K∗
v for each place v of K above p, such that∏

v|pNKv/Qp
(xv) = c.

(3) Let p be a place of Q. Suppose that there exists x1, . . . ,xn ∈ Qp such that c =

N(x1, . . . ,xn). Then there exists xv ∈K∗
v for each place v of K above p, such that∏

v|pNKv/Qp
(xv) = c.

We now give a slight generalisation of [27, Lemma 2.5] to the case of an arbitrary

polynomial f.

Lemma 5.3. Let p be a prime for which f(t) = N(x1, . . . ,xn) �= 0 has a solution over
Qp. Then there exists a0,b0 ∈ Z and l ∈ N (all depending on p) such that for any a,b ∈ Z

satisfying a≡ a0 (mod pl),b≡ b0 (mod pl), we have b,f(a,b) ∈N(Qn
p )\{0}.

Proof. We define N =N(Qn
p )\{0}. Let t1 ∈Qp be such that f(t1) =N(x1, . . . ,xn) �=0 has

a solution over Qp. Choose a1,b1 ∈ Zp such that νp(b1) is a multiple of n, and a1/b1 = t1.

Then b1 ∈N and f(a1,b1) ∈N .
The set N ⊆ Qp is open, and so N ×N ⊆ Q2

p is open. Moreover, the map ϕ : Q2
p →

Q2
p sending (a,b) to (f(a,b),b) is continuous in the p-adic topology. Therefore, the set

ϕ−1(N ×N) is open, and contains the element (a1,b1). Hence, there is a small p-adic

ball with centre (a1,b1), all of whose elements (a,b) satisfy b,f(a,b) ∈ N . This ball can
be described by congruence conditions a≡ a0 (mod pl),b≡ b0 (mod pl) for a sufficiently

large integer l, as claimed in the lemma.

Proof of Proposition 5.1. The proof closely follows the argument in [27, Lemma 2.6].

By the Hasse norm principle, to find solutions to (5.1), it suffices to find integers a,b such

that properties (1) and (2) stated before Lemma 5.2 hold with c= b and c= f(a,b). We
divide the places of Q into four sets:

(1) p ∈ S. Here, Lemma 5.3 gives congruence conditions a ≡ a0,p (mod pl), b ≡
b0,p (mod pl) which ensure that b,f(a,b)∈N(Qn

p )\{0}. By part (3) of Lemma 5.2, we

deduce that property (2) stated before Lemma 5.2 holds with c= b and c= f(a,b).
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The congruence conditions at each prime p ∈ S can be merged into one congruence
condition a≡ a0 (mod Δ),b≡ b0 (mod Δ) using the Chinese remainder theorem.

(2) p /∈ S and p /∈ P. If p � b, we apply part (1) of Lemma 5.2 with c = b. If p | b, we
apply part (2) of Lemma 5.2 with c = b. The same argument works for f(a,b) by

choosing c= f(a,b).

(3) p ∈ P. Since we are assuming that bf(a,b) has no prime factors in P, for these

primes, part (1) of Lemma 5.2 applies with c= b and c= f(a,b).

(4) p = ∞. We follow a similar argument to Lemma 5.3. We may assume that (5.1)

is everywhere locally soluble, so in particular, there exists r ∈ R such that f(r) ∈
N(Rn)\{0}. Since f is continuous andN(Rn)\{0} is open in the Euclidean topology,

we can find ξ > 0 such that f(t)∈N(Rn)\{0} whenever |t−r|<ξ. Clearly, solubility

of f(t) =N(x) �= 0 and f(−t) =N(x) �= 0 over Q are equivalent; consequently, we
may assume r > 0. Suppose in addition that t ∈ Q, and write t = a/b for a,b ∈ N.

Since b is positive, it is automatically in N(Rn)\{0}. By multiplicativity of norms,

we conclude that b,f(a,b) ∈N(Rn)\{0}. The condition (5.3) now follows from part
(3) of Lemma 5.2.

Example 5.4. Let f(t) = (t2−2)(−t2+3) and K =Q(i), so that

f(x,y) = (x2−2y2)(−x2+3y2)

NK/Q(u,v) = u2+v2.

It is known that there is a Brauer–Manin obstruction to the Hasse principle for the

equation (t2 − 2)(−t2 + 3) = u2 + v2 �= 0 by the work of Iskovskikh [28]. However,

Proposition 5.1 still applies.
When p≡ 1 (mod 4), the prime p splits in K/Q, and so the inertia degrees of p in K/Q

are coprime. However, when p≡ 3 (mod 4), the prime p is inert in K/Q and has degree

2, so the inertia degrees are not coprime. Therefore, we have P = {p : p ≡ 3 (mod 4)}.
We choose S = {2}. In this example, it can be checked that the congruence conditions

a ≡ 8 (mod 16) and b ≡ 1 (mod 16) are sufficient. Finally, for the infinite place, we just

have the condition f(a,b) > 0. The sieve problem we obtain is to find integers a,b such

that

(1) a≡ 8 (mod 16),b≡ 1 (mod 16),

(2) f(a,b)> 0,

(3) f(a,b) has no prime factors p≡ 3 (mod 4).

We remark that f(a/b) = b−4f(a,b), and since 2 = [K :Q] divides 4, b−4 is automatically
a norm from K. This explains why in (3) above, we can consider prime factors of f(a,b)

rather than bf(a,b).

An integer is the sum of two squares if and only if it is non-negative and all prime
factors p ≡ 3 (mod 4) occur with an even exponent. The above conditions are stronger

than this, so the algebraic reduction performed in Proposition 5.1 is consistent with what

we already knew for this example.
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Since the Hasse principle fails for this example, we know that the above sieve problem
cannot have a solution. This is indeed the case since condition (1) implies that −a2+3b2 ≡
3 (mod 4), and so f(a,b) must contain a prime factor p≡ 3 (mod 4).

The fact that the above sieve problem has no solutions also does not contradict
Theorem 2.1. For a prime p > 3, we have that ν1(p) is 2 if p ≡ ±1 (mod 8) and zero

otherwise, and ν2(p) is 2 if p ≡ ±1 (mod 12) and zero otherwise. Consequently, by

Dirichlet’s theorem on primes in arithmetic progressions, for i ∈ {1,2}, asymptotically

one half of the primes p ∈ P have νi(p) = 2 and half have νi(p) = 0. We conclude that
θ1 = θ2 = 1, so that θ= 2. Theorem 2.1 therefore requires the density of P to be less than

0.39000. . . /θ = 0.19503. . .. However, the density of P here is 1/2, and so Theorem 2.1

does not apply to this example.

5.2. The Chebotarev density theorem

In order to apply the sieve results from Section 2 to prove Theorem 1.1 and Theorem 1.3,

we need to compute the densities (2.4) and (2.5) for the choice of P given in (5.2). For
more complicated number fields K, such as when K/Q is non-abelian, it is not possible to

write down the set P explicitly in terms of congruence conditions. However, we can still

compute the densities (2.4) and (2.5) by appealing to the Chebotarev density theorem,

which can be viewed as a vast generalisation of Dirichlet’s theorem on primes in arithmetic
progressions.

Let K/Q be a number field of degree n. Let p be a prime, unramified in K/Q. We can

factorise the ideal (p) as (p) = p1 · · ·pr, where p1, . . . ,pr are distinct prime ideals in OK .
The splitting type of p in K/Q is the partition (a1, . . . ,ar) of n, where ai is the inertia

degree of pi (i.e., N(pi) = pai). Equivalently, the splitting type is the list of degrees of the

irreducible factors of the minimum polynomial of K/Q, when factorised modulo p.
Suppose first that K/Q is Galois, with Galois group G. Then G acts transitively on

{p1, . . . ,pr}. Fix i ∈ {1, . . . ,r}. The Decomposition group Dpi
is the stabilizer of pi under

this action. Note that Dpi
is cyclic, and there is an isomorphism

ψi :Dpi
→Gal((OK/pi)/(Z/(p))).

The group Gal((OK/pi)/(Z/(p))) is generated by the Frobenius element defined by x �→
xp, which has order ai. Let σi denote the preimage of the Frobenius element under ψi.

We define the Artin symbol [
K/Q

p

]
= {σ1, . . . ,σr}.

The Artin symbol is a conjugacy class of G. Indeed, all the pi’s lie in the same orbit of G

(there is only one orbit as G acts transitively). Stabilisers of points in the same orbit of
an action are conjugate, and so all the Dpi

are conjugate.

We now come to the statement of the Chebotarev density theorem. For a conjugacy

class C of G, we let πC(x) denote the number of primes p � x whose Artin symbol is
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equal to C. We define the (natural) density of a set of primes P to be

lim
x→∞

(
#{p ∈ P : p� x}

π(x)

)
,

if such a limit exists.

Theorem 5.5 (Chebotarev density theorem). Let C be a conjugacy class of G. The

density of primes p for which the Artin symbol is equal to C is #C/#G.

In order to obtain the explicit error terms from (2.4) and (2.5), we need an effective

version of the Chebotarev density theorem. The following lemma is a straightforward

consequence of a more refined result due to Lagarias and Odlyzko [33, Theorem 1].

Theorem 5.6 (Effective Chebotarev density theorem). For any A� 1, we have

πC(x) = π(x)

(
#C

#G
+OA((logx)

−A)

)
,

where the implied constant may depend on K,C and A.

We now consider the non-Galois case. As above, let (p) = p1 · · ·pr be the factorisation of

(p) in OK . Let K̂ denote the Galois closure of K, and let G=Gal(K̂/Q). This time, there
is no action of G on {p1, . . . ,pr} because the pi’s could split further in K̂, and elements

of G could permute prime factors which are above different pi’s.

To get around this, we define H =Gal(K̂/K), and instead consider the action of G on
the set X of left cosets of H in G. For an element σ ∈G, the cyclic group 〈σ〉 generated by

σ acts by left multiplication on X. The sizes of the orbits of this action form a partition

of [G :H] = [K : Q] = n. Moreover, it can be checked that conjugate elements of G give

the same orbit sizes, so we can associate a single partition of n with each Artin symbol(
[ K̂/Q

p

]
. The following fact relating this partition with the splitting type of p can be

found in [30, Ch. 3, Proposition 2.8].

Lemma 5.7. Let σ ∈
[
K̂/Q
p

]
. Then p has splitting type (a1, . . . ,ar) in K/Q if and only if

the action of 〈σ〉 on X has orbit sizes (a1, . . . ,ar).

Let K = Q(α), and let g be the minimum polynomial of α. We can also view 〈σ〉 as

acting on the set of n roots of g in K̂. By definition of H, we have that σα= σ′α if and

only if σH = σ′H. It follows that the orbit sizes of 〈σ〉 acting on X are the same as the
orbit sizes of 〈σ〉 acting on the roots of g, which in turn are the cycle lengths of σ viewed

as a permutation on the n roots of g in K̂. The set of σ ∈G with cycle lengths (a1, . . . ,ar)

is a union
⋃s

i=1Ci of conjugacy classes Ci. We may now apply Theorem 5.6 to each of

these conjugacy classes separately. Putting everything together, we have the following
result on densities of splitting types in non-Galois extensions.

Lemma 5.8. Let K be a number field of degree n over Q, and let K̂ denote its Galois

closure. Let G=Gal(K̂/Q), viewed as a permutation group on the n roots of the minimum

polynomial of K in K̂. For a partition a = (a1, . . . ,ar) of n, let P(a) denote the set of
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primes with splitting type a in K/Q, and let T (a) denote the proportion of elements of G

with cycle shape a. Then for any A� 1,

#{p ∈ P(a) : p� x}= π(x)
(
T (a)+OA((logx)

−A)
)
.

5.3. Proof of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1. Since K satisfies the Hasse norm principle, we may apply the
algebraic reduction from Proposition 5.1. Therefore, it suffices to show that conditions

(1)–(3) from Proposition 5.1 hold for P as defined in (5.2), and for some choice of S

containing all the ramified primes in K/Q. Let F (x,y) be the binary form obtained from
yf(x,y) after removing any repeated factors. Clearly, to prove bf(a,b) is free from prime

factors in P, it suffices to prove F (a,b) is, and so we may replace bf(a,b) with F (a,b)

in Condition (3) of Proposition 5.1. We apply Theorem 2.1 to the binary form F (x,y),

which has nonzero discriminant. We choose S to be the union of the ramified primes in
K/Q and the set S0 from Theorem 2.1, and we make the choice R =BN , where B takes

the form (2.7) for the parameters r,ξ > 0 coming from the application of Proposition 5.1.

It remains only to check that (2.4) and (2.5) hold with αθ � 0.39. By Lemma 5.8, (2.4)
holds with α = T (G). We now compute the quantity θ. We claim that θ � k+ j+1. We

recall that θ is a sum over the quantities θi associated to each irreducible factor of f,

plus an additional term θ0 = 1 coming from the homogenising factor f0(x,y) = y. We may
therefore reduce to the case where f is itself irreducible of degree at most 2, with the goal

of proving that

θ �
{
3, if f is quadratic and L⊆ K̂,

2, if f otherwise,

where L denotes the number field generated by f.
If f is linear, then νf (p) = 1 for all p /∈ S, and so θ = θ0+1 = 2, as required. We now

consider the case where f is an irreducible quadratic. Let

νf (p) = #{t (mod p) : f(t)≡ 0 (mod p)}.

If L⊆ K̂, then Lemma 5.8 could be applied to compute θ, with the desired error terms from

(2.6). However, we apply the trivial bound νf (p)� 2 for p /∈ S since it is not possible to

improve on this in general. We therefore obtain θ� θ0+2=1+2= 3, which is satisfactory.
We now assume that L �⊆ K̂. We want to show that θ= 2, or equivalently that νf (p) = 1

on average over p ∈ P. Let M = K̂L be the compositum of K̂ and L. Since K̂ ∩L = Q,

we have by [34, Ch. VI, Theorem 1.14] that M/Q is Galois, and

Gal(M/Q)∼=Gal(L/Q)×Gal(K̂/Q)∼= Z/2Z×Gal(K̂/Q).

We have νf (p) = 2 if p is split in L, and νf (p) = 0 if p is inert in L, and so

θ = 1+2 lim
x→∞

(
#{p� x : p ∈ P, p split in L}

#{p� x : p ∈ P}

)
. (5.4)
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Let σ′ = (τ,σ) be an element of Gal(M/Q), where τ ∈ Gal(L/Q) and σ ∈ Gal(K̂/Q).

Applying Lemma 5.7, the primes p∈P correspond to the σ′ for which σ has non-coprime

cycle lengths (so these primes have density T (G) as mentioned above). If in addition, the
prime p is split in L, then we require that τ = id. Therefore, by Lemma 5.8, asymptotically

as x→∞, one half of the primes in P are also split in L. We conclude from (5.4) that

(2.6) holds with θ = 1+2(1/2) = 2.

Proof of Theorem 1.3. We begin in the same manner as in the proof of Theorem 1.1,

by appealing to Proposition 5.1 to reduce to a sieve problem. The binary form F (x,y) has

degree at most one higher than the degree of f. Therefore, we deduce from Theorem 2.3

that the Hasse principle holds for (1.1) provided that (degf+1)
∑n

j=1
1

qj−1 � 0.32380.

Example 5.9. We consider the example K =Q(21/q) discussed by Irving [27], where q is

prime. Since K has prime degree, it satisfies the Hasse norm principle by work of Bartels
[1]. We now compute G=Gal(K̂/Q). The minimum polynomial of K/Q is xq−2, which

has roots {β,βω, . . . ,βωq−1}, where ω is a primitive qth root of unity and β is the real root

of xq−2. We identify these roots with {0, . . . ,q−1} in the obvious way. An element σ ∈G

is determined by the image of 0 and 1 since β,βω multiplicatively generate all the other
roots. Therefore, σ takes the form σa,b : x �→ ax+ b for some a ∈ F×

q ,b ∈ Fq. Conversely,

the maps σ1,b correspond to the q different embeddings K into K̂, and the maps σa,0 for

a ∈ F×
q are elements of Gal(K̂/K) � G. Combining these, we see that σa,b ∈ G for any

a∈ F×
q ,b∈ Fq. We conclude that G∼=AGL(1,q), the group of affine linear transformations

on Fq.
When a = 1 and b �= 0, σa,b is a q-cycle. For all other choices of a,b, the equation

ax+ b = x has a solution x ∈ Fq, and so σa,b has a fixed point. Therefore, T (G) = (q−
1)/#G= 1/q. From this, we see that Irving’s choice of P = {p /∈ S : p≡ 1 (mod q)} is not
quite optimal,because it has density α= 1/(q−1), whereas the set of primes we actually

need to sift out has density T (G) = 1/q. In fact, we can see directly that even when

p ≡ 1 (mod q), there is sometimes a solution to xq − 2 ≡ 0 (mod p) (e.g., q = 3, p = 31,

x = 4). However, it can be checked that even with this smaller sieve dimension, we are
still not able to handle the cases q = 5 or q = 3 when f is an irreducible cubic.

We remark that we can replace the number 2 by any positive integer r such that xq−r

is irreducible in the above example. (A necessary and sufficient condition for irreducibility
of xq − r is given in [31, Theorem 8.16].) We can still take a sifting set P contained in

{p /∈ S : p≡ 1 (mod q)} and with density 1/q, and the Galois group is still AGL(1,q), and

so generalising to xq − r does not affect the analysis.

5.4. Proof of Corollary 1.2

We now consider the case when [K : Q] = n and G = Sn, with a view to proving
Corollary 1.2. Such number fields automatically satisfy the Hasse principle by the work

of Kunyavskĭı and Voskresenskĭı [32]. To ease notation, we shall write T (n) in place of

T (Sn). In the following lemma, we find an estimate for T (n).
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Lemma 5.10. For all n� 1, we have

T (n) = 1−
∑
k|n

μ(k)Γ((n+1)/k)

Γ(1/k)Γ(n/k+1)
, (5.5)

T (n)<
2√
π
n1/r−1ω(n), (5.6)

where r is the smallest prime factor of n and ω(n) is the number of prime factors of n.

Proof. Define

Tk(n) =
1

n!
#{σ ∈ Sn : the cycle lengths of σ are all divisible by k}.

By Möbius inversion, we have T (n) = 1−
∑

k|nμ(k)Tk(n). We now find an explicit formula
for Tk(n). For j� 1, let ajk denote the number of cycles of length jk in σ. The cycle lengths

of σ are all a multiple of k if and only if
∑n/k

j=1 jkajk = n. We apply the well-known formula
for the number of permutations of Sn with a given cycle shape to obtain

Tk(n) =
1

n!

∑
ak,a2k,...,an∑n/k
j=1 jkajk=n

n!∏n/k
j=1(jk)

ajkajk!

=
∑

b1,...,bn/k∑n/k
j=1 jbj=n/k

1∏n/k
j=1(jk)

bj bj !

=

n/k∑
i=1

k−i
∑

b1,...,bn/k∑n/k
j=1 jbj=n/k
∑n/k

j=1 bj=i

1∏n/k
j=1 j

bj bj !

=
1

m!

m∑
i=1

k−ic(m,i), (5.7)

where m= n/k and c(m,i) is the number of σ′ ∈ Sm with exactly i cycles. The quantity
c(m,i) is called the Stirling number of the first kind. In order to evaluate (5.7), we follow

the argument from [17, Example II.12]. We define a bivariate generating function

P (w,z) :=

∞∑
i=0

wi
∞∑

m=0

zm

m!
c(m,i). (5.8)

By [17, Proposition II.4], we have

∞∑
m=0

zm

m!
c(m,i) =

1

i!

(
log

(
1

1− z

))i

.
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Therefore,

P (w,z) =

∞∑
i=0

wi

i!

(
log

(
1

1− z

))i

= exp

(
w log

(
1

1− z

))
= (1− z)−w.

Applying the Binomial theorem, we find that the zm coefficient of P (w,z) is equal to

w(w+1) · · ·(w+m−1)/m!. However, if we substitute w = 1/k, the zm coefficient of (5.8)

is precisely (5.7). We conclude that

1

m!

m∑
i=1

k−ic(m,i) = (1/k)(1+1/k) · · · (m−1+1/k)/m!

=
Γ(m+1/k)

Γ(1/k)Γ(m+1)
,

which completes the proof of (5.5).

We now establish the upper bound in (5.6). A basic bound on the gamma function is

that for any real s ∈ (0,1) and any positive real number x, we have

x1−s <
Γ(x+1)

Γ(x+s)
< (1+x)1−s.

Applying this with x=m and s= 1/k, we have

Γ(m+1/k)

Γ(m+1)
<m1/k−1.

Moreover, we have

1

Γ(1/k)
=

1

Γ(1+1/k)

Γ(1+1/k)

Γ(1/k)
� 2√

πk
,

since Γ(1+1/k) for integers k � 2 achieves its minimum at k = 2, where we have Γ(1+
1/k) = Γ(3/2) =

√
π/2. We conclude that

Tk(n)<
2√
πk

(n/k)1/k−1 =
2√
π
n1/k−1k−1/k <

2√
π
n1/k−1.

Taking a sum over k = p prime, we obtain

T (n)<
∑
p|n

Tp(n)�
2√
π
n1/r−1ω(n),

as required.

Proof of Corollary 1.2. We recall the setting of Corollary 1.2. We assume that G= Sn,
and f is a product of two quadratics generating a biquadratic extension L of Q. We apply

Theorem 2.1 to the binary form
∏2

i=0 fi(x,y), where f0(x,y) = y and f1(x,y),f2(x,y) are

the homogenisations of the two quadratic factors of f. We also assume that L∩ K̂ = Q,

and so by the proof of Theorem 1.1, we have θ0 = θ1 = θ2 = 1, and θ = 3. By maximising
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the value of κ in (4.55) directly, we find by numerical computations that the largest

value of κ we can take here is 0.42214. . .. (The slight improvement over κ� 0.39 for the

general case comes from computing α
∑k

i=m+1 θi = 2α in our example, whilst in the proof

of Theorem 1.1, we applied the trivial bound α
∑k

i=m+1 θi � κ = 3α.) Hence, the Hasse

principle holds for f(t) =N(x) �= 0 provided that T (n)� 0.42214. . . /3 = 0.14071. . ..

We use the upper bound (5.6) from Lemma 5.10 to reduce the n for which
T (n) � 0.14071. . . to finitely many cases, and then the exact formula (5.5) to find

precisely which n satisfy T (n) � 0.14071. . .. We find that T (n) � 0.14071. . . unless

n ∈ {2,3, . . . ,10,12,14,15,16,18,20,22,24,26,28,30,36,42,48}.

6. Application to the Harpaz–Wittenberg conjecture

In this section, we apply the sieve result from Theorem 2.1 to prove Theorem 1.4. We
recall the statement of [23, Conjecture 9.1] (we shall only work with the ground field Q).

Conjecture 6.1 (Harpaz, Wittenberg). Let P1, . . . ,Pn ∈ Q[t] be pairwise distinct irre-

ducible monic polynomials. Let ki = Q[t]/(Pi(t)) be the corresponding number fields. Let
ai ∈ ki denote the class of t. For each i ∈ {1, . . . ,n}, let Li/ki be a finite extension, and

let bi ∈ k∗i . Let S0 be a finite set of places of Q including the archimedean place, and all

finite places above which, for some i, either bi is not a unit or Li/ki is ramified. For each
v ∈ S0, fix an element tv ∈ Qv. Suppose that for every i ∈ {1, . . . ,n} and every v ∈ S0,

there exists xi,v ∈ (Li⊗QQv)
∗ such that bi(tv −ai) = NLi⊗QQv/ki⊗QQv

(xi,v) in ki⊗QQv.

Then there exists t0 ∈Q satisfying the following conditions.

(1) t0 is arbitrarily close to tv for all v ∈ S0.

(2) For every i ∈ {1, . . . ,n} and every place p of ki with ordp(t0−ai) > 0, either p lies
above a place of S0 or the field Li possesses a place of degree 1 over p.

We remark that below, the bi and xi,v appearing in Conjecture 6.1 do not play a
role, and so in the cases that Theorem 1.4 applies, it establishes a stronger version of

Conjecture 6.1, where the assumption on the existence of the elements xi,v is removed.

We discuss this further in Section 6.1.

We can reduce Conjecture 6.1 to a sieve problem as follows. Let fi(x,y) = ciNki/Q(x−
aiy), where ci ∈ Q is chosen such that the coefficients of fi(x,y) are coprime integers.

Then fi(x,y) is an irreducible polynomial in Z[x,y].

Below, we suppose that S is a finite set of primes containing all primes in S0 and all
primes dividing any of the denominators c1, . . . ,cn. For i ∈ {1, . . . ,n}, we define Pi to be

the set of primes p /∈ S, such that for some place p of ki above p, Li does not possess a

place of degree 1 above p.

Lemma 6.2. Let k1, . . . ,kn and L1, . . . ,Ln and S0 be as in Conjecture 6.1, and let Pi and

fi(x,y) be as defined above. Suppose that there exists a finite set of primes S ⊃ S0\{∞}
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such that for any congruence condition C(x,y) on x,y modulo an integer Δ with only

prime factors in S, and any real numbers r,ξ > 0, there exists x0,y0 ∈ N such that

(i) C(x0,y0) holds,

(ii) |x0/y0− r|< ξ,

(iii) fi(x0,y0) has no prime factors in Pi for all i ∈ {1, . . . ,n}.
Then Conjecture 6.1 holds for this choice of k1, . . . ,kn,L1, . . . ,Ln and S0.

Proof. From [23, Remark 9.3 (iii)], we are free to adjoin to S0 a finite number of places,

and so we may assume that S0 = S∪{∞}. We may assume that the value t∞ prescribed
in Conjecture 6.1 is non-negative, and let t0 = x0/y0. (If alternatively t∞ < 0, then we

instead choose t0 =−x0/y0 and proceed similarly.) Then property (1) of Conjecture 6.1

immediately follows from (i) and (ii) by appropriate choices of C(x,y),r and ξ. Let p be

a place of ki above a prime p /∈ S, satisfying ordp(t0−ai)> 0. Then

fi(x0,y0) = ydegfi0 fi(x0/y0,1) = ydegfi0 ciNki/Q(t0−ai).

Now ordp(t0 − ai) > 0 implies that ordp(Nki/Q(t0 − ai)) > 0. Since p /∈ S, we have

ordp(y0ci) � 0, and so p | fi(x0,y0). By (iii), we have p /∈ Pi, and so by construction

of Pi, we deduce that property (2) of Conjecture 6.1 holds.

In view of Lemma 6.2, we let

P = (P1, . . . ,Pn),

R = {(x0,y0) ∈ [0,N ]2 : |x0/y0− r|< ξ},

and we aim to show that the sifting function

S(A ,P,x) = #{(x0,y0) ∈ R ∩Z2 : C(x0,y0), gcd(fi(x0,y0),Pi(x)) = 1∀i} (6.1)

is positive for sufficiently large N. We do not attempt here to generalise Theorem 2.1

to deal with different sifting sets Pi for each i, but instead define below in (6.14)
a set P ⊇

⋃n
i=1Pi and replace each of the conditions gcd(fi(x0,y0),Pi(x)) = 1 with

gcd(fi(x0,y0),P (x)) = 1.

Proof of Theorem 1.4. We recall that Li is the compositum kiMi, for a number field

Mi which is linearly disjoint to ki over Q. Consequently, [Li : ki] = [Mi : Q]. Writing

Mi = Q(βi) using the primitive element theorem, we therefore have that the minimum
polynomial of βi over Q and over ki coincide. We denote this minimum polynomial by gi.

Let p denote a place of ki. For all but finitely many places, the inertia degrees of the

places of Li above p are the degrees of gi when factored modulo p. If gi has a root modulo
p, then it has a root modulo every p | p, and so p /∈ Pi. Therefore, for suitably chosen S,

we have

Pi ⊆ P̃i := {p /∈ S :Mi does not possess a place of degree 1 above p}. (6.2)

Define P =
⋃n

i=1 P̃i. Clearly, to show that the sifting function S(A ,P,x) from (6.1) is

positive, it suffices to show the sifting function S(A ,P,x) (in the notation of (4.2)) is

positive.
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By the Chebotarev density theorem (Lemma 5.8), the sets P̃i have density αi = Ti,

where Ti is defined in (1.4). The sets P̃i are examples of Frobenian sets as defined by Serre

[41, Section 3.3.1], which roughly means that away from S their membership is determined

Artin symbols of some Galois extension (here M̂i). It follows from [41, Proposition 3.7 b)]
that the intersection of Frobenian sets is Frobenian. Since P is a disjoint union of such

intersections, we conclude from Theorem 5.5 that the set P does indeed have a density.

We shall bound its density trivially by
∑n

i=1αi.
We now bound the value of θ defined in (2.6). Here, we have already defined fi to be

a binary form, and so no additional term θ0 coming from homogenisation is required.

We apply the trivial estimate νi(p) � degfi = [ki : Q] for all p /∈ S. We conclude that
θ�
∑n

i=1[ki :Q] = d. Combining Lemma 6.2 and Theorem 2.1 completes the proof of part

(1) of Theorem 1.4.

We now turn to the cubic case. Assumption 2.2 holds for our choice P and f. As

in Section 4.8, we conclude that S(A ,P,x) > 0 for sufficiently large N, provided that
t � 0.32380, where t = degf

∑n
i=1 1/(qi − 1). Rearranging, and recalling degf = d, we

complete the proof of part (2) of Theorem 1.4.

Remark 6.3. In contrast to Section 5, now Gal(M̂i/Q) = Sn is not a case we can handle
because there the proportion of fixed point free elements is 1− 1/e as n → ∞ (where

e= 2.718. . . is Euler’s constant), which is much too large.

For a permutation group G acting onX = {1, . . . ,k}, we define h(G) to be the proportion

of elements of G with no fixed point. The family of of groups G for which h(G) is smallest

are the Frobenius groups. These are the groups where G has a nontrivial element fixing
one point of X, but no nontrivial elements fixing more than one point of X. We state two

known results about Frobenius groups.

Lemma 6.4 [43, Theorem 1]. Any Frobenius group can be realised as a Galois group
over Q.

Lemma 6.5 [3, Theorem 3.1]. Let G be a transitive permutation group on k letters.

(1) We have h(G) � 1/k, with equality if and only if G is a Frobenius group of order

k(k−1) and k is a prime power.

(2) In all other cases, h(G)� 2/k.

Proof of Corollary 1.5. As computed in Example 5.9, we have that Gi := Gal(M̂i/Q)
is isomorphic to the group AGL(1,qi) of affine linear transformations on Fqi . This is a

Frobenius group of order qi(qi−1). By Lemma 6.5, we have Ti = h(Gi) = 1/qi. (This also

agrees with our computation in Example 5.9.) If [ki :Q]� 2 for all i, we can therefore apply
part (1) of Theorem 1.4 provided that

∑n
i=1 1/qi � 0.39/d. Moreover, for all i∈ {1, . . . ,n},

the sifting sets Pi are contained in {p /∈ S : p≡ 1 (mod qi)}. Indeed, when p �≡ 1 (mod qi),

the qth power map on F×
p is a bijection, and so xqi − ri has a root modulo p.

The minimum polynomial xqi − ri has a root modulo p for all but finitely many p �≡
1 (mod qi), and these finitely many exceptional primes can be included in S0. Therefore,

we can apply part (2) of Theorem 1.4 provided that
∑n

i=1 1/(qi−1)� 0.32380/d.
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6.1. The hypothesis on bi

Given that the quantities bi play no role in Theorem 1.4, it is natural to ask under what

circumstances we should expect a stronger version of Conjecture 6.1 to hold, without the

hypothesis on the bi. The following proposition demonstrates that the hypothesis remains

unchanged after passing to maximal abelian subextensions of each Li/ki.

Proposition 6.6. Let L/k be an extension of number fields. Let L′/k be the maximal

abelian subextension of L/k. Let S be a sufficiently large set of places of k, including
all archimedean places. For each v ∈ S, fix an element bv ∈ k∗v. Then the following are

equivalent:

(1) There exists an S-unit b∈ k such that for all v ∈ S, b/bv is in the image of the norm

map (L⊗k kv)
∗ → k∗v.

(2) There exists an S-unit b∈ k such that for all v ∈ S, b/bv is in the image of the norm
map (L′⊗k kv)

∗ → k∗v.

We prove Proposition 6.6 at the end of this section. We now demonstrate how the

lack of the hypothesis on bi in Theorem 1.4 is explained by Proposition 6.6. We shall
choose S to consist of all places that lie above a finite set of places S0 of k, which

corresponds to the set S0 from Conjecture 6.1. We recall that due to [23, Remark 9.3

(iii)], we are free to make S0, and hence S, large enough that Proposition 6.6 applies. We
apply Proposition 6.6 with L = Li and k = ki for each extension Li/ki from Conjecture

6.1, and with bv = 1/(tv−ai). Clearly, if L/k contains no nontrivial abelian subextensions

(so that L′ = k), then Condition (2) above is trivially satisfied, and so Proposition 6.6
implies that the hypothesis on bi in Conjecture 6.1 is vacuous. To complete the argument,

it suffices to show that in the setting of Theorem 1.4, we have L′
i = ki for all i. In fact,

in the following lemma, we show that the hypotheses of Theorem 1.4 force the stronger

property that the Li/ki contain no nontrivial Galois subextensions.

Lemma 6.7. Suppose that L/k is one of the extensions Li/ki from Theorem 1.4, and

let T = Ti be as in (1.4). Suppose that T [k :Q]< 1/2. Then L/k has no nontrivial Galois
subextensions.

Proof. We recall from the proof of Theorem 1.4 that T � α, where α is the natural

density of the set P of primes p /∈ S such that there is some place p of k above p for
which L does not possess a place of degree 1 above p. For x� 1, we have the trivial bound

Tπ(x)�#(P�x)

� 1

[k :Q]
#{p⊆ Ok :N(p)� x,L has no degree one place above p},

since there are at most [k :Q] prime ideals p above each p, and N(p)� p.
Suppose that N/k is a Galois subextension of L/k. In order for L to possess a degree one

place above p, so must N. However, since N/k is Galois, N possesses a place of degree one

above p if and only in p splits completely in N, and by the Chebotarev density theorem,
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this occurs with density 1/[N : k]. We deduce that

Tπ(x)� 1

[k :Q]
#{p⊆ Ok :N(p)� x,N has no degree one place above p}

� #{p⊆ Ok :N(p)� x}
[k :Q]

(
1− 1

[N : k]

)
.

Taking a limit at x→∞ and applying the prime ideal theorem, we conclude that

T � 1

[k :Q]

(
1− 1

[N : k]

)
.

The assumption T [k :Q]< 1/2 therefore implies that N = k.

Let T denote the norm one torus associated to L/k, which is the algebraic group over

k defined by the the equation NL/k(x) = 1. We have a short exact sequence

1→ T →RL/kGm

NL/k−−−→Gm → 1, (6.3)

where RL/k denotes the Weil restriction. Let Tk = T ×k k and Gm,k
∼= k

×
. We define the

character group of T to be T̂ =Hom(Tk,Gm,k), viewed as a Galois module via the natural

action of Gal(k/k).
Let OS denote the ring of S -integers of k, and OL,SL

the ring of SL-integers of L, where

SL consists of all places of L above a place in S. We include in S all places of k which

ramify in L. Then OL,SL
/OS is étale, and so the equation NOL,SL

/OS
(z) = 1 defines a

model T of T over OS . Similarly to (6.3), we have a short exact sequence

1→ T →ROL,SL
/OS

Gm,OL,SL

NL/k−−−→Gm,OS
→ 1. (6.4)

Let kS denote the maximal subextension of k/k which is unramified at all places not

contained in S. Below, we shall work with profinite group cohomology of GS :=Gal(kS/k).

We note that L is a subextension of kS since S is assumed to contain all ramified places
of L/k. We may therefore define GL,S =Gal(kS/L). Let AS denote the integral closure of

OS in kS . The natural action of Gal(k/k) on T̂ factors through GS , so T̂ can be viewed

as a GS-module. The character group Hom(TAS
,Gm,AS

) is nothing more than T̂ as a

GS-module, so we shall henceforth denote it by T̂ .

Lemma 6.8. Let ϕ : H1(GS,Q/Z) → H1(GL,S,Q/Z) be the restriction map induced by

the inclusion GL,S ↪→GS. Then there is an exact sequence

0→H1(GS,T̂ )→H1(GS,Q/Z)
ϕ−→H1(GL,S,Q/Z). (6.5)

Proof. We begin by taking character groups of the short exact sequence (6.4), or in

other words, applying the contravariant functor Hom(−,Gm,AS
). we obtain a short exact

sequence

0→ Z→ Z[L/k]→ T̂ → 0, (6.6)
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where Z[L/k] ∼= Z[OL,SL
/OS ] denotes the free abelian group generated by the k -linear

embeddings L ↪→ k. We now take group cohomology of (6.6) to obtain a long exact

sequence

· · · →H1(GS,Z[L/k])→H1(GS,T̂ )→H2(GS,Z)→H2(GS,Z[L/k])→ ·· · . (6.7)

For any groups H � G, any H -module N and any integer i � 0, Shapiro’s lemma

[37, Proposition 1.11] states that Hi(H,N) ∼= Hi(G,CoindGH(N)), where CoindGH(N) =

HomZ[H](Z[G],N) denotes the coinduced module. We apply Shapiro’s lemma to the first
and last terms in the exact sequence (6.7) by choosing G = GS,H = GL,S and N = Z.

Then

CoindGH(N) = HomZ[GL,S ](Z[GS ],Z)∼= Z[GS/GL,S ]∼= Z[L/k],

and so we conclude thatHi(GS,Z[L/k])∼=Hi(GL,S,Z) for all i� 0. Moreover,H1(GL,S,Z)

consists of all continuous group homomorphisms GL,S →Z. Since GL,S is compact, and Z
is discrete, we have H1(GL,S,Z) = 0. Therefore, we obtain from (6.7) the exact sequence

0→H1(GS,T̂ )→H2(GS,Z)→H2(GL,S,Z). (6.8)

Now, for any subextension E of kS/k, we have H
2(GE,S,Z)∼=H1(GE,S,Q/Z). To see this,

we take group cohomology of the exact sequence 0→ Z→Q→Q/Z→ 0 to obtain a long
exact sequence

· · · →H1(GE,S,Q)→H1(GE,S,Q/Z)→H2(GE,S,Z)→H2(GE,S,Q)→ ·· · ,

and note that H1(GE,S,Q) = H2(GE,S,Q) = 0 since GE,S is a profinite group [39,

Proposition 1.6.2 (c)]. Therefore, applying this fact with E = k and E = L, we have

an exact sequence

0→H1(GS,T̂ )→H1(GS,Q/Z)
ψ−→H1(GL,S,Q/Z). (6.9)

To complete the proof, we need to show that the map ψ we have obtained from the

above argument is equal to the map ϕ defined in the lemma. We consider the diagram

H2(GS,Z) H2(GS,Z[L/k])

H2(GS,Z) H2(GL,S,Z)

H1(GS,Q/Z) H1(GL,S,Q/Z)

sh

δ−1 δ−1

ψ

Here, δ−1 denotes the inverse of the connecting homomorphism, and sh denotes the

Shapiro map, (i.e., the isomorphism from the above application of Shapiro’s lemma).
By definition, ψ comes from applying these isomorphisms to the map H2(GS,Z) →
H2(GS,Z[L/k]) from (6.7), which is the map i∗ in the notation of [39, Proposition 1.6.5].

Therefore, by [39, Proposition 1.6.5], the middle horizontal arrow is just the restriction
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map. Finally, restriction maps commute with connecting homomorphisms [39, Proposition

1.5.2], and so ψ is the restriction homomorphism induced by the inclusion GL,S ↪→ GS ,

as required.

In what follows, we denote by ClSL
(L) the SL-ideal class group (i.e., the quotient of

the usual class group Cl(L) by the classes of all prime ideals in SL). Since Cl(L) is finite,

by adjoining finitely many primes to S, we may assume that ClSL
(L) = 0.

Lemma 6.9. Let S be as above. If a∈ k∗ lies in the image of the norm map (kv⊗kL)
∗ →

k∗v for all v /∈ S, then there exists y ∈NL/k(L
∗) such that ay ∈ O×

S .

Proof. Fix a place v /∈ S at which a is not a unit. Let w1 · · ·wr be the factorisation of

v into prime ideals in OL, and let ci = [Lwi
: kv] be the corresponding inertia degrees.

(Since L/k is unramified outside S, the ideals w1, . . . ,wr are distinct.) We define c =

gcd(c1, . . . ,cr). The image of the norm map (kv ⊗k L)
∗ → k∗v consists of the elements of

k∗v whose valuation is divisible by c. In particular, we may write v(a) =
∑r

i=1nici for

some integers n1, . . . ,nr. Since ClSL
(L) = 0, we can find an element zv ∈ L such that

wi(zv) = ni for all i ∈ {1, . . . ,r}, and such that zv is a unit at all other places not in SL.
Let yv = NL/k(zv). Then v(yv) =

∑r
i=1nici = v(a), and yv is a unit at all other places

outside S. The result now follows by taking y to be the product of the elements y−1
v over

the (finitely many) places v /∈ S at which a is not a unit.

Proof of Proposition 6.6. The implication (1) =⇒ (2) is trivial, so we only need to
prove (2) =⇒ (1). Taking Galois cohomology of (6.3), we obtain a long exact sequence

1→ T (k)→ L× NL/k−−−→ k×
δk−→H1(k,T )→H1(k,RL/kGm)→ ·· · . (6.10)

Hilbert’s Theorem 90 [11, Theorem 1.3.2] implies that H1(k,RL/kGm) is trivial, and so we

can naturally identify H1(k,T ) with k×

NL/k(L×) . In a similar way, we can identify H1(kv,T )

with the quotient of k∗v by the image of the norm map (L⊗k kv)
∗ → k∗v . We can also take

group cohomology of the short exact sequence (6.4) to obtain a long exact sequence

1→ T (OS)→ O×
L,SL

→ O×
S

δOS−−→H1(GS,TAS
)→H1(GS,A

×
SL

)→ ·· · , (6.11)

where ASL
=AS⊗OS

OL,SL
is the integral closure of OL,SL

in kS . (We remark that the ring

AS is denoted by OS in [39].) By [39, Proposition 8.3.11 (ii)], we have H1(GS,A
×
SL

) ∼=
ClSL

(L), which we recall is trivial due to our choice of S. Therefore, we may identify

H1(GS,TAS
) with

O×
S

O×
S ∩NL/k(L×)

.

Let v ∈ S, and let kv denote an algebraic closure of kv. Fixing an embedding kS ↪→ kv
determines a surjection Gal(kv/kv)→GS , which induces restriction mapsH1(GS,TAS

)→
H1(kv,T ) andH1(k,T )→H1(kv,T ) called localisation maps. Below, we denote these maps

by resv. Under the above identifications, we obtain a commutative diagram
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H1(GS,TAS
) H1(k,T ) H1(kv,T )

O×
S

O×
S ∩NL/k(L×)

k×

NL/k(L×)
k∗
v

im((L⊗kkv)∗→k∗
v)

∼= ∼= ∼=

resv

(6.12)

where (L⊗k kv)
∗ → k∗v denotes the norm map, and the bottom arrows are induced by

the inclusions O×
S ↪→ k ↪→ k∗v . Consequently, we can reformulate Condition (1) from

Proposition 6.6 as

(3) The class of (bv)v∈S in
∏

v∈SH
1(kv,T ) belongs to the image of the map

∏
v∈S resv.

We assume that S is also large enough that ClSL′ (L
′) = 0, so that the above

argument gives a similar reformulation of (2), but with the torus T ′ associated to

L′/k in place of T.
Let (−)∨ = Hom(−,Q/Z). Poitou–Tate duality [39, Theorem 4.20 b)] gives an exact

sequence

H1(k,T )
res−−→
∏′

H1(kv,T )
ξ−→H1(k,T̂ )∨. (6.13)

Here, the restricted product is over all places v of k, with the added assumption that the
specified element of H1(kv,T ) comes from H1(Ov,T ) for all but finitely many v, and the

first map is induced by the residue maps resv for each place v of k.

Let ι :
∏

v∈SH
1(kv,T ) ↪→

∏′
H1(kv,T ) be defined by adding trivial classes at the places

v /∈ S, and let ξS = ξ ◦ ι. We now explain how to deduce from (6.13) an exact sequence of
the form

H1(GS,TAS
)

∏
v∈S resv−−−−−−→

∏
v∈S

H1(kv,T )
ξS−→H1(GS,T̂ )

∨. (6.14)

Suppose that b = (bv)v∈S ∈ ker(ξS). Then ι(b) ∈ kerξ. By the exactness of (6.13), this

implies ι(b) = res(a) for some a∈H1(k,T ). Moreover, we know that resv(a) is trivial at all

places v /∈ S. Recalling the identifications from (6.12), this means that a lies in the image
of the norm map (kv⊗L k)∗ → k∗v for all v /∈ S. By Lemma 6.9, there is a representative of

the class a ∈H1(k,T ) which is contained in O×
S . Therefore, a in fact lies in H1(GS,TAS

).

It follows that
∏

v∈S resv(a) = b, establishing the exactness of (6.14). Hence, condition (1)

from the proposition is equivalent to the condition (bv)v∈S ∈ kerξS .
The map ξS is induced by the localisation maps

∏
v∈S resv : H1(GS,T̂ ) →∏

v∈SH
1(kv,T̂ ) and the pairing∏

v∈S

(
H1(kv,T )×H1(kv,T̂ )

)
∪−→
∏
v∈S

H2(kv,Gm)

∑
v∈S invv−−−−−−−→Q/Z,

where ∪ denotes the cup product applied at each place v ∈ S and invv denotes the local

invariant map, as defined in [39, pp. 156].
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Consider the diagram∏
v∈SH

1(kv,T )
∏

v∈SH
1(kv,T

′)

∏
v∈SHom

(
H1(kv,T̂ ),H

2(kv,Gm)
) ∏

v∈SHom
(
H1(kv,T̂ ′),H2(kv,Gm)

)
∏

v∈SH
1(kv,T̂ )

∨ ∏
v∈SH

1(kv,T̂ ′)∨

H1(GS,T̂ )
∨ H1(GS,T̂ ′)∨

∪

∑
v∈S invv

∪

∑
v∈S invv

∏
v∈S resv

θ

∏
v∈S resv

where all the horizontal arrows are induced by the map T
NL/L′
−−−−→ T ′. (The norm

map NL/L′ : RL/kGm → RL′/kGm restricts to a map T → T ′ because NL/k(z) =

NL/L′(NL′/k(z)) for any z ∈ L.) This diagram commutes, thanks to the functorality

properties of the localisation maps resv [39, Proposition 1.5.2], and the projection formula

for the cup product [39, Proposition 1.4.2]. The composition of the vertical arrows are
the map ξS and the corresponding map ξ′S for T ′. Therefore, we obtain a commutative

diagram ∏
v∈SH

1(kv,T )
∏

v∈SH
1(kv,T

′)

H1(GS,T̂ )
∨ H1(GS,T̂ ′)∨

ξS ξ′S

θ

Applying Lemma 6.8, we have H1(GS,T̂ ) ∼= kerϕ, where ϕ is as defined in the exact

sequence (6.5). As discussed in the paragraphs preceding Lemma A.5, ϕ sends cyclic
subextensions M/k of kS (with a given choice of generator for Gal(M/k)) to their

compositum LM/L, and so elements of kerϕ correspond to cyclic subextensions of L/k.

However, since L′/k is the maximal abelian subextension of L/k, it contains all cyclic

subextensions of L/k, and so the map H1(GS,T̂ ′)→H1(GS,T̂ ) is surjective. Since Q/Z

is a divisible group, it is an injective object in the category of abelian groups, and so the

contravariant functor Hom(−,Q/Z) is exact. We deduce that θ is an injection. Therefore, if
ξ′S((bv)v∈S) = 0, then ξS((bv)v∈S) = 0, so (bv)v∈S ∈ kerξ′S =⇒ (bv)v∈S ∈ kerξS . Recalling

(6.14), this means that (2) =⇒ (1).

A. The Brauer group for the equation f(t) =N(x) �= 0

This appendix will be concerned with the Brauer group of a smooth projective model X of
the equation f(t) =N(x) �= 0. In particular, we prove that in the setting of Corollary 1.2,

we have Br(X) = Br(Q) whenever n� 3. We are grateful to Colliot-Thélène for providing

the arguments presented in this appendix.
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A.1. Main results

Theorem A.1. Let k be a field of characteristic zero. Let K/k be an extension of degree

n, and let L/k be the Galois closure. Suppose that Gal(L/k) = Sn. Let f(t) ∈ k[t] be

a squarefree polynomial. Let Y/k be the affine variety given by the equation f(t) =

N(x1, . . . ,xn) �=0, and Y →A1
k its projection onto t. Let π :X → P1

k be a smooth projective
birational model of Y →A1

k. Suppose that L and the number field generated by f are linearly

disjoint over k. Then Br(k) = Br(X).

Theorem A.2. Let k be a field of characteristic zero. Let K/k be a finite extension of

degree n � 3, such that the Galois closure L/k satisfies Gal(L/k) = Sn. Let c ∈ k×, and
let Z be a smooth projective model of N(x1, . . . ,xn) = c. Then Br(k)→Br(Z) is surjective.

A.2. Proof of Theorem A.2

Proof. The key ideas of the proof are discussed in detail by Bayer-Fluckiger and Parimala

[2], and so here we just give a sketch. We would like to show that Br(Z)/ Im(Br(k)) = 0.

We begin by reducing to the case c= 1. Suppose that T is the norm one torus given by

N(x1, . . . ,xn) = 1, and let T c denote a smooth compactification of T. Let ks denote the
separable closure of k, and let Z =Z×k ks, and T = T ×k ks. By [13, Lemme 2.1], we have

an isomorphism H1(k,PicZ)∼=H1(k,PicT
c
). Combining this with [2, Theorem 2.4], we

have

Br(Z)/ Im(Br(k)) ↪→H1(k,PicZ)∼=H1(k,PicT c)∼=Br(T c)/Br(k), (A.1)

and hence, it suffices to show that Br(T c)/Br(k) = 0.
Let G = Gal(L/k). The character group T̂ = Hom(Tk,Gm,k) can be viewed as a G-

lattice. By [10, Proposition 9.5 (ii)], we have an isomorphism

Br(T c)/Br(k)∼=X2
cycl(G,T̂ ),

where

X2
cycl(G,T̂ ) = ker

⎡⎣H2(G,T̂ )→
∏
g∈G

H2(〈g〉,T̂ )

⎤⎦ .
Let M/k be a finite extension with M linearly disjoint from L, and let L′ = LM,K ′ =
KM,k′ = kM . Then the extension K ′/k′ has degree n and Galois closure L′, with

Gal(L′/k′) =G. Moreover, by a construction of Frölich [19], we may choose M in such a
way that L′/k′ is unramified.

Using [2, Proposition 4.1], we have X2
cycl(G,T̂ )

∼= X2(k′,T̂ ), where T̂ is regarded

as a Gal(k′s/k
′)-module via the surjection Gal(k′s/k

′) → G. In turn, this is isomorphic
to X1(k′,T )∨ by Poitou–Tate duality [2, Corollary 4.5]. To summarise, we have

isomorphisms

Br(T c)/Br(k)∼=X2
cycl(G,T̂ )

∼=X2(k′,T̂ )∼=X1(k′,T )∨, (A.2)

and so it suffices to show that X1(k′,T ) = 0. However, X1(k′,T ) is isomorhpic to the

knot group κ(K ′/k′) =
k′×∩NK′/k′ (A×

K′ )

NK′/k′ (k′×) . Due to the assumption Gal(L′/k′) =G= Sn, we
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may apply the result of Kunyavskĭı and Voskresenskĭı [32] to deduce that the Hasse norm

principle holds for the extension K ′/k′, and hence κ(K ′/k′) = 0.

A.3. Proof of Theorem A.1

Before commencing with the proof, we require one more fact about the smooth projective
model X from the statement of Theorem A.1.

Lemma A.3. In the notation of Theorem A.1, the base change XK =X ×k K is a K-
rational variety.

Proof. Since X is a smooth projective model of Y, it suffices to show that YK is K -
rational. Let K = k[x]/(p(x)), where p(x) is an irreducible polynomial over k. Let a

denote the class of x. Over K, the polynomial p(x) factorises as p(x) =
∏r

i=0 qi(x),

where q0(x), . . . ,qr(x) ∈ K[x] are distinct and irreducible, and q0(x) = x− a. Let Ki =

K[x]/(qi(x)). We shall construct a birational map of the form

ϕ : YK → A1
K ×

r∏
i=1

RKi/KA1

(t,x0, . . . ,xn−1) �→ (t,z1, . . . ,zr),

(A.3)

where RKi/K denotes the Weil restriction. Since RKi/KA1 ∼= Adegqi
K , the right-hand side

of (A.3) is isomorphic to An
K , which is a Zariski open subset of Pn

K . Therefore, ϕ induces

a birational map YK ��� Pn
K , as desired.

Let k denote an algebraic closure of k. We denote by Embk(K,k) the embeddings

K ↪→ k fixing k, or in other words, the conjugates of K/k in k. Over k, the polynomials

p(x),q0(x), . . . ,qr(x) split as

p(x) =
∏

σ∈Embk(K,k)

(x−σ(a)), qi(x) =
∏

σ∈Embk(K,k)
qi(σ(a))=0

(x−σ(a)). (A.4)

For each i, we fix an isomorphism Ki
∼=K(σi(a)) for some σi ∈ Embk(K,k) satisfying

qi(σi(a)) = 0, and view σi(a) as the class of x in Ki/K. (The particular choice of

representative σi does not matter.) Since qi(x) is the minimum polynomial of σi(a) over

K, it splits over k as the product of the conjugates of σi(a), and so

qi(x) =
∏

σ′∈EmbK(Ki,k)

(x−σ′σi(a)).

For i ∈ {0, . . . ,r}, we define zi ∈RKi/KA1 as

zi = x0+σi(a)x1+ · · ·+σi(a)
n−1xn−1. (A.5)

The polynomial
∑degqi−1

j=0 z
(j)
i xj representing zi is the reduction of x0 + x1x+ · · ·+

xn−1x
n−1 modulo qi. Consequently, by the Chinese remainder theorem, z0, . . . ,zr ∈∏r

i=0RKi/KA1 uniquely determine x0, . . . ,xn−1 ∈ A1
K .
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For any number field extension E/M , and any y ∈ E, we have

NE/M (y) =
∏

σ∈EmbM (E,M)

σ(y).

Therefore,

NK/k(y) =
∏

σ∈Embk(K,k)

σ(y) =

r∏
i=0

∏
σ′∈EmbK(Ki,k)

σ′σi(y) =

r∏
i=0

NKi/K(σi(y)),

and so

N(x0, . . . ,xn−1) =

r∏
i=0

NKi/K(zi). (A.6)

We deduce that the equations (A.5) define an isomorphism from YK to the variety

V ⊆A1
K×
∏r

i=0RKi/KA1 given by z0
∏r

i=1NKi/K(zi) = f(t) �=0. For t,z1, . . . ,zr satisfying

the Zariski open condition
∏r

i=1NKi/K(zi) �= 0, we have z0 = f(t)/
∏n

i=1NKi/K(zi).
Therefore, the projection of V onto A1

K ×
∏r

i=1RKi/KA1 is birational. We conclude that

the map ϕ from (A.3) is birational.

We now commence with the proof of Theorem A.1. Let k be a field of characteristic

zero. For a smooth irreducible variety X/k with function field κ(x), we recall that Br(X)
consists of all elements of Br(κ(X)) which are unramified everywhere on X. Constant

classes are unramified, and so we have Br(k)⊆Br(X)⊆Br(κ(X)). By the purity theorem

[11, Theorem 3.7.1], the ramification locus of A ∈ Br(κ(X)) is pure of codimension one.
Consequently, to check A ∈Br(X), it suffices to check it is unramified at all codimension

one points of X.

Let C be a codimension one point. We recall from [11, Section 1.4.3] the residue map

∂C : Br(κ(X))→H1(κ(C),Q/Z)

is such that A is unramified at C if and only if ∂C(A ) is trivial.

In our setting, codimension one points of X come in two types:

(1) Irreducible components of fibres Xc = π−1(c) above codimension one points c of P1
k,

(2) Codimension one points on the generic fibre Xη of π :X → P1
k.

We recall that κ(X) = κ(Xη). The codimension one points of Xη are a subset of the
codimension one points of X, and so we have an inclusion Br(X) ↪→ Br(Xη). Since Xη

is a smooth projective model of NK(t)/k(t)(x1, . . . ,xn) = f(t) over k(t), it follows from

Theorem A.2, applied to the extension K(t)/k(t) and with Z = Xη, that Br(k(t)) →
Br(Xη) is surjective. Putting everything together, we obtain a commutative diagram

Br(X) Br(Xη) Br(κ(Xη)) = Br(κ(X))

Br(k) Br(k(t))
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Let α ∈Br(X). By the above diagram, we can find β ∈Br(k(t)) whose image in Br(Xη)

is equal to the image of α in Br(Xη). We want to show that β is the image of an element

of Br(k) because then it follows from commutativity of the diagram that α is the image
of an element of Br(k).

For any n� 1 and any field k, we have Br(Pn
k ) =Br(k) [11, Theorem 6.1.3]. In particular,

we have Br(k) = Br(P1
k). Also, k(t) = κ(P1

k), so Br(k(t)) = Br(κ(P1
k)). Therefore, as

discussed above, to prove that β is in the image of Br(k), it suffices to show β is unramified

at every codimension one point of P1
k. This is formalised by the Faddeev exact sequence

[11, Theorem 1.5.2], which is the exact sequence

0→ Br(k) ↪→ Br(k(t))→
⊕

Q∈(P1
k)

(1)

H1(kQ,Q/Z)�H1(k,Q/Z)→ 0, (A.7)

where (P1
k)

(1) denotes the codimension one points of P1
k and the third map is the direct

sum of the residue maps ∂Q. In other words, to show that β ∈ Br(k(t)) is actually in
Br(k), it suffices to show that ∂Q(β) = 0 for all Q ∈ (P1

k)
(1). We have ∂Q(β) = 0 unless

Q is an irreducible factor of f(t) by [11, Proposition 11.1.5], so we suppose from now on

that Q is an irreducible factor of f(t).
By Lemma A.3, the base change XK =X×k K is birational to Pn

K . Since the Brauer
group is a birational invariant on smooth projective varieties [11, Corollary 6.2.11], it
follows that Br(XK) = Br(Pn

K) = Br(K). Therefore, we obtain the following commutative
diagram:

Br(XK) Br(XK,η)

Br(X) Br(Xη)

Br(K) Br(K(t))
⊕

Q∈(P1
k
)(1)

H1(KkQ,Q/Z)

Br(k) Br(k(t))
⊕

Q∈(P1
k
)(1)

H1(kQ,Q/Z)

ψK
∼=

ι

ψ

ιK

ϕ

The map ϕ is a direct sum over the restriction maps ϕQ :H1(kQ,Q/Z)→H1(KkQ,Q/Z)
for each Q ∈ (P1

k)
(1).

Lemma A.4. We have ∂Q(β) ∈ kerϕQ, where ϕQ is as defined above.

Proof. Let βK denote the image of β in Br(K(t)), and ∂K,Q the residue map at Q
on Br(K(t)). We want to show that ∂K,Q(βK) = 0. By exactness of the Faddeev exact

sequence over K, for this it suffices to show βK is in the image Br(K)→ Br(K(t)). We

know that ψ(β) = ι(α). Applying a base change to K, we see that ψK(βK) = ιK(αK),
where αK,βK are the images of α,β under base change. Since Br(K)∼=Br(XK), we have

that αK is in the image of Br(K)→Br(XK), and hence by commutativity of the diagram,

βK is in the image of Br(K)→ Br(K(t)), as required.
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LetM be a number field, and let GM =Gal(M/M). For a finite Galois extensionM ′/M ,
we consider Gal(M ′/M) as a topological space with the discrete topology. We can then

put the profinite topology on GM , which is defined as the inverse limit

GM = lim←−
M ′/M Galois

Gal(M ′/M).

We recall that H1(M,Q/Z) = Homcont(GM,Q/Z), the continuous group homomor-

phismsGM →Q/Z [11, pp.16]. Suppose that θ ∈Homcont(GM,Q/Z). Then kerθ is an open

subgroup of GM . Since GM is a profinite group, this implies that kerθ has finite index

in GM . By the fundamental theorem of Galois theory, imθ ∼= GM/kerθ ∼= Gal(M ′/M),
for some finite Galois extension M ′/M . Moreover, imθ is a finite subgroup of Q/Z. All

finite subgroups of Q/Z are cyclic groups of the form 1
nZ/Z for some positive integer n.

Consequently, kerθ = Gal(M ′/M) for a cyclic extension M ′/M . To summarise, we have
the identification

H1(M,Q/Z) = {M ′/M cyclic, with a given map γ : Gal(M ′/M) ↪→Q/Z}.

We now describe ϕQ : H1(kQ,Q/Z) → H1(KkQ,Q/Z) explicitly. Using the above

identification, we view an element θ ∈ H1(kQ,Q/Z) as a pair (M ′/kQ,γ). The map

ϕQ is given by taking the compositum with K. More precisely, it sends the above
pair to (KM ′/KkQ,γ), where now γ is viewed as a map Gal(KM ′/KKQ) ↪→ Q/Z via

the natural identification of Gal(KM ′/KkQ) as a subgroup of Gal(M ′/kQ). Therefore,
(M ′/kQ,γ) ∈ kerϕQ if and only if M ′/kQ is a cyclic subextension of KkQ/kQ.
Due to the assumption that kQ and L are linearly disjoint over k, we have

Gal(KkQ/kQ) ∼= Gal(K/k) ∼= Sn. We now complete the proof of Theorem A.1 with

the following elementary group theory fact.

Lemma A.5. Suppose that K/k is a finite extension of degree n � 3, and the Galois

group of the Galois closure Gal(L/k) is isomorphic to Sn. Then there are no nontrivial
cyclic extensions M/k with M ⊆K.

Proof. By the fundamental theorem of Galois theory, if M/k is a subextension of

K/k, then Gal(L/K)�Gal(L/M)�Gal(L/k) = Sn. However, Gal(L/K)∼= Sn−1. (More

explicitly, if K = k(α1) and α1, . . . ,αn are the roots of the minimum polynomial of α1 over
k, then Gal(L/K) consists of all permutations of {α1, . . . ,αn} which fix α1.) However, Sn−1

is a maximal subgroup of Sn, and so M = k or M =K. Since n � 3, the extension K/k

is not cyclic. Therefore, M = k.

In conclusion, the map ϕQ is injective by Lemma A.5, and ∂Q(β) ∈ kerϕQ by

Lemma A.4, and hence ∂Q(β) = 0. This means that all the residue maps of β are trivial,

so β is in the image of Br(k)→Br(k(t)). Hence, α is in the image of Br(k)→Br(X), and

so Br(X) = Br(k). This completes the proof of Theorem A.1.
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