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Abstract

Recent advances in clinical prediction for diarrhoeal aetiology in low- and middle-income
countries have revealed that the addition of weather data to clinical data improves predictive
performance. However, the optimal source of weather data remains unclear.We aim to compare
the use of model estimated satellite- and ground-based observational data with weather station
directly observed data for the prediction of aetiology of diarrhoea. We used clinical and
etiological data from a large multi-centre study of children with moderate to severe diarrhoea
cases to compare their predictive performances. We show that the two sources of weather
conditions perform similarly inmost locations.We conclude thatwhilemodel estimated data is a
viable, scalable tool for public health interventions and disease prediction, given its ease of access,
directly observedweather station data is likely adequate for the prediction of diarrhoeal aetiology
in children in low- and middle-income countries.

Infectious diarrhoea is a significant public health concern, particularly in low-resource settings
where access to clean water and sanitation is limited. The incidence of infectious diarrhoea is
influenced by a variety of factors, including seasonality and weather conditions [1]. Previous
studies have shown that weather conditions, such as precipitation, are strongly associated with
the incidence of infectious diarrhoea in low and middle-income countries (LMICs) [2, 3]. Wea-
ther conditions in the months prior to illness have also been found to be predictive of the
incidence of specific causes of diarrhoeal illness, such as rotavirus [4] and Shigella [5]. In addition,
we have previously shown that directly observed (DO) data from weather stations accessed
through the Global Surface Summary of the Day online repository can be used to derive the local
season [6] or a moving average of recent weather conditions [7] and incorporated with clinical
variables to improve prediction of the aetiology of infectious diarrhoea in children living in
LMICs. These models can then be adapted to clinical decision-support tools for improved
stewardship of antimicrobial and diagnostic use [8]. Gridded meteorological estimates from
models using satellite- and ground-based observational data, such as that obtained from the
Global Land Data Assimilation System (GLDAS), enable access to granular temperature and
precipitation data over time and space that have no missing data, unlike the DO weather station
data. In this analysis, we use data from a large multi-centre case–control study of children with
moderate to severe diarrhoea to assess and compare the performance of the model estimated
(ME) data of GLDAS to the DO weather station data of the Global Historical Climatology Network
daily (GHCNd) when making predictions of individual-level diarrhoeal episode aetiology.

We tested the predictive performance of the weather data applied to the Global Enteric
Multicenter Study (GEMS), which we previously used to derive and test prediction models for a
viral-only aetiology versus other aetiologies of diarrhoea [6, 7, 9, 10]. Briefly, the GEMS was an
observational case–control study conducted between 2007 and 2011 at healthcare facilities in 7
countries, in which 9 439 children with moderate-to-severe diarrhoea were enrolled at local
healthcare centres along with one to threematched community control-children. A faecal sample
was taken from each child at enrollment to identify enteropathogens and clinical informationwas
collected. We used the quantitative real-time PCR-based (qPCR) attribution models developed
by [11] in order to best characterize the cause of diarrhoea. Using, only diarrhoea cases, we
defined viral aetiology as a diarrhoea episode with at least one viral pathogen with an episode-
specific attributable fraction (AFe ≥ 0.5) and no bacterial or parasitic pathogens with an episode-
specific attributable fraction. Other aetiology includes any episode with at least one bacterial or
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parasite pathogen with an episode-specific attributable fraction.
Prediction of viral attribution is clinically meaningful since it
indicates that a patient would not benefit from antibiotic therapy.

We used daily aggregates of gridded meteorological estimates
extracted from GLDAS, which includes 3-hourly weather informa-
tion on a 25 × 25 km grid, based on the locations of GEMS hospital
for each country [2, 12]. The temperature is extracted as minimum
andmaximum daily temperature. We averaged the daily minimum
and maximum temperature in order to calculate an average daily
temperature. Although, the average of the min and max is not
necessarily equivalent to the daily average, prior literature has
shown agreement between this approach and various other
approaches used to get a daily temperature summary as well as
ground-based measures [13]. We additionally extracted the total
daily precipitation in millimetres.

We used the GHCNd to obtain DO average daily temperature
and daily total precipitation. The GHCNd combines daily obser-
vations from over 30 different sources of climate observations, and
undergoes a quality assurance process approximately weekly
[14]. We utilized the readr package in R to directly download
station data from GHCN daily during the study period. For each
GEMS study site, we selected the closest weather station, based on
haversine distance, that contained data during the GEMS years. For
each location, missing weather data was completed using the most
recent non-missing weather data prior to it from that same station.
We note that there were only missing precipitation values and that
missing values only followed days with no precipitation. The max
number of missing precipitation values was 173 in Mali, of which
the dates coincided with the dry season starting in late October.

We used logistic regression to assess the predictive performance
of weather variables on viral versus other aetiology. The term t�d

refers to d days prior to the day of the patient visit to the health
centre. We fit a separate model using the average exposures over
each of the following moving windows of exposure:

t�7, t�1½ �, t�14, t�1½ �, t�21, t�1½ �, t�28, t�1½ �, t�14, t�7½ �,
t�21, t�7½ �, t�28, t�7½ �, t�21, t�14½ �, t�28, t�14½ �, t�28, t�21½ �:

Each model contained three exposure covariates: (1) temperature,
(2) precipitation, and (3) their interaction.

We assessed the predictive performance of the model fits with
various performance metrics using repeated cross-validation. We
conductedMonte Carlo cross-validation by generating 500 random
80% training and 20% testing splits and compared model perform-
ance between GLDAS data andGHCNd data using themodels with
covariates calculated using the intervals described above

[15]. Within each iteration, we calculated the area under the
receiver operating characteristic curve (AUC), the calibration
intercept and slope of the model for assessing weak calibration
[16], the area under the precision-recall curve (PRAUC), and we
used bootstrapping to compare the AUC between models
[17]. That is, bootstrapped differences between two models’
AUCs were calculated, standardized, and compared to the nor-
mal distribution. The PRAUC, though less common than the
AUC, can be more pertinent when assessing the performance of
predictive models for outcomes with imbalanced classes due to its
emphasis on the performance when the ground truth is the
positive class. In this case, viral etiologies account for approxi-
mately 1/3 of the outcomes.

With this approach, we assessed whether certain intervals of
weather conditions prior to the presentation of the patient aremore
predictive of viral aetiology than others, including some intervals
which do not start immediately prior to the day of presentation.
Finally, we assessed the performance of cross-validated predictions
by site. We ordered them by distance to the reporting weather
station to assess whether there was a relationship between distance
and the relative average AUC from models using the different data
sources.

We found that when we plotted the ME and DO temperatures
and the precipitation in time series by site, they were very similar.
However, the Modelled estimates outperformed the directly
observed data in both AUC and PRAUC at each interval explored
with the best AUC from each source being 0.66 and 0.64, and the
best PRAUC from each source being 0.47 and 0.44, respectively
(Figure 1). The best-performingmodels used the averaged exposure
over moving windows which include the most recent days from the
health care facility visit.

When predictions from cross-validation were broken down by
site, the superior predictive performance using ME over DO data
was limited to The Gambia with a difference in average AUC, that
is, about 0.102, or about 10%. Notably, the Gambia’s clinical study
site is 77 km away from the closest weather station, the fourth
farthest site from its weather station. The next largest difference in
average AUC between data sources by site in the 1–7 days interval
was 0.038 in Mali. When we used bootstrapping within each
iteration of cross-validation to compare AUCs between models
driven by the two sources of data using the 1–7 days interval for
all sites, we found that the median p-value in cross-validation is
0.025. This suggests that there was evidence of a difference between
models fit using the two sources of data; however, when we con-
ducted the same bootstrapping test and compared the two sources
of data within sites, Gambia had a median p-value of 0.055,

Figure 1. Average cross-validated AUC and PRAUC for model estimated and directly observed weather data averaged exposure over various moving windows.
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while the other sites had median p-values of 0.291 and above. We
additionally found that all models satisfied the criteria for weak
calibration, that is, on average, the models do not over- or under-
estimate risk and do not give overly extreme or modest risk esi-
mates. We estimated the calibration intercepts were close to 0 with
95% CIs that contain 0 and the calibration slopes were close to
1 with 95% CIs that contain 1, satisfying the criteria.

Clinicians in low-resource settings are often required to make
clinical decisions of infectious syndromes without information
from laboratory diagnostics. Traditional clinical prediction rules
typically focus on data from the patient at presentation, but more
recently, the use of location-specific (or patient-extrinsic) data
sources such as climate have shown to improve the performance
of prediction rules over clinical factors alone [6, 7]. The optimal
method for estimating climate and weather data for incorporation
into clinical prediction rules has not been assessed. We demon-
strated that on average, while DO weather station data vary in
availability, there is ultimately a similar predictive performance as
the ME weather data based on satellite- and ground-based obser-
vation, for the prediction of aetiology of diarrhoea in paediatric
patients.

In both methods, though most prominently with ME weather,
we found that the top 4 models by AUC all included temperature
and precipitation datawith the shortest lag length, (i.e., included the
prior days’ weather data in the aggregate predictors), consistent
with the known short incubation periods of most enteropathogens,
and previous findings observed with individual organisms [2]. The
top 3 models by PRAUC also included the shortest lag.

We note some discrepancies in data preparation between the
two sources of data. First, the DO data were less complete than the
ME, for example, precipitation missing in periods of time where
there was no precipitation. In contrast, by its nature, the model
estimates had nomissing data. However, when using this estimated
data, advanced data storage and data cleaning will likely be required
for any given application due to its granularity in raw form.
Although we found evidence of an average difference between
predictive performance, this difference can be attributed to differ-
ences at a single site (The Gambia). We did not find a clear linear
trend in performance difference when regressed on distance from
closest weather station (p-value = 0.66, Pearson correlation = 0.2).
Further explorations should be made to assess if the best-
performing lags from the two sources of weather data apply to
other prediction outcomes, and whether our findings can be gen-
eralized to other climate factors such as humidity or environmental
factors such as air pollution.

In conclusion, we found that GHCNd’s DO weather station-
derived data is likely adequate for the prediction of diarrhoeal
aetiology in children in LMICs.
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