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A THEORY OF WATER PERCOLATIO IN SNOW 

By S. C. COLBECK 

(D.S. Army Cold R egions R esearch and Engineering Laboratory, Hanover, New Hamp­
shire 03755, D.S.A. ) 

ABSTRACT. A theory is developed to describe the vertical percolation of water in isothermal snow. The 
general theory of Darcian flow is reviewed to es ta blish a reasonable physical bas is for the construction of a 
model. It is shown that in simple gravity drainage, capillarity is negligible compared with gravity since 
values of water saturation a re generally in the "mid-range". It is postulated that the permeability to the 
water phase increases as a certain function of the water saturation, a nd porosity is assumed to decrease 
linearly with depth. I ce layers a nd other inhomogeneities a re treated in the theory by considering the 
permeability of the snow with the inhomogeneities included . A method by which this value of permeability 
can be calculated is presented using the method of cha racteristics. 

The theory is a pplied to the Seward Glacier firn where Sharp m easured water fluxes at va rious d epths. 
A periodic surface flux is assumed and the particular solution for water flux a t any depth is given. From this 
solution the wave forms passing each depth are constructed and compared with the measured ones. Although 
the experimental data a re affected by the presence of ice layers, the comparison between theory and experi­
ment is favorable a nd the theory is thought to be essentially correc t. 

REsuME. Une thiorie de la percolation de l'eau dansla neige. On expose une theorie pour decrire la percolation 
verticale de l'eau d ans u ne neige isotherme. La theorie generale des ecoulements de Darcy est revue pour 
etablir une base physique raisonnable en vue de la construction d 'un modele. On montre que pour u n 
simple drainage gravitaire, la capillarite est negligeable a cote d e la gravite puisque les valeurs de la satura­
tion en eau sont genera lement pres d 'etre atteintes. On admet que la permeabilite a l' eau liquide croi t 
comme une certaine fonction de la saturation en eau et que la porosite d ecroit linea irement avec la pro­
fondeur. Les niveaux de glace et les autres inhomogeneites sont traites dans la theorie en considera nt la 
permeabilite de la neige, inhomogeneites comprises. Une methode de ca1cul de cette va leur de la permea­
bilite est don nee utilisant la methode des caracteristiques. 

On a applique la theorie a u neve du Seward Glacier sur lequel Sharp a m esure les fl eux d'eau a differentes 
profondeurs. On admet un flux periodique en surface et la solution particuliere pour l'ecoulement d'eau a 
une profondeur don nee est indiquee. A partir de cette solution, la fluctuation des ecoulements traversant 
chaque niveau de profondeur est construite et compa ree avec les valeurs mesurees. Bien que les donnees 
experimentales soient affectees par la presence de niveaux de glace, la comparaison entre la theorie et 
l'experience es t favorable e t I'on pense que la theorie est essentiellement correc te. 

ZUSAMMENFASSUNC. Eine Theorie des EillSickerllS von Wosser in Schnee. Es wird eine Theorie fur d as vertikale 
Einsickern von Wasser in gleichmassig temperierten Schnee entwickelt. Die a llgemeine Theorie d es Fliessens 
nach dem Gesetz von Darcy wird kritisch tiberprtift, um ftir die Entwicklung eines Modelles eine plausible 
physikalische Grundlage zu erhalten. Es wird gezeigt, dass in einem einfachen System des AbAusses unter 
Schwerkraft die K apillarita t gegenuber der Schwerkraft vernachlassigt werden kann, d a die Wassersatti­
gungswerte gewohnlich im "Mittelbereich" liegen . Es wird postuliert, dass die Durchlassigkeit fur Wasser 
ansteigt, wenn fUr eine bestimmte Funktion der Wassersattigung und der Porositat eine lineare Abnahme 
mit der Tiefe angenommen wird . Eisschichten und andere Inhomogenitaten werden von der Theorie durch 
Betrachtung der Durchlassigkeit von Schnee mit Inhomogenita ten berucksichtigt. Ein Verfahren zur 
Berechnung dieses Durchlassigkeitswertes unter H eranziehung der Methode der Cha rakteristiken wird 
beschrieben. 

Die Theorie wi rd a uf d en Firn des Seward Glacier angewendet, au f dem Sharp den VVasserfluss in 
verschiedenen Tiefen gemessen hat . Unter Annahme eines periodischen Oberflachenabflusses wird die 
partikula re Losung fUr den Wasserfluss in bcliebiger Tiefe angegeben. Fur diese Losung werden die Wellen­
formen, die j ede Tiefe passieren, konstruiert und mit den gemessenen verglichen. Obgleich die Daten der 
direkten M essung durch das Vorhandensein von Eisschichten beeinflusst sind, fallt der Vergleich zwischen 
Theorie und Feldmessung gunstig aus und lass t die Theorie im wesentlichen als richtig erscheinen. 

SYMBOLS 

a, b, c, n, m constants 
g acceleration due to gravity (cm S- 2) 
k total permeability (cm2) 

ka permeability to the air phase (cm2) 
kw permeability to the water phase (cm 2) 

t time (s) 
Ua volume flux of air (cm 3 S- I per cm 2) or (cm S- I) 
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total volume flux (cm3 S- I per cmz) or (cm S- I) 

volume flux of water (cm3 S- I per cmz) or (cm S-I) 

depth (cm) 

rate of propagation of wave of constant Uw (cm S- I) 

arbitrary functional relationship 
pressure in the air phase (dyn cm- z) 
capillary pressure, Pa-Pw (dyn cm- Z) 

pressure in the water phase (dyn cm- ') 
water saturation, water volume/pore volume 
irreducible water saturation 
(Sw-Swi) /( 1 -SWi) 
maximum volume flux (cm3 S- I per cm') or (cm S- I) 

Pwg//-Lw = 54700 cm- I S- I at 0° C 
phase shift (s) 
viscosity of air (P) 
viscosity of water (P) 
density of air (Mg m - 3) 
density of water (Mg m- 3) 
porosity, pore volume/total volume 
porosity at surface 
frequency (0.728 X 10- 4 Hz) 

INTRODUCTION 

The subject of water percolation in snow is offundamental importance in snow hydrology. 
Water percolation at various depths has been measured in isothermal glacier firn (Hughes and 
Seligman, 1939; Sharp, [1952] ) and the water discharge has been measured at the base of a 
seasonal snowpack (Boyer, 1954; Haupt, 1969). The permeability of snow to a single fluid 
(either air or kerosene) has been investigated by a variety of workers, e.g. Bender (1957), 
Kuroiwa (1968), Waterhouse and Bunten (1969). Dye-tracing experiments have shown that 
large spatial inhomogeneities exist within the snow (e.g. Hughes and Seligman, 1939; Gerdel, 
1954) in the form of horizontal ice bands and vertical drainage tubes. 

In view of the substantial interest in water percolation and the importance of this process 
in general glaciology, it is surprising that no method exists by which quantitative predictions 
of water percolation in isothermal snow can be made. In this paper the general theory of 
Darcian flow of two-fluid phases flowing through porous media is applied to the problem of 
gravity drainage of water in snow. In this problem the presence of interstitial air is necessarily 
considered because this second fluid phase substantially changes the character of the flow. 
Only the isothermal case is considered because the problem is sufficiently difficult without the 
blocking effect of refreezing. Also, the isothermal case is of considerable glaciological interest 
since isothermal flow occurs in temperate glacier firn and seasonal snowpacks during the 
ablation season. 

This theory is limited to vertical water flow in snow although the actual process is never so 
simple. Natural inhomogeneities such as ice layers and drainage tubes (Sharp, [1952]) 
probably exist within all temperate snow. Ice layers block the downward flow of water forcing 
the water to follow a horizontal path for some distance before continuing the vertical descent. 
Drainage tubes provide easier passage through the surrounding snow allowing more rapid 
vertical descent of the water within the tube. The one-dimensional theory can only be applied 
to an area of sufficient size where these spacial inhomogeneities can be eliminated by averaging 
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the properties of the snow over the area. The evidence from dye tracing studies indicates that 
the characteristic area over which this averaging must take place is very small compared to 
the aerial extent of a glacier or snowfield . The problem of flo w-field distortions by local 
inhomogeneities affects essentially all studies of multi-phase flow in porous media. This 
phenomenon, which is known as " fingering" on the small scale, is discussed later in reference 
to the interpretation of lysimeter data. 

A vertical gradient of porosity exists within a ll natural snow covers and is included in this 
theory. This is an important feature because the permeability of natural materials is highly 
dependent upon the porosity and a large porosity change occurs in the snow-to-ice transition 
region of a temperate glacier. In the seasonal snowpack, this effect could probably be ignored. 
The porosity gradient is taken as linear because the depth- density relationship has been 
shown to be approximately linear throughout most of the Blue Glacier (a temperate glacier 
studied by E. R . LaChapelle), and it is a good approximation over small depth intervals for 
any snow deposit. Other gradients could be included without significant difficulty. Although 
phase changes could also be included in the theory, their effect, from energy considerations, is 
believed to be insignificant. 

In a later section the theory is compared to Sharp's ([1952] ) measurements of water 
reaching various depths in the isothermal firn of the Seward Glacier. Although it is difficult 
to isolate the effects which the ice layers have on the travel time, wave shape and amplitude, 
the predictions of the theory are in good agreement with the character of the waves of water 
flux reaching each level and so the theory is thought to be essentially correct. 

D ARC1AN THEORY 

Darcy's law is a phenomenological relationship which describes the flow of fluids through 
porous media. Another way of thinking about Darcy's law, when only one fluid is present, is 
that it defines the " permeability" k of the medium. Thus permeability, as popularized by 
W yckoff and others (1933), characterizes the porous medium only and is independent of the 
properties of the fluid used in the experiment. Permeability has the dimensions of area (cm' 
is used here) and therefore is different from the "coefficient of permeability" which has been 
used to date to characterize snow (e.g. Bender, 1957 ; Kuroiwa, 1968 ; Waterhouse and Bunten, 
1969). The "coefficient of permeability" includes properties of both the fluid used in the 
experiment and the pore geometry of the snow. 

When two fluids are present (air and water in this case) Darcy's law is applied to each 
phase (Scheidegger, 1960, p. 216), thus 

(
OPa ) 

Ua = -ka/fLa 0':: - pag , ( I) 

and 

where the .:: axis originates at the surface and is positive downwards. Now the concept of 
permeability has been significantly modified to account for the permeability of the porous 
medium to each fluid phase under given conditions, i. e. for some given liquid water content 
and pressure gradient. Thus the permeability to the water phase (kw) determines, for a given 
pressure gradient in the water phase (oPw/o':: ), what water flux Uw will occur. While the total 
permeability is dependent only upon the pore geometry, the permeability to the water phase 
will in general depend upon both the pore geometry and the volume of water present. Specifi­
cally, for a given pore geometry and pressure gradient, the water flux will increase as kw 
increases and kw will increase as the area available for water flow (the liquid water content) 
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increases. As the upper limit, when water completely fills the pore spaces (when the medium 
is water-saturated), the permeability to the water phase is equal to the total permeability. 
When the water saturation has decreased to the state at which the only water present is held 
in place by capillary forces, kw is zero and the water is immobile. Then, according to Equation 
(2), no water flow can occur regardless of the pressure gradient imposed on the medium. 
This value of saturation is called the "irreducible water saturation" Swi. Flow can no longer 
occur because the water film is not continuous (see Fig. I) from grain to grain (in snow the 
water film becomes thin enough that water flow is negligible) . The water present concentrates 
at the intersections of grain boundaries and other small-angle corners. 

Fig. l. An idealized thin section qf snow showing SIIOW grains, residual water, and continuous pores filled with air. 

The permeability to the water phase, kw, is of fundamental importance in the theory of 
two-phase Darcian flow. There exist many experimental and theoretical relationships 
between kw and water saturation Sw (defined as water volume/pore volume) and therefore Sw 
is necessarily used in this theory rather than the " liquid water content". This is done because 
of the inherent meaning of Sw in Darcian theory (see the original work by Wycoff and Botset, 
1936 ; a lso Figure 2) and in spite of the fact that "liquid water content" is in general use in the 
glaciological li terature. The functional dependence of kw on porosity <p and liquid water 
saturation is developed later. 

1.00 

0 .75 

kO/k 

0 .50 

kw'k 

0 .25 

Swi 

0 25 50 75 100 
Sw % 

Fig. 2. Typical relative permeability curves showing permeabili~y to air and water as filllc!ions of water saturation. 
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Capillary pressure Pc is another variable of fundam ental importa nce in Darcian theory 
and, like kw, capillary pressure has been related to water saturation and porosity by numerous 
experiments (see Scheidegger, 1960, p . 54) . By definition, capillary pressure is the difference 
between the pressures in the air and the water phases, 

where the pressure in the air phase will always be greater than the pressure in the water phase 
since snow is a hygroscopic material. The capillary pressure can now be seen to be the 
pressure drop across the air- water meniscus. Intuitively it is possible to understand that this 
pressure drop is related to porosity since the pore size generally increases vvith porosity and Pe 
is inversely proportional to radius in a capillary. The functional dependence on water 
saturation is somewhat more complicated but in general, at lower values of water saturation, 
only the smaller pores will be occupied by the water phase and hence a larger pressure drop 
a cl"OSS the m eniscus should be expected. 

Upon differentiating Equation (3) and combining with Equations ( I) and (2), this result 
is obtained for the water flux: 

kakw ( oPe J.LaUt ) 
Uw = k + k -;;-::-+ -k + g(pw - pa) 

J.Lw a J.La w u,- a 
where Ut = ua+ uw. 

Equation (4) can be simplified by recognizing that pw ~ pa and J.Lwka ~ /Lakw except 
where ka is very small, i.e . Sw is very large (see Fig. 2) . Water saturation, however, is generally 
small in snow undergoing simple gravity flow. The only case where ka is small is the two­
dimensional flow problem where simple gravity flow is interrupted by an impermeable layer. 
H ere the water saturation increases above the layer and horizontal flow occurs under a com­
bination of gravity and capillary control. An analysis of this problem is beyond the scope of 
his theory and ice bands will be treated in the manner discussed above, that is by reducing 
the permeability of the snow as a large mass. By including these simplifications, 

kw ( oPe J.LaUt ) 
Uw = - -;;-::-+ -k + pwg . 

J.Lw u'- a 

In temperate glacier firn and seasonal snowpacks counter-current flow pl"Obably occurs 
where the downward migration of the water causes an upward migration of the air. This 
certainly occurs where the lower boundary is impermeable ice and large water saturations 
exist but it probably also occurs within a seasonal snowpackjust because end effects cause la rge 
water saturations at the lower boundary (Colbeck, in preparation) . Now, when the air flux 
must balance the water flux, 

then* 

Ut = o. 

Now where 

Pe = Pe(c/>, Sw), 

kw ( oPe oc/> oPe oSw ) 
U w = /Lw oc/> oz + oSw oz + pwg . 

The first two terms of this equation are the capillarity terms and the third term is the gravity 
term. In the two-dimensional flow problem the second term controls the flow in regions of 
high saturation gradient (al"Ound an ice layer) but the third term controls the flow when 

* Also note tha t even if Ut #- 0, the maximum possible value of (Utf'a/kal in snow is about 3 orders of magnitude 
less than the va lue of (pwg). 

https://doi.org/10.3189/S0022143000022346 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022346


374 J OU R NA L O F G LAC I O LOGY 

gravity is the main consideration. To show that capillarity can be ignored in the one­
dimensional gravity flow problem , the general rela tionship for all porous media proposed by 
Leverett (1941 ) is used. Accordingly oPe/o</> is estimated as - 103 dyn cm - 2 (- 102 N m - 2 ) 

whereas o</> /'Oz (from Sharp, 1951 ) is estimated as - 0.287 X 10- 3 cm- I. H ence the first term 
is between three and four orders of magnitude smaller than the third term (pwg = 980 dyn 
cm - 3 = 9800 N m- 3). 

Also from the Leverett relationship, oPe/ oSw ~ 210 dyn cm- 2 = 21 N m - 2 for snow 
whereas oSw/oz should take on values of less than 10- 2 cm- I (it seems very unlikely that 
homogeneous snow can be completely saturated 100 cm away from where it is completely dry). 
Now the second term is also almost three orders of magnitude less than the gravity term. 

Thus, under normal conditions of gravity drainage in snow, the flow occurs under the 
influence of gravity with li ttle capillary influence and capillarity can be ignored . Accordingly, 
the simplified form of Darcy's law can be used, 

pwkwg 
Uw = --. 

/l- w 
(5) 

Aside from the case already mentioned (large Sw), there are two other circumstances under 
which Equation (5) should be invalid. As Sw approaches Swi, 'OPe/'OSw becom es very large 
(Leverett, 1941 ), and capillary forces domina te over gravity. This is not a serious limitation 
of this theory, however, because as Sw decreases, kw approaches zero (see Fig. 2) and water 
drainage proceeds very slowly. Thus Swi is approached very slowly, a fact which is shown by 
the onset of continuous (rather than intermittent) flow in snow at dep th (Sharp, [1 952J ; see 
Fig. 3) ' Before Sw becomes so small tha t capillary forces dominate over the force of gravity, 
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Fig. 3 . Sharp's data recorded at hourly intervals . 
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another wave of melt water (which is generated at the surface of the snow) passes through and 
Sw increases again. 

The other condition under which Equation (S) is invalid occurs at the front of an advancing 
wave. Wave propagation in porous media often proceeds as a shock front (see Buckley and 
Leverett, 1942) in which case 3Sw /3<. is infinite. The region of a shock front can be adequately 
treated in the current theory just by preserving mass so this condition does not constitute a 
serious objection to the use of Equation (S) . 

After simplifying Darcy's law, the only remaining problem is to relate the permeability of 
the water phase to other variables. Fortunately, much laboratory work of this type has been 
done (see Scheidegger, 1960, p. 218) and, as discussed earlier, kw can be related to the porosity 
and the water saturation. H ere it is necessary to use the concepts from flow studies done on 
other porous materials because of the thermal equilibrium problems which would be involved 
in flowing water through snow in the laboratory. In Figure 2 typical curves of relative permea­
bility (kw /k and ka/k) for each phase are shown as functions of water saturation. The curve for 
the water phase is typical of curves for a wetting fluid . Theoretical explanations of this 
behaviour have been offered (R eznik and others, 1967) which show that this behaviour can 
be expected in any porous medium containing two fluids, Thus while similar laboratory 
experiments have not been done for snow, the same general relationships should apply. 

For values of water saturation less than Sw;, the permeability to the water phase is zero. 
This suggests a more useful variable to relate kw and Sw, namely 

S* = SW - SW!. 
I - Swi 

Here Sw! is assumed to be independent of porosity although we expect that, in general , Sw; 
will increase with decreasing porosity (Swi is taken to be zero because of the lack of appro­
priate methods of m easurement). 

ow, for a given porosity, kw is related only to S*. Morel-Seytoux (1969, p. 486) reported 
that 

kw ex. S*n 

where n is about equal to 3 for unconsolidated sands. This value, however, varies somewhat for 
different materials and for snow the value of2 is postulated . This choice is somewhat arbitrary . 
The final test of this assumption will be the comparison between the wave distortion predicted 
by the theory and that observed experimentally. Unfortunately, the existing experimental 
data (Sharp, [19S2] ) do not provide a rigorous test of the theory because the effect of ice 
layers within the snow cannot be isolated . Further field experiments without the effect of ice 
layers are now being done. The existing expel-imental data show that wave distortion will 
occur with or without ice layers (Haupt, 1969). There cannot be any doubt that 11 > 1, 
because if n = I , no wave distortion occurs. A value of 11 greater than 2 would predict more 
distortion than the experimental data show. Thus it is assumed that 

kw = kS*2. 

The dependence of permeability k on porosity generally takes the form 

k ex. cplll 

(6) 

where m is about 6 (Scheidegger, 1960). Kuroiwa (1968) found a similar relationship for snow, 

k ex. exp (bcp) 
where b = IS .g. Combining Equations (6) and (7) with a constant of proportionality a, 

kw = a exp (bcp) S*2. 

Now, substituting into Darcy's law, 

Uw = arx exp (br/» S*2, (8) 
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where IX = pwg/fJ-w = 54 700 cm- I S- I at 0° C. In this theory the porosity is assumed to be 
e/> = e/>o + cz, where e/>o is the porosity at the surface. 

When Uw and S* are functions of depth and time, the continuity equation takes the form 

oUw oS* 
oZ + e/> ( I -Swi) Tt = o. 

Substituting Equation (8) into Equation (9), 

oS* oS* 
2aIX exp (be/» S*--az+ e/> ( I - SWi) Tt = - abcrx exp (be/» S*2, 

and likewise in terms of Uw, 

2uw oUw 
2(arx )! exp (be/> /2) uw ! oz + e/> (r - Sw!) Tt = o. 

The general solution of Equation (10) is (see Sneddon, 1957, p. 50) 

F(C], Cz) = 0 

where 

Cl = r/2e/> + r/b In S*, 
Cz = abcrx exp (be/> /2) S*t + exp (- be/>/2) (e/> + 2/b). 

and 

SWi = o. 

(9) 

(10) 

( I I) 

F(C" Cz) is an arbitrary functional relationship which, when taken with any boundary condi­
tion at the surface, describes S* in terms of z and t. Thus any surface condition can be analyzed 
as a Fourier series and can then be combined with Equation ( r 2) to predict the propagation 
of water through snow. A particular solution is given later, but for the details of the method 
of solution the reader is referred to Sneddon (1957). 

CHARACTERISTICS 

No satisfactory method exists by which the permeability k of water-bearing snow can be 
measured. This problem arises because of the difficulty of maintaining thermal equilibrium 
while handling water-bearing snow samples and because the porosity would be decreased if the 
samples were frozen in order to work with them at a more convenient temperature. The 
permeability of a snow sample can be estimated from the porosity by using the results of 
Kuroiwa (1968), but porosity estimates must in turn be made from density measurements and 
uncertain measurements of the water saturation. 

An alternative method is suggested here for calculating the permeability of the snow using 
the present theory together with lysimeter data. When the snow is homogeneous this method is 
probably no better than the one described above but it has definite advantages when the snow 
includes inhomogeneities and the average permeability of the entire mass is desired. 

When U w depends upon z and t, 

oUw ouw 
du w = az dZ + Tt dt. 

When a constant value of volume flux is being considered duw = 0 and 

ouw/o z 
ouw /ot' 

(dz /dt)uw = 
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Substituting from Equation ( I I), 

(d ..: /dt )uw = 2 (aCt )! exp (bcp /2) Uwlcp- I( I - Swi)- I. 

This equation describes the speed of propagation of a value of constant volume flux moving 
through ..: - t space. Because the speed of propagation depends upon the magnitude of the 
volume flux, the waves distort as they move. This distortion was noted by Sharp ([ 1952] ), 
and it represents the tendency of the wave crest to override the slower moving parts of the 
wave causing a rapid build-up of flux as the wave crest approaches and a gradual decline after 
the wave crest has passed. Theoretically this type of displacement proceeds as a shock front 
which grows with depth. Buckley and Leverett (1942) predicted this behavior in the analagous 
situation of petroleum displacement by water in a porous reservoir and many field and labora­
tory experiments have confirmed their prediction. The development of a shock front, how­
ever, requires that oSw /o ,,: be infinite at the position of the shock front and, as discussed above, 
one assumption made during the development of the Darcian theory was that oSw/ oz is always 
small. Thus the theory fails at the shock front and in fact the shock-front solution only occurs 
because capillarity was ignored . 

To calculate the total permeability k of snow with a known porosity, it suffices to find the 
value of a because 

k = a exp (bcp) 

where b is 15.9. By choosing a value of water flux U w and measuring the rate at which that 
value propagates (d ..:/dt ) uw, the value of a can be calculated from Equation (13). This 
procedure is illustrated in the next section where the value of a is calculated from Sharp 's data 

Melt-water Flaw 
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Fig. 4. Sharp's data smoothed. 
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and then the predicted wave speed is compared with the measured speed . The value of Uw 

chosen should be an average value between the la rgest and smallest measured fluxes since the 
largest values disappear with depth and capillary forces become increasingly important at the 
lower values of flux. Also the time at which the chosen value of U w passes any depth should be 
taken from the trailing edge of the wave rather than the leading edge (see Fig. 4 for examples 
of these wave forms) since simple drainage occurs after the wave crest has passed but, during 
the build-up stage of the wave movement, the wave form is complicated by " fingering" and 
by the distortion associated with the development of the shock front. 

The use of Equation (13) is complicated by the dependence of propagation rate d ;:; /dt on 
porosity </> since porosity decreases with depth. Thus Equation (13) is integrated along a 
characteristic (the path ofa constant Uw in ;:;- t space). R ewriting Equation (13), 

( I - Swi) 4> exp (- b4>f2) d ;:; = 2(aa)!uw! dt . 

Integrating by parts from the surface to any point in ;:;- t space, where Uw is constant and 

</> (;:;) = </>o + cz, 
exp ( - b</> /2) (</> + 2/b)-exp (- b</>0/2) (</>0 + 2/b) = - bC( I - Swi)- I(aa)!uw!t. (14) 

This equation describes, for any particular snow (</>0' C and a), the depth of a value of water 
flux (uw) at any time. 

Seward Glacier firn 

Sharp ([1952] ) m easured the water flux at various levels in the firn of the upper Seward 
Glacier, a temperature glacier in the St Elias Mountains. The data were coll ected on 1 I and 
12 August as well as on 17 and 18 August, sufficiently late in the ablation season for isothermal 
conditions to exist. The water was introduced at the surface entirely by melting during the 
day and it was collected in 30 cm diameter funnels and measured at six different locations 
as the resulting melt-water waves passed dep ths of 60, 120, 18o, 240, 300 and 340 cm. Practi­
cally no melt-water was measured at depths of 120 and 300 cm , so these levels are not con­
sidered. This was probably the result of horizontal diversion of melt water by impermeable 
ice layers above those receptors. 

Sharp's data are shown in Figure 3 as recorded every hour a nd in Figure 4 as smoothed 
curves. Some of the most important features of these moving waves of water are the develop­
ment of a skewed wave form with asymmetry increasing with depth and increasing value of 
the minimum volume flux with depth. The wave amplitude appears to be constant with 
depth until 240 cm and then to decrease. The 11- 12 August data, however, show a steadily 
decreasing value of amplitude at all depths. Although no definite conclusion can be reached 
because of the unknown effects arising from the ice layers, the "diffusion-like" result of de­
creasing wave amplitude seems most plausible. The constant wave amplitude down to a 
depth of 240 cm may be due to the greater volumes of water collected at 180 and 240 cm 
than at 60 or 340 cm. Thus it is assumed that if the same volumes had been collected at each 
level, the amplitude of the wave would have decreased steadily with depth. 

The density profile was not reported for this site but it can be estimated from numerous 
density measurements made in this area of the Seward Glacier (Sharp, 1951 ). Accordingly, 
the porosity is estimated as 

where </>0 = 0.5 and C = -0.287 X 10- 3 cm - I. 
Before particular solutions can be generated from Equation (12 ), the total permeability 

of the firn at Sharp'S site will be estimated. Having estimated the porosity-depth relationship 
from the density- depth measurements, it is now necessary to calculate the value of the constant 
a. From Sharp's data on Figure 4 the speed of propagation (d ;:; fdt)uw of the value of water 
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flux, 0-42 X 10- 4 cm3 S- I per cm2, is 0.006 25 cm S- I. Accordingly, from Equation (13) the 
value of a is 0.625 X 10- 9 cm2. This value is about correct for the snow as a large unit, including 
ice bands, since the permeability at the surface of the snow would be 

k = 1.5 X 10- 6 cm2 

and the upper limit for the permeability of loose sand grains is about 1.8 X 10- 6 cm2. The 
measured value of a for snow with this same porosity is 3.3 X 10- 6 cm2 (Kuroiwa, 1968) . Thus 
the effect of including the ice layers is to reduce the total permeability of the snow by a factor 
of just over 2. 

Taking the values already given for the constants, Equation (14) becomes 

om 175-exP (- 7.951» (1) + 0.126) = - 26.6 X 10- 6 uwit. 

To verify the validity of Equation (15), the characteristic paths of 0.19 X 10- 4 cm S- I and 
0.38 X 10- 4 cm S- I are computed and shown on Figure 5, together with the actual values as 
measured by Sharp. * The calculated paths for these values of water flux are very close to the 
measured paths. Although the shapes of characteristics were determined from Equation (15) 
for these values of water flux, the time at which those values left the surface cannot be cal­
culated. Normally, a problem of this type is solved by using a known boundary condition 
and then applying Equation (15) to predict the propagation of the boundary values into the 
interior. However, obtaining a sufficiently accurate boundary condition in the form of very 
precise ablation measurements does not seem very likely (personal communication from Dr 
M . F. Meier) . The boundary condition can be deduced by extrapolating backward from 
beneath the surface, i.e. the shape of the characteristics is found from Equation (15) and is 
then fitted to the data. The resulting intercept at the surface gives the time at which that value 
of water flux was generated at the surface. 

300 

E 
u 200 
~ 
Cl. ., 
o 

100 

o Sharp's Data 
- Computed from Eq . 15 

0~~~~--~1~80~0~--L---2~4~0~0~~----0-6LO-0--~----1-2LO-0--~ 

17 August midnight 18 August 

Fig. 5. The characteristics of two values qf volume flux . 

• Although there is close agreement between theory and experiment, the postulated value of two for the 
exponent n is still tentative. Further experiments are currently in progress to test the validity of this postulate. 
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The boundary condition is not reconstructed here because of the many limitations of both 
the theory and the experimental data (horizontal diversion of melt water and elimination of 
capillary forces) would reduce the accuracy of the result. In principle it is possible to use any 
boundary condition because any input of water at the surface in the form of either rain or melt 
could be represented as a Fourier series. The one-half sine wave, periodic (24 h per cycle) 
function, 

(
I 1 2 I 1 ) uw (o, t ) = Umax -+- sin wt - - -- cos llwt , 

TT 2 TT n2 -1 
n = 2,4,6, ... 

is assumed to represent the surface condition and from Figure 5 it is estimated that Umax 
occurred at 11. 30 h . This boundary condition is shown on Figure 6. The maximum surface 
flux was assumed to occur at 11.30 h in spite of the fact that the temperature record suggests 
that the maximum value should have occurred later. The following calculations verify the 
assumption. 

3 

i 2 
Li: 

E 
~ 

o 
> I 

340 

2 4 6 8 10 12 14 

Time, 

Fig. 6. The assumedjlux at z = 0 and the computedj/uxes at 60, 180, 240 and 340 cm. 

The particular solution to Equation ( 12 ) (see Sneddon, 1957, p, 56) is (S* and U w are 
related by Equation (8)) , 

uw (z, t) = Umax [2+~ sin w(t+ 8) _~ "" _I - cos nw(t+ 8)] 
TT 2 TT~n2- 1 

n = 2,4,6, .,. 

where 

(<p + 2/b) exp (- b<p /2)- (<Po + 2/b) exp (- b<po/2) S 
8 = bc(arx )lu

w
• ( I - wl ). 

Using the values of a, b, SWi, c and <Po already chosen and estimating Umax = 0.42 X 10- 4 

cm S- l , 

uw (z,t ) = 0,134 X 10- 4 + 0.21 X 10- 4 sin w(t+ 8)-0.268 X 10- 4 """-I- cosnw(t+ 8) ( r6) Ln2 -1 

where 

w8 = 2.73 (o.or 175 - (<P + O.126) exp (- 7.95<P)) uw- l . 

https://doi.org/10.3189/S0022143000022346 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022346


A THEORY OF WATER PERCOLATION IN SNOW 

Equation (16) is an implicit functional relationship giving U w as a function of <p, t and 8 where 
<p = <Po+cz and 8 is a function of <p and Uw. To find particular values of Uw at some depth z, 
it is necessary to assume a value for w(t+ 8) where 0 < w(t+ 8) < 7T, calculate Uw from 
Equation (16) and then calculate t using Equation (17). Thus using an iterative technique 
corresponding values of Uw and t can be calculated at each depth. 

The wave form at each depth can be constructed from the calculated values of Uw and t if 
it is assumed that the same volume of water passes each depth during one p eriod, i. e. if 
continuity is preserved. The calculated function at each depth is double-valued, that is at 
each time there are two values of Uw . The only possible interpretation of this result is that the 
trailing side of the wave form is given by the larger values of U w and the leading edge of the 
wave form propagates as a shock front. This interpretation follows that of Buckley and 
Leverett ( 1942) who found a tI·iple valued function (see Scheidegger (1960, p. 224)) for a 
discussion of immiscible displacement). The position of the shock front is determined from 
continuity considerations. 

Figure 6 shows the assumed boundary condition and the calculated wave forms at 60, 
180, 240 and 340 cm . In each case the shock front was located by trial and error- the area 
under each curve must be equal since the same volume of water passes each level. Apparently 
the shock front grows with depth until the entire leading edge of the wave propagates as a 
shock front. Thereafter the maximum value of volume flux decreases with depth as the 
minimum value increases. Also note the increasing distortion of the wave form from its 
initially symmetrical shape to one which is increasingly skewed toward larger time. The 
ultimate result would be steady-state flow at sufficient depth. 

The computed and the measured water fluxes for depths of 60, 18o, 240 and 340 cm are 
shown on Figures 7, 8, 9 and 10. In general the agreement between the theoretical a nd 
experimental values is quite good and shows that the physical concepts are correct and the 
assumptions are justified. Better agreement could be obtained simply by increasing the value 
of a, shifting the assumed position of the maximum surface flux, or by assuming another 
porosity profile. However, the uncertainty of heterogeneous flow around ice layers would still 
be present, so that changing these constants to achieve improved agreements would serve no 
useful purpose. Certain differences between the theory and experiment can be explained. 
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Fig. 7. The measured and computedfluxes at 60 cm. 
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Fig. 8. The measured and computed flu xes at 180 cm. 

At 60 cm (see Fig. 7) the measured values form a curve which is more peaked than the 
theoretical curve. Thus the actual wave at the surface is probably more peaked than the 
assumed surface condition but since no surface measurements were made, a more realistic 
boundary condition will not be assumed. While this difference is noticeable at 60 cm it is not 
so noticeable at lower depths. It has been shown (Colbeck, 1971 ) that the exact shape of the 
surface wave is not important, since the mechanics of the percolation process will determine 
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Fig. 9. The measured and computedfluxes at 210 cm. 
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the wave form at depths below I to 2 m and large differences in wave shape at the surface will 
be quickly removed with depth. 

The area under each of the theoretical curves is equal (an equal volume of water passes 
each depth) but the area under the experimental curves varies three-fold. The theory predicts 
that larger volumes of water should have passed 60 and 340 cm than were measured and vice 
versa at 180 and 240 cm. If the excess volumes were removed from the leading edges of the 
experimental curves at 180 and 240 cm, the agreement between the theoretical and experi­
mental curves would be substantially improved. In particular the magnitude of the experi­
mental wave would decrease in the same manner as the theoretical wave. 

The theory predicts that the minimum flux increases with depth in much the same manner 
as is shown by Sharp's data. Also the increasing distortion of the wave form can be seen in the 
experimental data, but the data do not verify the existence of a shock front. Although lysi­
meters may not be sufficiently sophisticated to detect such an event, it seems very likely that a 
wave undergoing gravity drainage would not propagate as a smooth surface but would proceed 
with much "fingering" (Scheidegger, 1960, p. 202). Thus while the concept of the shock 
front is very useful mathematically, the failure to observe such an event in practice should not 
be interpreted as a serious failure of the theory. In general, the distortion of the wave form is 
closely approximated by the shock-front theory. 
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Fig. 10. The measured and computed .fluxes at 340 cm. 

CONCLUSION 

The general theory of two-phase fluid flow through porous media has been used to con­
struct a theory of water percolation in isothermal snow. The existing information about snow 
as a porous material was used whenever possible. When no information was available, the 
general theory was used in making the necessary assumptions. The fundamental assumption 
was that capillarity could be ignored during gravity drainage in snow. This was shown to be 
true only if water saturations Sw occur which are somewhat greater than the irreducible value 
Swi and somewhat less than the complete saturation, i.e. Sw always exists within the "mid­
range" of saturations. In this case ap cl asw is small and capillary forces are negligible. While 
high values of Sw do not occur within highly porous snow (Davar, 1967), high values should 
occur where porosity decreases at greater depths. However at these depths the wave forms are 
sufficiently diffuse that steady-state flow should prevail. 

https://doi.org/10.3189/S0022143000022346 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022346


JO U RNAL OF GLACIOLOGY 

The method of characteristics was used to calculate the permeability of the firn in the 
situation studied by Sharp. The total permeability of the snow as a large unit was found to be 
less than one-half of the permeability of similar snow samples studied in the laboratory. While 
this is a reasonable value, much further effort will be required to establish if it generally holds. 

The assumption that the relative permeability to the water phase is proportional to s*z 
was made for lack of an appropriate experimental relationship. In fact the laboratory experi­
m ents will probably never be performed on the snow- water- air system because of the inherent 
difficulty of relative permeability experiments, even under circumstances where thermal 
equilibrium is not a problem. Therefore only the application of the theory can test this 
assumption, and the application of the theory to Seward firn data verifies the theory. The 
distortion of waves of flux by inhomogeneities within the snow is largely unknown and when 
current experiments on percolation in homogeneous snow are completed, the theory will be 
re-examined to test this assumption. 

As a summary, when volumes of water are periodically introduced by surface m elt, the 
resulting waves of water flux propagate in a predictable manner with a decreasing maximum 
flux, increasing minimum flux and increasing distortion with depth. The waves propagate 
approximately as a shock front which grows with depth until the entire wave proceeds as a shock 
front after which the shock front d ecays with depth. Steady-state flow occurs at sufficient 
d ep th. 

ACKNOWLEDGEMENTS 

I wish to thank Dr W. D. Hibler III and Dr M. M ellor for critically reviewing this manu­
script. H elpful comments and suggestions have been offered by Mr A. ]. Gow, Dr C. M. 
K eeler and Dr Y. C. Yen. 

MS. received 3 November 1971 and in revisedform 28 February 1972 

REFERENCES 

Bender, J . A. 1957. Air permeabi lity of snow. U.S. Snow, Ice and Permafrost Research Establishment. Research Report 
37· 

Botset, H . G . 1940. Flow of gas-liquid mixtures through consolida ted sand. Transactions of the American Institute 
of Mining and M etallurgical Engineers, Vo!. 136, p. 9 1- 105. 

Boyer, P . B. 1954. Analysis of January 1953 rain on snow observations at Central Sierra Snow Laboratory, Soda 
Springs, California. U.S. Army. Corps of Engineers. Northern Pacific Division. S ,IOW Investigations. Research 
Note 18. 

Buckley, S. E., and Leverett, M. C. 1942. Mechanism offtuid displacem ent in sands. Transactions of the American 
Institute of Mining and M etallurgical Engineers, Vo!. 146, p. 107- 16. 

Col beck, S. C. 197 I . One-dimensional theory of water Row through snow. U.S. Cold Regions Research and Engineering 
Laboratory. Research Report 296. 

D avar, K . S. 1967. Analogous behav iour of snowmelt and groundwater. (In Groundwater-streamflow systems. 
Proceedings of a workshop seminar. Quebec, Canadian National Committee for the International H ydrologic 
Decad e and Laval U niversity, p . 15- 18.) 

Gerdel, R. W . 1954. The transmission of water through snow. Transactions. American Geophysical Union, Vo!. 35, 
No. 3, p . 475- 85. 

H aupt, H. E. 1969. A simple snowmelt lysimeter. Water Resources Research, Vol. 5, No. 3, p. 714- 18. 
Hughes, T. P ., and Seligman, G. 1939. The temperature, melt water movement and d ensity increase in the neve 

of an a lpine glacier . Month fy Notices of the Royal Astronomical Society. Geophysical Supplement, Vol. 4, No. 8, 
p.616- 47· 

Kuroiwa, D . 1968. Liquid permeability of snow. Union de Geodesie et Geophysique Internationale. Association Inter­
nationale d'Hydrologie Scientifique. Assemblie generale de B eme, 25 sept.-7 oct. 1967 . [Commission de Neiges et Glaces. ] 
Rapports et discussions, p. 380-9 1. 

Leverett, M. C. 1941. Capillary behavior in porous solids. Transactions of the American Institute qf Mining and 
M etallurgical Engineers, Vol. 142, p. 152- 69. 

Morel-Seytoux, H . J . 1969. Introduction to Row of immiscible liquids in porous media. (In De Wiest, R . J. M., 
ed. Flow through porous media. New York, Academic Press, p. 455- 516.) 

R eznik, A. A., and others. 1967. A mathematical inhibi tion model with fractional-wettability characteristics, by 
A. A. R eznik, P. F. Fulton and S. C. Colbeck. Producers Monthly, Vol. 3 1, No. g, p. 22- 28. 

https://doi.org/10.3189/S0022143000022346 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022346


A TH EO R Y O F W A T E R P E R CO L A TI ON I N SNO W 

Scheidegger, A. E . 1960. T he physics of flow through porous media. T oronto, U niversity of T oronto Press. 
Sharp, R. P . 195 1. Features of the fi rn on upper Seward G lac ier, St. E lias M ounta ins, Canad a. Joumal of 

Geology, Vo!. 59, No. 6, p . 599-62 1. 
Sha rp, R . P . [ 1952.] 1eltwater behavior in fi rn on upper Seward G lac ier , St. E lias M oun tains, Canada. Union 

Geodisique et Geophysique Internationale. Association l ntemationale d' Hydrologie Scientifique. Assemblie generale de 
B ruxelles, 1951, Tom. I, p . 246- 53. 

Sneddon, I. N. 195 7. Elements of partial differential equations. New York, M cGraw-Hill . 
W a terhouse, R . VV ., and Bunten, L. 1969. Permeabili ty a nd strength of aging snow. U.S. Cold Regions Research 

and Engineering Laboratory. Special R eport 12 4 . 

Wyckoff, R . D ., and Botset, H . G. 1936. Flow of gas-liquid mixtures through unconsolidated sands. Physics, 
Vo!. 7, No. 9, p. 32 5- 45. 

W yckoff, R . D., and others. 1933. The measurement of permeability of porous media for homogeneous fl uids, by 
R . D . Wyckoff, H . G. Botset, M. M uska t, D. W. R eed. Review of Scientific I nstruments, New Ser ie , Vc!. 4, 
No. 7, p . 395- 405. 

https://doi.org/10.3189/S0022143000022346 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000022346

