
23 The heterotic string

In the Type II theory we have seen that the left and right movers are essentially inde-
pendent. At the level of the two-dimensional Lagrangian, there is a reflection symmetry
between left and right movers; however, this symmetry does not hold sector by sector and
is broken by boundary conditions and projectors.

In the heterotic theory this independence is taken further, and the degrees of freedom
of the left and right movers are taken to be independent – and different. There are two
convenient world-sheet realizations of this theory, known as the fermionic and bosonic
formulations. In both there are eight left-moving and eight right-moving XIs, associated
with ten flat coordinates in space–time. There are eight right-moving two-dimensional
fermions, ψ I. There is a right-moving supersymmetry but no left-moving supersymmetry.
In the fermionic formulation there are, in addition, 32 left-moving fermions which have no
obvious connection with space–time, λA. In the bosonic description there are an additional
16 left-moving bosons. In other words, there are 24 left-moving bosonic degrees of
freedom. There are actually several heterotic string theories in ten dimensions. Rather than
attempt a systematic construction, we will describe the two supersymmetric examples.
These have gauge groups O(32) and E8 × E8. The group E8, one of the exceptional groups
in Cartan’s classification, is not very familiar to most physicists. However, it is in this
theory that we can most easily find solutions which resemble the Standard Model. We
will introduce certain features of E8 group theory as we need them. More detail can be
found in the suggested reading. In this chapter we will work principally in the fermionic
formulation. We will develop some features of the bosonic formulation in later chapters,
once we have introduced the compactification of strings.

23.1 The O(32) theory

The O(32) (SO(32)) theory is somewhat simpler to write down, so we will develop it first.
In this theory the 32 λA fields are taken to be on an equal footing. The GSO projector, for
the right movers, is as in the superstring theory. In the RNS formalism, in the NS sector we
keep only states of odd fermion number and similarly in the Ramond sector, where fermion
number includes a factor ei�11 . For the left movers, the conditions are different. Again, we
have a Ramond and an NS sector. In the NS sector we keep only states of even fermion
number. In the R sector the ground state is a spinor of SO(32). The spinor representation
can be constructed just as we constructed the spinor representation of O(8). Again, there
are two inequivalent irreducible representations. There is a chirality, which we can call �33.
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336 The heterotic string

The lowest spinor representation of definite chirality is the 32. Again, in the Ramond sector
we project (by convention) onto states of even fermion number.

As for the superstring, there is a different light cone Hamiltonian for each sector. The
right-moving part is just as in the superstring. The left-moving part includes a contribution
from the bosonic operators and a contribution from the fermions, λA. As for the superstring,
in the Ramond sector the λAs are integer moded; they are half-integer moded in the NS
sector. From our formula, the left-moving normal-ordering constant is −1 in the NS sector
and zero in the R sector.

Now, we can consider the spectrum. Take, first, the NS–NS sector, i.e. the sector with
NS boundary conditions for both the left and the right movers. The states are space–time
bosons. The left-moving normal-ordering constant is −1. Without λAs, the lowest mass
states we can form are

α̃I−1ψ
J−1/2|0〉. (23.1)

From our discussion of the normal-ordering constants, we see that these states are massless.
They have the quantum numbers of a graviton, antisymmetric tensor and scalar field.

Using the left-moving fermion operators, we can construct additional massless states in
this sector:

λA−1/2λ
B−1/2ψ

J−1/2|0〉. (23.2)

These are vectors in space–time. Because the λAs are fermions, they are antisymmetric
under A ↔ B. So, they are naturally identified as gauge bosons of the gauge group SO(32).
We will show shortly that they have the couplings of O(32) Yang–Mills theories.

Let’s first consider the other sectors. In the NS–R sector, the right-moving states,
ψJ−1/2| �p 〉, are replaced by the states we labeled |a〉. Again these must be massless, so
we now have particles with the quantum numbers of the gravitino, one additional fermion
and the gauginos of O(32). In the NS–R and R–R sectors, however, it turns out that there
are no massless states, as can be seen by computing the normal-ordering constants. It is
necessary to include the R sector for the left movers. Here the normal-ordering constant is
+1, and there are no massless states.

23.2 The E8 × E8 theory

The E8 group is unfamiliar to many physicists, and one might wonder how one could obtain
two such groups from a string theory. To begin, it is useful to note that E8 has an O(16)
subgroup. Under this group the adjoint of E8, which is 248-dimensional, decomposes as a
120 – the adjoint of O(16) – and a 128, a spinor of O(16).

In ten dimensions we have seen we can build a sensible string theory with eight left-
moving bosons and 32 left-moving fermions. So the strategy is to break the fermions into
two groups of 16, λA and λÃ, and to treat these as independent. This gives a manifest
O(16)× O(16) symmetry, similar to the symmetry of the O(32) theory. There are now NS
and R sectors for each set of fermions separately. The right-moving GSO projectors are
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337 23.3 Heterotic string interactions

as before. For the left movers, in each NS sector the action of the left-moving projector is
onto states of even fermion number. With a suitable convention for the �11 chirality, this is
also true of the R sectors. So, consider again the spectrum. In the NS–NS–NS sector, just
as before, there are a graviton, antisymmetric tensor and scalar field. We can also construct
gauge bosons in the adjoint of each of the two O(16)s,

λAλBψJ−1/2|0〉, λÃλB̃ψJ−1/2|0〉. (23.3)

Note that, because of the projectors, there are no massless states carrying quantum numbers
of both O(16) groups simultaneously. In the NS–NS–R sector we find the superpartners of
these fields.

Now consider the R–NS–NS sector. Here the ground state is a spinor of the first O(16).
So now we have a set of gauge bosons in the spinor 128-dimensional representation.
Similarly, in the NS–R–NS sector we have a spinor of the other O(16). These are the
correct set of states to form the adjoints of two E8s. Again, establishing that the group is
actually E8 × E8 requires showing that the gauge bosons interact correctly. We will do that
in the following section.

Finally, in the R–R–NS and R–R–R sectors there are no massless states.

23.3 Heterotic string interactions

We would like to show that the states we have identified as gauge bosons in the heterotic
string interact at low energies, as required by Yang–Mills gauge invariance. To do this
we work in the covariant formulation and construct vertex operators corresponding to the
various states. Consider the O(32) theory first. With our putative gauge bosons we associate
the vertex operators∫

d2z VABμ =
∫

d2z λA(z̄)λB(z̄)
[
∂zXμ(z)− ikνψμψν(z)

]
eik·x. (23.4)

For the right movers, as in the Type II theories we have required invariance under the right-
moving world-sheet supersymmetry. For the left-moving vertex operators we have simply
required that the operators have dimension one, so that overall the vertex operator has
dimension one with respect to the left- and right-moving conformal symmetry (the operator
is said to be (1, 1), just like those of the Type II theory). To determine their interactions, we
will study the operator product of two such operators. The left-moving part of the vertex
operator is a current,

j AB(z̄) = λA(z̄)λB(z̄). (23.5)

The operator product of two of these currents is

j AB(z̄)j CD(w̄) = δACδBD + · · ·
(z̄ − w̄)2

+ δACλB(z̄)λD(w̄)+ · · ·
z̄ − w̄

. (23.6)

https://doi.org/10.1017/9781009290883.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.030


338 The heterotic string

An algebra of currents of this kind is called a Kac–Moody algebra. It has the general form

j a(z̄)j b(w̄) = kδab

(z̄ − w̄)2
+ f abcjc(w̄)

z̄ − w̄
, (23.7)

where k is called the central extension of the algebra. In our case k = 1. The f abcs are the
structure constants of the group. They can be found from Eq. (23.6).

To see the Yang–Mills structure it is helpful to use the general Kac–Moody form,
denoting the currents and the corresponding vertex operators by a subscript a. Regarding
the operator product, we have seen from our discussion of factorization that the interaction
is proportional to the coefficient of 1/|z−w|2. In the product Va(z)Vb(w) the term 1/(z̄−w̄)
is proportional to fabc, just what is needed for the Yang–Mills vertex. The momentum and
gμν contributions arise from the right-moving operator product. In

[∂Xμ(z)+ k1ρψ
ρ(z)ψμ(z)]eik1·X(z)[∂Xν(w)+ k2σψ

σ (w)ψν(w)]eik2·X(w) (23.8)

the 1/(z − w) terms arise from various sources. One can contract the ∂X factors in each
vertex with the exponential factors. This gives

Vμa V νb ∼ f abcVcν(kμ2 − kμ1
)

|z − w|2 . (23.9)

Contracting the two ∂X factors with each other gives two factors of z − w in the
denominator. These can be compensated by Taylor-expanding X(z) about w. Additional
terms arise from contracting the fermions with each other. The details of collecting all the
terms and comparing with the three-gauge-boson vertex are left for the exercises.

23.4 A non-supersymmetric heterotic string theory

One can verify the modular invariance of the heterotic string theory, with the GSO
projections we have used, in precisely the same way as we did for the superstring theories.
This raises the question: are there other ten-dimensional heterotic theories, obtained by
combining the partition functions of the separate sectors in different ways? The answer
is definitely yes. Several of these have tachyons, but one does not. Its gauge group is
O(16) × O(16). It is most readily described in the Green–Schwarz formalism. It will also
provide us with our first example of “modding out”, i.e. obtaining a new string theory by
making various projections.

On the other hand, in order to obtain the smaller gauge group we need to get rid of the
gauge bosons from E8 which lie in the spinor representation. On the other hand there is no
harm in having the corresponding gauginos, if supersymmetry is broken. So we take the
original E8 × E8 theory and keep only states which are even under the symmetry (−1)F in
space–time and a corresponding symmetry in the gauge group (i.e. spinorial representations
are odd, and non-spinorial are even). This immediately gets rid of:

1. the gravitinos, and
2. the gauge bosons which are in spinorial representations of the group.
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However, we have seen that, for consistency, it is important that string theories be modular
invariant. Simply throwing away states spoils modular invariance; it is necessary to add
in additional states. In the present case one has to add a sector with different, twisted,
boundary conditions for the fields, as follows:

Sa(σ + π , τ) = −Sa(σ , τ). (23.10)

For the gauge fermions there is a related boundary condition but this is more easily
described in the bosonic formulation which we will discuss in Chapter 25 on compacti-
fication.

Suggested reading

The original heterotic string papers by Gross et al. (1985, 1986) are remarkably clear.
Polchinski’s book (1998) provides a quite thorough overview of these theories. For
example, for those who are not enamored of the Green–Schwarz formalism, it develops the
non-supersymmetric O(32) in the RNS formalism in some detail. The absence of global
symmetries in the heterotic string is demonstrated in Banks and Dixon (1988).

Exercises

(1) Construct the states corresponding to the gauge bosons of E8×E8. In particular, use the
creation–annihilation operator construction of O(2N) spinor representations to build
the 128-dimensional representations of O(16).

(2) Verify that the algebra of O(32) currents is of the Kac–Moody form. To work
out the structure constants, remember that the generators of O groups are just the
antisymmetric matrices

(ωAB)CD = δACδBD − δADδBC. (23.11)

(3) Verify that, on-shell, the three-gluon vertex has the correct form. In addition to
carefully evaluating the terms in the operator product expansion, it may be necessary
to use momentum conservation and the transversality of the polarization vectors.
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