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This paper consists of three parts: First, letting b1(z), b2(z), p1(z) and p2(z) be
nonzero polynomials such that p1(z) and p2(z) have the same degree k � 1 and
distinct leading coefficients 1 and α, respectively, we solve entire solutions of the
Tumura–Clunie type differential equation fn + P (z, f) = b1(z)ep1(z) + b2(z)ep2(z),
where n � 2 is an integer, P (z, f) is a differential polynomial in f of degree � n − 1
with coefficients having polynomial growth. Second, we study the oscillation of the
second-order differential equation f ′′ − [b1(z)ep1(z) + b2(z)ep2(z)]f = 0 and prove
that α = [2(m + 1) − 1]/[2(m + 1)] for some integer m � 0 if this equation admits a
nontrivial solution such that λ(f) < ∞. This partially answers a question of Ishizaki.
Finally, letting b2 �= 0 and b3 be constants and l and s be relatively prime integers
such that l > s � 1, we prove that l = 2 if the equation f ′′ − (elz + b2esz + b3)f = 0
admits two linearly independent solutions f1 and f2 such that
max{λ(f1), λ(f2)} < ∞. In particular, we precisely characterize all solutions such
that λ(f) < ∞ when l = 2 and l = 4.
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1. Introduction

In the last several decades, the growth and value distribution of meromorphic solu-
tions of complex differential equations have attracted much interest; see [23] and
references therein. One of the main tools in this subject is Nevanlinna theory; see,
e.g., [14, 23] for the standard notation and basic results of Nevanlinna theory.
Bank and Laine [2, 3] initiated the study on the oscillation of the second-order
linear differential equation

f ′′ +A(z)f = 0, (1.1)

where A(z) is an entire function. It is well-known that all solutions of equation (1.1)
are entire. For an entire function f , denote by σ(f) the order of f which is defined
as

σ(f) = lim sup
r→∞

log T (r, f)
log r

= lim sup
r→∞

log logM(r, f)
log r

,
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where M(r, f) is the maximum modulus of f on the circle |z| = r. When A is
transcendental, an application of the lemma on the logarithmic derivative easily
yields that all nontrivial solutions of (1.1) satisfy σ(f) = ∞. Denote by λ(f) the
exponent of convergence of zeros of f which is defined as

λ(f) = lim sup
r→∞

log n(r, f)
log r

,

where n(r, f) denotes the number of zeros of f in the disc {z : |z| < r}. Con-
cerning the zero distribution of solutions of equation (1.1), Bank and Laine
[2, 3] proved: Let f1 and f2 be two linearly independent solutions of (1.1).
If σ(A) is not an integer, then max{λ(f1), λ(f2)} � σ(A); if σ(A) < 1/2, then
max{λ(f1), λ(f2)} = ∞. Later, Shen [29] and Rossi [28] relaxed the condition
σ(A) < 1/2 to the case σ(A) = 1/2. Based on these results, Bank and Laine conjec-
tured that max{λ(f1), λ(f2)} = ∞ whenever σ(A) is not an integer. This conjecture
is known as the Bank–Laine conjecture and has attracted much interest; see the
surveys [13, 24] and references therein. Recently, this conjecture was disproved by
Bergweiler and Eremenko [7, 8]. They constructed counterexamples for the coef-
ficient A such that σ(A) is not an integer and equation (1.1) admits two linearly
independent solutions such that max{λ(f1), λ(f2)} <∞. In particular, one of the
solutions is free of zeros. In their constructions, they used the solutions of (1.1)
with A being a polynomial of ez of degree 2, namely A(z) = a1e

2z + a2e
z + a3 with

certain coefficients a1, a2 and a3.
On the other hand, it is natural to give explicit solutions of (1.1) such that

λ(f) <∞ when A is a periodic entire function of the form

A(z) = B(ez), B(ζ) = b−kζ
−k + · · · + b0 + · · · + blζ

l, b−kbl �= 0. (1.2)

For such solutions, a remarkable result in [4, 9] states that there exist complex
constants c, cj and a polynomial P (z) with simple roots only such that if l is an
odd positive integer, then

f = P (ez/2) exp

⎛
⎝ l∑

j=0

cje
(l−j)z/2 + cz

⎞
⎠ , (1.3)

where cj = 0 whenever j is even; while if l is an even positive integer, then

f = P (ez) exp

⎛
⎝ l/2∑

j=0

cje
(l/2−j)z + cz

⎞
⎠ . (1.4)

However, it seems difficult to determine explicitly cj and also the polynomial P (z) in
the above two expressions and, until now, they are only known in some special cases.
For example, Bank and Laine [4] gave a precise characterization of all nontrivial
solutions such that λ(f) <∞ of (1.1) when A(z) = ez − b for some constant b; see
also [23, theorem 5.22]. Bank and Laine [4] also characterized entire solutions such
that λ(f) <∞ of equation (1.1) when A(z) = −(1/4)e−2z + (1/2)e−z + b for some
constant b. For these two coefficients, Chiang and Ismail [10] expressed all solutions
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of (1.1) in terms of some special functions and give a complete characterization of
the zero distribution of these solutions.

In [1], Bank developed a method to find entire solutions such that λ(f) <∞ of
equation (1.1), but the manipulation of this method seems complicated. One of the
main purposes of this paper is to give a more precise description of the oscillation
of equation (1.1) when A(z) contains two exponential terms, i.e.,

A(z) = B(ez), B(ζ) = b−kζ
−k + b0 + blζ

l, b−kbl �= 0, (1.5)

or

A(z) = B(ez), B(ζ) = b0 + bsζ
s + blζ

l, bsbl �= 0. (1.6)

In particular, this provides a different approach from that in [10] and also leads to
a complete characterization of all solutions such that λ(f) <∞ of (1.1) when A(z)
is an arbitrary polynomial in ez of degree 2; see theorem 4.4 in § 4. This work is
a continuation of [33], where the present author found all nontrivial solutions such
that λ(f) < k of the differential equation

f ′′ −
[
b1(z)ep1(z) + b2(z)ep2(z) + b3(z)

]
f = 0, (1.7)

where b1(z), b2(z) and b3(z) are three polynomials such that b1(z)b2(z) �≡ 0 and
p1(z) and p2(z) are two polynomials of the same degree k � 1 with distinct leading
coefficients 1 and α, respectively.

Theorem 1.1 see [33]. Let b1, b2 and b3 be polynomials such that b1b2 �≡ 0 and
p1, p2 be two polynomials of degree k � 1 with distinct leading coefficients 1 and α,
respectively, and p1(0) = p2(0) = 0. Suppose that (1.7) admits a nontrivial solution
such that λ(f) < k. Then α = 1/2 or α = 3/4. Moreover,

(1) if α = 1/2, then p2 = p1/2, f = κeh, where κ is a polynomial with simple
roots only and h satisfies h′ = γ1e

p1/2 + γ with γ1 and γ being two polyno-
mials such that γ2

1 = b1, 2γ1γ + γ′1 + γ1p
′
1/2 + 2κ′/κγ1 = b2 and γ2 + γ′ +

2γκ′/κ+ κ′′/κ = b3;

(2) if α = 3/4, then p1 = z, p2 = 3z/4 and f = eh, where h satisfies h′ =
−4c2ez/2 + cez/4 − 1/8 and A = −(16c2ez − 8c3e3z/4 + 1/64), where c is a
nonzero constant.

The proof of theorem 1.1 is based on a development of the Tumura–Clunie
method; see [14, chapter 4]. Define a differential polynomial P (z, g) in g to
be a finite sum of monomials in g and its derivatives of the form P (z, g) =∑m

l=1 alg
nl0(g′)nl1 · · · (g(s))nls , where nl0, · · · , nls ∈ N and the coefficients al are

meromorphic functions of order less than σ(g). Define the degree of P (z, g) to be
the greatest integer of dl :=

∑s
t=0 nlt, l = 1, · · · , m, and denote it by degg(P (z, g)).

Consider the equation

gn + P (z, g) = b1e
p1 + b2e

p2 , (1.8)

where n � 2 and P (z, g) is a differential polynomial in g of degree � n− 1 with
meromorphic functions of order less than k as coefficients. If equation (1.7) admits
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an entire solution such that λ(f) < k, then equation (1.7) reduces to an equation
of the form in (1.8) with n = 2. It is shown in [33, theorem 2.1] that if equation
(1.8) admits an entire solution, then either α = −1 or α is positive rational number
and in either case g is a linear combination of certain exponential functions plus
some function of order less than k. However, to solve entire solutions of (1.7) such
that λ(f) <∞, [33, theorem 2.1] fails to work since in this case the coefficients of
P (z, g) shall contain some logarithmic derivatives which have order no less than k.

The remainder of this paper is organized in the following way. Denote by R
the set of rational functions and by L the set of functions a(z) such that a(z) =
h(l)(z)/h(z), l � 1, for some meromorphic function h(z) of finite order, respectively.
In § 2, we further develop the Tumura–Clunie method by solving entire solutions of
equation (1.8), where P (z, g) is now a differential polynomial in g with coefficients
that are combinations of functions in the set S = R∪ L. For equation (1.8) with
such coefficients, we can also write the entire solution as a linear combination of
exponential functions with certain constant coefficients, but unlike in [33, theorem
2.1], it is impossible to determine whether α is a rational number; see theorem 2.1.
In § 3, we apply our results on equation (1.8) to study the oscillation of equation
(1.7) and prove that α = [2(m+ 1) − 1]/[2(m+ 1)] for some integer m � 0 provided
that equation (1.7) with b3 ≡ 0 admits a nontrivial solution such that λ(f) <∞;
see theorem 3.1. This gives a partial answer to a question of Ishizaki [19]. In §
4, we consider the equation f ′′ − (b1elz + b2e

sz + b3)f = 0, where l, s are relatively
prime integers such that l > s � 1 and bi are constants such that b1b2 �= 0. We prove
that l = 2 if this equation admits two linearly independent solutions f1 and f2 such
that max{λ(f1), λ(f2)} <∞. In particular, when l = 2 or l = 4, we determine the
polynomial P (z) and the coefficients cj and c in (1.4) precisely. Finally, in § 5, we
give some remarks on our results.

2. Tumura–clunie differential equations

Let b1(z) and b2(z) be two nonzero polynomials and p1(z) and p2(z) be two
polynomials of the same degree k � 1 with distinct leading coefficients 1 and α,
respectively, and p1(0) = p2(0) = 0. Without loss of generality, we may suppose that
0 < |α| � 1. In this section, we solve entire solutions of the differential equation

fn + P (z, f) = b1e
p1 + b2e

p2 , (2.1)

where n � 2 and P (z, f) is a differential polynomial in f of degree � n− 1 with
coefficients being combinations of functions in S. In the following, a differential
polynomial in f will always have coefficients which are combinations of functions
in S and thus we will omit mentioning this from now on.

To state our results, we first set up some notation: Let p(z) be a polynomial of
degree k � 1. We write p(z) = (a+ ib)zk + q(z), where a, b are real and a+ ib �= 0
and q(z) is a polynomial of degree at most k − 1. Denote

δ(p, θ) = a cos kθ − b sin kθ, θ ∈ [0, 2π). (2.2)

Then on the ray z = reiθ, r � 0, from [6] (or [23, lemma 5.14]) we know that:
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1. if δ(p, θ) > 0, then there exists an r0 = r0(θ) such that log |ep(z)| is increasing
on [r0, ∞) and |ep(z)| � eδ(p,θ)rn/2 there;

2. if δ(p, θ) < 0, then there exists an r0 = r0(θ) such that log |ep(z)| is decreasing
on [r0, ∞) and |ep(z)| � eδ(p,θ)rn/2 there.

Let θ1, θ2, · · · , θ2k ∈ [0, 2π) be such that δ(p, θj) = 0, j = 1, 2, · · · , 2k. We may
suppose that θ1 < π and θj = θ1 + (j − 1)π/k. Denoting θ2k+1 = θ1 + 2π, then θ1,
θ2, · · · , θ2k divides the complex plane C into 2k sectors Sj , namely

Sj =
{
reiθ : 0 � r <∞, θj < θ < θj+1

}
, j = 1, 2, · · · , 2k. (2.3)

Throughout this paper, we let ε > 0 be an arbitrary constant. We also denote

Sj,ε =
{
reiθ : 0 � r <∞, θj + ε < θ < θj+1 − ε

}
, j = 1, 2, · · · , 2k. (2.4)

Denote by Sj and Sj,ε the closure of Sj and Sj,ε, respectively. For p1 in (2.1),
we choose θ1 = −π/(2k) and thus δ(p1, θ) > 0 in the sectors Sj when j is odd,
and δ(p1, θ) < 0 in the sectors Sj when j is even. Denote by J1 and J2 the
subsets of odd and even integers in the set J = {1, 2 · · · , 2k}, respectively, i.e.,
J1 = {1, 3, · · · , 2k − 1} and J2 = {2, 4, · · · , 2k}. We prove the following

Theorem 2.1. Let n � 2 be an integer and P (z, f) be a differential polynomial in
f of degree � n− 1. Suppose that (2.1) admits an entire solution f . Then α is real.
Moreover,

(1) if −1 � α < 0, then f = γ1e
p1/n + γ2e

p2/n + η, where γ1, γ2 are two poly-
nomials such that γn

1 = b1, γ
n
2 = b2 and η is an entire function such that

η = (μ1,j − 1)γ1e
p1/n + (μ2,j − 1)γ2e

p2/n + ηj , where μ1,j and μ2,j are the
n-th roots of 1 such that μ1,j = 1 when j ∈ {1} ∪ J2 and μ2,j = 1 when
j ∈ {2} ∪ J1, and there is an integer N such that |ηj | = O(rN ) uniformly
in Sj,ε; in particular, when k = 1, η is a polynomial;

(2) if 0 < α < 1, letting m be the smallest integer such that α � [(m+ 1)n−
1]/[(m+ 1)n], then f = γ1

∑m
j=0 cj(b2/b1)

je[jn(α−1)+1]p1/n + η, where γ1 is a
polynomial such that γn

1 = b1 and c0, · · · , cm are constants such that cn0 = 1
when m = 0, and cn0 = ncn−1

0 c1 = 1 when m = 1, and cn0 = ncn−1
0 c1 = 1 and∑

j0+···+jm=n,
j1+···+mjm=k0

n!
j0!j1!···jm!c

j0
0 c

j1
1 · · · cjm

m = 0, k0 = 2, · · · , m, when m � 2, and

η is a meromorphic function with at most finitely many poles such that η =
γ1

∑m
l=0(μj − 1)cj(b2/b1)je[jn(α−1)+1]p1/n + ηj , where μj are the n-th roots of

1 such that μj = 1 when j ∈ {1} ∪ J2, and there is an integer N such that
|ηj | = O(rN ) uniformly in Sj,ε; moreover, we have p2 = αp1 when m � 1; in
particular, when k = 1, η is a rational function.

In theorem 2.1, if all coefficients of the monomials in P (z, f) of degree n− 1
are rational functions, then we may use the method in the proof of [33, theorem
2.1] to show that η is a polynomial or a rational function. We also remark that,
by using the method in the proof of theorem 2.1 for the case −1 � α < 0 together
with the method in [34], we may extend [33, theorem 2.1] to the case P (z, f) is a
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delay–differential polynomial in f with meromorphic functions of order less than k
as coefficients; see [34] for the definition of a delay–differential polynomial.

As in the proof of theorems [34, theorem 1.1] and [33, theorem 2.1], we also
start from analysing first-order linear differential equation f ′ − uf = w, where u
is a nonzero polynomial and w is a meromorphic function with at most finitely
many poles. Let p(z) be a primitive function of u and suppose that deg(p(z)) =
k � 1. If f is meromorphic, then there is a rational function v(z) such that v(z) →
0 as z → ∞ and h(z) = f(z) − v(z) is entire. It follows that f(z) = h(z) + v(z)
and h satisfies h′ − uh = w − (v′ − uv) and w − (v′ − uv) is an entire function. By
elementary integration, the meromorphic solutions of f ′ − uf = w are f = cep(z) +
H(z), where

H(z) = ep(z)

∫ z

0

w(t)e−p(t) dt. (2.5)

To study the growth behaviour of this function, a useful tool is the
Phragmén–Lindelöf theorem (see [18, theorem 7.3]): Let f(z) be an analytic func-
tion, regular in a region D between two straight lines making an angle π/τ1 at the
origin, and on the lines themselves. Suppose that |f(z)| � M on the line, and that,
as r → ∞ |f(z)| = O(erτ2 ), where τ2 < τ1, uniformly in the angle. Then actually
|f(z)| � M holds throughout the region. Moreover, if f(z) → c1 and f(z) → c2 as
z → ∞ along the two lines, respectively, then c1 = c2 and f(z) → c1 uniformly as
z → ∞ in D. Using the Phragmén–Lindelöf theorem, the present author proved the
following

Lemma 2.2 see [33, 34]. Let p(z) be a polynomial with degree k � 1 and w be
a nonzero polynomial. Then there is an integer N such that for each Sj where
δ(p, θ) > 0, there is a constant aj such that |H(reiθ) − aje

p(reiθ)| = O(rN ) uni-
formly in Sj,ε, and for each Sj where δ(p, θ) < 0 and any constant a, |H(reiθ) −
aep(reiθ)| = O(rN ) uniformly in Sj,ε.

Most arguments we use below are the same as that in the proof of [33,
theorem 2.1]. We also first introduce the definition of R–set : An R–set in the com-
plex plane is a countable union of discs whose radii have finite sum. Let f(z) be
an entire solution of (2.1). We denote the union of all R–sets associated with f(z)
and each coefficient of P (z, f) by R̃ from now on. In the proof of theorem 2.1,
after taking the derivatives on both sides of equation (2.1), there may be some new
coefficients appearing in the resulting equations. We will always assume that R̃ also
contains those R-sets associated with these new coefficients.

As in the proof of [33, theorem 2.1], we first reduce (2.1) into a non-homogeneous
linear differential equation with rational coefficients. Now, with all coefficients of
P (z, f) being combinations of functions in S, the key lemma for this aim is the
following

Lemma 2.3. Under the assumptions of theorem 2.1, σ(f) = k and α is real.
Moreover, for any θ ∈ [0, 2π) such that the ray z = reiθ meets finitely discs in R̃,

(1) when −1�α < 0, if δ(p1, θ)>0, then |f(reiθ)n| = (1 + o(1))|b1(reiθ)ep1(reiθ)|,
r → ∞; if δ(p2, θ) > 0, then |f(reiθ)n| = (1 + o(1))|b2(reiθ)ep2(reiθ)|, r → ∞;
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(2) when 0 < α < 1, if δ(p1, θ) > 0, then |f(reiθ)n| = (1 + o(1))|b1(reiθ)ep1(reiθ)|,
r → ∞; if δ(p1, θ) < 0, then there is an integer N such that |f(reiθ)| � rN

for all large r.

Proof of lemma 2.3. Since α �= 1, then by Steinmetz’s result [30] for exponential
polynomials, we have T (r, b1ep1 + b2e

p2) = K(1 + o(1))rk for some nonzero con-
stant K depending only on α. Recall that the coefficients of equation (2.1) are
combinations of functions in S. By the lemma on the logarithmic derivative, we
deduce from equation (2.1) that

T (r, b1ep1 + b2e
p2) = m (r, b1ep1 + b2e

p2)

= m (r, fn + P (z, f)) � nm(r, f) +O(log r).
(2.6)

Therefore, f is transcendental and T (r, f) � K1r
k for some positive constant K1.

On the other hand, by the lemma on the logarithmic derivative we also have from
equation (2.1) that

nT (r, f) = T (r, fn) = m (r, fn) = m (r, b1ep1 + b2e
p2 − P (z, f))

� m (r, b1ep1 + b2e
p2) +m (r, P (z, f)) +O(1)

� K(1 + o(1))rk + (n− 1)m(r, f) +O(log r),

(2.7)

which yields that T (r, f) � K2r
k for some positive constant K2. This together with

T (r, f) � K1r
k yields σ(f) = k. Then by definition of S and looking at the proof

of [33, theorem 2.1], we see that α is real. Now, −1 � α < 0 or 0 < α < 1.
Recall that θ1 = −π/(2k) and from (2.2) that δ(p1, θ) = cos kθ and δ(p2, θ) =

α cos kθ. When α < 0, we see that δ(p1, θ) and δ(p2, θ) have opposite signs for each
θ in the sectors Sj defined in (2.3) for p1 and δ(p1, θ) > 0 for θ in the sectors Sj

where j ∈ J1; when α > 0, we see that δ(p1, θ) > 0 and δ(p2, θ) > 0 simultaneously
for each θ in the sectors Sj where j ∈ J1 and δ(p1, θ) < 0 and δ(p2, θ) < 0 simul-
taneously for each θ in the sectors Sj where j ∈ J2. Then we see that the assertion
(1) and the assertion (2) for the case that δ(p1, θ) > 0 can be obtained by directly
following the proof of [34, lemma 2.5].

Now we consider the growth behaviour of f(z) along the ray z = reiθ such that
δ(p1, θ) < 0 when 0 < α < 1. Let ε > 0 be given. By [12, corollary 1], there exists
a constant r0 = r0(θ) > 1 such that for all z on the ray z = reiθ which does not
meet R̃ when r � r0, and for all positive integers j,∣∣∣∣f (j)(reiθ)

f(reiθ)

∣∣∣∣ � rj(k−1+ε). (2.8)

Since all coefficients of P (z, f) are combinations of functions in S, then for each
coefficient of P (z, f), say al, by [12, corollary 1], we also have, along the ray
z = reiθ, that ∣∣al(reiθ)

∣∣ � rM , (2.9)

for sufficiently large r and some large integer M . Recalling from the introduc-
tion that P (z, f) =

∑m
l=1 alf

nl0(f ′)nl1 · · · (f (s))nls , where m is an integer and
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nl0 + nl1 + · · ·nls � n− 1, we may write

P (z, f) =
m∑

l=1

âlf
nl0+nl1+···+nls , (2.10)

with the new coefficients âl = al(f ′/f)nl1 · · · (f (s)/f)nls , where nl0, · · · , nls are
nonnegative integers. Note that the greatest order of the derivatives of f in P (z, f)
is equal to s � 0. Suppose now that |f(rjeiθ)| � rN

j for some infinite sequence
zj = rje

iθ and some large N � M + s(k − 1 + ε). Then, from (2.1), (2.8), (2.9)
and (2.10) we have∣∣∣b1(rjeiθ)ep1(rjeiθ) + b2(rjeiθ)ep2(rjeiθ)

∣∣∣
=
∣∣f(rjeiθ)n

∣∣ ∣∣∣∣1 +
P (rjeiθ, f(rjeiθ))

f(rjeiθ)n

∣∣∣∣ � (1 − o(1))rnN ,
(2.11)

which is impossible when rj is large since b1(rjeiθ)ep1(rjeiθ) + b2(rjeiθ)ep2(rjeiθ) →
0 as zj → ∞. Therefore, along the ray z = reiθ such that δ(p1, θ) < 0 we must
have |f(reiθ)| � rN for all large r and some integer N . Thus our second assertion
follows. �

Now we begin to prove theorem 2.1.

Proof of theorem 2.1. For simplicity, we denote P = P (z, f). By taking the deriva-
tives on both sides of (2.1) and eliminating ep2 and ep1 from (2.1) and the resulting
equation, respectively, we get the following two equations:

b2B2f
n − nb2f

n−1f ′ + b2B2P − b2P
′ = A1e

p1 , (2.12)

b1B1f
n − nb1f

n−1f ′ + b1B1P − b1P
′ = −A1e

p2 , (2.13)

where B1 = b′1/b1 + p′1, B2 = b′2/b2 + p′2 and A1 = b1b2(B2 −B1). Note that
B1B2A1 �≡ 0. By differentiating on both sides of (2.12) and then eliminating ep1

from (2.12) and the resulting equation, we get

h1f
n + h2f

n−1f ′ + h3f
n−2(f ′)2 + h4f

n−1f ′′ + P1 = 0, (2.14)

where h1 = b2B2(A′
1 + p′1A1) − (b2B2)′A1, h2 = −nb2A1(p′1 + p′2) − nb2A

′
1, h3 =

n(n− 1)b2A1, h4 = nb2A1, and P1 = (A′
1 + p′1A1)(b2B2P − b2P

′) −A1(b2B2P −
b2P

′)′ is a differential polynomial in f of degree � n− 1. By lemma 2.3 and our
assumption, α is a nonzero real number such that −1 � α < 1. Below we consider
the two cases where −1 � α < 0 and 0 < α < 1, respectively.

Case 1: −1 � α < 0. We multiply both sides of equations (2.12) and (2.13) and
obtain

g1f
2n + g2f

2n−1f ′ + g3f
2n−2(f ′)2 + P2 = −A2

1e
p1+p2 , (2.15)

where g1 = b1b2B1B2, g2 = −nb1b2(B1 +B2), g3 = n2b1b2 and P2 = b1b2(B2f
n −

nfn−1f ′)(B1P − P ′) + b1b2(B1f
n − nfn−1f ′)(B2P − P ′) + b1b2(B1P − P ′)(B2P −
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P ′) is a differential polynomial in f of degree � 2n− 1. By eliminating (f ′)2 from
(2.14) and (2.15), we get

f2n−1 [(g3h1 − h3g1)f + (g3h2 − h3g2)f ′ + g3h4f
′′] + P3 = h3A

2
1e

p1+p2 , (2.16)

where P3 = g3f
nP1 − h3P2 is a differential polynomial in f of degree � 2n− 1. For

simplicity, we denote

ϕ =
h3A

2
1

g3h4

ep1+p2

f2n−1
− 1
g3h4

P3

f2n−1
. (2.17)

Recalling B1 = b′1/b1 + p′1 and B2 = b′2/b2 + p′2, we get from equation (2.16) that

f ′′ +H1f
′ +H2f = ϕ, (2.18)

where

H1 =
h2

h4
− g2h3

g3h4
= −

[
1
n

(p′1 + p′2) −
n− 1
n

(
b′1
b1

+
b′2
b2

)
+
A′

1

A1

]
,

H2 =
h1

h4
− g1h3

g3h4
=

1
n

[
B2

(
A′

1

A1
− b′1
b1

)
− (b2B2)′

b2

]
+

1
n2
B1B2.

(2.19)

Now we prove that ϕ is a rational function. Recall that b1, b2, p1, p2 are all
polynomials and B1 = b′1/b1 + p′1, B2 = b′2/b2 + p′2 and A1 = b1b2(B2 −B1). Since
f is entire, we see that ϕ has only finitely many poles. By lemma 2.3, σ(f) = k. By
the lemma on the logarithmic derivative, we deduce from (2.18) that

T (r, ϕ) = m(r, ϕ) +O(log r) � m(r, f) +O(log r) = T (r, f) +O(log r). (2.20)

Therefore, σ(ϕ) � k. Now let θ ∈ [0, 2π) be such that δ(p1, θ) �= 0 and z = reiθ

is a ray that meets only finitely discs in R̃. Since α < 0, then by lemma 2.3
(1) we see that in both cases that δ(p1, θ) > 0 and δ(p1, θ) < 0 we always have
|ep1(reiθ)+p2(reiθ)/f(reiθ)2n−1| → 0 as r → ∞ along the ray z = reiθ. Together with
[12, corollary 1] we see from (2.17) that there is some integer N such that
|ϕ(reiθ)| � rN for all large r. Then by the Phragmén–Lindelöf theorem we see
that |ϕ| � rN uniformly in each Sj,ε, j = 1, 2, · · · , 2k, for some integer N = N(j).
Since ε can be arbitrarily small, then by the Phragmén–Lindelöf theorem again we
conclude that ϕ is a rational function. From now on we fix one large N .

Recall that B2 = b′2/b2 + p′2. Denote F1 = f ′ − (B1/n)f . Then by simple compu-
tations we obtain from (2.18) that

F ′
1 −
(

1
n
p′2 −

b′1
b1

− n− 1
n

b′2
b2

+
A′

1

A1

)
F1 = ϕ. (2.21)

Denote ξ1 = p′2/n− b′1/b1 − (n− 1)b′2/nb2 +A′
1/A1. Then the general solution of

the homogeneous equation F ′
1 − ξ1F1 = 0 is defined on a finite-sheeted Riemann

surface and is of the form F1 = C2b
1/n
2 A1/(b1b2)ep2/n, where C2 is a constant and

b
1/n
2 is in general an algebraic function (see [21] for the theory of algebroid func-

tions). Suppose that Γ2 is a particular solution of F ′
1 − ξ1F1 = ϕ. We may write
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the meromorphic solution of this equation as F1 = C2b
1/n
2 A1/(b1b2)ep2/n + Γ2. By

an elementary series expansion analysis around the zeros of b2, we conclude that
Γ2/b

1/n
2 is a meromorphic function. This implies that b2 is an n-square of some

polynomial. Then by lemma 2.2 we integrate the equation (2.21) along the ray
z = reiθ in S2 such that δ(p2, θ) > 0 and obtain

F1 = f ′ − 1
n
B1f =

c2
n

b
1/n
2 A1

b1b2
ep2/n + Γ2, (2.22)

where

Γ2 =
A1b

1/n
2

b1b2
ep2/n

∫ z

0

e−p2/n b1b2

A1b
1/n
2

ϕdt− a2,2
A1b

1/n
2

b1b2
ep2/n, (2.23)

where a2,2 = a2,2(θ) is a constant such that |Γ2| = O(rN ) along the ray z =
reiθ in S2. Now, for z ∈ Sj,ε where j ∈ J2, we have δ(p2, θ) > 0 and so Γ2 =
(c2d2,j/n)b1/n

2 A1/(b1b2)ep2/n + γ2,j , where d2,j are some constants related to a sec-
tor Sj,ε and |γ2,j | = O(rN ) uniformly in Sj,ε. Of course, for j = 2, we have d2,2 = 0.
Furthermore, |Γ2| = O(rN ) uniformly in Sj,ε where j ∈ J1. We then define d2,j = 0
for j ∈ J1.

Similarly, denoting that ξ2 = p′1/n− b′2/b2 − (n− 1)b′1/nb1 +A′
1/A1 we also have

F ′
2 − ξ2F2 = ϕ and it follows by integration that F2 = −(c1/n)b1/n

1 A1/(b1b2)ep1/n +
Γ1, where Γ1 = −(c1d1,j/n)b1/n

1 A1/(b1b2)ep1/n + γ1,j , where dl,j are some constants
related to a sector Sj,ε and |γ1,j | = O(rN ) uniformly in Sj,ε for j ∈ J1. Of course,
for j = 1, we have d1,1 = 0. Furthermore, |Γ1| = O(rN ) uniformly in Sj,ε where
j ∈ J2. We then define d1,j = 0 for j ∈ J2.

Denoting B = n/(B2 −B1), we have f = B(F1 − F2). Together with the rela-
tion A1 = b1b2(B2 −B1), we have f = c1b

1/n
1 ep1/n + c2b

1/n
2 ep2/n + η with an entire

function η = B(Γ2 − Γ1). We see that η = c2d2,jb
1/n
2 ep2/n +B(γ2,j − γ1,j) when

j ∈ J1 and η = c1d1,jb
1/n
1 ep1/n +B(γ2,j − γ1,j) when j ∈ J2.

Now we determine d1,j and d2,j . By [12, corollary 1], we may suppose that along
the ray z = reiθ we have |f (j)(reiθ)/f(reiθ)| = rj(k−1+ε) for all j > 0 for all suffi-
ciently large r and thus write P in the form in (2.10) with the new coefficients âl =
al(f ′/f)nl1 · · · (f (s)/f)nls , where nl1, · · · , nls are nonnegative integers. For simplic-
ity, denote D1,j = c1 + c1d1,j . By substituting f = c1b

1/n
1 ep1/n + c2b

1/n
2 ep2/n + η

into (2.1), we obtain, for z = reiθ for a θ in Sj and j ∈ J1,

(
Dn

1,j − 1
)
b1e

p1 +
n−1∑
k0=1

(
n

k0

)(
D1,jb

1/n
1

)n−k0

(c2b
1/n
2 )k0e[(n−k0)p1+k0p2]/n

+ (cn2 − 1)b2ep2 +
n∑

s=1

n−s∑
ks=0

αs,ks
e[(n−s−ks)p1+ksp2]/n = 0,

(2.24)

where αs,ks
, s = 1, · · · , n, ks = 0, · · · , n− s, are functions satisfying |αs,ks

(reiθ)| =
O(rN ) along the ray z = reiθ. By letting r → ∞ along the above ray z = reiθ such
that δ(p1, θ) > 0 and comparing the growth on both sides of the above equation we
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conclude that cn1 (1 + d1,j)n = 1. Since d1,1 = 0, we have cn1 = 1 and d1,j = μ1,j − 1
for some μ1,j such that μn

1,j = 1. Similarly, we can prove that d2,j = μ2,j − 1 for
some μ2,j such that μn

2,j = 1. In particular, when k = 1, since d1,1 = d2,2 = 0 and
|ηj | = O(rN ) uniformly in the sectors Sj,ε, j = 1, 2 and since ε can be arbitrarily
small, by the Phragmén–Lindelöf theorem we conclude that η is a polynomial. Thus
our first assertion follows.

Case 2: 0 < α < 1.
As in the proof of [33, theorem 2.1], we first define some functions in the following

way: We let m be the smallest integer such that α � [(m+ 1)n− 1]/[(m+ 1)n] and
ι0, · · · , ιm be a finite sequence of functions such that

ι0 =
A1

nb1
,

ιj = (−1)j

(
A1

nb1

)j+1

(jn− 1) · · · (n− 1), j = 1, 2, · · · ,m.
(2.25)

Recall that B1 = b′1/b1 + p′1. We also let κ0, · · · , κm be a finite sequence of
functions defined in the following way:

κ0 =
1
n

b′1
b1

+
1
n
p′1,

κj =
ι′j−1

ιj−1
− jn− 1

n

b′1
b1

+
[
j(α− 1) +

1
n

]
p′1, j = 1, 2, · · · ,m.

(2.26)

Then we define m+ 1 functions G0, G1, · · · , Gm in the way that G0 = f ′ − κ0f ,
G1 = G′

0 − κ1G0, · · · , Gm = G′
m−1 − κmGm−1. Now we have equation (2.13) and

it follows that

G0 = f ′ − κ0f = ι0
ep2

fn−1
+W0, (2.27)

where W0 = −(B1P − P ′)/(nfn−1). Moreover, when m � 1, by simple computa-
tions we obtain

G1 = G′
0 − κ1G0 = ι1

e2p2

f2n−1
+W1,

W1 = W ′
0 − κ1W0 − (n− 1)ι0

ep2

fn
W0,

and by induction we obtain

Gj = G′
j−1 − κjGj−1 = ιj

e(j+1)p2

f (j+1)n−1
+Wj , j = 1, · · · ,m, (2.28)

Wj = W ′
j−1 − κjWj−1 − (jn− 1)ιj−1

ejp2

f jn
W0, j = 1, · · · ,m. (2.29)

For an integer l � 0, by elementary computations it is easy to show that W (l)
0 =

W0l/f
n+l−1, where W0l = W0l(z, f) is a differential polynomial in f of degree
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� n+ l − 1, and also that (ep2/fn)(l) = ep2W1l/f
n+l, where W1l = W1l(z, f) is

a differential polynomial in f of degree � n+ l. We see that Wj , 1 � j � m, is
formulated in terms of W0 and ep2/fn and their derivatives. We may write

Gm = ιm
e(m+1)p2

f (m+1)n−1
+ F (W0, e

p2/fn), (2.30)

where F (W0, e
p2/fn) is a combination of W0 and ep2/fn and their derivatives

with functions being combinations of functions in S. Moreover, from the recursion
formula Gj = G′

j−1 − κjGj−1, j � 1, and G0 = f ′ − κ0f , we easily deduce that f
satisfies the linear differential equation

f (m+1) − t̂mf
(m) + · · · + (−1)m+1t̂0f = Gm, (2.31)

where t̂m, t̂m−1, · · · , t̂0 are functions formulated in terms of κ0, · · · , κm and their
derivatives.

Now we prove that Gm is a rational function. Recall that b1, b2, p1, p2 are all
polynomials. Since f is entire, then by the definitions of κ0 and κj in (2.26), we
see that Gm has only finitely many poles. With an application of the lemma on
the logarithmic derivative as in previous case, we deduce from (2.31) that σ(Gm) �
σ(f) = k. Now let θ ∈ [0, 2π) be such that δ(p1, θ) �= 0 and z = reiθ be a ray that
meets only finitely may discs in R̃. By [12, corollary 1] and lemma 2.3 (2), we see
from (2.31) that there is some integer N such that |Gm(reiθ)| � rN for all large r
along the ray z = reiθ such that δ(p1, θ) < 0. On the other hand, by lemma 2.3 (2)
there is some integer N such that

(1) if α < [(m+ 1)n− 1]/[(m+ 1)n], then |e(m+1)p2(reiθ)/f(reiθ)(m+1)n−1| → 0
as r → ∞ along the ray z = reiθ such that δ(p1, θ) > 0;

(2) if α = [(m+ 1)n− 1]/[(m+ 1)n], then |e(m+1)p2(reiθ)/f(reiθ)(m+1)n−1| �
eNrk−1

for all large r along the ray z = reiθ such that δ(p1, θ) > 0.

Note that ep2(reiθ)/f(reiθ)n → 0 as r → ∞ along the ray z = reiθ such that
δ(p1, θ) > 0. In case (1), together with [12, corollary 1] we see from (2.30) that
|Gm(reiθ)| � rN for all large r and thus by the Phragmén–Lindelöf theorem we see
that |Gm| � rN uniformly in each Sj,ε, j ∈ J2, for some integer N = N(j); in case
(2), together with [12, corollary 1] we see from (2.30) that |Gm(reiθ)| � eNrk−1

for all large r and, since the set of rays z = reiθ meeting infinitely many discs in
R̃ has zero linear measure, then by the Phragmén–Lindelöf theorem we see that
|Gm| � eNrk−1

uniformly in each Sj,ε, j ∈ J2, for some integer N = N(j). Since ε
can be arbitrarily small, then in either case of (1) and (2) by the Phragmén–Lindelöf
theorem again we conclude that Gm is a rational function. From now on we fix one
large N .

We denote D0 = b
1/n
1 and Dj = ιj−1b

−j
1 b

1/n
1 , j = 1, · · · , m. Now we choose one θ

such that δ(p1, θ) > 0 and let z = reiθ ∈ S1. Let t0 = 1/n, t1 = (α− 1) + 1/n, · · · ,
tm = m(α− 1) + 1/n. Similarly as in the proof of [33, theorem 2.1], we may use
lemma 2.2 to integrate the recursion formulas Gj = G′

j−1 − κjGj−1 from j = m to
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j = 1 along the above ray z = reiθ such that δ(p1, θ) > 0 inductively and finally
integrating G0 = f ′ − κ0f along this ray z = reiθ to obtain

f = b
1/n
1

m∑
i=0

ci

(
b2
b1

)i

etip1 +H0, (2.32)

where c0, · · · , cm are constants and

H0 = b
1/n
1 et0p1

∫ z

0

b
−1/n
1 e−t0p1H1ds− a0b

1/n
1 et0p1 , (2.33)

where a0 = a0(θ) is a constant such that |H0| = O(rN ) along the ray z = reiθ.
As is shown in the proof of [33, theorem 2.1], b1 is an n-square of some polynomial

and we may write the entire solution of (2.1) as f = γ1

∑m
j=0 cj(b2/b1)

jetjp1 + η,
where γ1 is a polynomial such that γn

1 = b1 and η is a meromorphic function with at
most finitely many poles. Then we can integrate Gj = G′

j−1 − κjGj−1 from j = m
to j = 1 inductively and finally integrate G0 = f ′ − κ0f to obtain that H0 is a
meromorphic function with at most finitely many poles. We choose η = H0. Recall
that along the ray z = reiθ such that δ(p1, θ) > 0 and z = reiθ ∈ S1, we have |H0| =
O(rN ). Denote g = b

1/n
1

∑m
i=0 ci(b2/b1)

ietip1 . Then

gn = b1

mn∑
k0=0

Ck0

(
b2
b1

)k0

e(k0t−k0+1)p1 , (2.34)

where

Ck0 =
∑

j0+···+jm=n,
j1+···+mjm=k0

n!
j0!j1! · · · jm!

cj00 c
j1
1 · · · cjm

m , k0 = 0, 1, · · · ,mn. (2.35)

By [12, corollary 1], we may suppose that along the ray z = reiθ we have
|f(reiθ)(j)/f(reiθ)| = rj(k−1+ε) for all j > 0 and all sufficiently large r. By writing
P in the form in (2.10) with the new coefficients âl = al(f ′/f)nl1 · · · (f (s)/f)nls ,
where nl1, · · · , nls are nonnegative integers, and using [12, corollary 1], we see
that each term in P (z, f) of degree n− j, 1 � j � n− 1, equals a linear combina-
tion of exponential functions of the form e[nkj(α−1)+n−j]p1/n, 0 � kj � (n− j)m,
with coefficients βj having polynomial growth along the ray z = reiθ. Therefore, by
substituting f = g +H0 into (2.1) we obtain by the same arguments in the proof of
[33, theorem 2.1] that cn0 = 1 when m = 0, and cn0 = 1, ncn−1

0 c1 = 1 and p2 = αp1

when m = 1 and further that Ck0 ≡ 0 for all 2 � k0 � m when m � 2.
Now, b1/n

1 denotes a polynomial. By the definition of ιj and Dj , we see that
Dj are rational functions. Recall that Gm is a rational function. By lemma 2.2 and
looking at the calculations to obtain H0 in (2.33), we have, for z ∈ Sj,ε, j ∈ J1, such
that δ(p1, θ) > 0, H0 = γ1

∑m
l=0 dl,j(b2/b1)jetjp1 + ηj , where dl,j , l = 0, · · · , m, are

some constants related to a sector Sj,ε and |ηj | = O(rN ) uniformly in Sj,ε, j ∈ J1.
Of course, for j = 1, we have dl,1 = 0 for all l. Since cn0 = 1 when m = 0, cn0 =
ncn−1

0 c1 = 1 when m = 1, and cn0 = ncn−1
0 c1 = 1 and Ck0 = 0 for all 2 � k0 � m

when m � 2, then by simple computations, we deduce that cj = sjc0 for some
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nonzero rational numbers sj , j = 0, 1, · · · , m. Therefore, by considering the growth
of f along the ray z = reiθ such that z ∈ Sj,ε, j ∈ J1, as for the ray z = reiθ ∈ S1,
we have (c0 + d0,j)n = 1 when m = 0, (c0 + d0,j)n = n(c0 + d0,j)n−1(c1 + d1,j) =
1 when m = 1 and further that Ĉk0 =

∑
j0+···+jm=n,

j1+···+mjm=k0

n!
j0!j1!···jm! (c0 + d0,j)j0(c1 +

d1,j)j1 · · · (cm + dm,j)jm = 0 for k0 = 2, · · · , m whenm � 2. Therefore, for each j ∈
J1, there is a μj satisfying μn

j = 1 such that cl + al,j = μjcl for all l. Note that μ1 =
1. Also, we have |η| = O(rN ) uniformly in the sectors Sj,ε, j ∈ J2. In conclusion,
we may write η = γ1

∑m
l=0(μj − 1)cj(b2/b1)je[jn(α−1)+1]p1/n + ηj , where μj are the

n-th roots of 1 such that μj = 1, j = {1}∪ ∈ J2, and |ηj | = O(rN ) uniformly in
the sector Sj,ε. In particular, when k = 1, since ε can be arbitrarily small, then
by the Phragmén–Lindelöf theorem we conclude that η is a rational function. This
completes the proof. �

3. An oscillation question of Ishizaki

Let b1(z), b2(z) and b3(z) be three polynomials such that b1b2 �≡ 0 and p1(z) and
p2(z) be two polynomials of the same degree k � 1 with distinct leading coefficients
1 and α, respectively, and p1(0) = p2(0) = 0. In this section, we use theorem 2.1 to
investigate the oscillation of the second-order linear differential equation:

f ′′ −
[
b1(z)ep1(z) + b2(z)ep2(z) + b3(z)

]
f = 0. (3.1)

There have been several results about the oscillation of equation (3.1) and recently
second-order linear differential equations with exponential polynomials are taken
into more consideration in [15, 16]. The results of Bank, Laine and langely [5],
Ishizaki and Kazuya [20] and Ishizaki [19] can be summarized as follows:

(1) if α is non-real, then all nontrivial solutions of (3.1) satisfy λ(f) = ∞;

(2) if α is negative, then all nontrivial solutions of (3.1) satisfy λ(f) = ∞;

(3) if 0 < α < 1/2 or if b3 ≡ 0 and 3/4 < α < 1, then all nontrivial solutions of
(3.1) satisfy λ(f) � k.

Theorem 1.1 shows that the condition b3 ≡ 0 in the third result can be removed.
Ishizaki [19] asked if the third result λ(f) � k above can be replaced by λ(f) = ∞.
With theorem 2.1 at our disposal, we are able to answer this question partially. We
prove the following

Theorem 3.1. Let 0 < α < 1 and m be the smallest integer such that α � [2(m+ 1)
− 1]/[2(m+ 1)]. Suppose that b3 ≡ 0 in (3.1). If (3.1) admits a nontrivial solution
f such that λ(f) <∞, then α = [2(m+ 1) − 1]/[2(m+ 1)] and p2 = αp1.

We will mainly use the techniques in [6] (see also [23, theorem 5.7]) to prove
theorem 3.1. Since α is a positive number, we have

∫∞
1
r|A(reiθ)|dr <∞ along the

ray z = reiθ such that δ(p1, θ) < 0. The following lemma can be proved similarly
as in [23, lemma 5.16] by using Gronwall’s lemma (see [23, p. 86]).
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Lemma 3.2. Under the assumptions of theorem 3.1, all solutions of equation (3.1)
satisfy |f(reiθ)| = O(r) as r → ∞ along the ray z = reiθ such that δ(p1, θ) < 0.

Now we begin to prove theorem 3.1.

Proof of theorem 3.1. Let f be a nontrivial solution of equation (3.1) such that
λ(f) <∞. By Hadamard’s factorization theorem we may write f = κeh, where h
is an entire function and κ is the canonical product from the zeros of f satisfying
ρ(κ) = λ(κ) <∞. Denoting g = h′, then from (3.1) we have

g2 + g′ + 2
κ′

κ
g +

κ′′

κ
= b1(z)ep1(z) + b2(z)ep2(z). (3.2)

Below we consider the two cases where 0 < α � 1/2 and (2m− 1)/(2m) < α �
[2(m+ 1) − 1]/[2(m+ 1)], m � 1, respectively.

Case 1: 0 < α � 1/2.
By theorem 2.1, we may write g = γ1e

p1/2 + η, where γ1 is a polynomial such
that γ2

1 = b1 and η is an entire function such that |η| = O(rN ) uniformly in S1,ε

and S2,ε. By substituting this expression into equation (3.2), we obtain

2γ1

(
κ′

κ
+

1
2
γ′1
γ1

+
p′1
4

+ η

)
ep1/2 − b2e

p2 +
κ′′

κ
+ 2η

κ′

κ
+ η2 + η′ = 0. (3.3)

Suppose that 0 < α < 1/2. We define

w = κγ
1/2
1 e

p1/4+
∫ z

z0
η dt

, (3.4)

where z0 is chosen so that |z0| is large. Then w is analytic outside a finite disc
centred at 0 and satisfy

w′

w
=
κ′

κ
+

1
2
γ′1
γ1

+
p′1
4

+ η. (3.5)

Dividing by 2γ1e
p1/2 on both sides of equation (3.3) and then considering

the growth of w′/w along the ray z = rei(θ2−ε) such that w has no zero
around the neighbourhood of the ray z = rei(θ2−ε), we have by [12, corollary 1]
that |w′(reiθ)/w(reiθ)| = O(r−2) as r → ∞. By integration, we obtain that
w(rei(θ2−ε)) → a as r → ∞ along the ray z = rei(θ2−ε) for some nonzero constant
a = a(θ2, ε). On the other hand, by applying lemma 3.2 to equation (3.1) we
have |f(rei(θ2+ε))| = O(r) along the ray z = rei(θ2+ε). Recalling that f = κeh and
g = h′ = γ1e

p1/2 + η, we may write

w = fe−hγ
1/2
1 ep1/4+

∫
ηdz = fγ

1/2
1 e

p1/4−∫ z
z0

γ1ep1/2 dt
. (3.6)

Since δ(p1, θ2 + ε) < 0 and thus along the ray z = rei(θ2+ε) we have
∫ z

z0
γ1e

p1/2 dt→
c for some constant c = c(θ2, ε), we see from (3.6) that w defined in (3.4) satisfies
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w(rei(θ+ε)) → 0 as r → ∞. Denote

Sε = {reiθ : θ2 − ε � θ � θ2 + ε}. (3.7)

By choosing ε to be small and applying the Phragmén–Lindelöf theorem to w
defined in (3.4) in the sector in (3.7), we get a = 0, a contradiction. Therefore, we
must have α = 1/2 when b3 ≡ 0.

Now, if k = 1, then obviously p2 = p1/2 since we have assumed p1(0) = p2(0) = 0.
If k > 1, then by theorem 2.1 we have g = μjγ1e

p1/2 + ηj , where μn
j = 1, γ1 is a

polynomial such that γ2
1 = b1 and ηj is an entire function such that |ηj | = O(rN )

uniformly in Sj,ε. Note that ηj has finite order. Denoting p3 = p2 − p1/2, we rewrite
equation (3.3) as[

b2e
p3 − 2μjγ1

(
κ′

κ
+

1
2
γ′1
γ1

+
p′1
4

+ ηj

)]
ep1/2 =

κ′′

κ
+ 2ηj

κ′

κ
+ η2

j + η′j . (3.8)

If p2 �≡ p1/2, then p3 is a nonconstant polynomial such that deg(p3) � deg(p2) − 1.
By the definition of Sj in (2.3), we may choose a θ ∈ [0, 2π) so that the ray z = reiθ

meets only finitely discs in R̃ and also that log |ep1/2| and log |ep2−p1/2| both increase
along the ray z = reiθ. By [12, corollary 1] we see that κ′/κ+ γ′1/2γ1 + p′1/4 + ηj

and κ′′/κ+ 2ηjκ
′/κ+ η2

j + η′j − b3 both have polynomial growth along the ray z =
reiθ. Then by comparing the growth on both sides of equation (3.8) along the ray
z = reiθ, we get a contradiction. Therefore, we must have p2 ≡ p1/2 when α = 1/2.

Case 2: (2m− 1)/(2m) < α � [2(m+ 1) − 1]/[2(m+ 1)], m � 1.
In this case, by theorem 2.1 we already have p2 = αp1 and we may write g =

γ1

∑m
j=0 cj(b2/b1)

je[2j(α−1)+1]p1/2 + η, where m � 1, γ1 is a polynomial such that
γ2
1 = b1 and η is a mermorphic function with at most finitely many poles such

that |η| = O(rN ) uniformly in S1,ε and S2,ε. By substituting this expression into
equation (3.2), we obtain

2γ1

m∑
j=0

cj

(
b2
b1

)j [
κ′

κ
+

1
2
γ′1
γ1

+ j
(b2/b1)′

b2/b1
+

2j(α− 1) + 1
4

p′1 + η

]
eLjp1

γ2
1

2m∑
k0=m+1

Ck0

(
b2
b1

)k0

eMk0p1 +
κ′′

κ
+ 2η

κ′

κ
+ η2 + η′ = 0,

(3.9)

where Lj = [2j(α− 1) + 1]/2, Mk0 = k0α− k0 + 1 and the coefficients Ck0 =∑
j0+···+jm=2,

j1+···+mjm=k0

2!
j0!j1!···jm!c

j0
0 c

j1
1 · · · cjm

m , k0 = m+ 1, · · · , 2m. Suppose that α <

[2(m+ 1) − 1]/2(m+ 1). Then, for k0 = m+ 1 + j, j = 0, 1, · · · , m− 1, we have
Lj+1 < k0α− α+ 1 < Lj . As in previous case, we also define the function w
in (3.4), where z0 is chosen so that |z0| is large and w is analytic outside a
finite disc centred at 0. It follows that w′/w has the form in (3.5). Similarly
as in previous case, we first divide by 2c0γ1e

p1/2 on both sides of equation
(3.9) and conclude that w(rei(θ2−ε)) → a as r → ∞ along the ray z = rei(θ2−ε)

for some nonzero constant a = a(θ2, ε); then we use the expression g = h′ =
γ1

∑m
j=0 cj(b2/b1)

je[2j(α−1)+1]p1/2 + η to derive from (3.4) that w(rei(θ+ε)) → 0
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as r → ∞ along the ray z = rei(θ2+ε). An application of the Phragmén–Lindelöf
theorem to w in the sector in (3.7) then yields a contradiction. We omit those
details. Therefore, we must have α = [2(m+ 1) − 1]/2(m+ 1). We complete the
proof. �

4. Equation (1.1) with periodic coefficients in (1.6)

As mentioned in the introduction, all nontrivial solutions of the second-order lin-
ear differential equation f ′′ + (ez − b)f = 0 such that λ(f) <∞ are given explicit
expressions. In this section we solve nontrivial solutions such that λ(f) <∞ of the
second-order linear differential equation:

f ′′ − (elz + b2e
sz + b3

)
f = 0, (4.1)

where l and s are relatively prime integers such that l > s � 1, b2 and b3 are con-
stants and b2 �= 0. We remark that by using the method in [25], we may prove that
all nontrivial solutions of equation (4.1) satisfy λ(f) = ∞ when b3 is replaced by a
nonconstant polynomial.

Suppose that equation (4.1) admits a nontrivial solution such that λ(f) <∞.
Then f has the form in (1.3) or (1.4). Also, we may write f = κeh, where h is
an entire function and κ is the canonical product from the zeros of f satisfying
σ(κ) = λ(κ) <∞. Thus we may suppose that κ equals a polynomial in ez/2 or ez

and h′ equals a polynomial in ez/2 or ez. By denoting g = h′, from (4.1) we have

g2 + g′ + 2
κ′

κ
g +

κ′′

κ
= elz + b2e

sz + b3. (4.2)

By theorem 2.1, we may determine the coefficients cj in (1.3) or (1.4) from equation
(4.2). Our main result is the following

Theorem 4.1. Let b2 and b3 be constants such that b2 �= 0 and l, s be relatively
prime integers such that l > s � 1. Suppose that (4.1) admits two linearly inde-
pendent solutions f1 and f2 such that max{λ(f1), λ(f2)} <∞. Then s = 1 and
l = 2.

Recall the following well-known result due to Wittich [32]. We say that a function
f is subnormal if lim supr→∞ log T (r, f)/r = 0. This lemma gives the form of sub-
normal solutions of second-order linear differential equations with certain periodic
functions as coefficients.

Lemma 4.2. Let P (z) and Q(z) be polynomials in z and not both constants. If w �≡ 0
is a subnormal solution of equation

w′′ + P (ez)w′ +Q(ez)w = 0, (4.3)

then w must have the form w = ecz(a0 + a1e
z + · · · + ake

kz), where k � 0 is an
integer and c, a0, · · · , ak are constants with a0 �= 0 and ak �= 0. Moreover, we have
c2 + cP (0) +Q(0) = 0.
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Proof of lemma 4.2. By Wittich [32], we have w = ecz(a0 + a1e
z + · · · + ake

kz). By
taking the derivatives of w and then dividing w′ and w′′ by w, respectively, we get

w′

w
=

∑k
j=0(c+ j)aje

jz∑k
j=0 ajejz

, (4.4)

w′′

w
=

∑k
j=0(c

2 + 2jc+ j2)aje
jz∑k

j=0 ajejz
. (4.5)

We write equation (4.3) as Q(ez) = −w′′/w − P (ez)w′/w. Since w is of
finite order, then an application of the lemma on the logarithmic deriva-
tive yields deg(Q(z))m(r, ez) � deg(P (z))m(r, ez) +O(log r), i.e., [deg(Q(z)) −
deg(P (z))]T (r, ez) � O(log r). Therefore, deg(Q(z)) � deg(P (z)) and thus P (z) is
nonconstant. Together with equations (4.4) and (4.5), we rewrite equation (4.3) as∑k

j=0(c
2 + 2jc+ j2)aje

jz∑k
j=0 ajejz

+

∑k
j=0(c+ j)aje

jz∑k
j=0 ajejz

P (ez) +Q(ez) = 0. (4.6)

Since along a ray z = reiθ such that cos θ < 0, we have ez → 0 as r → ∞, then
by letting r → ∞ along the ray z = reiθ, we obtain from equation (4.6) that c2 +
cP (0) +Q(0) = 0. This completes the proof. �

Unlike in § 2 and 3 where Nevanlinna theory plays the central role in proving
theorems 2.1 and 3.1, the proof of theorem 4.1 will, however, mainly rely on the
Lommel transformation for the generalized Bessel equation:

x2y′′ + xy′ +

(
n∑

−n′
djx

j

)
y = 0. (4.7)

Recall the Bessel equation: x2y′′ + xy′ + (x2 − ν2)y = 0, where ν is a nonzero con-
stant. Lommel [26] and Pearson [27] independently (see also [31]) studied the
following transformation given by:

x = αtβ , y(x) = tγu(t), (4.8)

where α, β and γ are constants and applied to the Bessel equation. By using the
above transformation to equation (4.7) and by computing the derivatives of x and
y, we get

t2u′′(t) + (2γ + 1)tu′(t) +

(
γ2 + β2

n∑
−n′

αjdjt
βj

)
= 0. (4.9)

A further change of variable such that

t = epz, f(z) = u(t), (4.10)

leads to an equation of the form

f ′′ + 2γpf ′ + p2

(
γ2 + β2

n∑
−n′

αjdje
βpjz

)
= 0. (4.11)
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In the case of equation (4.1), by Lommel’s transformation we have

x2y′′ + xy′ − (d1x
l + d2x

s + d3

)
y = 0, (4.12)

where d1, d2 and d3 are some constants. By comparing the coefficients of equation
(4.1) and (4.11), we deduce that 2γp = 0, βp = 1, αld1 = 1, αsd2 = b2 and d3 = b3.
Further, for equation (4.12), it is well-known that the transformation y = x−1/2u
leads to an equation of the form

u′′ −
[

1
αl
xl−2 +

b2
αs
xs−2 +

(
b3 − 1

4

)
1
x2

]
u = 0. (4.13)

In the case l = 4, it has been shown by Chiang and Yu [11] that there is a full corre-
spondence between solutions of (4.1) such that λ(f) <∞ and Liouvillian solutions
of (4.13). The only possible singular point of equation (4.13) is x = 0. Concern-
ing the local solutions around a singular point of a second-order linear differential
equation, we have the following elementary lemma 4.3; see [17] or in [23, lemma
6.6].

Lemma 4.3 [17, 23]. Suppose that h is analytic in |z| < R, R > 0, and consider the
differential equation

u′′ +
h(z)
z2

u = 0 (4.14)

in the disc |z| < R. Let ρ1 and ρ2 be the roots of

ρ(ρ− 1) + h(0) = 0. (4.15)

Denote by D = D(r) the slit disc D := {z : |z| < r} \ {t | 0 � t < r}. Then

(1) if ρ1 − ρ2 ∈ Z \ {0}, then equation (4.14) admits in some slit disc D = D(r),
r � R, two linearly independent solutions u1 and u2 of the form:

u1(z) = zρ1

∞∑
i=0

aiz
i, a0 �= 0,

u2(z) = u1(z)d log z + zρ2

∞∑
i=0

biz
i,

(4.16)

where d = 0 or d = 1;

(2) if ρ1 − ρ2 �∈ Z, then equation (4.14) admits in some slit disc D = D(r), r � R,
two linearly independent solutions u1 and u2 of the form:

u1(z) = zρ1

∞∑
i=0

aiz
i, a0 �= 0,

u2(z) = zρ2

∞∑
i=0

biz
i, b0 �= 0;

(4.17)

https://doi.org/10.1017/prm.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.80


1984 Y. Zhang

(3) if ρ1 − ρ2 = 0, then equation (4.14) admits in some slit disc D = D(r), r � R,
two linearly independent solutions u1 and u2 of the form:

u1(z) = zρ1

∞∑
i=0

aiz
i, a0 �= 0,

u2(z) = u1(z) log z + zρ2

∞∑
i=0

biz
i.

(4.18)

For the solution u2 in (4.16), if d = 0, then from the proof of [23, lemma 6.6] we
know that b0 �= 0.

Now, by elementary theory of ordinary differential equation (see [17]), lemma 4.3
shows that equation (4.13) admits two linearly independent solutions u1 and u2 in
the broken plane C

− = C \ {x | 0 � x <∞}. When p = 1 in (4.10), by the Lommel
transformation and analytic continuation principle, the general solution of (4.1) is
thus given by

f = (αez)−1/2[E1u1(αez) + E2u2(αez)], (4.19)

where E1 and E2 are two arbitrary constants. Note that the above solution is
independent from the choice of the branches of u1 and u2 in lemma 4.3. This is the
key observation for the proof of theorem 4.1.

Now we begin to prove theorem 4.1.

Proof of theorem 4.1. We first suppose that f is a nontrivial solution such that
λ(f) <∞ of equation (4.1) and use the expressions in (1.3) and (1.4) to write
f(z) = Ψ(x) = xcψ(x)eχ(x), where x = ez/h, h = 1 or h = 2. From the proof of
[11, theorem 1.2], we know that in the broken plane C

− equation (4.13) admits
a solution of the form

u = exp
(∫

ωdx
)
, (4.20)

where ω := χ′ + ψ′/ψ + (2hc+ 1)/(2x) is rational function in the complex plane
C. By using Kovacic’s algorithm in [22] and giving the same discussions as in the
proof of [11, theorem 3.1] to equation (4.13) for the two cases b3 �= 1/4 and b3 = 1/4,
respectively, we conclude that l must be even. It follows that f has the form in (1.4)
and thus p = 1 in (4.10) and α = 1 in (4.8). We write f = κeh, where κ and h′ are
both polynomials in ζ = ez such that κ(0) �= 0. We may also write f = κce

hc , where
κc = κecz and h′c = h′ − c. Then, denoting gc = h′c, we have from (4.1) that

g2
c + g′c + 2

κ′c
κc
gc +

κ′′c
κc

= elz + b2e
sz + b3. (4.21)

By lemma 4.2 and the expression in (1.4), we see that the constant c in (1.4) satisfies
c2 = b3.

Now, for the solution in (4.19), by lemma 4.3 we have ρ1 + ρ2 = 1 and ρ1ρ2 =
1/4 − b3, which yield (ρ1 − ρ2)2 = 4b3. Then ρ1 − ρ2 = −2c and it follows that ρ1 =
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(1 − 2c)/2 and ρ2 = (1 + 2c)/2. Thus the solutions in (4.19) can be written as

f = (ez)c

⎡
⎣(E1 + E2d log ez) (ez)−2c

∞∑
j=0

aj(ez)j + E2

∞∑
j=0

bj(ez)j

⎤
⎦ , (4.22)

when ρ1 − ρ2 �= 0, or

f = (E1 + E2 log ez)
∞∑

j=0

aj(ez)j + E2

∞∑
j=0

bj(ez)j , (4.23)

when ρ1 − ρ2 = 0. Note that d = 0 in (4.22) when ρ1 − ρ2 is not an integer. On
the other hand, for the solution f = κeh, we may write the expression in (1.4) in
the form f = ecz

∑∞
j=0 dje

jz. By comparing this series with the one in (4.22) or in
(4.23), we conclude that the logarithmic term in u2 does not occur. This implies
that d = 0 or E2 = 0 in (4.22) and E2 = 0 in (4.23) when f = κeh.

With these preparations, we now suppose that f1 and f2 are two linearly inde-
pendent solutions of (4.1) such that max{λ(f1), λ(f2)} <∞. We write l = 2(m+ 1)
for some integer m � 0 and also write s = 2(m+ 1) − t for some integer t � 1.

Let q be the smallest integer such that s/l � [2(q + 1) − 1]/[2(q + 1)]. Since l and
s are relatively prime, we see that the equality holds only when q = m. For each of
f1 and f2, denoted by f , we may write f = κce

hc , where κc = κecz. Then, denoting
gc = h′c, we have equation (4.21). By theorem 2.1, gc = h′c =

∑q
j=0 cje

(m+1−jt)z,
where c0, c1, · · · , cq are constants such that c20 = 1 and c1, · · · , cq satisfy certain
relations. In both of the two cases where q = 1 and q � 2, we have 2c0c1 = b2 and,
by simple computations, that,

cj =
tjc

j
1

(−2c0)j−1
, j = 1, · · · , q, (4.24)

where tj are positive integers such that t1 < · · · < tq, and further that

Cq+j =
∑

j0+···+jq=2,
j1+···+qjq=q+j

2
j0! · · · jq!c

j0
0 · · · cjq

q =
Tq+jc

q+j
1

(−2c0)q+j−2
, j = 1, · · · , q, (4.25)

where Tq+j are positive integers such that Tq+1 < · · · < T2q. By substituting gc =∑q
j=0 cje

(m+1−jt)z into (4.21) together with theorem 2.1, we get

κ′′c
κc

+ 2c0e(m+1)z κ
′
c

κc
+ c0(m+ 1)e(m+1)z − b2e

sz − b3 = 0, (4.26)

when q = 0, and

κ′′c
κc

+ 2

⎛
⎝ q∑

j=0

cje
(m+1−jt)z

⎞
⎠ κ′c
κc

− b3

+
q∑

j=0

[
Ckj

e[m+1−(q+1)t]z + (m+ 1 − jt)cj
]
e(m+1−jt)z = 0,

(4.27)
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when q � 1, where Ckj
= Cq+1+j and C2q+1 = 0. By substituting equations (4.4)

and (4.5) for κc = ecz(
∑k

i=1 aie
iz), a0ak �= 0, into (4.26) or (4.27) and noting that

b3 = c2, we finally get

k∑
i=0

[
(2ic+ i2)aie

iz + c0(2c+ 2i+m+ 1)aie
(m+1+i)z − b2aie

(i+s)z
]

= 0, (4.28)

when q = 0, and

k∑
i=0

(2ic+ i2)aie
iz + 2

(
k∑

i=0

(c+ i)aie
iz

)⎛⎝ q∑
j=0

cje
(m+1−jt)z

⎞
⎠

+

(
k∑

i=0

aie
iz

)⎧⎨
⎩

q∑
j=0

[Ckj
e[m+1−(q+1)t]z + (m+ 1 − jt)cj ]e(m+1−jt)z

⎫⎬
⎭ = 0,

(4.29)
when q � 1. Note that the inequality (2q − 1)/(2q) < s/l � [2(q + 1) − 1]/[2(q + 1)]
implies qt < m+ 1 � (q + 1)t, where the equality holds when q = m. The left-hand
side of equations (4.28) and (4.29) are polynomials in ez of degree k +m+ 1 and
thus all coefficients of these two polynomials vanish. When s = 2(m+ 1) − t <
2m+ 1, we have q < m and t � 2. By looking at the highest-degree term in the
resulting polynomial and noting that ak �= 0, we find

m+ 2c+ 2k + 1 = 0. (4.30)

Similarly, when s = 2m+ 1, we have q = m and t = 1 and find

Cm+1 + (m+ 2c+ 2k + 1)c0 = 0. (4.31)

Let c+ or c− be any square root of b3. We may write f1 = κ1ce
h1c and f2 = κ2ce

h2c ,
where κ1c = κ1e

c+z and κ2c = κ2e
c−z and κ1 and κ2 are two polynomials in ez of

degrees k1 and k2, respectively. Moreover, h1c satisfies h′1c =
∑q

j=0 cje
(m+1−jt)z.

Since c20 = 1 and since 2c0c1 = b2 when q � 1, we easily deduce from (4.24) that
h2c = ±h1c. Recall the elementary Wronskian determinant : f ′1f2 − f1f

′
2 = D, where

D is a nonzero constant (see [23]). Then we have (f1/f2)′ = D/f2
2 . If h2c = h1c,

then f1/f2 is of finite order while f2
1 is of infinite order, a contradiction. Therefore,

h2c = −h1c. We may suppose that c+ = c. When s < 2m+ 1, from (4.30) we deduce
that c+ = c− = c, which implies that −2c = m+ 1 + 2k1 is a positive integer and
hence k1 = k2; when s = 2m+ 1, using (4.25) and the relation 2c0c1 = b2 we deduce
from (4.31) that c+ + c− +m+ 1 + k1 + k2 = 0, which implies that c+ = c− = c
and hence −2c = m+ 1 + k1 + k2 is a positive integer. Now ρ1 − ρ2 = −2c is a
positive integer. Together with (4.19) and previous preparations, we conclude that
equation (4.13) admits in the broken plane C

− two linearly independent solutions
of the form u1 = xρ1v1 and u2 = xρ2v2, where v1 and v2 are two entire functions
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such that v1(0) �= 0 and v2(0) �= 0, so that

f1 = xcκ11e
h11 = x−1/2 (D1x

ρ1v1 +D2x
ρ2v2) ,

f2 = xcκ12e
−h11 = x−1/2 (D3x

ρ1v1 +D4x
ρ2v2) ,

(4.32)

where Dj are constants, h11 =
∑q

j=0
cj

m+1−jtx
m+1−jt, and κ11 and κ12 are two

polynomials of degrees k1 and k2, respectively, such that κ11(0) �= 0 and κ12(0) �= 0.
Noting ρ1 = (1 − 2c)/2 and ρ2 = (1 + 2c)/2, we see from (4.22) that D2D4 �= 0.
Obviously, E := D1D4 −D2D3 �= 0. From equation (4.32) we get

u1 = xρ1v1 =
1
E
x1/2xc

(
D4κ11e

h11 −D2κ12e
−h11

)
. (4.33)

Since v1 is an entire function with v1(0) �= 0, we see from (4.33) that the function
w := D4κ11e

2h11 −D2κ12 has a zero of order −2c at the point z = 0 and so w(0) =
w′(0) = · · · = w(−2c−1)(0) = 0. Denote

κ11 = a1,0 + a1,1x+ · · · + a1,k1x
k1 ,

κ12 = a2,0 + a2,1x+ · · · + a2,k2x
k2 ,

(4.34)

where a1,0, a2,0, a1,k1 , a1,k2 �= 0. w(0) = 0 implies that D4a1,0 = D2a2,0. Supposing
that a1,0 = a2,0 = 1, we have D4 = D2. Below we consider the case when m � 1.

Consider first the case when s/l < 1/2. Since m � 1, by theorem 1.1 and (4.30),
we see that k1 = k2 � 1. Now w(m+1)(0) = 0 implies that a1,m+1 + 2(m!)c0 =
a2,m+1. Here a1,m+1 = 0 if m+ 1 > k1 and so is for a2,m+1. Obviously, m+ 1 � k1.
For each of f1 and f2, denoted by f , we may write f = κce

hc . Then we have equation
(4.28). Note that 1 � s = 2(m+ 1) − t � m. The left-hand side of equation (4.28)
is a polynomial in ez of degree m+ 1 + k and thus all coefficients of this polyno-
mial vanish. Denoting a−m−1 = · · · = a−2 = a−1 = 0 and ak+1 = · · · = ak+m = 0,
we obtain from equation (4.28) that c0(2c+ 2k +m+ 1)ak = 0, which yields (4.30),
and

c0(2c+ 2i−m− 1)ai−m−1 = b2ai−s − (2ic+ i2)ai, i = 0, · · · , k +m. (4.35)

By substituting 2c = −2k −m− 1 into the equations in (4.35) we get

2c0(k − i+m+ 1)ai−m−1 = −b2ai−s + (2ic+ i2)ai, i = 0, · · · , k +m. (4.36)

Since 1 � s � m, by letting i = 1, 2, · · · , m, we see that a1/a0 = K1, · · · , am/a0 =
Km for some constants K1, · · · , Km independent from c0. Then by letting i =
m+ 1 in (4.36) together with the relation a1,m+1 + 2(m!)c0 = a2,m+1, we get
2k1/(m+ 1)(2c+m+ 1) + 2(m!) = −2k2/(m+ 1)(2c+m+ 1). Since k1 = k2 and
−2c = 2k1 +m+ 1, we get (m+ 1)! = 1, which is impossible when m � 1.

Consider next the case when s/l > 1/2 and s < 2m+ 1. Now qt < m+ 1 <
(q + 1)t for some integer 1 � q < m. Recalling that s = 2(m+ 1) − t and l and s are
relatively prime, we see that t � 3 is an odd integer. Denoting each of f1 and f2 by
f , we may write f = κce

hc . Then we have equation (4.29). Denote M = m+ 1 − qt
for simplicity. Since −2c = 2k +m+ 1 and C2q+1 = 0 and C2q = c2q, then by looking
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at the coefficient of the term eMz on the left-hand side of equation (4.29), we find
M(2c+M)aM + 2ca0cq +Ma0cq = 0, which gives a0cq +MaM = 0. Recall that
the function w := D4κ11e

2h11 −D2κ12 has a zero of order −2c at the point z = 0.
Then w(M)(0) = 0 implies that a1,M + 2(M − 1)!cq = a2,M . Using equation (4.24)
together with 2c0c1 = b2 and a0cq +MaM = 0, we get M ! = 1, which implies that
M = 1. It follows that m = qt. By looking at the coefficient of the term e2z on the
left-hand side of equation (4.29), we find 2(2c+ 2)a2 + 2(c+ 1)a1cq + a0c

2
q + a1cq =

0, which together with a1 = −a0cq yields 2a2 = a0c
2
q. Then by looking at the coef-

ficient of the term e3z on the left-hand side of equation (4.29), we find 3(2c+
3)a3 + 2(c+ 2)a2cq + a2cq + a1c

2
q = 0, i.e., (2c+ 3)(6a3 + c3q) = 0 and thus 6a3 +

c3q = 0. Now w(3)(0) = 0 implies that a1,3 + 6a1,2cq + 12a1,1c
2
q + 8c3q = a2,3, which

together with the relation a1 = −a0cq and 2a2 = a0c
2
q gives a1,3 − c3q = a2,3. Then

using equation (4.24) together with 2c0c1 = b2 and c3q + 6a3 = 0, we get c3q = 0,
a contradiction to (4.24).

Finally, we consider the case when s = 2m+ 1. Recall that q = m and t = 1
in (4.29). In this case, if k1 = k2, then using (4.25) and the relation 2c0c1 =
b2 we get from (4.31) that Cm+1 = 0, a contradiction. Therefore, without loss
of generality, we may suppose that k1 > k2 � 0. If k2 = 0, then by theorem
1.1 have 2c+ 1 = 0, which is impossible since −2c = m+ 1 + k1 + k2. Therefore,
k2 > 0. Note that C2m = c2m. Since −2c = m+ 1 + k1 + k2, then by looking at
the coefficient of the terms ez and e2z in equation (4.29), respectively, we find
a1 + a0cm = 0 and 2(2c+ 2)a2 + (2c+ 3)cma1 + [c2m + (2c+ 2)cm−1]a0 = 0 and so
2a2 − c2ma0 + cm−1a0 = 0. Recall that the function w := D4κ11e

2h11 −D2κ12 has
a zero of order −2c at the point z = 0. Now w′′(0) = 0 implies that a1,2 +
4a1,1cm + 4cm−1 + 4c2m = a2,2. Using equation (4.24) together with 2c0c1 = b2, we
get −cm−1/2 + 4cm−1 = cm−1/2, which yields cm−1 = 0, a contradiction to (4.24).

From the above reasoning, we conclude that l = 2. We complete the proof. �

In the rest of this section, we use theorem 2.1 to determine precisely all nontrivial
solutions such that λ(f) <∞ of equation (4.1) for the case l = 2 and l = 4.

Theorem 4.4. Let b1, b2 and b3 be constants such that b1b2 �= 0 and s and l be rela-
tively prime integers such that 1 � s < l � 4. Suppose that (4.1) admits a nontrivial
solution f such that λ(f) <∞. Then

(1) if s = 1 and l = 2, then f = κeh, κ =
∑k

i=−1 aie
iz and h = c0e

z + cz, where
k � 0 is an integer, c0 and c are constants such that c20 = 1, 2c0(c+ k) + c0 =
b2 and c2 = b3, and a−1, a0, · · · , ak are constants such that a0ak �= 0, a−1 = 0
and

2c0(k + 1 − i)ai−1 = (2ic+ i2)ai, i = 0, 1, · · · , k; (4.37)

(2) if s = 1 and l = 4, then f = κeh, κ =
∑k+1

i=−2 aie
iz and h = (c0/2)e2z + cz,

where k � 1 is an integer, c0 and c are constants such that c20 = 1, 2c+
2k + 2 = 0 and c2 = b3, and a−2, a−1, a0, · · · , ak+1 are constants such that
a0ak �= 0, a−2 = a−1 = ak+1 = 0 and

2c0(k − i+ 2)ai−2 = −b2ai−1 + (2ic+ i2)ai, i = 0, 1, · · · , k + 1; (4.38)
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(3) if s = 3 and l = 4, then f = κeh, κ =
∑k+1

i=−2 aie
iz and h = (c0/2)e2z + c1e

z +
cz, where k � 0 is an integer, c0, c1 and c are constants such that c20 = 1,
2c0c1 = b2, c

2 = b3 and c21 + (2 + 2c+ 2k)c0 = 0, and a−2, a−1, a0, · · · , ak+1

are constants such that a0ak �= 0, a−2 = a−1 = ak+1 = 0 and

(2k − 2i+ 4)c0ai−2 = (2c+ 2i− 1)c1ai−1 + (2ic+ i2)ai, i = 0, · · · , k + 1.
(4.39)

For the convenience to write the recursive formulas in (4.37)–(4.39), we have
introduced some extra coefficients a−2, a−1, ak+1, which are all equal to 0.

When s = 1 and l = 4, since a0 �= 0 and ak �= 0 and 2c+ 2k + 2 = 0, the recursive
formulas in (4.38) yield a polynomial equation P (b2) = 0 with respect to b2 with
coefficients formulated in terms of c0 and k. For example, when k = 1, we have 0 =
−b2a0 + (2c+ 1)a1 and 2c0a0 = −b2a1, which together with the equation 2c+ 4 = 0
yield b22 − 6c0 = 0, etc.

When s = 3 and l = 4, if 2c+ 1 �= 0, then we may solve from the first k + 1
equations in (4.39) that ak−1 = P (c)ak for some polynomial P (c) with respect to c
with coefficients formulated in terms of c0 and c1. By combining this equation with
the equation 2c0ak−1 = (2c+ k)c1ak together with the relation c21 + (2 + 2c+ 2k)
c0 = 0 we may obtain a polynomial equation P (t) = 0 with respect to t = 2c with
coefficients independent from c0 and c1. For example, when k = 1, we have 0 =
(2c+ 1)(c1a0 + a1) and 2c0a0 = (2c+ 3)c1a1, which yield P (t) = (t+ 2)(t+ 5) = 0
and thus 2c = −2 or 2c = −5, etc.

Proof of theorem 4.4. Suppose that f is a nontrivial solution such that λ(f) <∞
of equation (4.1). Following the proof of theorem 4.1, we may write f = κce

hc ,
where κc = κecz and gc = h′c and then from (4.1) we get equation (4.21). Below we
consider three cases: (1) s = 1 and l = 2; (2) s = 1 and l = 4; (3) s = 3 and l = 4.

For the first two cases s = 1 and l = 2 or s = 1 and s = 4, we have κc =
ecz(
∑k

i=0 aie
iz) and hc = [c0/(m+ 1)]e(m+1)z, where m = 0 or m = 1 and c0 is a

constant such that c20 = 1. Moreover, if m = 1, then by theorem 1.1 we see k � 1.
From the proof of theorem 4.1, we have equations (4.26) and (4.28) with s = 1.
When l = 2, since the left-hand side of equation (4.28) is a polynomial in ez of
degree 1 + k, all coefficients of this polynomial vanish. Therefore, denoting a−1 = 0,
we obtain from equation (4.28) that [2c0(c+ k) + c0 − b2]ak = 0 and

[2c0(c+ i− 1) + c0 − b2]ai−1 + (2ic+ i2)ai = 0, i = 0, 1, · · · , k. (4.40)

Since ak �= 0, we have 2c0(c+ k) + c0 − b2 = 0 and then obtain the recursive for-
mulas in (4.37) by substituting 2c0c+ c0 − b2 = −2c0k into the equations in (4.40).
When m = 1, we have the recursive formulas in (4.36) with s = 1. Denoting
a−2 = a−1 = 0 and ak+1 = 0, we have the recursive formulas in (4.38).

When s = 3 and l = 4, we have κc = ecz(
∑k

i=0 aie
iz) and hc = (c0/2)e2z + c1e

z,
where c0, c1 are two constants such that c20 = 1, 2c0c1 = b2. From the proof of
theorem 4.1, we get equation (4.29) with q = m = 1. Similarly as in previous cases,
denoting a−2 = a−1 = ak+1 = 0, we finally get the recursive formulas in (4.39). We
omit those details. �

https://doi.org/10.1017/prm.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.80


1990 Y. Zhang

By theorem 4.4, we may give a different formulation from the results in
[10, theorem 1.6].

Corollary 4.5. Let s = 1 and l = 2. Then equation (4.1) admits two linearly
independent solutions f1 and f2 such that max{λ(f1), λ(f2)} <∞ if and only if
there are two distinct nonnegative integers k1, k2 such that b2 = ±(k1 − k2) and
4b3 = (k1 + k2 + 1)2. In particular, it is possible that min{λ(f1), λ(f2)} = 0.

Proof of corollary 4.5. Let f1 and f2 be two linearly independent solutions of
equation (4.1) such that max{λ(f1), λ(f2)} <∞. Let c+ or c− be any square-root of
b3. By theorem 4.4, we may write f1 = κ1e

h1 and f2 = κ2e
h2 , where h1 = c0e

z + c+z
and c0 is a constant such that c20 = 1, h2 = ±c0ez + c−z, κ1 and κ2 are two polyno-
mials in ez of degrees k1 and k2, respectively. From the proof of theorem 4.1 we know
that h2 = −c0ez + c−z. Since 2c0(c+ + k1) + c0 = −2c0(c− + k2) − c0 = b2, we see
that c+ = c− for otherwise we have 1 + k1 + k2 = 0, which is impossible. Letting
c+ = c− = c, then we have 2c+ k1 + k2 + 1 = 0 and it follows that b2 = c0(k1 − k2).
Since b2 �= 0 and b3 = c2, we have k1 �= k2 and 4b3 = (k1 + k2 + 1)2.

Conversely, we let k1 and k2 be two nonnegative integers such that 2c+ k1 + k2 +
1 = 0, where c satisfies c2 = b3. We first define f1 = κ1e

h1 , where κ1 =
∑k1

i=−1 aie
iz,

h1 = c0e
z + cz, k1 � 0 is an integer, c0 satisfies c20 = 1 and c0[2(c+ k1) + 1] = b2,

and a−1, a0, · · · , ak are constants such that a−1 = 0 and

2c0(k1 + 1 − i)ai−1 = (2ic+ i2)ai, i = 0, 1, · · · , k1. (4.41)

Also, we define f2 = κ2e
h2 , where κ2 =

∑k2
i=−1 âie

iz and h2 = −c0ez + cz, k2 � 0
is an integer, c0 satisfies c20 = 1 and −c0[2(c+ k2) + 1] = b2, and â−1, â0, · · · , âk

are constants such that â−1 = 0 and

− 2c0(k2 + 1 − i)âi−1 = (2ic+ i2)âi, i = 0, 1, · · · , k2. (4.42)

Then by theorem 4.4 we see that f1 and f2 are two linearly independent solutions
of (4.1) such that max{λ(f1), λ(f2)} <∞. Obviously, we may choose one of k1 and
k2 to be zero and thus min{λ(f1), λ(f2)} = 0. We complete the proof. �

5. Concluding remarks

The oscillation of certain second-order linear differential equation (1.1) are inves-
tigated in this paper. If equation (1.1) with A(z) being a linear combination of
two exponential type functions admits a nontrivial solution such that λ(f) <∞,
by Hadamard’s factorization theorem we obtain a Tumura–Clunie type differential
equation with coefficients being combinations of functions in S. In § 2, we give the
form of entire solutions of the Tumura–Clunie type differential equations. As an
application, in § 3 we give a partial answer to an oscillation question concerning
equation (3.1) proposed by Ishizaki [19]. In § 4, we consider equation (1.1) for
the case A(z) = elz + b2e

sz + b3, where l and s are two relatively prime integers
and b2, b3 are constants such that b2 �= 0. The general form of solutions such that
λ(f) <∞ are known. If there are two linearly independent such solutions, we prove
that the only possible case is when l = 2.
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By doing straightforward computations, we precisely characterize all solutions
such that λ(f) <∞ of equation (4.1) for the two cases l = 2 and l = 4. Unfortu-
nately, we are unable to include or exclude other possibilities. Although, by using
theorems 3.1 and 4.1 together with lemma 4.2, when l �= 2, 4, we may also obtain
some recursive formulas as in (4.37), (4.38) and (4.39) for the solutions such that
λ(f) <∞, it is difficult to verify the existence of b2 and b3 satisfying these recursive
formulas. We conjecture that equation (4.1) can admit a nontrivial solution f such
that λ(f) <∞ only when l = 2 or l = 4. We will study this conjecture further.
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21 K. Katajamäki, Algebroid solutions of binomial and linear differential equations. Ann.
Acad. Sci. Fenn. Ser. A I Math. Dissertationes, Vol. 90, p. 48 (Academia Scientiarum
Fennica, Helsinki, 1993).

22 J. J. Kovacic. An algorithm for solving second order linear homogeneous differential
equations. J. Sym. Comput. 2 (1986), 3–43.

23 I. Laine, Nevanlinna theory and complex differential equations. De Gruyter Studies in
Mathematics, Vol. 15 (Walter de Gruyter & Co., Berlin, 1993).

24 I. Laine and K. Tohge, The Bank-Laine conjecture–a survey. Some topics on value distri-
bution and differentiability in complex and p-adic analysis, 398–417, Math. Monogr. Ser.,
Vol. 11 (Sci. Press Beijing, Beijing, 2008).

25 J. K. Langley. On complex oscillation and a problem of Ozawa. Kodai Math. J. 9 (1986),
430–439.

26 E. Lommel. Zur Theorie der Bessel’schen Functionen. Math. Ann. 3 (1871), 475–487.

27 K. Pearson. On the solution of some differential equations by Bessel’s functions. Messenger
of Math. IX (1880), 127–131.

28 J. Rossi. Second order differential equations with transcendental coefficients. Proc. Amer.
Math. Soc. 97 (1986), 61–66.

29 L. C. Shen. Solution to a problem of S. Bank regarding exponent of convergence of zeros
of the solutions of differential equation f ′′ + Af = 0. Kexue Tongbao (English Ed.). 30
(1985), 1579–1585.

30 N. Steinmetz. Zur Wertverteilung von Exponentialpolynomen. Manuscripta Math. 26
(1978/79), 155–167.

31 G. N. Watson. A Treatise on the Theory of Bessel Functions (Cambridge, England, New
York: Cambridge University Press, The Macmillan Company, 1944).
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