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This paper consists of three parts: First, letting b1 (z), b2(z), p1(z) and p2(z) be
nonzero polynomials such that pi(z) and pa(z) have the same degree k > 1 and
distinct leading coefficients 1 and «, respectively, we solve entire solutions of the
Tumura—Clunie type differential equation f™ 4+ P(z, f) = b1 (z)epl(z> + ba (z)epQ(Z)7
where n > 2 is an integer, P(z, f) is a differential polynomial in f of degree <n — 1
with coefficients having polynomial growth. Second, we study the oscillation of the
second-order differential equation f” — [by (2)eP1(*) 4 by(2)eP2(*)]f = 0 and prove
that o = [2(m + 1) — 1]/[2(m + 1)] for some integer m > 0 if this equation admits a
nontrivial solution such that A(f) < oco. This partially answers a question of Ishizaki.
Finally, letting ba # 0 and b3 be constants and [ and s be relatively prime integers
such that [ > s > 1, we prove that [ = 2 if the equation f” — (e!* + bae®* + b3)f =0
admits two linearly independent solutions f1 and f2 such that

max{A(f1), A(f2)} < oco. In particular, we precisely characterize all solutions such
that A(f) < co when ! =2 and | = 4.
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1. Introduction

In the last several decades, the growth and value distribution of meromorphic solu-
tions of complex differential equations have attracted much interest; see [23] and
references therein. One of the main tools in this subject is Nevanlinna theory; see,
e.g., [14, 23] for the standard notation and basic results of Nevanlinna theory.

Bank and Laine [2, 3] initiated the study on the oscillation of the second-order
linear differential equation

"+ A(x)f =0, (1.1)

where A(z) is an entire function. It is well-known that all solutions of equation (1.1)

are entire. For an entire function f, denote by o(f) the order of f which is defined
as

log T’ log log M
o(f) = limsup glg”) ~ limsup glgg<f>
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where M(r, f) is the maximum modulus of f on the circle |z] =r. When A is
transcendental, an application of the lemma on the logarithmic derivative easily
yields that all nontrivial solutions of (1.1) satisfy o(f) = co. Denote by A(f) the
exponent of convergence of zeros of f which is defined as

A(f) = lim sup 7logn(r, /)
r—00 10g’r‘

)

where n(r, f) denotes the number of zeros of f in the disc {z:|z| < r}. Con-
cerning the zero distribution of solutions of equation (1.1), Bank and Laine
[2, 3] proved: Let f; and fo be two linearly independent solutions of (1.1).
If o(A) is not an integer, then max{A(f1), \(f2)} = o(4); if 0(A) < 1/2, then
max{A(f1), A(f2)} = oco. Later, Shen [29] and Rossi [28] relaxed the condition
o(A) < 1/2 to the case o0(A) = 1/2. Based on these results, Bank and Laine conjec-
tured that max{\(f1), A(f2)} = oo whenever o(A) is not an integer. This conjecture
is known as the Bank—Laine conjecture and has attracted much interest; see the
surveys [13, 24] and references therein. Recently, this conjecture was disproved by
Bergweiler and Eremenko [7, 8]. They constructed counterexamples for the coef-
ficient A such that o(A) is not an integer and equation (1.1) admits two linearly
independent solutions such that max{A(f1), A(f2)} < co. In particular, one of the
solutions is free of zeros. In their constructions, they used the solutions of (1.1)
with A being a polynomial of e* of degree 2, namely A(z2) = aie?* + aze® + az with
certain coefficients a1, as and as.

On the other hand, it is natural to give explicit solutions of (1.1) such that
A(f) < oo when A is a periodic entire function of the form

A(z) = B(e*), B()=b_p(F 4+ +bo+-+bC, bpb#0. (1.2)

For such solutions, a remarkable result in [4, 9] states that there exist complex
constants ¢, ¢; and a polynomial P(z) with simple roots only such that if [ is an
odd positive integer, then

!
f=P(e*?)exp che(l_j)z/Z +ez |, (1.3)
3=0

where ¢; = 0 whenever j is even; while if [ is an even positive integer, then

1/2
f=P(e*)exp che(lﬂ*j)z +ez . (1.4)
3=0

However, it seems difficult to determine explicitly ¢; and also the polynomial P(z) in
the above two expressions and, until now, they are only known in some special cases.
For example, Bank and Laine [4] gave a precise characterization of all nontrivial
solutions such that A\(f) < oo of (1.1) when A(z) = e* — b for some constant b; see
also [23, theorem 5.22]. Bank and Laine [4] also characterized entire solutions such
that A(f) < oo of equation (1.1) when A(z) = —(1/4)e~2* + (1/2)e~* + b for some
constant b. For these two coefficients, Chiang and Ismail [10] expressed all solutions
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of (1.1) in terms of some special functions and give a complete characterization of
the zero distribution of these solutions.

In [1], Bank developed a method to find entire solutions such that A(f) < oo of
equation (1.1), but the manipulation of this method seems complicated. One of the
main purposes of this paper is to give a more precise description of the oscillation
of equation (1.1) when A(z) contains two exponential terms, i.e.,

A(2) = B(e®), B(() =b_yC " +bo+bi¢t, by #0, (1.5)
or
A(z) = B(e*), B(C) =bo +bs(" + ¢!y byby # 0. (1.6)

In particular, this provides a different approach from that in [10] and also leads to
a complete characterization of all solutions such that A(f) < oo of (1.1) when A(z)
is an arbitrary polynomial in e* of degree 2; see theorem 4.4 in § 4. This work is
a continuation of [33], where the present author found all nontrivial solutions such
that A(f) < k of the differential equation

7' = (@) 4 ba(2)em ) +by(2)] £ =0, (1.7)

where b1(z), b2(z) and bs(z) are three polynomials such that by (z)b2(z) #Z 0 and
p1(z) and pa(z) are two polynomials of the same degree k > 1 with distinct leading
coefficients 1 and «, respectively.

THEOREM 1.1 see [33]. Let by, ba and bs be polynomials such that bibs £ 0 and
p1, p2 be two polynomials of degree k > 1 with distinct leading coefficients 1 and c,
respectively, and p1(0) = p2(0) = 0. Suppose that (1.7) admits a nontrivial solution
such that A\(f) < k. Then o = 1/2 or a = 3/4. Moreover,

(1) if « =1/2, then py = p1/2, f = rel, where k is a polynomial with simple
roots only and h satisfies h' = y1eP*/? +~ with 1 and ~ being two polyno-
mials such that 42 = by, 2v1y + 7, +py/2 + 26" /ky1 = ba and ¥ ++' +
29k [k + K" [k = bs;

(2) if a=3/4, then p1 =z, ps =3z/4 and f =e", where h satisfies h' =
—4c?e*/? 4 ce?!* —1/8 and A = —(16c%¢* — 8c*e®*/* +1/64), where ¢ is a
nonzero constant.

The proof of theorem 1.1 is based on a development of the Tumura—Clunie
method; see [14, chapter 4]. Define a differential polynomial P(z, g) in g to
be a finite sum of monomials in ¢ and its derivatives of the form P(z, g) =

S aig™e (gt - (g9)) ™, where nyg, -+, nys € N and the coefficients a; are
meromorphic functions of order less than o(g). Define the degree of P(z, g) to be
the greatest integer of d; := Y ;_onu,l =1, - -+, m, and denote it by deg,(P(2, g))-

Consider the equation
9" + P(z,9) = b1eP* 4 baeP?, (1.8)

where n > 2 and P(z, g) is a differential polynomial in g of degree < n — 1 with
meromorphic functions of order less than k as coefficients. If equation (1.7) admits
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an entire solution such that A(f) < k, then equation (1.7) reduces to an equation
of the form in (1.8) with n = 2. It is shown in [33, theorem 2.1] that if equation
(1.8) admits an entire solution, then either & = —1 or « is positive rational number
and in either case g is a linear combination of certain exponential functions plus
some function of order less than k. However, to solve entire solutions of (1.7) such
that A(f) < oo, [33, theorem 2.1] fails to work since in this case the coefficients of
P(z, g) shall contain some logarithmic derivatives which have order no less than k.

The remainder of this paper is organized in the following way. Denote by R
the set of rational functions and by L the set of functions a(z) such that a(z) =
) (2)/h(z), 1 > 1, for some meromorphic function h(z) of finite order, respectively.
In § 2, we further develop the Tumura—Clunie method by solving entire solutions of
equation (1.8), where P(z, g) is now a differential polynomial in g with coefficients
that are combinations of functions in the set S = R U L. For equation (1.8) with
such coefficients, we can also write the entire solution as a linear combination of
exponential functions with certain constant coefficients, but unlike in [33, theorem
2.1], it is impossible to determine whether « is a rational number; see theorem 2.1.
In § 3, we apply our results on equation (1.8) to study the oscillation of equation
(1.7) and prove that a = [2(m + 1) — 1]/[2(m + 1)] for some integer m > 0 provided
that equation (1.7) with b3 = 0 admits a nontrivial solution such that A(f) < oo;
see theorem 3.1. This gives a partial answer to a question of Ishizaki [19]. In §
4, we consider the equation f” — (bye!* + bye®* + b3) f = 0, where [, s are relatively
prime integers such that [ > s > 1 and b; are constants such that b1bs # 0. We prove
that [ = 2 if this equation admits two linearly independent solutions f; and f5 such
that max{A(f1), A(f2)} < co. In particular, when [ = 2 or [ = 4, we determine the
polynomial P(z) and the coefficients ¢; and ¢ in (1.4) precisely. Finally, in § 5, we
give some remarks on our results.

2. Tumura—clunie differential equations

Let b1(z) and ba(z) be two nonzero polynomials and pi(z) and p2(z) be two
polynomials of the same degree k > 1 with distinct leading coeflicients 1 and «,
respectively, and p;(0) = p2(0) = 0. Without loss of generality, we may suppose that
0 < |a] < 1. In this section, we solve entire solutions of the differential equation

f"+ P(2, f) = bie? + bye?, (2.1)

where n > 2 and P(z, f) is a differential polynomial in f of degree < n — 1 with
coefficients being combinations of functions in S. In the following, a differential
polynomial in f will always have coefficients which are combinations of functions
in § and thus we will omit mentioning this from now on.

To state our results, we first set up some notation: Let p(z) be a polynomial of
degree k > 1. We write p(z) = (a + ib)z" + q(2), where a, b are real and a + ib # 0
and ¢(z) is a polynomial of degree at most k£ — 1. Denote

d(p,0) = acoskf — bsinkf, 6 € [0,2m). (2.2)

Then on the ray z = re?, r > 0, from [6] (or [23, lemma 5.14]) we know that:
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1. if 6(p, 8) > 0, then there exists an 1o = 79(6) such that log|eP(*)]| is increasing
on [rg, 00) and |eP(*)| > 50" /2 there;

2. if §(p, 6) < 0, then there exists an ro = ro(#) such that log |e?(*)| is decreasing
on [rg, 00) and |eP(*)| < 20" /2 there.

Let 61, 62, - -+, 025 € [0, 27) be such that é(p, 8;) =0, j =1, 2, ---, 2k. We may
suppose that ¢ < 7 and 8; = 6, + (j — 1)7/k. Denoting 8ap1 = 61 + 27, then 6,
03, - - -, 02y, divides the complex plane C into 2k sectors S, namely

sz{rei9:0<r<oo, 0j<9<9j+1}, ji=1,2---2k. (2.3)
Throughout this paper, we let € > 0 be an arbitrary constant. We also denote
Sjyez{rei9:0<r<oo, 9j+e<0<0j+1—6}, j=1,2,--- 2k (2.4)

Denote by S; and S, . the closure of S; and Sj., respectively. For p; in (2.1),
we choose 6, = —m/(2k) and thus d(p1, ) > 0 in the sectors S; when j is odd,
and 0(p1, 8) <0 in the sectors S; when j is even. Denote by J; and J, the
subsets of odd and even integers in the set J = {1, 2---, 2k}, respectively, i.e.,
J={1,3,---,2k—1} and J, = {2, 4, --- , 2k}. We prove the following

THEOREM 2.1. Let n > 2 be an integer and P(z, f) be a differential polynomial in
I of degree < n — 1. Suppose that (2.1) admits an entire solution f. Then « is real.
Moreover,

(1) if =1 <a <0, then f=y1ePr/™ + y9eP2/™ 4 where 1, Y2 are two poly-
nomials such that v = by, ¥4 =ba and 1 is an entire function such that
n= (1, — D)yeP /™ + (ug; — 1)y2eP2/™ +0;, where w1 and ps; are the
n-th roots of 1 such that p; =1 when j € {1}UJs and ps; =1 when
j €{2} Ui, and there is an integer N such that |n;| = O(r™N) uniformly
m §j’€; in particular, when k =1, n s a polynomial;

(2) if 0 < <1, letting m be the smallest integer such that o < [(m+ 1)n —
1/[(m + 1)n], then f =301, ¢;j(ba/by )i eima=D+tpi/n 4 here vy, is a

polynomial such that v{* = by and co, - -, ¢y are constants such that cf =1

when m =0, and ¢ =ncy 'c; =1 when m =1, and ¢§ =ncy 'c; =1 and
! jo .J im _

> Jotetim=n, mcf)"cll coecdm =0, kg =2, -+, m, whenm > 2, and

Jittmim=ko
1 is a meromorphic function with at most finitely many poles such that n =

Y1 3o (15 — 1)ej(ba/by) elimla=DHUpi/n . “where p; are the n-th roots of
1 such that yij =1 when j € {1} U Ja, and there is an integer N such that
In;| = O(rN) uniformly in S; c; moreover, we have ps = apy when m > 1; in
particular, when k =1, n is a rational function.

In theorem 2.1, if all coefficients of the monomials in P(z, f) of degree n —1
are rational functions, then we may use the method in the proof of [33, theorem
2.1] to show that 7 is a polynomial or a rational function. We also remark that,
by using the method in the proof of theorem 2.1 for the case —1 < o < 0 together
with the method in [34], we may extend [33, theorem 2.1] to the case P(z, f) is a
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delay—differential polynomial in f with meromorphic functions of order less than k
as coefficients; see [34] for the definition of a delay—differential polynomial.

As in the proof of theorems [34, theorem 1.1] and [33, theorem 2.1], we also
start from analysing first-order linear differential equation f’ — wf = w, where u
is a nonzero polynomial and w is a meromorphic function with at most finitely
many poles. Let p(z) be a primitive function of « and suppose that deg(p(z)) =
k > 1. If f is meromorphic, then there is a rational function v(z) such that v(z) —
0 as z — oo and h(z) = f(z) —v(z) is entire. It follows that f(z) = h(z)+ v(z)
and h satisfies b/ — uh = w — (v — wv) and w — (v/ — uww) is an entire function. By
elementary integration, the meromorphic solutions of f/ — uf = w are f = ceP(*) +
H(z), where

H(z) = eP® /OZ w(t)e P dt. (2.5)

To study the growth behaviour of this function, a wuseful tool is the
Phragmén-Lindeldf theorem (see [18, theorem 7.3]): Let f(z) be an analytic func-
tion, regular in a region D between two straight lines making an angle w/7 at the
origin, and on the lines themselves. Suppose that |f(z)| < M on the line, and that,
as 7 — oo |f(2)] = O(e"™), where 75 < 71, uniformly in the angle. Then actually
|f(2)| < M holds throughout the region. Moreover, if f(z) — ¢; and f(z) — co as
z — oo along the two lines, respectively, then ¢; = ¢y and f(z) — ¢; uniformly as
z — oo in D. Using the Phragmén—Lindel6f theorem, the present author proved the
following

LEMMA 2.2 see [33, 34]. Let p(z) be a polynomial with degree k > 1 and w be
a nonzero polynomial. Then there is an integer N such that for each S; where
§(p, 0) > 0, there is a constant a; such that |H(re®) — ajep(rew)\ =O0(rY) uni-
formly in S; ., and for each S; where §(p, 0) < 0 and any constant a, |H(re?) —
aep(’“eie)| = O(r"™) uniformly in S;..

Most arguments we use below are the same as that in the proof of [33,
theorem 2.1]. We also first introduce the definition of R-set: An R—set in the com-
plex plane is a countable union of discs whose radii have finite sum. Let f(z) be
an entire solution of (2.1). We denote the union of all R-sets associated with f(z)
and each coefficient of P(z, f) by R from now on. In the proof of theorem 2.1,
after taking the derivatives on both sides of equation (2.1), there may be some new
coeflicients appearing in the resulting equations. We will always assume that R also
contains those R-sets associated with these new coefficients.

As in the proof of [33, theorem 2.1], we first reduce (2.1) into a non-homogeneous
linear differential equation with rational coefficients. Now, with all coefficients of
P(z, f) being combinations of functions in S, the key lemma for this aim is the
following

LEMMA 2.3. Under the assumptions of theorem 2.1, o(f) =k and o is real.
Moreover, for any 0 € [0, 27) such that the ray z = re'® meets finitely discs in R,

(1) when —1<a <0, if(p1, 0)>0, then| f(re’?)"| = (1+ o(1))[b (re'?)err (<],
r — 00; if 8(p2, 0) > 0, then |f(rei®)"| = (1 + o(1))|ba(rei®)er2re™)| 1 — oo;

https://doi.org/10.1017/prm.2022.80 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.80

Oscillation of differential equations 1971

(2) when0 < a <1, if8(py, 0) > 0, then | f(re®®)"| = (1 + o(1))[by (re®)err <),
r — 00; if 8(p1, 0) <0, then there is an integer N such that |f(re??)| <V
for all large r.

Proof of lemma 2.3. Since a # 1, then by Steinmetz’s result [30] for exponential
polynomials, we have T(r, bjePt + byeP?) = K (1 + o(1))r* for some nonzero con-
stant K depending only on «. Recall that the coefficients of equation (2.1) are
combinations of functions in . By the lemma on the logarithmic derivative, we
deduce from equation (2.1) that

T (r,b1€P* + byeP?) = m (r, brePt + byel?)
- m(’rafn +P(va)) < nm(ra f) +O(10gT)

Therefore, f is transcendental and T'(r, f) > K;r* for some positive constant K.
On the other hand, by the lemma on the logarithmic derivative we also have from
equation (2.1) that

nl(r, f) =T (r, ") =m(r, f") = m(r,bie” + bye" — P(z, f))
m (r,byeP* + baeP?) +m (r, P(z, f)) + O(1) (2.7)
< K(1L+o(1)r* + (n — m(r, f) + O(log ),

(2.6)

N

which yields that T'(r, f) < Kar* for some positive constant Ky. This together with
T(r, f) > Kir* yields o(f) = k. Then by definition of S and looking at the proof
of [33, theorem 2.1], we see that « is real. Now, —1 < a<0or 0 < «a < 1.

Recall that 61 = —7/(2k) and from (2.2) that §(p1, 0) = coskf and 0(p2, 0) =
acos k. When a < 0, we see that d(p1, 0) and §(p2, 0) have opposite signs for each
6 in the sectors S; defined in (2.3) for p; and §(p1, #) > 0 for 6 in the sectors S;
where j € Jy; when o > 0, we see that §(p1, 6) > 0 and d(p2, 6) > 0 simultaneously
for each 6 in the sectors S; where j € J; and d(p1, #) < 0 and §(ps, 0) < 0 simul-
taneously for each 6 in the sectors S; where j € J3. Then we see that the assertion
(1) and the assertion (2) for the case that 6(py, #) > 0 can be obtained by directly
following the proof of [34, lemma 2.5].

Now we consider the growth behaviour of f(z) along the ray z = re'® such that
d(p1, 0) < 0 when 0 < ov < 1. Let € > 0 be given. By [12, corollary 1], there exists
a constant ro = ro(#) > 1 such that for all z on the ray z = re’’ which does not
meet R when r > rg, and for all positive integers j,

‘ 1o pih=1te), (2.8)

rele

Since all coefficients of P(z, f) are combinations of functions in S, then for each
coefficient of P(z, f), say a;, by [12, corollary 1], we also have, along the ray
z =re”, that

’al(reia)‘ <M, (2.9)

for sufficiently large r and some large integer M. Recalling from the introduc-
tion that P(z, f) = 27", arf™o(f)™t - (f))™s where m is an integer and
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no +ni + s <n — 1, we may write

P(Z7 f) = Z dlfn10+nll+"'+nl,g7 (2.10)
=1
with the new coefficients a; = a;(f'/f)™* --- (f©)/f)™s, where nj, --- , njs are

nonnegative integers. Note that the greatest order of the derivatives of f in P(z, f)
is equal to s> 0. Suppose now that |f(r;e’)| > rév for some infinite sequence
zj =rje’? and some large N > M + s(k —1+¢). Then, from (2.1), (2.8), (2.9)
and (2.10) we have

‘b1(rjei9)e”1(7'jei9) + by (Tjeia)em““few)’

P(rjew,f(rje“’)) (2'11)

= |f(rjei9)n‘ Frjeiyn

1+

> (1o,

which is impossible when r; is large since by (rjew)epl(”ew) + by (Tjew)em(ﬁete) —
0 as z; — oo. Therefore, along the ray z = re?? such that §(pi, ) < 0 we must
have |f(re®)| < rV for all large » and some integer N. Thus our second assertion
follows. O

Now we begin to prove theorem 2.1.

Proof of theorem 2.1. For simplicity, we denote P = P(z, f). By taking the deriva-
tives on both sides of (2.1) and eliminating eP? and eP! from (2.1) and the resulting
equation, respectively, we get the following two equations:

boBof™ — nbof" L f 4+ byBaP — by P’ = AjePt, (2.12)
biBif" —nby f* L + 6B P — b P = —AqeP?, (2.13)
where By = b} /by +p), Ba=0b4/bs+ps and A; = biba(B2 — By). Note that

B1ByA; # 0. By differentiating on both sides of (2.12) and then eliminating eP*
from (2.12) and the resulting equation, we get

Rif™ + hof" f + hsf ()2 haf T+ PL=0, (2.14)

where h1 = b2B2<A/1 +p/1A1) — (bng)/Al, hQ = —’anAl (p’l +p’2) — nbgAll, h3 =
n(n — 1)[)2141, hy = nby Ay, and Py = (All —‘y—pllAl)(bgBQP — bgPl) — Al(bQBQP —
by P') is a differential polynomial in f of degree < n — 1. By lemma 2.3 and our
assumption, « is a nonzero real number such that —1 < a < 1. Below we consider
the two cases where —1 < o < 0 and 0 < a < 1, respectively.

Case 1: —1 < a < 0. We multiply both sides of equations (2.12) and (2.13) and
obtain

G+ ga [N - ga [P A+ Py = —ATeP P2, (2.15)

where g1 = b1baB1Ba, g2 = —nbiba(B1 + Ba), g3 = n’b1by and Py = b1ba(Baf™ —
nfnilfl)(Bl.P — Pl) + ble(Blfn — nf"flf’)(BQP — Pl) + ble(Blp — P/)(BQP —
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P’) is a differential polynomial in f of degree < 2n — 1. By eliminating (f’)? from
(2.14) and (2.15), we get

2 (gsha — hagi) f + (gshe — haga) f' + gshaf"] + Py = hgAje? ™72 (2.16)

where Py = g3 f" P — h3 P, is a differential polynomial in f of degree < 2n — 1. For
simplicity, we denote

B hBA% eP1+D2 1 Py
¥ 93h4 f2n—1 g3h4 f2n—1'

Recalling By = b /by + p} and By = bl /by + pl, we get from equation (2.16) that

(2.17)

"+ Hif'+ Hof =, (2.18)

where

hg gghg 1 ’ ’ n—1 bll bl2 All
H = — — = — — — — —_—
" b gsha {n(pl )=\ ) T A

hi  gih ALY (byBs)’ 1 (2.19)
Hz_*l— 13—[32(1—1)1>— 22 }4-7123132-

—_

N h4 gs h4 n A1 b2

Now we prove that ¢ is a rational function. Recall that by, bs, p1, po are all
polynomials and By = V) /by + p}, Ba = bl /by + phy and Ay = bybe(Bs — By). Since
f is entire, we see that ¢ has only finitely many poles. By lemma 2.3, o(f) = k. By
the lemma on the logarithmic derivative, we deduce from (2.18) that

T(r,) = m(r,¢) + O(logr) < m(r, f) + O(logr) = T(r, f) + O(logr).  (2.20)

Therefore, o(¢) < k. Now let 6 € [0, 27) be such that J(p;, 0) #0 and 2z = re®
is a ray that meets only finitely discs in R. Since a < 0, then by lemma 2.3
(1) we see that in both cases that d(pi, #) > 0 and 6(p1, #) < 0 we always have
|ep1(Tew)*‘pz(Telg)/f(rew)z"_l| — 0 as r — oo along the ray z = re?. Together with
[12, corollary 1] we see from (2.17) that there is some integer N such that
lo(re??)| < rN for all large r. Then by the Phragmén-Lindeléf theorem we see
that || < rV uniformly in each S;., j =1, 2, -+, 2k, for some integer N = N (j).
Since € can be arbitrarily small, then by the Phragmén-Lindel6f theorem again we
conclude that ¢ is a rational function. From now on we fix one large N.

Recall that By = b, /by + ph. Denote Fy = f' — (By/n)f. Then by simple compu-
tations we obtain from (2.18) that

1 o, n—10, A
Fl— 2t — 2L 2LV F = o, 2.21
1 (npz b oh T )= (2.21)

Denote & = ph/n — by /by — (n — 1)by/nbs + A7 /A1. Then the general solution of

the homogeneous equation F| — & Fy =0 is defined on a finite-sheeted Riemann
surface and is of the form I} = C’gbé/nAl/(blbg)em/", where Cy is a constant and
b;/ " is in general an algebraic function (see [21] for the theory of algebroid func-
tions). Suppose that T's is a particular solution of F| — & F) = ¢. We may write
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the meromorphic solution of this equation as F} = Cgbé/"Al/(blbg)e”Z/" +T'5. By
an elementary series expansion analysis around the zeros of by, we conclude that
Iy /bé/ " is a meromorphic function. This implies that by is an n-square of some
polynomial. Then by lemma 2.2 we integrate the equation (2.21) along the ray
z =re' in Sy such that §(pa, 8) > 0 and obtain

1 Co bl/ Al
= f B f==22 "dep/n 1 2.22
f n 1f n b1b2 - 2 ( )
where
AbY/" = bib Aby™
L / ernim Pt ay g O i, (2.23)
b1bo 0 Aan biba

where as 2 = az2(f) is a constant such that |[[z| = O(r"™) along the ray z =
re? in Sy. Now, for z € Sj. where j € Jo, we have §(p2, ) >0 and so I'y =
(Cng}j/n)bé/"Al/(blbg)em/" + 2,5, where ds ; are some constants related to a sec-
tor S and |2 ;| = O(r N) uniformly in S; .. Of course, for j = 2, we have da 5 = 0.
Furthermore, [I's| = O(r"V) uniformly in S; . where j € J;. We then define ds ; =0
for j € J1.

Similarly, denoting that & = p) /n — by /by — (n — 1)b} /nby + A} /A1 we also have

— & Fy = p and it follows by integration that Fy = —(cl/n)bi/nAl/(blbg)epl/” +
I'y, whereI'y = —(cldl,j/n)bynzﬁh/(b1b2)e”1/" + 71,5, where d; ; are some constants
related to a sector Sj . and |y1 ;| = O(r") uniformly in S; . for j € J;. Of course,
for j =1, we have d;; = 0. Furthermore, |I'1| = O(r") uniformly in S;. where
j € Ja. We then define dy ; = 0 for j € Js.

Denoting B = n/(Bs — By), we have f = B(F) — F3). Together with the rela-
tion Ay = byba(By — By), we have f = clbi/nepl/” + czb%/nem/" + 1 with an entire
function n = B(I'y — T'y). We see that n = czdgyjb;/”em/” + B(7v2,; — 71,j) when
jeJiandn= cldl)jbynem/" + B(72,; —71,;) when j € Js.

Now we determine dy ; and dy ;. By [12, corollary 1], we may suppose that along
the ray z = re'? we have |fU)(re??)/f(re'?)| = ri(k=14) for all j > 0 for all suffi-
ciently large r and thus write P in the form in (2.10) with the new coefficients a; =
ar(f'/ ) - () f)™e, where ng, - - - , nys are nonnegative integers. For simplic-
ity, denote D; ; = c¢1 + ci1dy ;. By substituting f = clbl/nepl/” + czbé/"epz/” +n
into (2.1), we obtain, for z = re? for a @ in S; and j € Ji,

n—=k
(Dij b1€p1 + Z ( ) (Dl Jbl/"> 0 (C2b;/")koe[(N—ko)m-‘rkopz]/”
ko=1

(2.24)
n n—s
s=1k.,=0
where ag ., s =1, -+, n, ks =0, — s, are functions satisfying |as k., (re'?)| =

o(r) along the ray z = re“g By lettmg r — oo along the above ray z = e’ such
that d(p1, €) > 0 and comparing the growth on both sides of the above equation we
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conclude that (1 + d; j)" =1. Since d1;; =0, we have ¢f =land dy j = p1; — 1
for some py ; such that uy ; = 1. Similarly, we can prove that dg j = p2; — 1 for
some fio ; such that py; =1.In particular, when £ =1, since di; = dz2 = 0 and
In;| = O(r™) uniformly in the sectors S, j =1, 2 and since € can be arbitrarily
small, by the Phragmén—Lindel6f theorem we conclude that 7 is a polynomial. Thus
our first assertion follows.

Case 2: 0 < o < 1.
As in the proof of [33, theorem 2.1], we first define some functions in the following
way: We let m be the smallest integer such that o < [(m + 1)n — 1]/[(m + 1)n] and

Lo, - , Ly be a finite sequence of functions such that
LA
0 — nblv
o (2.25)
t; = (=1)7 () (jn—=1)---(n—-1), j=1,2,--- ,m.
nb1
Recall that By =b]/by +p). We also let kg, - -, Kk, be a finite sequence of
functions defined in the following way:
1] 1
Ro = e | + 7p/17
nby n
Y in—11, ) (2.26)
j-1 _ Jn— / .
= — 1)+ = -1.2....
H] Lj—l n b1+|: (a )+n:|p1ﬂ J )~y , M
Then we define m + 1 functions Gy, G1, -+, G, in the way that Gy = [’ — ko f,
G1 =G —rk1Go, -+, Gy =G, — EmGm—1. Now we have equation (2.13) and
it follows that
ePb2
Go=f —rkof = Lofn T+ Wo, (2.27)

where Wy = —(B1P — P')/(nf"~1). Moreover, when m > 1, by simple computa-
tions we obtain

e2p2
Gl = G6 — /QlGo = L1f2n 1 +W1,
W1 WO — I*ﬂWo — (TL — 1)L0 f Wo,
and by induction we obtain
, e(j""l)Pz )
Gj=Gjy —wjGj1 = G Wi, j=1,---,m, (2.28)
, ) eJp2 _
WJ :W]—l7K’]W]—17(jn71)LJ—1f]7nWOa ]:17 , M. (229)

For an integer [ > 0, by elementary computations it is easy to show that Wo(l) =
Wor/fH=1, where Wy = Wy(z, f) is a differential polynomial in f of degree
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<n+10-—1, and also that (epQ/f")(l) = eP2Wy, /f7H where Wy, = Wy(z, f) is
a differential polynomial in f of degree < n +[. We see that W, 1 < j <m, is
formulated in terms of Wy and eP?/f™ and their derivatives. We may write

e(m+1)p2
m = lm f(m,+1)n—1

G + F(Wo, e/ f™), (2.30)

where F(Wy, eP2/f™) is a combination of Wy and eP?/f" and their derivatives
with functions being combinations of functions in S. Moreover, from the recursion
formula G; = G371 —kjGj_1, =1, and Gy = f' — ko f, we easily deduce that f
satisfies the linear differential equation

FomtD g o (1) Y f = G, (2.31)

where t,,, tjm_1, - -+, to are functions formulated in terms of kg, - - -, fm and their
derivatives.

Now we prove that GG, is a rational function. Recall that by, bo, p1, po are all
polynomials. Since f is entire, then by the definitions of ko and k; in (2.26), we
see that G, has only finitely many poles. With an application of the lemma on
the logarithmic derivative as in previous case, we deduce from (2.31) that o(G,,) <
o(f) = k. Now let 6 € [0, 27) be such that §(p;, 6) # 0 and z = re?? be a ray that
meets only finitely may discs in R. By [12, corollary 1] and lemma 2.3 (2), we see
from (2.31) that there is some integer N such that |G,,(re??)| <V for all large r
along the ray z = re'? such that §(py, #) < 0. On the other hand, by lemma 2.3 (2)
there is some integer N such that

(1) if o < [(m+1)n —1]/[(m + 1)n), then |e(mFTDr2(re™)/ f(peif)(m+1n=1| _,
as r — oo along the ray z = re'’ such that d(p;, ) > 0;

(2) if a=[m+1)n—1]/[(m+ 1)n], then \e(m“)p?(’"ew)/f(rem)(m*l)”fl| <

eNT" T for all large r along the ray z = re'? such that §(py, 6) > 0.

Note that eP2(e’)/f(re®®)" — 0 as r — oo along the ray z=re® such that
0(p1, 0) > 0. In case (1), together with [12, corollary 1] we see from (2.30) that
|G (ret?)] < v for all large r and thus by the Phragmén-Lindelf theorem we see
that |G,,| < vV uniformly in each S, ., j € Jo, for some integer N = N(3); in case
(2), together with [12, corollary 1] we see from (2.30) that |G,,(re')| < Nt
for all large r and, since the set of rays z = re’® meeting infinitely many discs in
R has zero linear measure, then by the Phragmén-Lindelf theorem we see that
G| < V™7 uniformly in cach S, j € Jo, for some integer N = N(j). Since ¢
can be arbitrarily small, then in either case of (1) and (2) by the Phragmén—Lindelof
theorem again we conclude that G,, is a rational function. From now on we fix one
large N.

We denote Dy = bi/n and D; = Lj_lbl_jbi/n, j=1,---, m. Now we choose one 6
such that d(p1, 0) > 0 and let 2 = re? € Si. Let to = 1/n, t; = (a — 1) + 1/n, -+,
tm = m(a — 1) + 1/n. Similarly as in the proof of [33, theorem 2.1], we may use

lemma 2.2 to integrate the recursion formulas Gj = G;_l — k;Gj—1 from j =m to
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j =1 along the above ray z = re? such that d(p;, #) > 0 inductively and finally
integrating Gy = f' — kof along this ray z = re'¥ to obtain

where cq, ---, ¢, are constants and
Hy = bi/net"pl /Z bl_l/"eft"lelds - aob}/netopl, (2.33)
0
i0

where ag = ag(f) is a constant such that |Hy| = O(r"V) along the ray z = re®.

As is shown in the proof of [33, theorem 2.1], by is an n-square of some polynomial
and we may write the entire solution of (2.1) as f =y Z?:o cj(ba/br)leliPr +n,
where 77 is a polynomial such that v{* = b; and 7 is a meromorphic function with at
most finitely many poles. Then we can integrate G; = G971 — kG- from j =m
to 7 =1 inductively and finally integrate Go = f' — kof to obtain that Hy is a
meromorphic function with at most finitely many poles. We choose n = H. Recall
that along the ray z = re?® such that §(p;, #) > 0 and z = e’ € Sy, we have |Hy| =

O(r™). Denote g = by/™ Sty ci(ba/by)e'iPr. Then

mn b ko
9" =b1 Y Cx, (;) elhot=—kot+1)p1, (2.34)
ko=0 1
where
n o .
Cry = ——clcd - ko=0,1,-- ,mn. 2.35
o Z Jolja!e - gm! 0 0 (2:35)

ot tim=n,
Jitetmim=ko

By [12, corollary 1], we may suppose that along the ray z =re’ we have
|f(re?®)) ) f(ret?)| = ri=1%2) for all j > 0 and all sufficiently large 7. By writing
P in the form in (2.10) with the new coefficients a; = a;(f"/f)™ -~ (f() /),
where njy, -+, njs are nonnegative integers, and using [12, corollary 1], we see
that each term in P(z, f) of degree n — j, 1 < j < n — 1, equals a linear combina-~
tion of exponential functions of the form el™#i(a—D+n=ilp1/n (< k; < (n—j)m,
with coefficients 3; having polynomial growth along the ray z = re'?. Therefore, by
substituting f = g + Hy into (2.1) we obtain by the same arguments in the proof of
[33, theorem 2.1] that ¢ =1 when m =0, and ¢ = 1, ncg_lcl =1 and py = apy
when m =1 and further that C, = 0 for all 2 < ky < m when m > 2.

Now, b}/ " denotes a polynomial. By the definition of ¢; and D;, we see that
Dj are rational functions. Recall that G, is a rational function. By lemma 2.2 and
looking at the calculations to obtain Hy in (2.33), we have, for z € S, j € Ji, such
that 8(p1, 0) > 0, Hyo = 1 > di,j(b2/b1) e'Pt +n;, where d; j, 1 =0, --- , m, are
some constants related to a sector S; . and |n;| = O(r") uniformly in S; ., j € Ji.
Of course, for j =1, we have d;; =0 for all [. Since cjj =1 when m =0, cj =
ncg_lcl =1 when m =1, and ¢ = ncg_lcl =1and Cy, =0 for all 2< ko <m
when m > 2, then by simple computations, we deduce that c¢; = sjco for some

https://doi.org/10.1017/prm.2022.80 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.80

1978 Y. Zhang

nonzero rational numbers 5,7 =0,1,---,m. Therefore, by considering the_growth
of f along the ray z = re'’ such that z € S;, j € Ji, as for the ray z = re?? € S,
we have (CO + do,j)n =1 when m = O, (CO + doJ)n = Tl(CO + d()’j)nil(cl + dl,j) =

1 when m =1 and further that Cy, = 3. ot im=n, #’jm,(co +do ;)7 (c1 +
) ) Jitetmim=ko
dy ) (e + dp )™ = 0for kg =2, - -+, m when m > 2. Therefore, for cach j €
Ji, there is a p1; satisfying p7 = 1 such that ¢; + a;,; = pj¢; for all [. Note that uy =
1. Also, we have |n| = O(r") uniformly in the sectors S;., j € Jo. In conclusion,
we may write 1 = 1 >y o (17 — 1)¢; (b /by ) e@=D+pi/n 4 swhere i are the
n-th roots of 1 such that u; =1, j = {1}U € Jo, and |n;| = O(r") uniformly in
the sector gj,e. In particular, when k& = 1, since e¢ can be arbitrarily small, then
by the Phragmén—Lindel6f theorem we conclude that 7 is a rational function. This

completes the proof. O

3. An oscillation question of Ishizaki

Let b1(2), ba(2z) and bs(z) be three polynomials such that biby # 0 and p;(z) and
p2(z) be two polynomials of the same degree k > 1 with distinct leading coefficients
1 and «, respectively, and p1(0) = p2(0) = 0. In this section, we use theorem 2.1 to
investigate the oscillation of the second-order linear differential equation:

7= [p1(2)en )+ ba(2)e ) 4 by(2)] =0 (3.1)

There have been several results about the oscillation of equation (3.1) and recently
second-order linear differential equations with exponential polynomials are taken
into more consideration in [15, 16]. The results of Bank, Laine and langely [5],
Ishizaki and Kazuya [20] and Ishizaki [19] can be summarized as follows:

(1) if o is non-real, then all nontrivial solutions of (3.1) satisfy A\(f) = oo;
(2) if «r is negative, then all nontrivial solutions of (3.1) satisfy A(f) = oo;

(3) if 0<a<1/2orif bg =0 and 3/4 < a < 1, then all nontrivial solutions of
(3.1) satisfy A(f) = k.

Theorem 1.1 shows that the condition b3 = 0 in the third result can be removed.
Ishizaki [19] asked if the third result A(f) > k above can be replaced by A(f) = oc.
With theorem 2.1 at our disposal, we are able to answer this question partially. We
prove the following

THEOREM 3.1. Let0 < aw < 1 and m be the smallest integer such that o < [2(m + 1)
—1]/[2(m + 1)]. Suppose that bs =0 in (3.1). If (3.1) admits a nontrivial solution
f such that \(f) < oo, then o = [2(m + 1) — 1]/[2(m + 1)] and ps = ap;.

We will mainly use the techniques in [6] (see also [23, theorem 5.7]) to prove
theorem 3.1. Since « is a positive number, we have [ r|A(re')|dr < co along the
ray z = re'? such that §(py, #) < 0. The following lemma can be proved similarly
as in [23, lemma 5.16] by using Gronwall’s lemma (see [23, p. 86]).
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LEMMA 3.2. Under the assumptions of theorem 3.1, all solutions of equation (3.1)
satisfy | f(re'®)| = O(r) as r — oo along the ray z = re? such that §(p1, ) < 0.

Now we begin to prove theorem 3.1.

Proof of theorem 3.1. Let f be a nontrivial solution of equation (3.1) such that
A(f) < co. By Hadamard’s factorization theorem we may write f = xe”, where h
is an entire function and « is the canonical product from the zeros of f satisfying
p(k) = A(k) < co. Denoting g = A/, then from (3.1) we have

"

/
g9 +g+ 2%9 + = b1(2)e" ) 4 by(2)er ). (3:2)

Below we consider the two cases where 0 < a < 1/2 and (2m —1)/(2m) < a <
[2(m +1) —1]/[2(m + 1)], m > 1, respectively.

Case 1: 0 < a < 1/2.

By theorem 2.1, we may write g = y1e”'/2 + 17, where 7 is a polynomial such
that v7 = by and 7 is an entire function such that || = O(r") uniformly in Sy .
and Sy .. By substituting this expression into equation (3.2), we obtain

K;N
271< —|—§—+ 1 +n>ep1/2—bgep2++2n+77 +n" =0. (3.3)

Suppose that 0 < a < 1/2. We define

w = nyl/? pi/at]5, ndt (3.4)
where zp is chosen so that |zg| is large. Then w is analytic outside a finite disc
centred at 0 and satisfy

N (3.5)

Dividing by 27y1€P*/? on both sides of equation (3.3) and then considering
the growth of w'/w along the ray z = re'®2=¢) gsuch that w has no zero
around the neighbourhood of the ray z = r7e*(?27¢) we have by [12, corollary 1]
that |w'(re')/w(re?)| = O(r~2) as r — oco. By integration, we obtain that
w(re'®2=9)) — g as r — oo along the ray z = re(®>=9 for some nonzero constant
a = a(f3, €). On the other hand, by applying lemma 3.2 to equation (3. 1)
have |f(re'(?279))| = O(r) along the ray z = re!(?2+9). Recalling that f = re” and
g =h =yeP/2 4 5, we may write

(= 1/
w = fe ) Pept/At I ndz — pal/2om/d S5 mem e (3.6)

Since 6(p1, 02 + €) < 0 and thus along the ray z = re’(%21¢) we have f;ﬂ y1eP /2 dt —
¢ for some constant ¢ = ¢(s, €), we see from (3.6) that w defined in (3.4) satisfies
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w(re'®*9)) — 0 as r — co. Denote
Se={re : 0, —e <0< b +e¢} (3.7)

By choosing € to be small and applying the Phragmén—Lindel6f theorem to w
defined in (3.4) in the sector in (3.7), we get a = 0, a contradiction. Therefore, we
must have « = 1/2 when b3 = 0.

Now, if k = 1, then obviously ps = p;/2 since we have assumed p;(0) = p2(0) = 0.
If £ > 1, then by theorem 2.1 we have g = uj'ylepl/2 +1j, where pf =1, 1 is a
polynomial such that 47 = by and 7, is an entire function such that |n;| = O(r")
uniformly in S} .. Note that 7; has finite order. Denoting ps = ps — p1/2, we rewrite
equation (3.3) as

1
|:b2€p3 M ( * 5% * % H )] et == + 277] + 77] +nj. (3.8)

If po # p1/2, then pj3 is a nonconstant polynomial such that deg(ps) < deg(ps) — 1.
By the definition of S; in (2.3), we may choose a 6 € [0, 27) so that the ray z = re®
meets only finitely discs in R and also that log |e?1/2| and log |e”2~1/2| both increase
along the ray z = re'?. By [12, corollary 1] we see that '/ + 7 /271 + P} /4 + 1;
and k" /k + 20Kk /K + 77]2- + m; — bs both have polynomial growth along the ray z =
re’?. Then by comparing the growth on both sides of equation (3.8) along the ray
z = re? | we get a contradiction. Therefore, we must have py = p; /2 when a = 1/2.
Case 2: 2m —1)/2m) <a <[2(m+1)—1]/[2(m+1)], m > 1.

In this case, by theorem 2.1 we already have ps = ap; and we may write g =
" Z;’;O cj(ba/by ) elia=DF1r1/2 4y where m > 1, 71 is a polynomial such that
72 =b; and 7 is a mermorphic function with at most finitely many poles such
that |n| = O(r") uniformly in S; . and S> .. By substituting this expression into
equation (3.2), we obtain

i b2 H/ 1 ')/1 (bg/bl) 2](0& — 1) + 1 ’ L
2 = — — 1z P1
7120]( ) [ T e T e

(3.9)

2m b2 M !
P> Okl wopr 4 +2n—+77 +n' =0,
k‘o m—+1 1

where L; = [2j(a — 1) +1]/2, My, = koo — ko +1 and the coefficients Cy, =

Z,J’f"ﬁjm—zk Jo'gl' ! el e, kg =m+1, -, 2m. Suppose that o<
JiTetmim=
[2(m +1) —1]/2(m +1). Then, for kg =m+1+4+4, j=0,1,---, m —1, we have

Ljy1 < koo —a+1< L. As in previous case, we also define the function w
n (3.4), where zp is chosen so that |zg| is large and w is analytic outside a
finite disc centred at 0. It follows that w’/w has the form in (3.5). Similarly
as in previous case, we first divide by 2coy1e”*/2 on both sides of equation
(3.9) and conclude that w(re’®>=9)) — a as r — oo along the ray z = re’(®2—¢)
for some nonzero constant a = a(fs, €); then we use the expression g =h' =
N YTy ¢i(ba/by) i@ DHIP/Z gy 4o derive from (3.4) that w(re®*9)) — 0
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as 1 — oo along the ray z = re(®>+9), An application of the Phragmén-Lindeldf
theorem to w in the sector in (3.7) then yields a contradiction. We omit those
details. Therefore, we must have a = [2(m + 1) — 1]/2(m + 1). We complete the
proof. O

4. Equation (1.1) with periodic coefficients in (1.6)

As mentioned in the introduction, all nontrivial solutions of the second-order lin-
ear differential equation f” + (e* —b)f = 0 such that \(f) < oo are given explicit
expressions. In this section we solve nontrivial solutions such that A(f) < oo of the
second-order linear differential equation:

f/l o (elz 4 b2esz +bd) f = 07 (4]_)

where [ and s are relatively prime integers such that [ > s > 1, by and b3 are con-
stants and by # 0. We remark that by using the method in [25], we may prove that
all nontrivial solutions of equation (4.1) satisfy A\(f) = oo when b3 is replaced by a
nonconstant polynomial.

Suppose that equation (4.1) admits a nontrivial solution such that A(f) < oco.
Then f has the form in (1.3) or (1.4). Also, we may write f = re”, where h is
an entire function and k is the canonical product from the zeros of f satisfying
o(k) = M(k) < co. Thus we may suppose that s equals a polynomial in e*/? or e?
and A’ equals a polynomial in e*/2 or e*. By denoting g = A’ from (4.1) we have

"

K K
g2+g’+2;g+? = €'* + bye®* + bs. (4.2)

By theorem 2.1, we may determine the coefficients ¢; in (1.3) or (1.4) from equation
(4.2). Our main result is the following

THEOREM 4.1. Let by and bs be constants such that ba # 0 and I, s be relatively
prime integers such that | > s > 1. Suppose that (4.1) admits two linearly inde-
pendent solutions fi1 and fo such that max{A(f1), A(f2)} < oo. Then s =1 and
l=2.

Recall the following well-known result due to Wittich [32]. We say that a function
f is subnormal if limsup,_, . logT(r, f)/r = 0. This lemma gives the form of sub-
normal solutions of second-order linear differential equations with certain periodic
functions as coefficients.

LEMMA 4.2. Let P(z) and Q(2) be polynomials in z and not both constants. If w # 0
1s a subnormal solution of equation

w” + P(e*)w' + Q(e*)w =0, (4.3)

then w must have the form w = e®*(ag + aje® + --- + arer?), where k>0 is an
integer and ¢, ag, -+, ax are constants with ag # 0 and ay # 0. Moreover, we have
& +¢cP(0) +Q(0) = 0.
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Proof of lemma 4.2. By Wittich [32], we have w = e°*(ag + a1€* + - - - + are??). By
taking the derivatives of w and then dividing w’ and w” by w, respectively, we get

o Yelet fagel

w
wo_ , 1.4
w Zf:o ajel* -
k . . -
w' Yi—o(€® +2jc+ j%)a el (45)
= - ‘ : .
w Zj:O ajeJZ

We write equation (4.3) as Q(e*) = —w”/w — P(e*)w’/w. Since w is of
finite order, then an application of the lemma on the logarithmic deriva-
tive yields deg(Q(z))m(r, e*) < deg(P(z))m(r, €*) + O(logr), i.e., [deg(Q(z)) —
deg(P(2))]T(r, €*) < O(logr). Therefore, deg(Q(z)) < deg(P(z)) and thus P(z) is
nonconstant. Together with equations (4.4) and (4.5), we rewrite equation (4.3) as

Yj—olc® + 2jc + j)a;e’? + > j—olc+j)aze’”
Z.I;:o a;el* Z.I;:o a;el?

Since along a ray z = re’? such that cosf < 0, we have e — 0 as r — oo, then
by letting r — oo along the ray z = re’?, we obtain from equation (4.6) that ¢ +
¢P(0) + Q(0) = 0. This completes the proof. O

P(eF) +Q(e*) =0.  (4.6)

Unlike in § 2 and 3 where Nevanlinna theory plays the central role in proving
theorems 2.1 and 3.1, the proof of theorem 4.1 will, however, mainly rely on the
Lommel transformation for the generalized Bessel equation:

22y + xy + (Z djxj> y=0. (4.7)

—n/

Recall the Bessel equation: x%y" + xy’ + (2? — v?)y = 0, where v is a nonzero con-
stant. Lommel [26] and Pearson [27] independently (see also [31]) studied the
following transformation given by:

r=at’, ylx)=t"u(t), (4.8)

where «, 0 and ~ are constants and applied to the Bessel equation. By using the
above transformation to equation (4.7) and by computing the derivatives of 2 and
Yy, we get

2 (t) + (2y + D)t (t) + (f + B En: ajdjtﬁf> =0. (4.9)

—n/

A further change of variable such that
L= e, f(z) = ut), (4.10)

leads to an equation of the form

I+ 2ypf' + p? (’yz + 32 Zajdjeﬁpjz> =0. (4.11)

—n'
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In the case of equation (4.1), by Lommel’s transformation we have
2?y +zy — (diz' + doz® +d3) y = 0, (4.12)

where dy, do and ds are some constants. By comparing the coeflicients of equation
(4.1) and (4.11), we deduce that 2yp =0, Bp = 1, ald; = 1, a®dy = by and d3 = bs.
Further, for equation (4.12), it is well-known that the transformation y = z=/?u
leads to an equation of the form

1 by | 1\ 1
u’ — Jscl_2 + a—iaﬁ‘s_2 + (bs - 4) IQ] u=0. (4.13)

In the case [ = 4, it has been shown by Chiang and Yu [11] that there is a full corre-
spondence between solutions of (4.1) such that A(f) < co and Liouvillian solutions
of (4.13). The only possible singular point of equation (4.13) is « = 0. Concern-
ing the local solutions around a singular point of a second-order linear differential
equation, we have the following elementary lemma 4.3; see [17] or in [23, lemma
6.6].

LEMMA 4.3 [17, 23]. Suppose that h is analytic in |z| < R, R > 0, and consider the
differential equation

h(z)

in the disc |z| < R. Let p1 and p2 be the roots of
p(p—1)+h(0) =0. (4.15)
Denote by D = D(r) the slit disc D :={z:|z| <r}\{t | 0<t <r}. Then

(1) if p1 — p2 € Z\ {0}, then equation (4.14) admits in some slit disc D = D(r),
r < R, two linearly independent solutions ui and us of the form:

Uy (Z) =M Zaizi7 ao 7& 0)
=0 (4.16)

us(z) = up(z)dlog z + 2”2 Z bz,
i=0

where d =0 ord=1;

(2) if p1 — p2 & Z, then equation (4.14) admits in some slit disc D = D(r), r < R,
two linearly independent solutions uy and uy of the form:

ui(z) = 2 Zaizi, ag # 0,

i;” (4.17)
ug(z) = 2 Zbizi, bo # 0;

=0
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(3) if p1 — p2 = 0, then equation (4.14) admits in some slit disc D = D(r), r < R,
two linearly independent solutions uy and uy of the form:

ul(’z) =z Z aizi7 ago 7é 07
= (4.18)

e}
us(z) = uy(z) log z + 272 Z biz'.
i=0

For the solution us in (4.16), if d = 0, then from the proof of [23, lemma 6.6] we
know that by # 0.

Now, by elementary theory of ordinary differential equation (see [17]), lemma 4.3
shows that equation (4.13) admits two linearly independent solutions u; and wus in
the broken plane C~ = C\ {z | 0 < # < oo}. When p =1 in (4.10), by the Lommel
transformation and analytic continuation principle, the general solution of (4.1) is
thus given by

f = (ae®) V2 [Byuy (0€?) + Byug(ae?))], (4.19)

where F; and F, are two arbitrary constants. Note that the above solution is
independent from the choice of the branches of u; and us in lemma 4.3. This is the
key observation for the proof of theorem 4.1.

Now we begin to prove theorem 4.1.

Proof of theorem 4.1. We first suppose that f is a nontrivial solution such that
A(f) < oo of equation (4.1) and use the expressions in (1.3) and (1.4) to write
f(z) = U(z) = 2%(2)eX®), where 2 =e*/" h=1 or h=2. From the proof of
[11, theorem 1.2], we know that in the broken plane C~ equation (4.13) admits

a solution of the form
u = exp </ wdx) , (4.20)

where w:= X" +¢'/¢ + (2hc + 1) /(22) is rational function in the complex plane
C. By using Kovacic’s algorithm in [22] and giving the same discussions as in the
proof of [11, theorem 3.1] to equation (4.13) for the two cases b3 # 1/4 and bs = 1/4,
respectively, we conclude that [ must be even. It follows that f has the form in (1.4)
and thus p = 1 in (4.10) and « = 1 in (4.8). We write f = ke”, where x and h' are
both polynomials in ¢ = e* such that x(0) # 0. We may also write f = ./, where
ke = ke and hl, = ' — ¢. Then, denoting g. = h.,, we have from (4.1) that

! "
K

K
92+ gL+ 2 g+ & =€+ boe™ + b, (4.21)
C

C

By lemma 4.2 and the expression in (1.4), we see that the constant ¢ in (1.4) satisfies
02 = b3.

Now, for the solution in (4.19), by lemma 4.3 we have p; + p2 = 1 and p1ps =
1/4 — b3, which yield (p; — p2)? = 4b3. Then p; — ps = —2c and it follows that p; =
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(1 =2¢)/2 and ps = (1 4 2¢)/2. Thus the solutions in (4.19) can be written as

[ee]
f=(e*)° | (E1 + Exdloge?) —2e Z a;(e*) + By Z b;( , (4.22)
when p; — pos # 0, or

f = (E) + Esyloge?) Zaj +E22b (4.23)
7=0

when p; — pa = 0. Note that d =0 in (4.22) when p; — p2 is not an integer. On
the other hand, for the solution f = ke’, we may write the expression in (1.4) in
the form f = e Z;io djel*. By comparing this series with the one in (4.22) or in
(4.23), we conclude that the logarithmic term in uy does not occur. This implies
that d = 0 or By = 0 in (4.22) and Ey = 0 in (4.23) when f = ke”.

With these preparations, we now suppose that fi; and f5 are two linearly inde-
pendent solutions of (4.1) such that max{A(f1), A(f2)} < oo. We write ] = 2(m + 1)
for some integer m > 0 and also write s = 2(m + 1) — ¢ for some integer ¢ > 1.

Let ¢ be the smallest integer such that s/l < [2(q + 1) — 1]/[2(¢ + 1)]. Since [ and
s are relatively prime, we see that the equality holds only when q = m. For each of
f1 and fo, denoted by f, we may write f = r.e*, where k. = ke®*. Then, denoting
ge = h., we have equation (4.21). By theorem 2.1, g. = h/. = Zq elmti=it)z,
where ¢, c1, -+ -, ¢4 are constants such that c2=1and ¢y, -~ , Cq Satlsfy certaln
relations. In both of the two cases where ¢ = 1 and ¢ > 2, we have 2coc1 = by and,
by simple computations, that,

A
tjcq

— j=1,--- 4.24
(_2CO)j_17 ] ) )q7 ( )

Cj =
where ¢; are positive integers such that ¢; < --- < {4, and further that

3 2 j Tyrset
Cotj = . —c) el = : j=1,---,q (4.25)
1...5170 q — q+j—2’ ’ o
jot-rtgg=2, 1O (=2¢0)
i+t ajg=a-+i

where Tq+J are positive integers such that T, ; < --- < Ty,. By substituting g. =

>0 e(m+1=3D% into (4.21) together with theorem 2.1, we get
1
Ze 4 2¢q e(m'H)Z € 1 co(m+1)el™TYZ _ pyes® — by =0, (4.26)
Re Re

when ¢ = 0, and

!
Mve + 9 Zc e(nL-i—l itz | Fe bs

K
j=0 ¢

(4.27)

q
+ Z [ije[m+1—(¢Z+1)t]z + (m +1— jt)Cj p(m+1—jt)z _ 0,
j=0
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when ¢ > 1, where Cy, = Cgy14; and Caqy1 = 0. By substituting equations (4.4)
and (4.5) for k. = ecz(Zle a;e?), apay # 0, into (4.26) or (4.27) and noting that
b3 = c%, we finally get

k
Z [ (2ic + i2)ae” + co(2¢ + 20 +m + 1)a;e™TIFDZ _ pygel+92| =0, (4.28)

when ¢ = 0, and

k k q
Z(Zic+ i?)a;e® + 2 <Z c+i)aie ) che(mw%fjt)z
=0

=0 =0

q
<Z a;e ) Z C je[m+1—(Q+1)t]z +(m+1—jt)e ] (m41—jt)z \ _ 0,

7=0

(4.29)
when ¢ > 1. Note that the inequality (2¢ — 1)/(2¢) < s/l < [2(q + 1) — 1]/[2(¢ + 1)]
implies gt < m + 1 < (¢ + 1)t, where the equality holds when ¢ = m. The left-hand
side of equations (4.28) and (4.29) are polynomials in e* of degree k +m + 1 and
thus all coefficients of these two polynomials vanish. When s =2(m +1) —¢ <
2m + 1, we have ¢ < m and t > 2. By looking at the highest-degree term in the
resulting polynomial and noting that aj # 0, we find

m+2c+2k+1=0. (4.30)
Similarly, when s = 2m + 1, we have ¢ = m and ¢t = 1 and find
Crns1 + (m+2c+ 2k + 1)cg = 0. (4.31)

Let ¢, or c_ be any square root of b3. We may write f; = sy.€"tc and fo = ko.el2e,
where k1. = K1e°% and ko, = k2e°~7% and k1 and kg are two polynomials in e* of
degrees k1 and ko, respectively. Moreover, hi. satisfies h}. = Zq c-e(mH*jt)z

Since ¢ =1 and since 2cge; = by when ¢ > 1, we easily deduce from (4.24) that
hoe. = thq.. Recall the elementary Wronskian determmant. f1fa — f1f5 = D, where
D is a nonzero constant (see [23]). Then we have (f1/f2) = D/fs. If hae = hie,
then f1/fs is of finite order while fZ is of infinite order, a contradiction. Therefore,
hse = —h1.. We may suppose that ¢y = ¢. When s < 2m + 1, from (4.30) we deduce
that ¢, = ¢ = ¢, which implies that —2¢ = m + 1 + 2k, is a positive integer and
hence k1 = ko; when s = 2m + 1, using (4.25) and the relation 2¢oc; = by we deduce
from (4.31) that ¢y +c- +m+ 1+ k1 + ke =0, which implies that ¢, =c_ =¢
and hence —2c =m + 1+ k1 + ko is a positive integer. Now p; — ps = —2¢ is a
positive integer. Together with (4.19) and previous preparations, we conclude that
equation (4.13) admits in the broken plane C~ two linearly independent solutions
of the form u; = xP*v; and us = x2v9, where v; and vy are two entire functions
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such that v1(0) # 0 and v2(0) # 0, so that

fi =2k = 272 (D1af oy + DaaP?vy) (4.32)
4.32

f2 = l’c/€12€7h11 = ;[;71/2 (D3£L’p1’l}1 + D4£Cp21)2) s
where D; are constants, hi; = Z?:o m+Clj—jt e
polynomials of degrees ky and ks, respectively, such that #11(0) # 0 and k;12(0) # 0.
Noting p1 = (1 — 2¢)/2 and p2 = (1 + 2¢)/2, we see from (4.22) that DyDy # 0.

Obviously, F := D1Dy — Do D3 # 0. From equation (4.32) we get

T , and k17 and kK19 are two

1
Uy = Z‘plvl = El‘l/zl‘c (D4H118h11 — D2I€126_h11) . (433)

Since v; is an entire function with v1(0) # 0, we see from (4.33) that the function
w = Dyri1e2Mt — Dokys has a zero of order —2¢ at the point z = 0 and so w(0) =
w'(0) = --- = w(=2¢7Y(0) = 0. Denote

k
K11 =a10+t a1 x+---+ap gt

(4.34)
K12 = G0 + G212 + -+ + ag, 5,22,
where ay,0, 42,0, @1k, , A1,k # 0. w(0) = 0 implies that Dyay 9 = Daas . Supposing
that a1,0 = az0 = 1, we have Dy = D,. Below we consider the case when m > 1.
Consider first the case when s/l < 1/2. Since m > 1, by theorem 1.1 and (4.30),
we see that k] = ko > 1. Now w(m+1)(0) =0 implies that aqm+1 +2(m!)cy =
a2 m+1- Here a1 mi1 = 0if m +1 > k; and so is for ag 1. Obviously, m + 1 < ;.
For each of f; and fo, denoted by f, we may write f = k.e”. Then we have equation
(4.28). Note that 1 < s =2(m + 1) — t < m. The left-hand side of equation (4.28)
is a polynomial in e* of degree m + 1 + k and thus all coefficients of this polyno-

mial vanish. Denoting a_,,—1 =---=a_2=a_1 =0 and a1 =+ = Ap4m = 0,
we obtain from equation (4.28) that ¢o(2¢ + 2k + m + 1)ax = 0, which yields (4.30),
and

co(2c+2i —m — 1)a;_pm_1 = boa;_s — (2ic+i%)a;, i=0,---,k+m. (4.35)
By substituting 2¢c = —2k — m — 1 into the equations in (4.35) we get
20(k —i+m—+1)aim1 = —byai_s+ (2ic+i*)a;, i=0,--- ,k+m. (4.36)

Since 1 < s < m, by letting i =1, 2, --- , m, we see that a1 /ag = K1, -+, am/ag =
K,, for some constants Ky, ---, K,, independent from cy. Then by letting i =
m+1 in (4.36) together with the relation aj 41+ 2(m!)co = agm+1, Wwe get
2k1/(m+1)(2c+m+1) +2(m!) = =2k /(m 4+ 1)(2¢ + m + 1). Since k; = ko and
—2¢=2k; + m+ 1, we get (m + 1)! = 1, which is impossible when m > 1.
Consider next the case when s/l >1/2 and s<2m+1. Now ¢t <m+1<
(¢ + 1)t for some integer 1 < ¢ < m. Recalling that s = 2(m + 1) —t and [ and s are
relatively prime, we see that ¢ > 3 is an odd integer. Denoting each of f; and fo by
f, we may write f = r.e". Then we have equation (4.29). Denote M =m + 1 — qt
for simplicity. Since —2c = 2k +m + 1 and Cyq41 = 0 and Cyy = cg, then by looking
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at the coefficient of the term e™* on the left-hand side of equation (4.29), we find
M(2¢+ M)an + 2capcqy + Mageq = 0, which gives apcq + Map = 0. Recall that
the function w := Dyk11€2"* — Dyk1s has a zero of order —2¢ at the point z = 0.
Then w™)(0) = 0 implies that a; ar + 2(M — 1)lc, = ag, pr. Using equation (4.24)
together with 2coc; = by and agcy + Mapy = 0, we get M! = 1, which implies that
M = 1. It follows that m = qt. By looking at the coefficient of the term e?? on the
left-hand side of equation (4.29), we find 2(2¢ + 2)as + 2(c + 1)aicq + aoc + arcq =
0, which together with a1 = —agc, yields 2a, = aocg. Then by looking at the coef-
ficient of the term e3* on the left-hand side of equation (4.29), we find 3(2c +
3)as + 2(c + 2)agcy + azcy + arcl =0, ie., (2¢+3)(6as + ¢}) =0 and thus 6as +
cg = 0. Now w(?’)(O) = 0 implies that a3 + 6a1,2¢4 + 12a1’1cg + 802 = a3, which
together with the relation a; = —apc, and 2a, = aocg gives a3 — cg = ap 3. Then
using equation (4.24) together with 2coc; = by and ¢} 4 6az = 0, we get ¢} =0,
a contradiction to (4.24).

Finally, we consider the case when s =2m + 1. Recall that ¢ =m and t =1
in (4.29). In this case, if ki = ko, then using (4.25) and the relation 2coc; =
by we get from (4.31) that C,,41 =0, a contradiction. Therefore, without loss
of generality, we may suppose that ki > ko > 0. If ky =0, then by theorem
1.1 have 2¢ + 1 = 0, which is impossible since —2c =m + 1 + ki + ko. Therefore,
ko > 0. Note that C,,, = c?n. Since —2c =m + 1+ k1 + ko, then by looking at
the coefficient of the terms e* and €2 in equation (4.29), respectively, we find
ai + agcy, = 0 and 2(2¢ + 2)ag + (2¢ + 3)emar + [¢2, + (2¢ + 2)em—_1]ap = 0 and so
2a5 — c2,a0 + ¢m—1a0 = 0. Recall that the function w := Dykq11€2"1 — Dykqs has
a zero of order —2c at the point z=0. Now w”(0) =0 implies that aj o+
4ay 1¢m + 4epm—1 +4c2, = as 2. Using equation (4.24) together with 2coc; = be, we
get —¢p—1/2 + 4¢p—1 = ¢m—1/2, which yields ¢,,,—1 = 0, a contradiction to (4.24).

From the above reasoning, we conclude that [ = 2. We complete the proof. [

In the rest of this section, we use theorem 2.1 to determine precisely all nontrivial
solutions such that A(f) < oo of equation (4.1) for the case | =2 and | = 4.

THEOREM 4.4. Let by, by and bs be constants such that bybs # 0 and s and [ be rela-
tively prime integers such that 1 < s <1< 4. Suppose that (4.1) admits a nontrivial
solution f such that A(f) < oo. Then

(1) if s=1 and | =2, then f = re", k = Zf:_l a;e”* and h = cpe* + cz, where

k > 0 is an integer, ¢y and ¢ are constants such that ¢z = 1, 2co(c + k) + co =
by and c® = bz, and a_1, ag, - - - , ay are constants such that apay # 0, a_, =0
and

2c0(k+1—i)a;i_1 = (2ic+i%)a;, i=0,1,---,k; (4.37)

(2) if s=1 and | =4, then f = ke, k= Zfiiz a;e”® and h = (co/2)e** + ¢z,
where k > 1 is an integer, co and c are constants such that c3 =1, 2c+
2k +2 =0 and c® = bs, and a_s, a_1, ag, -+ , ag41 are constants such that
agar #0, a9 =a_1 =agy1 =0 and

2co(k —i+2)a;_o = —bya;_1 + (2ic+i%)a;, i=0,1,--- k+1; (4.38)
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(3) ifs=3andl =4, then f = ke, k = Zf:iz a;e”® and h = (co/2)e** + cre* +
cz, where k >0 is an integer, co, c1 and c¢ are constants such that ¢ =1,
2cocy = ba, ¢ =bg and ¢? + (2+ 2¢+2k)co =0, and a_s, a_1, ag, -+ , Gp1
are constants such that agar # 0, a_o =a_1 = axr1 = 0 and

<2k‘ — 21+ 4)Coai,2 = (26 + 21 — 1)01@1‘,1 + (2iC + iz)ai, i=0,---,k+1.
(4.39)

For the convenience to write the recursive formulas in (4.37)—(4.39), we have
introduced some extra coefficients a_s, a_1, agy1, which are all equal to 0.

When s =1 and [ = 4, since ag # 0 and ay, # 0 and 2¢ + 2k 4+ 2 = 0, the recursive
formulas in (4.38) yield a polynomial equation P(by) = 0 with respect to by with
coefficients formulated in terms of ¢y and k. For example, when k& = 1, we have 0 =
—boag + (2¢ + 1)ay and 2¢gag = —boay, which together with the equation 2¢ +4 =0
yield b3 — 6¢o = 0, etc.

When s =3 and [ =4, if 2¢+ 1 # 0, then we may solve from the first k41
equations in (4.39) that ax_; = P(c)ay for some polynomial P(c) with respect to ¢
with coefficients formulated in terms of ¢y and ¢;. By combining this equation with
the equation 2cpar_1 = (2¢ + k)ciax together with the relation ¢ + (2 + 2¢ + 2k)
¢o = 0 we may obtain a polynomial equation P(t) = 0 with respect to ¢ = 2¢ with
coefficients independent from ¢y and ¢;. For example, when k =1, we have 0 =
(2¢ + 1)(c1a0 + a1) and 2cpap = (2¢ + 3)cia1, which yield P(t) = (t+2)(t +5) =0
and thus 2¢ = —2 or 2¢ = —5, etc.

Proof of theorem 4.4. Suppose that f is a nontrivial solution such that A(f) < co
of equation (4.1). Following the proof of theorem 4.1, we may write f = k.e’e,
where k. = ke and ¢g. = h., and then from (4.1) we get equation (4.21). Below we
consider three cases: (1) s=1land ! =2;(2) s=1andl=4; (3) s=3and [ =4.

For the first two cases s=1 and [ =2 or s=1 and s =4, we have k.=
ecz(Zf:O a;e”?) and he = [co/(m + 1)]e™+? where m =0 or m = 1 and ¢ is a
constant such that ¢3 = 1. Moreover, if m = 1, then by theorem 1.1 we see k > 1.
From the proof of theorem 4.1, we have equations (4.26) and (4.28) with s = 1.
When [ = 2, since the left-hand side of equation (4.28) is a polynomial in e* of
degree 1 + k, all coefficients of this polynomial vanish. Therefore, denoting a_; = 0,
we obtain from equation (4.28) that [2¢o(c 4+ k) + ¢o — ba]ar, = 0 and

[2¢o(c+i—1) + co — ba)ai_1 + (2ic +i*)a; =0, i=0,1,--- k. (4.40)

Since ay, # 0, we have 2co(c + k) + ¢g — ba = 0 and then obtain the recursive for-
mulas in (4.37) by substituting 2coc 4 ¢o — by = —2¢pk into the equations in (4.40).
When m =1, we have the recursive formulas in (4.36) with s = 1. Denoting
a_s =a—_1 =0 and ax41 = 0, we have the recursive formulas in (4.38).

When s = 3 and [ = 4, we have k. = ecz(Zi-C:O a;e?) and h. = (co/2)e** + c1e?,
where ¢, ¢ are two constants such that ¢2 =1, 2coc; = by. From the proof of
theorem 4.1, we get equation (4.29) with ¢ = m = 1. Similarly as in previous cases,
denoting a_5 = a_1 = ag41 = 0, we finally get the recursive formulas in (4.39). We
omit those details. O
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By theorem 4.4, we may give a different formulation from the results in
[10, theorem 1.6].

COROLLARY 4.5. Let s =1 and | =2. Then equation (4.1) admits two linearly
independent solutions f1 and fo such that max{\(f1), \(f2)} < oo if and only if
there are two distinct nonnegative integers ki, ko such that by = +(ky — ko) and
4bg = (k1 + ko + 1)%. In particular, it is possible that min{\(f1), A\(f2)} = 0.

Proof of corollary 4.5. Let f; and fo be two linearly independent solutions of
equation (4.1) such that max{A(f1), A(f2)} < oo. Let ¢y or c_ be any square-root of
bs. By theorem 4.4, we may write f; = k1 and fy = koe/2, where by = cpe? + ¢4z
and ¢ is a constant such that ¢2 = 1, hy = £cge® + c_z, k1 and ks are two polyno-
mials in e® of degrees k1 and ko, respectively. From the proof of theorem 4.1 we know
that ho = —cpe® + c_z. Since 2¢cp(cy + k1) + co = —2co(c— + k2) — ¢o = ba, we see
that ¢y = c_ for otherwise we have 1+ ki + ko = 0, which is impossible. Letting
¢y = ¢_ = ¢, then we have 2¢ + k1 + ko + 1 = 0 and it follows that by = co(k1 — k2).
Since by # 0 and by = 2, we have ky # ko and 4bs = (ky + ko + 1)2.

Conversely, we let k1 and ko be two nonnegative integers such that 2¢ + k1 + ko +
1 = 0, where c satisfies ¢ = bs. We first define f; = ke, where x; = i a;e?,

hy = coe® + cz, k1 > 0 is an integer, co satisfies ¢ = 1 and ¢o[2(c + k1) + 1] = ba,

and a_1, ag, - -+, ai are constants such that a_; = 0 and

2c0(k1 +1—i)a;_y = (2ic+i*)a;, i=0,1,--- k. (4.41)
Also, we define fo = roe”?, where ko = Zfi_l a;e’* and ho = —cpe® 4 cz, ko >0
is an integer, co satisfies ¢3 = 1 and —co[2(c + ko) + 1] = b, and a_q, ag, -+, ax

are constants such that a_; = 0 and
—2co(ky + 1 —i)ai_1 = (2ic+i%)a;, i=0,1,--- ko. (4.42)

Then by theorem 4.4 we see that f; and fy are two linearly independent solutions
of (4.1) such that max{A(f1), A(f2)} < oo. Obviously, we may choose one of k; and
k2 to be zero and thus min{A(f1), A(f2)} = 0. We complete the proof. O

5. Concluding remarks

The oscillation of certain second-order linear differential equation (1.1) are inves-
tigated in this paper. If equation (1.1) with A(z) being a linear combination of
two exponential type functions admits a nontrivial solution such that A(f) < oo,
by Hadamard’s factorization theorem we obtain a Tumura—Clunie type differential
equation with coefficients being combinations of functions in S. In § 2, we give the
form of entire solutions of the Tumura—Clunie type differential equations. As an
application, in § 3 we give a partial answer to an oscillation question concerning
equation (3.1) proposed by Ishizaki [19]. In § 4, we consider equation (1.1) for
the case A(z) = e'* + bye®* + bz, where [ and s are two relatively prime integers
and by, bs are constants such that by # 0. The general form of solutions such that
A(f) < oo are known. If there are two linearly independent such solutions, we prove
that the only possible case is when [ = 2.

https://doi.org/10.1017/prm.2022.80 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.80

Oscillation of differential equations 1991

By doing straightforward computations, we precisely characterize all solutions
such that A(f) < oo of equation (4.1) for the two cases | =2 and [ = 4. Unfortu-
nately, we are unable to include or exclude other possibilities. Although, by using
theorems 3.1 and 4.1 together with lemma 4.2, when [ # 2, 4, we may also obtain
some recursive formulas as in (4.37), (4.38) and (4.39) for the solutions such that
A(f) < o0, it is difficult to verify the existence of by and bs satisfying these recursive
formulas. We conjecture that equation (4.1) can admit a nontrivial solution f such
that A\(f) < oo only when [ = 2 or [ = 4. We will study this conjecture further.
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