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Abstract

We solve the non-discounted, finite-horizon optimal stopping problem of a Gauss–
Markov bridge by using a time-space transformation approach. The associated optimal
stopping boundary is proved to be Lipschitz continuous on any closed interval that
excludes the horizon, and it is characterized by the unique solution of an integral
equation. A Picard iteration algorithm is discussed and implemented to exemplify
the numerical computation and geometry of the optimal stopping boundary for some
illustrative cases.
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1. Introduction

The problem of optimally stopping a Markov process to attain a maximum mean reward
dates back to Wald’s sequential analysis [74] and is consolidated in the work of [31]. Ever
since, it has received increasing attention from numerous theoretical and practical perspectives,
as comprehensively compiled in the book of [65]. However, optimal stopping problems (OSPs)
are mathematically complex objects, which makes it difficult to obtain sound results in general
settings and typically leads to requiring smoothness conditions and simplifying assumptions
for their solution. One of the most popular simplifying assumptions is the time-homogeneity
of the underlying Markovian process.

Time-inhomogeneous diffusions can be cast back to time-homogeneity (see, e.g., [30,
70, 72]) at the cost of increasing the dimension of the OSP, which increases its complex-
ity, hampering subsequent derivations or limiting studies to tackling specific, simplified time
dependencies. Take as examples the works of [52, 59, 76], which proved different types of
continuities and characterizations of the value function; those of [40, 48], which shed light on
the shape of the stopping set; and [39, 64], which studied the smoothness of the associated
free boundary. To mitigate the burden of time-inhomogeneity, many of these works ask for the
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2 A. AZZE ET AL.

process’s coefficients to be Lipschitz continuous or at least bounded. This widespread assump-
tion excludes important classes of time-dependent processes, such as diffusion bridges, whose
drifts explode as time approaches a terminal point.

In a broad and rough sense, bridge processes, or bridges for short, are stochastic processes
‘anchored’ to deterministic values at some initial and terminal time points. Formal definitions
and potential applications of different classes of bridges have been extensively studied. Bessel
and Lévy bridges are respectively described by [66, 68], and by [34, 47]. A canonical reference
for Gaussian bridges can be found in the work of [41], while Markov bridges are addressed in
great generality by [16, 18, 36].

In finance, diffusion bridges are appealing models from the perspective of a trader who
wants to incorporate his beliefs about future events, for example in trading perishable com-
modities, modeling the presence of arbitrage, incorporating forecasts from algorithms and
expert predictions, or trading mispriced assets that could rapidly return to their fair price. Works
that consider models based on a Brownian bridge (BB) to address these and other insider trad-
ing situations include [3, 4, 10, 12–15, 17, 20, 53, 55, 71]. The early work of [9] had already
suggested the use of a BB to model the perspective of an investor who wants to optimally sell
a bond. Recently, [23] applied a BB to optimally exercise an American option in the presence
of the so-called stock-pinning effect (see [43, 50, 57, 58]), obtaining competitive empirical
results when compared to the classic Black–Scholes model. On the other hand, [45] used an
Ornstein–Uhlenbeck bridge (OUB) to model the effect of short-lived arbitrage opportunities in
pricing an American option, relying on a binomial-tree numerical method instead of deriving
analytical results.

Non-financial applications of BBs include their adoption to model animal movement (see
[46, 49, 51, 73]), and their construction as a limit case of sequentially drawing elements with-
out replacement from a large population (see [67]). The latter connection makes BBs good
asymptotic models for classical statistical problems, such as variations of the urn problem (see
[2, 19, 33]).

Whenever the goal is to optimize the time at which to take an action, all of the aforemen-
tioned situations in which BBs, OUBs, or diffusion bridges are applicable can be intertwined
with optimal stopping theory. However, within the time-inhomogeneous realm, diffusion
bridges are particularly challenging to treat with classical optimal stopping tools, as they fea-
ture explosive drifts. It comes as no surprise, then, that the literature addressing this topic is
sparse compared to its non-bridge counterpart. The first incursion into OSPs with diffusion
bridges is in the work of Shepp [69], who solved the OSP of a BB by linking it to that of a
simpler Brownian motion (BM) representation. More recent studies of OSPs with diffusion
bridges continue to revolve around variations of the BB. The works [33, 35] revisited Shepp’s
problem with novel methods of solution. In particular, [26, 33] widened the class of gain func-
tions; [23] considered the (exponentially) discounted version; and [32, 37, 42, 54] introduced
randomization in either the terminal time or the pinning point. To the best of our knowledge,
the only solution to an OSP with diffusion bridges that goes beyond the BB is that of [24],
which extends Shepp’s technique to embrace an OUB.

Both the BB and the OUB belong to the class of Gauss–Markov bridges (GMBs), that is,
bridges that simultaneously exhibit the Markovian and Gaussian properties. Because of their
enhanced tractability and wide applicability, these processes have been in the spotlight for
some decades, especially in recent years. A good compendium of works related to GMBs can
be found in [1, 5–7, 11, 21, 44].
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Optimal stopping of Gauss–Markov bridges 3

In this paper we solve the finite-horizon OSP of a GMB. In doing so, we generalize not only
Shepp’s result for the BB case, but also its methodology. Indeed, the same type of transforma-
tion that casts a BB into a BM is embedded in a more general change-of-variable method for
solving OSPs, which is detailed in [65, Section 5.2] and illustratively used in [60] for nonlinear
OSPs. When the GM process is also a bridge, such a representation presents regularities that
we show are useful to overcome the bridges’ explosive drifts. Loosely, the drift’s divergence is
equated to that of a time-transformed BM and then explained in terms of the laws of iterated
logarithms. This trick allows us to work out the solution of an equivalent infinite-horizon OSP
with a time-space transformed BM underneath, and then cast the solution back into the original
terms. The solution is attained, in a probabilistic fashion, by proving that both the value func-
tion and the optimal stopping boundary (OSB) are regular enough to meet the premises of a
relaxed Itô’s lemma that allows us to derive the free-boundary equation. In particular, we prove
the Lipschitz continuity of the OSB, which we use to derive the global continuous differen-
tiability of the value function and, consequently, the smooth-fit condition. The free-boundary
equation is given in terms of a Volterra-type integral equation with a unique solution.

For enriched perspective and a full view of the reach of GMBs, we provide, in addition to
the BM representation, a third angle from which GMBs can be seen: as time-inhomogeneous
OUBs. Hence our work also extends the work of [24] for a time-independent OUB. This OUB
representation is arguably more appealing for numerical exploration of the OSB’s shape, which
is done by using a Picard iteration algorithm that solves the free-boundary equation. The OSB
exhibits a trade-off between two pulling forces, the one towards the mean-reverting level of
the OUB representation, and the other anchoring the process at the horizon. The numerical
results also reveal that the OSB is not monotonic in general, making this paper one of the few
results in the optimal stopping literature that characterizes non-monotonic OSBs in a general
framework.

The rest of this paper is organized as follows. Section 2 establishes four equivalent defini-
tions of GMBs, including the time-space transformed BM representation. Section 3 introduces
the finite-horizon OSP of a GMB and proves its equivalence to that of an infinite-horizon, time-
dependent gain function, and a BM underneath. The auxiliary OSP is then treated in Section 4
as a standalone problem. This section also accounts for the main technical work of the paper,
where classical and new techniques of optimal stopping theory are combined to obtain the solu-
tion of the OSP. This solution is then translated back into original terms in Section 5, where
the free-boundary equation is provided. Section 6 discusses the practical aspects of numerically
solving the free-boundary equation and shows computer drawings of the OSB. Final remarks
are given in Section 7.

2. Gauss–Markov bridges

Both Gaussian and Markovian processes exhibit features that are appealing from the theoret-
ical, computational, and applied viewpoints. Gauss–Markov (GM) processes, that is, processes
that are Gaussian and Markovian at the same time, merge the advantages of these two classes.
They inherit the convenient Markovian lack of memory and the Gaussian processes’ property
of being characterized by their mean and covariance functions. Additionally, the Markovianity
of Gaussian processes is equivalent to the property that their covariances admit a certain ‘fac-
torization’. The following lemma collects this useful characterization, whose proof follows
from the lemma on page 863 of [8], and Theorem 1 and Remarks 1–2 in [56].
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Here and subsequently, when we mention a non-degenerate GM process in an interval, we
mean that its marginal distributions are non-degenerate in the same interval. In addition, we
always consider the GM processes defined in their natural filtrations.

Lemma 1. (Characterization of non-degenerate GM processes.)
A function R : [0, T]2 →R such that R(t1, t2) �= 0 for all t1, t2 ∈ (0, T) is the covariance
function of a non-degenerate GM process in (0, T) if and only if there exist functions
r1, r2 : [0, T] →R, which are unique up to a multiplicative constant, such that

(i) R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2);

(ii) r1(t) �= 0 and r2(t) �= 0 for all t ∈ (0, T);

(iii) r1/r2 is positive and strictly increasing on (0, T).

Moreover, r1 and r2 take the form

r1(t) =
⎧⎨⎩R(t, t′), t ≤ t′,

R(t, t)R(t′, t′)/R(t′, t), t > t′,
r2(t) =

⎧⎨⎩R(t, t)/R(t, t′), t ≤ t′,

R(t′, t)/R(t′, t′), t > t′,
(1)

for some t′ ∈ (0, T). Changing t′ is equivalent to scaling r1 and r2 by a constant factor.

We say that the functions r1 and r2 in Lemma 1 are a factorization of the covariance
function R. The lemma provides a simple technique to construct GM processes with ad hoc
covariance functions that are not necessarily time-homogeneous. This is particularly useful
given the complexity of proving the positive-definiteness of an arbitrary function to check
its validity as a covariance function. GM processes also admit a simple representation by
means of time-space transformed BMs (see, e.g., [56]), which results in higher tractability.
Moreover, viewed through the lens of diffusions, GM processes account for space-linear drifts
and space-independent volatilities, both coefficients being time-dependent (see, e.g., [11]).

A Gauss–Markov bridge (GMB) is a process that results from ‘conditioning’ (see, e.g., [41]
for a formal definition) a GM process to start and end at some initial and terminal points.
It is straightforward to see that the Markovian property is preserved after conditioning. The
bridge process also inherits the Gaussian property, although this is not as obvious (see, e.g.,
[75, Formula A.6] or [11]). Hence the above-mentioned conveniences of GM processes are
inherited by GMBs. In particular, the time-space transformed BM representation takes a spe-
cific form that characterizes GMBs and forms the backbone of our main results. The following
proposition sheds light on that representation and serves to formally define a GMB as well as
to offer different characterizations.

Proposition 1. (Gauss–Markov bridges.)
Let X = {Xu}u∈[0,T] be a GM process defined on the probability space (�,F , P), for some
T > 0. The following statements are equivalent:

(i) There exists a time-continuous GM process, non-degenerate on [0, T], defined on
(�,F , P), and denoted by X̃ = {X̃u}u∈[0,T], whose mean and covariance functions are
twice continuously differentiable, and such that

Law(X, P) = Law(X̃, Px,T,z),

with Px,T,z( · ) = P( · |̃X0 = x, X̃T = z) for some x ∈R and (T, z) ∈R+ ×R.
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(ii) Let m(t) := E [Xt] and R(t1, t2) := Cov
[
Xt1 , Xt2

]
, where E and Cov are the mean and

covariance operators related to P. Then t 
→ m(t) is twice continuously differentiable,
and there exist functions r1 and r2 that are unique up to multiplicative constants and
such that

(ii.1) R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2);

(ii.2) r1(t) �= 0 and r2(t) �= 0 for all t ∈ (0, T);

(ii.3) r1/r2 is positive and strictly increasing on (0, T);

(ii.4) r1(0) = r2(T) = 0;

(ii.5) r1 and r2 are twice continuously differentiable;

(ii.6) r1(T) �= 0 and r2(0) �= 0.

(iii) X admits the representation

⎧⎪⎨⎪⎩
Xt = α(t) + βT (t)

(
(z − α(T))γT (t) +

(
BγT (t) + x − α(0)

βT (0)

))
, t ∈ [0, T),

XT = z,

(2)

where {Bu}u∈R+ is a standard BM, and α : [0, T] →R, βT : [0, T] →R+, and
γT : [0, T) →R+ are twice continuously differentiable functions such that the following
hold:

(iii.1) βT (T) = γT (0) = 0;

(iii.2) γT is monotonically increasing;

(iii.3) limt→T γT (t) = ∞ and limt→T βT (t)γT (t) = 1.

(iv) The process X is the unique strong solution of the following OUB stochastic differential
equation (SDE):

dXt = θ (t)(κ(t) − Xt) dt + ν(t) dBt, t ∈ (0, T), (3)

with initial condition X0 = x. Here {Bt}t∈R+ is a standard BM, and θ : [0, T) →R+,
κ : [0, T] →R, and ν : [0, T] →R+ are continuously differentiable functions such that
the following hold:

(iv.1) limt→T
∫ t

0 θ (u) du = ∞;

(iv.2) ν2(t) = θ (t) exp
{
− ∫ t

0 θ (u) du
}

, or equivalently θ (t) = ν2(t)
/ ∫ T

t ν2(u) du.

Proof. (i) =⇒ (ii): X is a non-degenerate GM process on (0, T), as it arises from condition-
ing a process with the same qualities to take deterministic values at t = 0 and t = T . Hence,
Lemma 1 guarantees that R(t1, t2) := Cov

[
Xt1 , Xt2

]
meets the conditions (ii.1)–(ii.3). Since

X degenerates at t = 0 and t = T , and by (ii.1), the condition (ii.4) holds true. From the twice
continuous differentiability (with respect to both variables) of the covariance function of X̃, we
deduce the same property for X, which, alongside (1), implies (ii.5).
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We now prove (ii.6). Let m̃, r̃1, r̃2 : [0, T] →R be the mean and the covariance factorization
of X̃. Hence (see, e.g., [75, Formula A.6] or [11]),

m(t) = m̃(t) + (x − m̃(0))
r2(t)

r2(0)
+ (z − m̃(T))r1(t), t ∈ [0, T), (4)

and ⎧⎪⎨⎪⎩
r1(t) = r̃1(t)̃r2(0) − r̃1(0)̃r2(t)

r̃1(T )̃r2(0) − r̃1(0)̃r2(T)
,

r2(t) = r̃1(T)r̃2(t) − r̃1(t)̃r2(T).

(5)

From the continuity of R̃ and the representation (1) we obtain the continuity of r̃1/̃r2. Note that
r̃2 does not vanish at t = 0 and t = T , thanks to the non-degenerate nature of X̃ at both boundary
points. Hence we can extend the fact that r̃1/̃r2 is increasing, which was established in (iii)
from Lemma 1, to t = 0 and t = T , which implies that r̃1(T )̃r2(0) − r̃1(0)̃r2(T) > 0. Therefore
(5) implies r1(T) = 1 and r2(0) > 0. This does not mean that r1(T) and r2(0) must be positive,
as −r1 and −r2 are also a factorization of R, but it does imply (ii.6).

(ii) =⇒ (i): Consider the functions

m̃(t) := m(t) − (x − m1)
r2(t)

r2(0)
− (z − m2)r1(t), t ∈ (0, T), (6)

with m̃(0) := m1 and m̃(T) := m2 for m1, m2 ∈R, and

r̃1(t) := ar1(t) + br2(t), r̃2(t) := cr1(t) + dr2(t), t ∈ [0, T], (7)

for a, b, c, d > 0 and such that ad > bc. This relation is satisfied, for instance, if we set a =
b = c = 1 and d = 2. We can divide by r2(0) in (6) since (ii.6) holds true. Let h(t) := r1(t)/r2(t)
and h̃(t) := r̃1(t)/̃r2(t). We get h̃(t) = (ah(t) + b)/(ch(t) + d) from (7). Hence

h̃′(t) > 0 ⇐⇒ h′(t) (ad − bc) > 0.

The condition (ii.3) along with our choice of a, b, c, and d guarantees that the right-hand
side of the equivalence holds. Therefore, h̃(t) is strictly increasing. Since h̃ is also positive,
R̃(t1, t2) := r̃1(t1 ∧ t2)̃r2(t1 ∨ t2) is the covariance function of a non-degenerate GM process,
as stated in Lemma 1. Let X̃ = {X̃t}t∈[0,T] be a GM process with mean m̃(t) and covariance
R̃(t1, t2). From the differentiability of m, r1, and r2, alongside (6) and (7), we deduce that of m̃,
r̃1, and r̃2 (and R̃).

One can check, after some straightforward algebra and in alignment with (4)–(5), that the
mean and covariance functions of the GMB derived from conditioning X̃ to go from (0, x) to
(T , z) coincide with m and R.

(i) =⇒ (iii): Let m̃(t) := E[X̃t] and R̃(t1, t2) := Cov
[
X̃t1 , X̃t2

]
. As a result of conditioning

X̃ to have initial and terminal points (0, x) and (T , z), we have that X is a GM process with
mean m given by (4) and covariance factorization r1 and r2 given by (5). Although this is not
explicitly indicated, recall that m depends on x, T , and z, and r1 and r2 depend on T .

Therefore, X admits the representation

Xt = m(t) + r2(t)Bh(t), 0 ≤ t < T, (8)
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where t 
→ h(t) := r1(t)/r2(t) is a strictly increasing function such that h(0) = 0 and
limt→T h(t) = ∞. Since limt→T r2(t)h(t) = r1(T) = 1 (see (5)), the law of the iterated logarithm
allows us to continuously extend Xt to T as the P-almost sure (a.s.) limit XT := limt→T Xt = z.
The representation (2) and the properties (iii.1)–(iii.3) follow after taking α = m̃, βT = r2, and
γT = h. It also follows that α, βT , and γT are twice continuously differentiable, as are m̃, r̃1,
and r̃2.

(iii) =⇒ (ii): Assuming that X = {Xt}t∈[0,T] admits the representation (2) and that the prop-
erties (iii.1)–(iii.3) hold, we have that X is a GMB with covariance factorization given by
r1(t) = βT (t1)γT (t1) and r2(t) = βT (t). It readily follows that r1 and r2 satisfy the conditions
(ii.1)–(ii.6). It is also trivial to note that X has a twice continuously differentiable mean.

(i) =⇒ (iv): Let Et,x and Es,y be the mean operators with respect to the probability measures
Pt,x and Ps,y such that Pt,x( · ) = P( · |Xt = x) and Ps,y( · ) = P( · |Bs = y), where {Bu}u∈R+ is the
BM in the representation (8). Then

Law
({Xu}u∈[t,T) , Pt,x

) = Law
({

m(u) + r2(u)Bh(u)
}

u∈[t,T) , Ps,y

)
,

for s = h(t) and y = (x − m(t))/r2(t). Hence

Et,x
[
Xt+ε − x

] = Es,y
[
m(t + ε) + r2(t + ε)Bh(t+ε) − x

]
= Es,y

[
m(t + ε) + r2(t + ε)

r2(t)
(x − m(t)) + r2(t + ε)Bh(t+ε)−h(t) − x

]
.

Likewise,

Et,x

[
(Xt+u − x)2

]
= E

[(
m(t + ε) + r2(t + ε)(x − m(t))

r2(t)
+ r2(t + ε)Bh(t+ε)−h(t) − x

)2
]

=
(

m(t + ε) + r2(t + ε)(x − m(t))

r2(t)
− x

)2

+ r2
2(t + ε)(h(t + ε) − h(t)).

Therefore,

lim
ε↓0

ε−1Et,x
[
Xt+ε − x

] = m′(t) + (x − m(t))r′
2(t)/r2(t),

lim
ε↓0

ε−1Et,x

[
(Xt+ε − x)2

]
= r2

2(t)h′(t).

By comparing the drift and volatility terms, we find that X is the unique strong solution (see
Example 2.3 in [16]) of the SDE (3) for⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ (t) = −r′
2(t)/r2(t),

κ(t) = m(t) − m′(t)r2(t)/r′
2(t),

ν(t) = r2(t)
√

h′(t).

(9)

It follows from (9) (or one can directly derive from (3)) that

m(t) = ϕ(t)

(
x +

∫ t

0

κ(u)θ (u)

ϕ(u)
du

)
(10)
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= ϕ(t)

(
x +

∫ t

0

m̃(u)θ (u) − m̃′(u)

ϕ(u)
du + (z − m̃(T))

∫ t

0

r1(u)θ (u) − r′
1(u)

ϕ(u)
du

)
(11)

and

r1(t) = ϕ(t)
∫ t

0

ν2(u)

ϕ2(u)
du, r2(t) = ϕ(t), (12)

for t ∈ [0, T), with ϕ(t) = exp
{
− ∫ t

0 θ (u) du
}

. Since X is degenerate at t = T , r2(T) = 0, which

implies (iv.1). By comparing (11) with (4), we obtain

r1(t) = ϕ(t)
∫ t

0

r1(u)θ (u) − r′
1(u)

ϕ(u)
du = 2ϕ(t)

∫ t

0

r1(u)θ (u)

ϕ(u)
du − r1(t),

which, after using (12), leads to∫ t

0

ν2(u)

ϕ2(u)
du =

∫ t

0

r1(u)θ (u)

ϕ(u)
du.

Differentiating with respect to t both sides of the equation above, and relying again on (12),
we get

ν2(t)

ϕ2(t)
= θ (t)

∫ t

0

ν2(u)

ϕ2(u)
du.

The expression above is an ordinary differential equation in f (t) = ∫ t
0 ν2(u)/ϕ2(u) du whose

solution is f (t) = C1 + 1/ϕ(t) for some constant C1. Hence f ′(t) = θ (t)/ϕ(t). Therefore, some
straightforward algebra leads us to the first equality in (iv.2), which implies that∫ t

0
ν2(u) du = C2 +

∫ t

0
θ (u)ϕ(u) du = C2 + 1 − ϕ(t),

for a constant C2 ∈R. Since limt→T ϕ(t) = 0, we have C2 = ∫ T
0 ν2(u) du − 1. Hence∫ t

0
θ (u) du = − ln

(
C2 + 1 −

∫ t

0
ν2(u) du

)
,

from which the second equality in (iv.2) follows after differentiating.
Finally, from the smoothness of m̃, r̃1, and r̃2, which implies that of m, r1, and r2, it follows

that θ , κ , and ν are continuously differentiable.
(iv) =⇒ (ii): The functions θ , κ , and ν are sufficiently regular for us to prove, using Itô’s

lemma, that

Xt = ϕ(t)

(
X0 +

∫ t

0

κ(u)θ (u)

ϕ(u)
du +

∫ t

0

ν(u)

ϕ(u)
dBu

)
is the unique strong solution (see Example 2.3 in [16]) of (3), where again ϕ(t) =
exp

{
− ∫ t

0 θ (u) du
}

. That is, X is a GM process with mean m and covariance factorization

r1 and r2 given by (10) and (12), respectively.

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


Optimal stopping of Gauss–Markov bridges 9

The relations (ii.2) and (ii.3) are trivial to check. From (iv.1), (ii.4) follows. The continuous
differentiability of θ , κ , and ν implies (ii.5). Using (iv.2) and integrating by parts, we get that

r1(t) = 1 − ϕ(t). (13)

It follows that (ii.6) holds, as r1(T) := limt→T r1(t) = 1 and r2(0) = 1.

Remark 1. From the condition (iv.2) and the relation (9), we get that r′
2(t)r2(t) < 0 for all

t ∈ (0, T). Hence, since r2 is continuous and does not vanish in [0, T), it can be chosen as either
positive and decreasing, or negative and increasing. In (5), the positive decreasing version is
chosen, which is reflected by the fact that we assume βT > 0 in the representation (8). Since
βT = r2, we have that βT is also decreasing. Likewise, (5) and (13) indicate that r1 is chosen
as positive and increasing.

One could argue that defining a GMB should only require the process to degenerate at
t = 0 and t = T , which is equivalent to (ii.1)–(ii.4). However, GMBs defined in this way
are not necessarily derived from conditioning a GM process, as assumed in the represen-
tation (i). Indeed, consider the Gaussian process X = {Xt}t∈[0,1] with zero mean and covari-
ance function R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2) for all t1, t2 ∈ [0, 1], where r1(t) = t2(1 − t) and
r2(t) = t(1 − t). Lemma 1 implies that R is a valid covariance function and X is Markovian.
Moreover, since r1(0) = r2(1) = 0, X is a bridge from (0, 0) to (1, 0). However, r1(0) = r2(0) =
0. That is, (ii.6) fails, and hence X does not satisfy the definition (ii). Recognizing the dif-
ferences between the two definitions of GMBs, we adopt the one in which a GM process is
conditioned to take deterministic values at some initial and future time, since the representa-
tion (2) is key to our results in Section 4: it reveals the (linear) dependence of the mean with
respect to x and z, and it clarifies the relationship between OUBs and GMBs in (iv).

Notice that a higher smoothness of the GMB mean and covariance factorization is assumed
in all of the alternative characterizations in Proposition 1. This is clearly a useful assump-
tion to define GMBs, but it is not necessary. We discuss this in Remark 3. In the rest of the
paper, we implicitly assume the twice continuous differentiability of the mean and covariance
factorization every time we mention a GMB.

Although it is easily obtained from (9), for the sake of reference we write down the explicit
relation between the BM representation (2) and the OUB representation (3), namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ (t) = −β ′
T (t)/βT (t),

κ(t) = α(t) − βT (t)/β ′
T (t)(α′(t) + (z − α(T))βT (t)γ ′

T (t)),

ν(t) = βT (t)
√

γ ′
T (t).

(14)

It is also worth mentioning that the condition (iv.2), which is necessary and sufficient for an
OU process to be an OUB, was also recently found in [44, Theorem 3.1] for the case where κ

is assumed constant.
Finally, we rely on the classic OU process to illustrate the characterization in Lemma 1 and

the connection between all alternative definitions in Proposition 1.

Example 1. (Ornstein–Uhlenbeck bridge.)

Let X̃ = {Xt}t∈R+ be an OU process, that is, the unique strong solution of the SDE

dXt = aXt dt + c dBt, t ∈ (0, T),
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where {Bu}u∈R+ is a standard BM, and a ∈R, c ∈R+. Then X̃ is a time-continuous GM process
that is non-degenerate on [0, T]. Its mean and covariance factorization are twice continuously
differentiable. In fact, they take the form

m̃(t) = E
[
X̃t

] = X̃0eat,

R̃(t1, t2) = Cov
[
X̃t1 , X̃t2

] = r̃1(t1 ∧ t2)̃r2(t1 ∨ t2),

r̃1(t) = sinh(at), r̃2(t) = c2eat/a.

Note that m̃, r̃1, and r̃2 satisfy the conditions (i)–(iii) from Lemma 1.
Let X = {Xu}u∈[0,T] be a GM process defined on the same probability space as X̃, for some

T > 0. In agreement with Proposition 1, the following statements are equivalent:

(i) The process X results from conditioning X̃ to X̃0 = x and X̃T = z in the sense of (iii.1)
from Proposition 1, for some x ∈R and (T, z) ∈R+ ×R.

(ii) The mean and covariance factorization of X are twice continuously differentiable, and
they satisfy the conditions (ii.1)–(ii.6). In fact, they take the form

m(t) = E [Xt] = (x sinh(a(T − t)) + z sinh(at))/ sinh(aT),

R(t1, t2) = Cov
[
Xt1 , Xt2

] = r1(t1 ∧ t2)r2(t1 ∨ t2),

r1(t) = sinh(at)/ sinh(aT), r2(t) = c2 sinh(a(T − t))/a,

which follows after working out the formulae (4) and (5) (see also Proposition 3.3
in [7]).

(iii) We have XT = z, and on [0, T), X admits the following representation:

Xt = X̃0eat + c2 sinh(a(T − t))

a

(
(z − X̃0eaT )γT (t) +

(
BγT (t) + a(x − X̃0)

c2 sinh(aT)

))
.

This expression does not depend on X̃0; indeed, after some manipulation it simplifies to

Xt = sinh(a(T − t))

sinh(aT)
x + sinh(at)

sinh(aT)
z + c2 sinh(a(T − t))

a
BγT (t) ,

which is in alignment with the ‘space–time transform’ representation in [7].

(iv) The process X is the unique strong solution of the SDE

dXt = θ (t)(κ(t) − Xt) dt + ν(t) dBt, t ∈ (0, T),

with initial condition X0 = x and⎧⎪⎪⎨⎪⎪⎩
θ (t) = coth(a(T − t)),

κ(t) = z/ cosh(a(T − t)),

ν(t) = c.

These expressions for the drift and volatility terms of X come from (14) and are
in agreement with Equation (3.2) in [7]. The conditions (iv.1) and (iv.2) follow
straightforwardly.
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3. Two equivalent formulations of the OSP

For 0 ≤ t < T , let X = {Xu}u∈[0,T] be a real-valued, time-continuous GMB with XT = z, for
some z ∈R. Define the finite-horizon OSP

VT,z(t, x) := supτ≤T−tEt,x
[
Xt+τ

]
, (15)

where VT,z is the value function and Et,x is the mean operator with respect to the probability
measure Pt,x such that Pt,x(Xt = x) = 1. The supremum in (15) is taken across all random
times τ such that t + τ is a stopping time for X, although, for simplicity, we will refer to τ as
a stopping time from now on.

Likewise, consider a BM {Yu}u∈R+ on the probability space (�,F , P), and define the
infinite-horizon OSP

WT,z(s, y) := supσ≥0Es,y
[
GT,z (s + σ, Ys+σ )

]
, (16)

for (s, y) ∈R+ ×R, where Ps,y and Es,y have definitions analogous to those of Pt,x and Et,x;
that is, Ys+u = y + Bu under Ps,y, where {Bu}u∈R+ is a standard BM. The supremum in (16) is
taken across the stopping times of {Ys+u}u∈R+ , and the (gain) function GT,z takes the form

GT,z(s, y) := α(γ −1
T (s)) + βT (γ −1

T (s)) ((z − α(T))s + y) , (17)

for α, βT , and γT as in (iii.1)–(iii.3) from Proposition 1.
Note that we have used different notation for the probability and expectation operators in

the OSPs (15) and (16). The intention is to emphasize the difference between the probability
spaces relative to the original GMB and the resulting BM. We shall keep this notation for the
rest of the paper.

Solving (15) and (16) means providing a tractable expression for VT,z(t, x) and WT,z(s, y),
as well as finding (if they exist) stopping times τ ∗ = τ ∗(t, x) and σ ∗ = σ ∗(s, y) such that

VT,z(t, x) = Et,x
[
Xt+τ∗

]
, WT,z(s, y) =Es,y

[
GT,z

(
s + σ ∗, Ys+σ ∗

)]
.

In such a case, τ ∗ and σ ∗ are called optimal stopping times (OSTs) for (15) and (16),
respectively.

We claim that the OSPs (15) and (16) are equivalent in the sense specified in the following
proposition. In summary, the representation (2) equates the original GMB to the BM trans-
formed by the gain function GT,z, and (iii.3) changes the finite horizon T into an infinite
horizon.

Proposition 2. (Equivalence of the OSPs)
Let V and W be the value functions in (15) and (16). For (t, x) ∈ [0, T] ×R, let s = γT (t) and
y = (x − α(t)) /βT (t) − γT (t)(z − α(T)). Then

VT,z(t, x) = WT,z (s, y) . (18)

Moreover, τ ∗ = τ ∗(t, x) is an OST for VT,z if and only if σ ∗ = σ ∗(s, y), defined so that s + σ ∗ =
γT (t + τ ∗), is an OST for W.
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Proof. From (2), we have the following representation for Xt+u under Pt,x:

Xt+u = α(t + u) + β(t + u)

(
(z − α(T))γT (t + u) +

(
BγT (t+u) + X0 − α(0)

β(0)

))

= GT,z

(
γT (t + u),

(
BγT (t+u) + X0 − α(0)

β(0)

))

= GT,z

(
γT (t + u),

(
BγT (t+u) − BγT (t) + Xt − α(t)

βT (t)
− (z − α(t))γT (t)

))
,

where, in the last equation, we used the relation

BγT (t) + X0 − α(0)

βT (0)
= Xt − α(t)

βT (t)
− (z − α(t))γT (t).

Let Ys+v := B′
v + y and B′

v := Bs+v − Bs, with {B′
v}v∈R+ being a standard Ps,y-BM. We

recall that we use P instead of P to emphasize the time-space change, although the measure
remains the same.

We have that

Xt+u = GT,z
(
γT (t + u), YγT (t+u)

)
.

For every stopping time τ of {Xt+u}u∈[0,T−t], consider the stopping time σ of {Ys+u}u∈R+
such that s + σ = γT (t + τ ). Then (18) follows from the following sequence of equalities:

VT,z(t, x) = supτ≤T−tEt,x
[
Xt+τ

] = supσ≥0Es,y
[
GT,z (s + σ, Ys+σ )

] = WT,z (s, y) .

Furthermore, suppose that τ ∗ = τ ∗(t, x) is an OST for (15) and that there exists a stopping
time σ ′ = σ ′(s, y) that performs better than σ ∗ = σ ∗(s, y) in (16). Consider τ ′ = τ ′(t, x) such
that t + τ ′ = γ −1

T (s + σ ′). Then

Et,x

[
Xt+τ

′
]
=Es,y

[
Gt,T (s + σ ′, Ys+σ

′ )
]
>Es,y

[
Gt,T (s + σ ∗, Ys+σ∗)

] = Et,x
[
Xt+τ∗

]
,

which contradicts the fact that τ ∗ is optimal. Using similar arguments, we can obtain the
reverse implication, that is, that if σ ∗ is an OST for (16), then τ ∗ is an OST for (15).

4. Solution of the infinite-horizon OSP

We have shown that solving (15) is equivalent to solving (16), which is expressed in terms
of a simpler BM. In this section we leverage that advantage to solve (16), but first we rewrite
it with cleaner notation that hides its explicit connection with the original OSP and allows us
to treat (16) as a standalone problem.

Let {Yu}u∈R+ be a BM on the probability space (�,F , P). Define the probability measure
Ps,y so that Ps,y(Ys = y) = 1. Consider the OSP

W(s, y) := supσ≥0Es,y
[
G(s + σ, Ys+σ )

] = supσ≥0E
[
G(s + σ, Yσ + y)

]
, (19)

where E and Es,y are the mean operators with respect to P and Ps,y, respectively. The supremum
in (19) is taken across the stopping times of Y = {Ys+u}u∈R+ . The (gain) function G takes the
form

G(s, y) = a1(s) + a2(s) (c0s + y) , (20)
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where c0 ∈R and a1, a2 : R+ →R are assumed to be such that

a1 and a2 are twice continuously differentiable; (21a)

a1, a′
1, a′′

1, a2, a′
2, and a′′

2 are bounded; (21b)

there exists c1 ∈R such that lim
s→∞ a1(s) = c1; (21c)

for all s ∈R, a2(s) > 0; (21d)

there exists c2 ∈R such that lim
s→∞ a2(s)s = c2; (21e)

for all s ∈R, a′
2(s) < 0. (21f)

The assumptions (21a)–(21f) do not further restrict the class of GMBs considered in
Proposition 1. Indeed, (21a)–(21b) are implied by the twice continuous differentiability of the
GMB’s mean and covariance factorization, while (21c)–(21f) are obtained from the degenera-
tive nature of the GMB. In fact, the infinite-horizon OSP (19) under Assumptions (21a)–(21f) is
equivalent to the finite-horizon OSP (15) with a GMB as the underlying process. The following
remarks shed light on this equivalence.

Remark 2. Equation (20), as well as Assumptions (21c)–(21e), follow from (17) and (iii.1)–
(iii.3) in Proposition 1. Indeed, the constant c0 and the functions a1 and a2 are taken so that
c0 = z − α(T), a1(s) = α(γ −1

T (s)), and a2(s) = βT (γ −1
T (s)).

Remark 3. Assumptions (21a) and (21b) are derived from the twice continuous differentiabil-
ity of α, βT , and γT . These assumptions are used to prove smoothness properties of the value
function and the OSB. The assumptions on the first derivatives are used to prove the Lipschitz
continuity of the value function (see Proposition 3), while the ones on the second derivatives
are required to prove the local Lipschitz continuity of the OSB (see Proposition 7).

Remark 4. The following relation, which we use recurrently throughout the paper, follows
from (21a), (21b), and (21e):

lim
s→∞ a′

2(s)s = 0. (22)

Alternatively, (22) can be derived directly from (5) and the fact that lims→∞ a2(s) = 0.
Indeed,

lim
s→∞ a′

2(s)s = lim
s→∞ a′

2(s)s + a2(s) = lim
s→∞ ∂s [a2(s)s] = lim

s→∞ ∂sr1(γ −1
T (s)) = lim

t→T

r′
1(t)

γ ′
T (t)

= lim
t→T

r′
1(t)r2

2(t)

r′
1(t)r2(t) − r1(t)r′

2(t)
= 0,

where ∂s denotes the derivative with respect to the variable s ∈R+. In the last equality we used
that 0 ≤ r′

1(t)/r′
2(t) ≤ r1(t)/r2(t), which holds because r1 and r2 are respectively an increasing

and a decreasing function (see Remark 1).

Likewise, (22) along with the L’Hôpital rule implies that

lim
s→∞ a′′

2(s)s2 = − lim
s→∞ a′

2(s)s = 0. (23)
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Again, (23) can be obtained from its representation in terms of the covariance factorization
given by r1 and r2:

lim
s→∞ a′′

2(s)s2 = lim
s→∞ ∂ss [a2(s)s] s = lim

s→∞ ∂ssr1(γ −1
T (s))γT (γ −1

T (s))

= lim
s→∞ ∂s

r′
1(γ −1

T (s))

γ ′
T (γ −1

T (s))
γT (γ −1

T (s)) = lim
t→T

(
r′′

1(t)

(γ ′
T (t))2

− r1(t)γ ′′
T (t)

(γ ′
T (t))3

)
γT (t)

= lim
t→T

(
r2

1(t)r3
2(t)

(
r′

1(t)r′′
2(t) − r′′

1(t)r′
2(t)

)(
r′

1(t)r2(t) − r1(t)r3
2(t)

) − 2r1(t)r2
2(t)

(
r′

1(t)
)2(

r′
1(t)r2(t) − r1(t)r′

2(t)
)2

)

= 0,

where ∂ss indicates the second derivative with respect to s.

Remark 5. Assumption (21f) is needed to derive the boundedness of the OSB (see Proposition
6 and Remark 6). Similarly to Assumptions (21a)–(21e), Assumption (21f) can be obtained
from the regularity of the underlying GMB already used in Section 2, and does not impose any
further restrictions. Specifically, Assumption (21f) is equivalent to the condition θ (t) > 0 for
all t ∈ [0, T], in the OUB representation (iv) from Proposition 1, and to βT (t) = r2(t) > 0 and
β ′

T (t) = r′
2(t) < 0, in terms of the representations (iii) and (ii) (see Remark 1).

Notice that (21c), (21e), and (22), together with the law of the iterated logarithm, imply
that, for all (s, y) ∈R+ ×R,

Ps,y- lim
u→∞ G(s + u, Ys+u) = c1 + c0c2. (24)

For later reference, let us introduce the notation

A1 := sups∈R+ |a1(s)| , A′
1 := sups∈R+

∣∣a′
1(s)

∣∣ , A′′
1 := sups∈R+

∣∣a′′
1(s)

∣∣ ,

A2 := sups∈R+ |a2(s)| , A′
2 := sups∈R+

∣∣a′
2(s)

∣∣ , A′
2 := sups∈R+

∣∣a′′
2(s)

∣∣ ,

A3 := sups∈R+ |a2(s)s| , A′
3 := sups∈R+

∣∣a′
2(s)s

∣∣ , A′′
3 := sups∈R+

∣∣a′′
2(s)s

∣∣ .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)

In addition, we will often require the expressions for the partial derivatives of G, namely,

∂tG(s, y) = a′
1(s) + c0a2(s) + a′

2(s)(c0s + y), (26)

∂xG(s, y) = a2(s). (27)

Here and subsequently, ∂t and ∂x respectively stand for the differential operators with respect
to time and space.

Notice that (21e) guarantees the existence of m > 0 such that |a2(s)| ≤ (1 + m)/s for all
s ≥ 1, which, combined with the boundedness of a1, a2, and s 
→ a2(s)s, implies the following
bound with A = max{A1 + |c0|A3, A2}:
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Es,y

[
supu∈R+ |G (s + u, Ys+u)|

]

≤ supu∈R+ |a1(u) + a2(u)(c0u + y)| +E

[
supu∈R+ |a2(s + u)Yu|

]

≤ A(1 + |y|) +E

[
supu∈R+ |a2(s + u)Yu|

]

≤ A(1 + |y|) + max
u≤1∨(1−s)

|a2(s + u)|E [
supu≤1∨(1−s)|Yu|

]+E

[
supu≥1∨(1−s)|a2(s + u)Yu|

]

≤ A(1 + |y|) + max
u≤1

|a2(u)|E [
supu≤1 |Yu|

] + (1 + m)E

[
supu≥1 |Yu|

/
u

]
= A

(
1 + (|y| +E

[
supu≤1 |Yu|

])) + (1 + m)E
[
supu≥1

∣∣Y1/u
∣∣]

= A
(
1 + (|y| +E

[
supu≤1 |Yu|

])) + (1 + m)E
[
supu≤1 |Yu|

]
< ∞. (28)

In the last equality, the time-inversion property of the BM was used.
The continuity of G alongside (28) implies the continuity of W. However, given

Assumptions (21a)–(21e), one can obtain higher smoothness for the value function, namely
its Lipschitz continuity, as shown in the proposition below.

Proposition 3. (Lipschitz continuity of the value function.)
For any bounded set R⊂R there exists LR > 0 such that

|W(s1, y1) − W(s2, y2)| ≤ LR(|s1 − s2| + |y1 − y2|), (29)

for all (s1, y1), (s2, y2) ∈R+ ×R.

Proof. For any (s1, y1), (s2, y2) ∈R+ ×R, the following equality holds:

W(s1, y1) − W(s2, y2)

= supσ≥0Es1,y1

[
G

(
s1 + σ, Ys1+σ

)] − supσ≥0Es1,y2

[
G

(
s1 + σ, Ys1+σ

)]
+ supσ≥0Es1,y2

[
G

(
s1 + σ, Ys1+σ

)] − supσ≥0Es2,y2

[
G

(
s2 + σ, Ys2+σ

)]
.

Since |supσ aσ − supσ bσ | ≤ supσ |aσ − bσ |, and by Jensen’s inequality,∣∣∣∣supσ≥0Es1,y1 [G
(
s1 + σ, Ys1+σ

)
] − supσ≥0Es1,y2

[
G

(
s1 + σ, Ys1+σ

)] ∣∣∣∣
≤E

[
supu≥0 |G (s1 + u, Yu + y1) − G (s1 + u, Yu + y2)|

]
= supu≥0 |a2(s1 + u)(y1 − y2)|
≤ A2 |y1 − y2| . (30)
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Likewise,∣∣∣∣supσ≥0Es1,y2 G
(
s1 + σ, Ys1+σ

)
] − supσ≥0Es2,y2

[
G

(
s2 + σ, Ys2+σ

)] ∣∣∣∣
≤E

[
supu≥0 |G (s1 + u, Yu + y2) − G (s2 + u, Yu + y2)|

]
=E

[
supu≥0 |∂tG (ηu, Yu + y2) (s1 − s2)|]

≤ (
A′

1 + (A′
3 + A2)|c0| + A′

2

(
supy∈R {y} +E

[
supu≥0 |Yu|

])) |s1 − s2|, (31)

where ηu ∈ (s1 ∧ s2 + u, s1 ∨ s2 + u) comes from the mean value theorem, which, along with
(26), was used to derive the last inequality. The constants A′

1, A2, A′
2, and A′

3 were defined in
(25). We finally get (29) after merging (30) and (31).

Define σ ∗ = σ ∗(s, y) := inf {u ∈R+ : (s + u, Ys+u) ∈D}, where the closed set

D := {(s, y) ∈R+ ×R : W(s, y) = G(s, y)}
is called the stopping set. The continuity of W and G (it suffices to have lower semi-continuity
of W and upper semi-continuity of G), along with (28) and (24), guarantees that σ ∗ is an OST
for (19) (see Corollary 2.9 and Remark 2.10 in [65]), meaning that

W(s, y) =Es,y
[
G(s + σ ∗, Ys+σ ∗ )

]
. (32)

Applying Itô’s lemma to (19) and (32), we get a martingale term
∫ u

0 a2(s + r) dBr that turns
out to be uniformly integrable as

∫ ∞
0 a2

2(s + r) dr < ∞, by (21e). Taking the Ps,y-expectation,
this term vanishes and we get the following alternative representations of W:

W(s, y) − G(s, y) = supσ≥0Es,y

[∫ σ

0
LG (s + u, Ys+u) du

]

=Es,y

[∫ σ ∗

0
LG (s + u, Ys+u) du

]
, (33)

where L := ∂t + 1
2∂xx is the infinitesimal generator of the process {(s, Ys)}s∈R+ and the

operator ∂xx is shorthand for ∂x∂x. Note that LG = ∂tG.
Denote by C the complement of D,

C := {(s, y) ∈R+ ×R : W(s, y) > G(s, y)} ,

which is called the continuation set. The boundary between D and C is the OSB, and it
determines the OST σ ∗.

In addition to the Lipschitz continuity, higher smoothness of the value function is achieved
away from the OSB, as stated in the next proposition. We also determine the connection
between the OSP (19) and the associated free-boundary problem. For further details on this
connection in a more general setting we refer to Section 7 of [65].

Proposition 4. (Higher smoothness of the value function and the free-boundary problem.)
We have W ∈ C1,2(C); that is, the functions ∂tW, ∂xW, and ∂xxW exist and are continuous
on C. Additionally, y 
→ W(s, y) is convex for all s ∈R+, and LW = 0 on C.

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


Optimal stopping of Gauss–Markov bridges 17

Proof. The convexity of W with respect to the space coordinate is a straightforward con-
sequence of the linearity of Ys+u with respect to y under Ps,y, for all s ∈R+. Indeed, it
follows from (19) that W(s, ry1 + (1 − r)y2) ≤ rW(s, y1) + (1 − r)W(s, y2), for all y1, y2 ∈R

and r ∈ [0, 1].

Since W is continuous on C (see Proposition 3) and the coefficients in the parabolic operator
L are smooth enough (it suffices to require local α-Hölder continuity), the standard theory of
parabolic partial differential equations [38, Section 3, Theorem 9] guarantees that, for an open
rectangle R⊂ C, the initial-boundary value problem{

L f = 0 in R,

f = W on ∂R,
(34)

where ∂R refers to the boundary of R, has a unique solution f ∈ C1,2(R). Therefore, we can
use Itô’s formula on f (s + u, Ys+u) at u = σR, that is, the first time (s + u, Ys+u) exits R, and
then take the Ps,y-expectation with (s, y) ∈R, which guarantees the vanishing of the martingale
term and yields, along with (34) and the strong Markov property, the equalities W(s, y) =
Es,y

[
W(s + σR, Ys+σR )

] = f (s, y). Since W = G on D, it follows that W ∈ C1,2(D).
In addition to the partial differentiability of W, it is possible to provide relatively explicit

forms for ∂tW and ∂xW by relying on the representation (33) and the fact that a1 and a2 are
differentiable functions.

Proposition 5. (Partial derivatives of the value function.)
For any (s, y) ∈ C, consider the OST σ ∗ = σ ∗(s, y). Then

∂tW(s, y) = ∂tG(s, y) +Es,y

[∫ s+σ ∗

s

(
a′′

1(u) + 2c0a′
2(u) + a′′

2(u)(c0u + Yu)
)

du

]
(35)

and

∂xW(s, y) =Es,y
[
a2(s + σ ∗)

]
. (36)

Proof. Since σ ∗ = σ ∗(s, y) is suboptimal for any initial condition other than (s, y), we have

ε−1 (W(s, y) − W(s − ε, y)) ≤ ε−1
E

[
G(s + σ ∗, Yσ ∗ + y) − G(s − ε + σ ∗, Yσ ∗ + y)

]
for any 0 < ε ≤ s. Hence, by letting ε → 0 and recalling that W ∈ C1,2(C) (see Proposition 4),
we get that, for (s, y) ∈ C,

∂tW(s, y) ≤Es,y
[
∂tG(s + σ ∗, Ys+σ ∗ )

] = ∂tG(s, y) +Es,y

[∫ σ ∗

0
L∂tG(s + u, Ys+u) du

]
. (37)

In the same fashion, we obtain that

ε−1 (W(s + ε, y) − W(s, y)) ≥ ε−1
E

[
G(s + ε + σ ∗, Yσ ∗ + y) − G(s + σ ∗, Yσ ∗ + y)

]
,

which, after we let ε → 0, yields (37) in the reverse direction. Therefore, (35) is proved after
computing L∂tG(s + u, Ys+u) = ∂ttG(s + u, Ys+u).

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


18 A. AZZE ET AL.

To get the analogous result for the space coordinate, notice that

ε−1 (W(s, y) − W(s, y − ε)) ≤ ε−1
E

[
W(s + σ ∗, Yσ ∗ + y) − W(s + σ ∗, Yσ ∗ + y − ε)

]
≤ ε−1

E
[
G(s + σ ∗, Yσ ∗ + y) − G(s + σ ∗, Yσ ∗ + y − ε)

]
=Es,y

[
a2(s + σ ∗)

]
,

while the same reasoning yields the inequality

ε−1 (W(s, y + ε) − W(s, y)) ≥Es,y
[
a2(s + σ ∗)

]
.

By letting ε → 0, we obtain (36).
Besides the regularity of the value function, that of the OSB is also key to solving the OSP.

However, defined as the boundary between D and C, the OSB admits little space for technical
manipulations. The next proposition gives us a handle on the OSB by showing that it is the
graph of a bounded function of time, above which D lies.

Proposition 6. (Shape of the OSB.)
There exists a function b : R+ →R such that

D = {(s, y) ∈R+ ×R : y ≥ b(s)} .

Moreover, g(s) < b(s) < ∞ for all s ∈R+, where g(s) := ( − a′
1(s) − c0(a2(s) + a′

2(s)s))/a′
2(s).

Proof. Define b as

b(s) := inf {y : (s, y) ∈D} , s ∈R+. (38)

The claimed shape for the stopping set is a straightforward consequence of the decreasing
behavior of y 
→ (W − G)(s, y) for all s ∈R+, which follows from (21f), (26), and (33).

To derive the lower bound for b, notice that, for all (s, y) such that ∂tG(s, y) > 0, we can
pick a ball B such that (s, y) ∈B and ∂tG > 0 on B. Recalling (33) and letting σB = σB(s, y) be
the first exit time of Y from B, we get that

W(s, y) − G(s, y) ≥Es,y

[∫ σB

0
∂tG (s + u, Ys+u) du

]
> 0,

which means that (s, y) ∈ C. The claimed lower bound for b follows from using (26) and (21f)
to realize that ∂tG(s, y) > 0 if and only if y < g(s).

We now prove that b(s) < ∞ for all s ∈R+. Let X = {
Xt

}
t∈[0,T] be the OUB representa-

tion of the process s 
→ G(s, Ys), that is, the unique strong solution of (3), with drift μ(t, x) =
θ (t)(κ(t) − x) and volatility (function) ν. This GMB X is well defined, as we can trace back
functions α, βT , and γT and values T and z such that the OSP (16) is in the form (19) (see
Remark 2).

In addition to X, define the OUBs X(i), for i = 1, 2, with volatility ν and drifts

μ(1)(t, x) = θ (t)(K − x), μ(2)(t, x) = ν

ν(T − t)
(K − x),
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respectively, where K := max{κ(t) : t ∈ [0, T]}, ν := max{ν(t) : t ∈ [0, T]}, and
ν := min{ν(t) : t ∈ [0, T]}. Consider the OSPs

V (0)(t, x) := supτ≤T−tEt,x
[
Xt+τ

]
,

V (1)(t, x) := supτ≤T−tEt,x

[
X(1)

t+τ

]
,

V (2)
K (t, x) := supτ≤T−tEt,x

[
K + |X(2)

t+τ − K|
]
,

alongside their respective stopping sets D(0), D(1), and D(2)
K .

Notice that μ(t, x) ≤ μ(1)(t, x) for all (t, x) ∈ [0, T) ×R. Hence Xt+u ≤ X(1)
t+u Pt,x-a.s. for all

u ∈ [0, T − t], as Corollary 3.1 in [61] states. This implies that D(1) ⊂D(0).
On the other hand, it follows from (ii.2) that θ (t) ≥ ν/(ν(T − t)), meaning that μ(t, x) ≤

μ(2)(t, x) if and only if x ≥ K. By using the same comparison result in [61], we get the second
inequality in the following sequence of relations:

X(1)
t+u ≤ K + |X(1)

t+u − K| ≤ K + |X(2)
t+u − K|

Pt,x-a.s. for all u ∈ [0, T − t]. Hence, for a pair (t, x) ∈D(2)
K , we get that V (0)(t, x) ≤ V (2)

K (t, x) =
x, that is, (t, x) ∈D(1) and therefore D(2)

K ⊂D(0). The OSP related to V (2)
K can be shown to

account for a finite OSB. Specifically, it is a multiple of that of a BB (see [22, Section 5]). Then,
D(0) ∩ ({t} ×R) is non-empty for all t ∈ [0, T), and the equivalence result in Proposition 2
guarantees that so are the sets of the form D ∩ ({t} ×R), meaning that the OSB b is bounded
from above.

Remark 6. Note that the same reasoning we used to derive the lower bound on b in the
proof of Proposition 6 also implies that, if a′

2(s) > 0 for some s ∈R+, then (s, y) ∈ C for all
y > ( − a′

1(s) − c(a2(s) + a′
2(s)s))/a′

2(s), meaning that b(s) = ∞. To avoid this explosion of the
OSB we impose a′

2(s) < 0 for all s ∈R+ in (21f).

Summarizing, we have proved that W satisfies the free-boundary problem

LW(s, y) = 0 for y < b(t),

W(s, y) > G(s, y) for y < b(t),

W(s, y) = G(s, y) for y ≥ b(t).

Since b is unknown, an additional condition, generally known as the smooth-fit condition, is
needed to guarantee the uniqueness of the solution of this free-boundary problem. When b is
regular enough, this is done by making the value and the gain function coincide smoothly at
the free boundary.

The works of [25, 28, 64] address the smoothness of the free boundary. For one-
dimensional, time-homogeneous processes with locally Lipschitz-continuous drift and volatil-
ity, [25] provides the continuity of the free boundary. The paper [64] works with the
two-dimensional case in a fairly general setting, proving the impossibility of first-type dis-
continuities (second-type discontinuities are not addressed). The paper [28] goes further by
proving the local Lipschitz continuity of the free boundary in a higher-dimensional frame-
work. In particular, local Lipschitz continuity suffices for the smooth-fit condition to hold (see
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Proposition 8 below), which is the main reason we tailor the method of [28] to fit our setting
in the next proposition. Specifically, the relation between the partial derivatives imposed on
Assumption (D) in [28] excludes our gain function, but Equation (43) overcomes this issue.

Proposition 7. (Lipschitz continuity and differentiability of the OSB.)
The OSB b is Lipschitz continuous on any closed interval of R+.

Proof. Let H(s, y) := W(s, y) − G(s, y), fix two arbitrary non-negative numbers s and s̄
such that s < s̄, and consider the closed interval I = [ s, s̄ ]. Proposition 6 guarantees that b is
bounded from below, and hence we can choose r < inf {b(s) : s ∈ I}. Then I × {r} ⊂ C, mean-
ing that H(s, r) > 0 for all s ∈ I. Since H is continuous (see Proposition 3) on C, there exists a
constant a > 0 such that H(s, r) ≥ a for all s ∈ I. Therefore, for all δ such that 0 < δ ≤ a, and all
s ∈ I, there exists y ∈R such that H(s, y) = δ. Such a value of y is unique, as ∂xH < 0 on C (see
(36)). Hence we can denote it by bδ(s) and define the function bδ : I → [r, b(s)). Because H is
regular enough away from the boundary, we can apply the implicit function theorem, which
states the differentiability of bδ along with the fact that

b′
δ(s) = −∂tH(s, bδ(s))/∂xH(s, bδ(s)). (39)

Note that bδ increases as δ → 0 and is upper-bounded, uniformly in δ, by b, which is proved to
be finite in Proposition 6. Hence bδ converges pointwise, as δ → 0, to some limit function b0
such that b0 ≤ b on I. The reverse inequality follows from

H(s, b0(s)) = lim
δ→0

H(s, bδ(s)) = lim
δ→0

δ = 0,

meaning that (s, b0(s)) ∈D. Hence b0 = b on I.

For (s, y) ∈ C such that s ∈ I and y > r, consider the stopping times σ ∗ = σ ∗(s, y) and

σr = σr(s, y) = inf{u ≥ 0 : (s + u, Ys+u) /∈ I × (r, ∞)}.

Recalling (35), it readily follows that

|∂tH(s, y)| ≤ K(1) m(s, y) (40)

for K(1) = max
{
A′′

1 + 2c0A′
2 + c0A′′

3, 1
}

and

m(s, y) := Es,y

[∫ σ ∗

0

(
1 + ∣∣a′′

2(s + u)Ys+u
∣∣) du

]
.

By the tower property of conditional expectation, the strong Markov property, and the fact that
σ ∗(s, y) = σr + σ ∗ (

s + σr, Ys+σr

)
whenever σr ≤ σ ∗, we have that

m(s, y) =Es,y

[∫ σ ∗∧σr

0

(
1 + ∣∣a′′

2(s + u)Ys+u
∣∣) du + 1 (

σr ≤ σ ∗) m(s + σr, Ys+σr )

]
. (41)

On the set {σr ≤ σ ∗}, (s + σr, Ys+σr ) ∈ �s Ps,y-a.s. whenever r < y < b(s), with �s :=
((s, s̄) × {r}) ∪ ({s̄} × [r, b(s̄)]). Hence, if σr ≤ σ ∗, then
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m
(
s + σr, Ys+σr

) ≤ sup(s′,y′)∈�s m(s′, y′)

≤ sup(s′,y′)∈�sEs′,y′
[∫ ∞

0

(
1 + ∣∣a′′

2(s′ + u)Ys+u
∣∣) du

]

≤ sup(s′,y′)∈�s

(∫ ∞

0

(
1 + ∣∣a′′

2(s′ + u)y′∣∣) du +
∫ ∞

0
E

[∣∣a′′
2(s′ + u)Yu

∣∣]du

)

≤
∫ ∞

0

(
1 + ∣∣a′′

2(u)M
∣∣) du +

∫ ∞

0

∣∣a′′
2(s′ + u)

∣∣ √
2u/π du < ∞, (42)

with M := max{|sups∈Ib(s)|, |r|}. We can guarantee the convergence of both integrals since
(23) implies that

∣∣a′′
2(s)

∣∣ is asymptotically equivalent to s−2. By plugging (42) into (41), recall-
ing (40), and noticing that 1 + ∣∣a′′

2(s + u)Ys+u
∣∣ ≤ 1 + A′

2M whenever u ≤ σ ∗ ∧ σr, we obtain

that there exists K(2)
I > 0 such that

|∂tH(s, y)| ≤ K(2)
I Es,y

[
σ ∗ ∧ σr + 1 (

σr ≤ σ ∗)] . (43)

Arguing as in (41) and relying on (27), (36), and (21f), we get that

|∂xH(s, y)|

=Es,y
[
a2(s) − a2(s + σ ∗)

] =Es,y

[∫ σ ∗

0
−a′

2(s + u) du

]

=Es,y

[∫ σ ∗∧σr

0
−a′

2(s + u) du + 1 (
σr ≤ σ ∗) ∣∣∂xH(s + σr, Ys+σr )

∣∣ ]

≥Es,y

[∫ σ ∗∧σr

0
−a′

2(s + u) du + 1 (
σr ≤ σ ∗, σr < s − s

) |∂xH(s + σr, r)|
]

. (44)

Since I × {r} ⊂ C, we can take ε > 0 such that Rε := [ s, s + ε] × (r − ε, r + ε) ⊂ C. Then
σ ∗ > σε Ps,r-a.s. for all s ∈ I, where

σε = σε(s, r) := inf {u ≥ 0 : (s + u, Ys+u) /∈Rε} .

Hence

|∂xH(s + σr, r)| ≥ inf
s∈I

|∂xH(s, r)| = inf
s∈I

Es,r
[
a2(s) − a2(s + σ ∗)

]
≥ inf

s∈I
Es,r [a2(s) − a2(s + σε)]

≥ inf
s∈I

(a2(s) − a2(s + ε)) Ps,r (σε = s + ε − s)

≥ (a2(s) − a2(s + ε)) P

(
supu≤s+ε−s |Yu| < ε

)
> 0, (45)

where we use that a2 is decreasing. Recalling that a′
2 is a bounded function and plugging (45)

into (44), we get that, for a constant K(3)
I,ε > 0,

|∂xH(s, y)| ≥ K(3)
I,ε Es,y

[
σ ∗ ∧ σr + 1 (

σr ≤ σ ∗, σr < s − s
)]

. (46)
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Substituting (43) and (46) into (39), we get the following bound for the derivative of b with
some constant K(4)

I,ε > 0, yδ = bδ(s), and σδ = σ ∗(s, yδ):

∣∣b′
δ(s)

∣∣ ≤ K(4)
I,ε

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ)]

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ, σr < s − s)]

≤ K(4)
I,ε

(
1 + Ps,yδ (σr ≤ σδ)

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ, σr < s − s)]

)

≤ K(4)
I,ε

(
1 + Ps,yδ (σr ≤ σδ, σr = s̄ − s)

Es,yδ
[σδ ∧ σr]

+ Ps,yδ (σr ≤ σδ, σr < s̄ − s)

Es,yδ
[1 (σr ≤ σδ, σr < s − s)]

)

≤ K(4)
I,ε

(
2 + Ps,yδ (σr ≤ σδ, σr = s̄ − s)

Es,yδ
[1 (σr ≤ σδ, σr = s̄ − s) (σδ ∧ σr)]

)

≤ K(4)
I,ε

(
2 + 1

s̄ − s

)
. (47)

Let Iε = [ s, s̄ − ε] for ε > 0 small enough. By (47), there exists a constant LI,ε > 0, indepen-
dent of δ, such that |b′

δ(s)| < LI,ε for all s ∈ Iε and 0 < δ ≤ a. Hence the Arzelà–Ascoli theorem
guarantees that bδ converges to b uniformly in δ ∈ Iε.

Given the local Lipschitz continuity of the OSB, it is relatively easy to prove the global
continuous differentiability of the value function from the law of the iterated logarithms and
the work of [27], which, in turn, implies the smooth-fit condition. This approach is commented
on in Remark 4.5 of [28]. The proposition below provides the details.

Proposition 8. (Global C1 regularity of the value function.)
We have that W is continuously differentiable in R+ ×R.

Proof. Since W = G on D, and W has continuous partial derivatives in C (see
Proposition 4), it follows that W is continuously differentiable on D◦ and on C, where D◦
stands for the interior of D. To conclude the proof, it remains to show such regularity on ∂C.

Note that the law of the iterated logarithm alongside the local Lipschitz continuity of b
yields the following, for all s ∈R+ and some constant Ls > 0 that depends on s:

Ps,b(s)( inf{u > 0 : Ys+u > b(s + u)} = 0)

= lim
ε↓0

Ps,b(s) (inf {u > 0 : Ys+u > b(s + u)} < ε)

= lim
ε↓0

Ps,b(s)
(
supu∈(0,ε) (Ys+u − b(s + u)) > 0

)
= lim

ε↓0
Ps,b(s)

(
supu∈(0,ε)

Ys+u − b(s + u)√
2u ln(ln(1/u))

> 0

)

≥ lim
ε↓0

Ps,b(s)

(
supu∈(0,ε)

Ys+u − b(s) + Lsu√
2u ln(ln(1/u))

> 0

)

= Ps,b(s)

(
lim sup

u↓0

Ys+u − b(s) + Lsu√
2u ln(ln(1/u))

> 0

)
= 1.
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That is, {(s + u, Ys+u)}u∈R+ immediately enters D◦
Ps,b(s)-a.s., and hence Corollary 6 from [27]

guarantees that σ ∗(sn, yn) → σ ∗(s, b(s)) = 0 P-a.s. for any sequence (sn, yn) that converges to
(s, b(s)) as n → ∞.

Therefore, the dominated convergence theorem and (36) show that

∂xW(s, b(s)−) = a2(s) = ∂xG(s, b(s)).

Since W = G on D, it also holds that ∂xW(s, b(s)+) = ∂xG(s, b(s)) = a2(s), and hence Wx is
continuous on ∂C, which is the required smooth-fit condition.

On the other hand, consider a sequence sn such that (sn, b(s)) ∈ C for all n and sn ↑ s as
n → ∞. Relying again on the dominated convergence theorem and using (35), we get that
∂tW(sn, b(s)) → ∂tG(s, b(s)). We trivially reach the same convergence by taking (sn, b(s)) ∈D
for all n, since W = G on D. Arguing identically, we obtain that ∂tW(sn, b(s)) → ∂tG(s, b(s))
whenever sn ↓ s. Hence Wt is continuous on ∂C, which finally yields the global C1 regularity
of W.

We are now able to provide the solution for the OSP (19). Indeed, so far we have gathered
all the regularity conditions needed to apply an extended Itô’s formula to W(s + u, Ys+u) to
obtain characterizations of the value function and the OSB. The former is given in terms of
an integral of the OSB, while the latter is proved to be the unique solution of a type-two
nonlinear Volterra integral equation. Both characterizations benefit from the Gaussianity of the
BM, yielding relatively explicit integrands. Theorem 1 dives into details. Its proof requires the
following lemma.

Lemma 2. For all (s, y) ∈R+ ×R,

lim
u→∞ Es,y

[
W(s + u, Ys+u)

] = c1 + c0c2,

where c1 and c2 come from Equations (21e) and (21c), respectively.

Proof. Let su := s + u for s, u ∈R+. The Markov property of Y implies that

lim
u→∞ Es,y

[
W(su, Ysu )

]
= lim

u→∞ Es,y
[
supσ≥0Esu,Ysu

[
G

(
su + σ, Ysu+σ

)]]
≤ lim

u→∞ Es,y
[
Esu,Ysu

[
supr≥0G

(
su + r, Ysu+r

)]]
= lim

u→∞ Es,y
[
supr≥0

{
a1(su + r) + c0a2(su + r)(su + r) + a2(su + r)Ysu+r

}]
=Es,y

[
lim

u→∞ supr≥0
{
a1(su + r) + c0a2(su + r)(su + r) + a2(su + r)Ysu+r

} ]

=Es,y

[
lim sup

u→∞
{
a1(su) + c0a2(su)su + a2(su)Ysu

} ]
= c1 + c0c2,

where the interchangeability of the limit and the mean operator is justified by the monotone
convergence theorem. The last equality follows from (21c) and (21e), along with the law of the
iterated logarithm, implying that lim supu→∞ a2(su)Ysu = 0.

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


24 A. AZZE ET AL.

Likewise, we have that

lim
u→∞ Es,y

[
W(su, Ysu )

] ≥ lim
u→∞ Es,y

[
Esu,Ysu

[
inf
r≥0

G
(
su + r, Ysu+r

)]]
=Es,y

[
lim inf
u→∞

{
a1(su) + c0a2(su)su + c0a2(su)Ysu

}]
= c1 + c0c2,

which concludes the proof.

Theorem 1. (Solution of the OSP.)
The OSB related to the OSP (19) satisfies the free-boundary (integral) equation

G(s, b(s)) = c1 + c0c2 −
∫ ∞

s
K(s, b(s), u, b(u)) du, (48)

where the kernel K is defined as

K(s1, y1, s2, y2) := (
(a′

1(s2) + c0a2(s2) + c0a′
2(s2)(s2 + y1)

)
�̄s1,y1,s2,y2

+ c0a′
2(s2)

√
s2 − s1φs1,y1,s2,y2

with 0 ≤ s1 ≤ s2, y1, y2 ∈R, and

�̄s1,y1,s2,y2 := �̄

(
y2 − y1√
s2 − s1

)
, φs1,y1,s2,y2 := φ

(
y2 − y1√
s2 − s1

)
.

The functions φ and �̄ are respectively the density and survival functions of a standard normal
random variable. In addition, the integral equation (48) admits a unique solution among the
class of continuous functions f : R+ →R of bounded variation.

The value function is given by the formula

W(s, y) = c1 + c0c2 −
∫ ∞

s
K(s, y, u, b(u)) du. (49)

Proof. Propositions 3–8 provide the regularity required to apply an extended Itô’s lemma
(see [62] for an original derivation and Lemma A2 in [23] for a reformulation that better suits
our setting) to W(s + h, Ys+h) for s, h ≥ 0. Since LW = 0 on C and W = G on D, after taking
the Ps,y-expectation (which cancels the martingale term) it follows that

W(s, y) =Es,y
[
W(s + h, Ys+h)

] −Es,y

[∫ h

0
(LW) (s + u, Ys+u) du

]

=Es,y
[
W(s + h, Ys+h)

] −Es,y

[∫ h

0
∂tG (s + u, Ys+u) 1 (Ys+u ≥ b(s + u)) du

]
, (50)

where the local-time term does not appear because of the smooth-fit condition. Hence, by
taking h → ∞ in (50) and relying on Lemma 2, we get the following formula for the value
function:
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W(s, y) = c1 + c0c2 −Es,y

[∫ ∞

0
(LW) (s + u, Ys+u) du

]

= c1 + c0c2 −Es,y

[∫ ∞

0
∂tG (s + u, Ys+u) 1 (Ys+u ≥ b(s + u)) du

]
. (51)

We can obtain a more tractable version of (51) by exploiting the linearity of y 
→ ∂tG(s, y) (see
(26)) as well as the fact that Ys+u ∼N (y, u) under Ps,y. Then,

Es,y
[
Ys+u1 (Ys+u ≥ x)

] = �̄((x − y)/
√

u)y + √
uφ((x − y)/

√
u).

By right-shifting the integrating variable s units, we get Equation (49).

Now take y ↓ b(s) in both (51) and (49) to derive the free-boundary equation

G(s, b(s)) = c1 + c0c2 −Es,b(s)

[∫ ∞

0
∂tG (s + u, Ys+u) 1 (Ys+u ≥ b(s + u)) du

]
, (52)

alongside the more explicit expression (48).
The uniqueness of the solution of Equation (52) is established via a well-known methodol-

ogy first developed by [63, Theorem 3.1], which we omit here for the sake of brevity.

5. Solution of the original OSP

In this section we continue with the notation used in Section 3.
Recall that Proposition 2 dictates the equivalence between the OSPs (15) and (16), and

gives explicit formulae to link their value functions and OSTs. Consequently, it follows that
the stopping time τ ∗(t, x) defined in Proposition 2 in terms of σ ∗(s, y) is not only optimal for
(15), but has the following representation under Pt,x:

τ ∗(t, x) = inf
{
u ≥ 0 : Xt+u ≥ bT,z(t + u)

}
, bT,z(t) := GT,z(s, bT,z(s)), (53)

where bT,z and bT,z are respectively the OSBs related to (15) and (16), and s is defined, in
terms of t, in Proposition 2. Note that bT,z coincides with the function defined in (38), with
constants c0, c1, and c2, from (20), (21c), and (21e), taking the values

c0 = z − α(T), c1 = α(T), c2 = 1, (54)

where α comes from (iii.3) in Proposition 1 (see also Remark 2).
Moreover, it is not necessary to compute WT,z and bT,z to obtain VT,z and bT,z. By con-

sidering the infinitesimal generator of {(t, Xt)}t∈[0,T], L, letting sε = s + ε and tε = γ −1
T (sε) for

ε > 0, and using (18) alongside the chain rule, we get that(
LWT,z

)
(s, y) := lim

ε→0
ε−1 (

Es,y
[
WT,z

(
sε, Ysε

)] − WT,z(s, y)
)

= lim
ε→0

ε−1 (
Et,x

[
VT,z(tε, Xtε )

] − VT,z(t, x)
)

= (
LVT,z

)
(t, x)

[
γ −1

T

]′(s). (55)

We recall the relations between s and t, and y and x, in Proposition 2. After integrating with
respect to γ −1

T (u) instead of u in (50), keeping in mind (54) and (55), and recalling that
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LVT,z(t, x) = 0 for all x ≤ bT,z(t) and VT,z(t, x) = x for all x ≥ bT,z(t), we get the formula

VT,z(t, x) = z − Et,x

[∫ T−t

0
(LVT,z)(t + u, Xt+u) du

]

= z − Et,x

[∫ T−t

0
μ(t + u, Xt+u)1(Xt+u ≥ bT,z(t + u)) du

]
, (56)

where, in alignment with (14),

μ(t, x) := lim
u↓0

u−1Et,x
[
Xt+u − x

] = θ (t)(κ(t) − x)

= α′(t) + (x − α(t))
β ′

T (t)

βT (t)
+ (z − α(T))βT (t)γ ′

T (t).

As we did to obtain (49), we can use the linearity of x 
→ μ(t, x) and the Gaussian marginal
distributions of X to produce a refined version of (56):

VT,z(t, x) = z −
∫ T

t
K(t, x, u, bT,z(u)) du, (57)

where

K(t1, x1, t2, x2)

:= θ (t2)

(
(κ(t2) − Et1,x1

[
Xt2

]
)�t1,x1,t2,x2 −

√
Vart1

[
Xt2

]β ′
T (t2)

βT (t2)
φt1,x1,t2,x2

)
(58)

=
(

α′(t2) + (
Et1,x1

[
Xt2

] − α(t2)
) β ′

T (t2)

βT (t2)
+ (z − α(T))βT (t2)γ ′

T (t2)

)
�t1,x1,t2,x2

+
√

Vart1

[
Xt2

]β ′
T (t2)

βT (t2)
φt1,x1,t2,x2

, (59)

with 0 ≤ t1 ≤ t2 < T , x1, x2 ∈R, and

Φt1,x1,t2,x2 := �̄

⎛⎝x2 − Et1,x1

[
Xt2

]√
Vart1

[
Xt2

]
⎞⎠ , φt1,x1,t2,x2

:= φ

⎛⎝x2 − Et1,x1

[
Xt2

]√
Vart1

[
Xt2

]
⎞⎠ ,

and, as stated in (10), (12), and (14),

Et1,x1

[
Xt2

] = ϕ(t2)

(
x1

ϕ(t1)
+

∫ t2

t1

κ(u)θ (u)

ϕ(u)
du

)
(60)

= α(t2) + βT (t2)

(
(z − α(T))γT (t2) − x1 − α(t1) − βT (t1)γT (t1)(z − α(T))

βT (t1)

)
,

Vart1

[
Xt2

] = ϕ2(t2)
∫ t2

t1

ν2(u)

ϕ2(u)
du (61)

= βT (t1)γT (t1)βT (t2),
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with ϕ(t) = exp
{
− ∫ t

0 θ (u) du
}

. Hence, after taking x ↓ b(t) in (56) (or by directly expressing

(52) in terms of the original OSP, as we did to obtain (56) from (51)), we get the free-boundary
equation

bT,z(t) = z − Et,bT,z(t)

[∫ T−t

0
(LXVT,z)(t + u, Xt+u) du

]

= z − Et,bT,z(t)

[∫ T−t

0
μ(t + u, Xt+u)1(Xt+u ≥ bT,z(t + u)) du

]
,

which is also expressible as

bT,z(t) = z −
∫ T

t
K(t, bT,z(t), u, bT,z(u)) du. (62)

The uniqueness of the solution of the Volterra-type integral equation (62) follows from that
of (48).

Remark 7. We highlight some smoothness properties that the value function V and the OSB b
inherit from W and b, based on the equivalences (18) and (53).

From the Lipschitz continuity of W on compact sets of R+ ×R (see Proposition 3) we
obtain that of V on compact sets of [0, T) ×R. Higher smoothness of V is also attained away
from the boundary, (t, b(t)) for all t ∈ [0, T), which follows from Proposition 4. The continuous
differentiability of W obtained in Proposition 8 implies that of V .

The OSB b is Lipschitz continuous on any closed subinterval of [0, T), which is a
consequence of Proposition 7.

6. Numerical results

In this section we shed light on the OSB’s shape by using a Picard iteration algorithm to
solve the free-boundary equation (62). This approach is commonly used in the optimal stopping
literature; see, e.g., the works of [26, 29].

A Picard iteration scheme approaches (62) as a fixed-point problem. From an initial can-
didate boundary, it produces a sequence of functions by iteratively computing the integral
operator in the right-hand side of (62) until the error between consecutive boundaries is below a
prescribed threshold. More precisely, for a partition 0 = t0 < t1 < · · · < tN = T of [0, T], N ∈N,
the updating mechanism that generates subsequent boundaries follows after the discretization
of the integral in (62) using a right Riemann sum:

b(k)
i = z −

N−2∑
j=i

K
(

ti, b(k−1)
i , tj+1, b(k−1)

j+1

)
(tj+1 − tj), i = 0, 1, . . . , N − 2, (63)

b(k)
N−1 = b(k)

N = z, (64)

for k = 1, 2, . . . and with b(k)
i standing for the value of the boundary at ti output after the

kth iteration. We neglect the (N − 1)-addend of the sum and instead consider (64), since
K(t, x, T, z) is not well defined. As the integral in (62) is finite, the last piece vanishes as
tN−1 approaches T . Given that b(T) = z, we set the initial constant boundary b(0)

i = z for
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(a) (b) (c)

FIGURE 1. The picture shows a comparison between the exact OSB of a BB and its numerical computa-
tion, which is obtained by setting θ̃ ≡ 0 and taking a constant volatility ν̃ in the OU representation (65).
For the images on top, the solid colored lines represent the computed OSBs for the different choices of the
volatility coefficient ν̃ (image (a)), the partition length N (image (b)), and the type of partition considered
(image (c)). The black dashed, dotted, and dashed-dotted lines represent the OSB of a BB associated with
the different values of ν̃. Specifications are shown in the legend and caption of each image. Image (c)
accounts for a subplot that shows, as a function of the partition size N (x-axis), the evolution of the rela-
tive L2 error between the various computed boundaries and the true one (y-axis). The smaller images at
the bottom show the log-errors log10 (dk) between consecutive boundaries for each iteration k = 1, 2, . . .

of the Picard algorithm.

all i = 0, . . . , N. We stop the fixed-point algorithm when the relative (squared) L2-distance
between the consecutive discretized boundaries, defined as

dk :=
∑N

i=1

(
b(k)

i − b(k−1)
i

)2
(ti − ti−1)∑N

i=1

(
b(k)

i

)2
(ti − ti−1)

,

is lower than 10−3.
We show empirical evidence of the convergence of this Picard iteration scheme in

Figures 1–2. For each computer drawing of the OSB, we provide smaller images at the bottom
with the (logarithmically-scaled) errors dk, which tend to decrease at a steep pace, making the
algorithm converge (dk < 10−3) after few iterations.

We perform all boundary computations by relying on the SDE representation of the kernel
K defined at (58), (60), and (61), since we adopted the viewpoint of a GMB derived from
conditioning a time-dependent OU process to degenerate at the horizon. The relation between
the ‘parent’ OU process and the resulting OUB is neatly stated in [11, Section 3], although we
include here a modified version that fits our notation better. That is, if X̃ = {X̃t}t∈[0,T] solves
the SDE

dX̃t = θ̃ (t)(̃κ(t) − X̃t) dt + ν̃(t) dBt, t ∈ [0, T], (65)

then the corresponding GMB is an OUB that solves the SDE

dXt = θ (t)(κ(t) − Xt) dt + ν(t) dBt, t ∈ (0, T), (66)
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(a) (b) (c)

FIGURE 2. The first row of three plots shows 1/θ̃ (continuous line) versus 1/θ (dashed line) for the
different choices of the slope θ̃ (image (a)), the mean-reverting level κ̃ (image (b)), and the volatility ν̃

(image (c)). Specifications of the functions are given in the legend and caption of each image. The second
row does the same for κ̃ and κ . The main plot, in the third row, shows in solid colored lines the computed
OSBs. The smaller images at the bottom display the log-errors log10 (dk) between consecutive boundaries
for each iteration k = 1, 2, . . . of the Picard algorithm.

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ (t) = θ̃(t) + ν̃2(t)

ϕ̃2(t)
∫ T

t ν̃2(u)/ϕ̃(u) du
,

κ(t) = κ̃(t) + ν̃2(t)

θ (t)

x − ϕ̃(T)
∫ T

t κ̃(u)θ̃ (u)/ϕ̃(u) du

ϕ̃(t)ϕ̃(T)
∫ T

t ν̃2(u)/ϕ̃(u) du
,

ν(t) = ν̃(t),

(67)

and where ϕ̃(t) = exp{− ∫ t
0 θ̃ (u) du}. We choose the representations (65) and (66) for GM pro-

cesses and GMBs over those given in Lemma 1 and in (iii) from Proposition 1 because the
former have a more intuitive meaning. Indeed, recall that θ (θ̃ ) indicates the strength with
which the underlying process is pulled towards the mean-reverting level κ (̃κ), while ν (̃ν)
regulates the intensity of the white noise.

Figure 1 shows the numerically computed OSB when the underlying diffusion is a BB, that
is, when θ̃ (t) = 0 and ν̃(t) = σ , for all t ∈ [0, T] and σ > 0. We rely on such a case to empiri-
cally validate the accuracy of the Picard algorithm, in Figure 1(a), by comparing it against the
explicit OSB of a BB, which is known to take the form z + Kσ

√
T − t, for K ≈ 0.8399. This

result was originally due to [69]. Notice in Figure 1(b) how the numerical boundary approaches
the real one as the time partition becomes thinner.
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For all boundary computations, T = 1 and N = 500 were set unless otherwise stated. We
used the logarithmically-spaced partition ti = ln (1 + i(e − 1)/N), since numerical tests sug-
gested that the best performance is achieved when using a non-uniform mesh whose distances
ti − ti−1 smoothly decrease. Figure 1(c) illustrates the effect of the mesh increments by com-
paring the performance of the logarithmically-spaced partition against an equally-spaced one
and another that is also equally spaced until the second-to-last node, where the distance sud-
denly shrinks to a fourth of the regular spacing. Note how the first partition significantly
outperforms the other two, with a lower overall L2-error due to its better accuracy near the
horizon. Intuition might dictate that introducing the sudden shrink at the horizon could result in
better performance by diminishing the error that arises when considering (64), yet Figure 1(c)
indicates otherwise.

Figure 2 shows the numerical computation of OSBs for more general cases rather than the
BB. It shows how changing the coefficients of the process affects the OSB shape. In the first
two rows of images, we visually represent the transformation of coefficients (67). The volatility
is excluded as it remains the same after the ‘bridging’ of the OU process. To compare the slopes
we rely on 1/θ̃ (t) and 1/θ (t), as θ (t) → ∞ as t → ∞ (see (iv) in Proposition 1) and thus its
explosion would have obscured the shape of the bounded function θ̃ , had they been plotted
in the same graph. In alignment with the meaning of each time-dependent coefficient, the
OSB is pulled towards κ̃ with a strength directly proportional to θ̃ . This pulling force conflicts
with the much stronger one towards the pinning point of the bridge process, resulting in an
attraction towards the ‘bridged’ mean-reverting level κ with strength dictated by θ . We recall
that modifying ν̃, and thus ν, is equivalent to changing θ , by (iv.2). We remind the reader that
the functions � and φ in Figure 2 stand for the distribution and the density of a standard normal
random variable. The former is used to smoothly represent sudden changes of regime, while
the latter introduces smooth temporal anomalies. For instance, κ̃(t) = 2�(50t − 25) − 1 rapidly
changes the mean-reverting level of the underlying process from −1 to 1 around t = 0.5, and
ν̃(t) = 1 + √

2πφ(100t − 25) introduces a brief period of increased volatility around t = 0.25,
before and after which the volatility remains at (constant) baseline levels. Periodic fluctuations
of the parameters were also considered, as they typically arise in problems that account for
seasonality.

Notice that from Proposition 1 it readily follows that all coefficients θ , κ , and ν used in
this section satisfy Assumptions (21a)–(21f), as they are twice continuously differentiable and
satisfy the conditions (iv.1) and (iv.2), and θ (t) > 0 for all t ∈ [0, T).

The R code in the public repository https://github.com/aguazz/OSP_GMB implements the
Picard iteration algorithm (63)–(64). The repository allows for full replicability of the above
numerical examples.

7. Concluding remarks

We solved the finite-horizon OSP of a GMB by proving that its OSB uniquely solves the
Volterra-type integral equation (62).

In Section 2 we provided a comprehensive study of GMBs, presenting four equivalent defi-
nitions that make it easier to identify, create, and understand them from different perspectives.
One of these representations allows us to bypass the challenge of working with diffusions
with non-bounded drifts and instead work with an equivalent infinite-horizon OSP with a BM
underneath. Equations (53) explicitly relate OSTs to OSBs, while (57) and (62) give the value
formula and free-boundary equation in the original OSP.
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Our method for solving the alternative OSP consisted in solving the associated free-
boundary problem. To do so, in Section 4 we obtained several regularity properties of the
value function and the OSB, among which the local Lipschitz continuity of the OSB stands out
as a remarkable property.

In Section 6, we approached the free-boundary equation as a fixed-point problem in order
to numerically explore the geometry of the OSB. This provided insights about its shape for
different sets of coefficients of the underlying GMB, seen as bridges derived from conditioning
a time-dependent OU process to hit a pinning point at the horizon. The OSB shows an attraction
toward the mean-reverting level, which fades away as time approaches the horizon, where the
boundary hits the OUB’s pinning point.

In the context of gain functions beyond the identity, it is worth noting that the representa-
tion (2) can still be used to transform the initial OSP into an infinite-horizon one with a BM
underneath. This prompts the question of extending the methodology in Section 4 to address
more flexible gain functions. A practical starting point for this extension might be to consider
a space-linear gain function, which results in simple forms for the partial derivatives (recall
(26) and (27)) and keeps available the comparison method used in Proposition 6 to obtain the
boundedness of the OSB. Also, the new gain function should account for boundedness and
time-wise differentiability regularities equivalent to Assumptions (21a)–(21f).

Acknowledgements

The authors thank the anonymous referees for their comments, which helped in improving
the quality of the manuscript.

Funding information

The authors acknowledge support from the grants PID2020-116694GB-I00 (first and sec-
ond authors) and PID2021-124051NB-I00 (third author), funded by MCIN/AEI/10.13039/
501100011033 and by ERDF: A Way of Making Europe. The third author acknowledges
support from the Convocatoria de la Universidad Carlos III de Madrid de Ayudas para
la Recualificación del Sistema Universitario Español para 2021–2023, funded by Spain’s
Ministerio de Ciencia, Innovación y Universidades.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] ABRAHAMS, J. AND THOMAS, J. (1981). Some comments on conditionally Markov and reciprocal Gaussian
processes (corresp.). IEEE Trans. Inf. Theory 27, 523–525.

[2] ANDERSSON, P. (2012). Card counting in continuous time. J. Appl. Prob. 49, 184–198.
[3] ANGOSHTARI, B. AND LEUNG, T. (2019). Optimal dynamic basis trading. Ann. Finance 15, 307–335.
[4] BACK, K. (1992). Insider trading in continuous time. Rev. Financial Studies 5, 387–409.
[5] BARCZY, M. AND KERN, P. (2011). General alpha-Wiener bridges. Commun. Stoch. Anal. 5, 585–608.
[6] BARCZY, M. AND KERN, P. (2013). Representations of multidimensional linear process bridges. Random

Operators Stoch. Equat. 21, 159–189.
[7] BARCZY, M. AND KERN, P. (2013). Sample path deviations of the Wiener and the Ornstein–Uhlenbeck process

from its bridges. Brazilian J. Prob. Statist. 27, 437–466.
[8] BORISOV, I. S. (1983). On a criterion for Gaussian random processes to be Markovian. Theory Prob. Appl. 27,

863–865.

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


32 A. AZZE ET AL.

[9] BOYCE, W. M. (1970). Stopping rules for selling bonds. Bell J. Econom. Manag. Sci. 1, 27–53.
[10] BRENNAN, M. J. AND SCHWARTZ, E. S. (1990). Arbitrage in stock index futures. J. Business 63, S7–S31.
[11] BUONOCORE, A., CAPUTO, L., NOBILE, A. G. AND PIROZZI, E. (2013). On some time-non-homogeneous

linear diffusion processes and related bridges. Sci. Math. Japon. 76, 55–77.
[12] CAMPI, L. AND ÇETIN, U. (2007). Insider trading in an equilibrium model with default: a passage from

reduced-form to structural modelling. Finance Stoch. 11, 591–602.
[13] CAMPI, L., ÇETIN, U. AND DANILOVA, A. (2011). Dynamic Markov bridges motivated by models of insider

trading. Stoch. Process. Appl. 121, 534–567.
[14] CAMPI, L., ÇETIN, U. AND DANILOVA, A. (2013). Equilibrium model with default and dynamic insider

information. Finance Stoch. 17, 565–585.
[15] CARTEA, Á., JAIMUNGAL, S. AND KINZEBULATOV, D. (2016). Algorithmic trading with learning. Internat.

J. Theoret. Appl. Finance 19, article no. 1650028.
[16] ÇETIN, U. AND DANILOVA, A. (2016). Markov bridges: SDE representation. Stoch. Process. Appl. 126,

651–679.
[17] ÇETIN, U. AND XING, H. (2013). Point process bridges and weak convergence of insider trading models.

Electron. J. Prob. 18, 1–24.
[18] CHAUMONT, L. AND BRAVO, G. U. (2011). Markovian bridges: weak continuity and pathwise constructions.

Ann. Prob. 39, 609–647.
[19] CHEN, R. W., GRIGORESCU, I. AND KANG, M. (2015). Optimal stopping for Shepp’s urn with risk aversion.

Stochastics 87, 702–722.
[20] CHEN, X., LEUNG, T. AND ZHOU, Y. (2021). Constrained dynamic futures portfolios with stochastic basis.

Ann. Finance 18, 1–33.
[21] CHEN, Y. AND GEORGIOU, T. (2016). Stochastic bridges of linear systems. IEEE Trans. Automatic Control

61, 526–531.
[22] D’AURIA, B. AND FERRIERO, A. (2020). A class of Itô diffusions with known terminal value and specified

optimal barrier. Mathematics 8, article no. 123.
[23] D’AURIA, B., GARCÍA-PORTUGUÉS, E. AND GUADA, A. (2020). Discounted optimal stopping of a Brownian

bridge, with application to American options under pinning. Mathematics 8, 1159.
[24] AZZE, A., D’AURIA, B. AND GARCÍA-PORTUGUÉS, E. (2024). Optimal stopping of an Ornstein–Uhlenbeck

bridge. Stoch. Process. Their Appl. 172, 104342.
[25] DE ANGELIS, T. (2015). A note on the continuity of free-boundaries in finite-horizon optimal stopping

problems for one-dimensional diffusions. SIAM J. Control Optimization 53, 167–184.
[26] DE ANGELIS, T. AND MILAZZO, A. (2020). Optimal stopping for the exponential of a Brownian bridge.

J. Appl. Prob. 57, 361–384.
[27] DE ANGELIS, T. AND PESKIR, G. (2020). Global C1 regularity of the value function in optimal stopping

problems. Ann. Appl. Prob. 30, 1007–1031.
[28] DE ANGELIS, T. AND STABILE, G. (2019). On Lipschitz continuous optimal stopping boundaries. SIAM J.

Control Optimization 57, 402–436.
[29] DETEMPLE, J. AND KITAPBAYEV, Y. (2020). The value of green energy under regulation uncertainty. Energy

Econom. 89, article no. 104807.
[30] DOCHVIRI, B. (1995). On optimal stopping of inhomogeneous standard Markov processes. Georgian Math. J.

2, 335–346.
[31] DYNKIN, E. B. (1963). The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl.

150, 627–629.
[32] EKSTRÖM, E. AND VAICENAVICIUS, J. (2020). Optimal stopping of a Brownian bridge with an unknown

pinning point. Stoch. Process. Appl. 130, 806–823.
[33] EKSTRÖM, E. AND WANNTORP, H. (2009). Optimal stopping of a Brownian bridge. J. Appl. Prob. 46,

170–180.
[34] ERICKSON, W. W. AND STECK, D. A. (2022). Anatomy of an extreme event: What can we infer about the

history of a heavy-tailed random walk? Phys. Rev. E 106, 054142.
[35] ERNST, P. A. AND SHEPP, L. A. (2015). Revisiting a theorem of L. A. Shepp on optimal stopping. Commun.

Stoch. Anal. 9, 419–423.
[36] FITZSIMMONS, P., PITMAN, J. AND YOR, M. (1993). Markovian bridges: construction, palm interpretation,

and splicing. In Seminar on Stochastic Processes, 1992, eds E. Çinlar, K. L. Chung, M. J. Sharpe, R. F. Bass
and K. Burdzy, Birkhäuser, Boston, pp. 101–134.

[37] FÖLLMER, H. (1972). Optimal stopping of constrained Brownian motion. J. Appl. Prob. 9, 557–571.
[38] FRIEDMAN, A. (1964). Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs.
[39] FRIEDMAN, A. (1975). Parabolic variational inequalities in one space dimension and smoothness of the free

boundary. J. Funct. Anal. 18, 151–176.

https://doi.org/10.1017/apr.2024.21 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.21


Optimal stopping of Gauss–Markov bridges 33

[40] FRIEDMAN, A. (1975). Stopping time problems and the shape of the domain of continuation. In Control Theory,
Numerical Methods and Computer Systems Modelling, Springer, Berlin, Heidelberg, pp. 559–566.

[41] GASBARRA, D., SOTTINEN, T. AND VALKEILA, E. (2007). Gaussian bridges. In Stochastic Analysis and
Applications, eds F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, Springer, Berlin,
pp. 361–382.

[42] GLOVER, K. (2020). Optimally stopping a Brownian bridge with an unknown pinning time: a Bayesian
approach. Stoch. Process. Appl. 150, 919–937.

[43] GOLEZ, B. AND JACKWERTH, J. C. (2012). Pinning in the S&P 500 futures. J. Financial Econom. 106,
566–585.

[44] HILDEBRANDT, F. AND RŒLLY, S. (2020). Pinned diffusions and Markov bridges. J. Theoret. Prob. 33,
906–917.

[45] HILLIARD, J. E. AND HILLIARD, J. (2015). Pricing American options when there is short-lived arbitrage.
Internat. J. Financial Markets Derivatives 4, 43–53.

[46] HORNE, J. S., GARTON, E. O., KRONE, S. M. AND LEWIS, J. S. (2007). Analyzing animal movements using
Brownian bridges. Ecology 88, 2354–2363.

[47] HOYLE, E., HUGHSTON, L. P. AND MACRINA, A. (2011). Lévy random bridges and the modelling of financial
information. Stoch. Process. Appl. 121, 856–884.

[48] JACKA, S. AND LYNN, R. (1992). Finite-horizon optimal stopping, obstacle problems and the shape of the
continuation region. Stoch. Stoch. Rep. 39, 25–42.

[49] KRANSTAUBER, B. (2019). Modelling animal movement as Brownian bridges with covariates. Movement
Ecol. 7, article no. 22.

[50] KRISHNAN, H. AND NELKEN, I. (2001). The effect of stock pinning upon option prices. Risk (December
2001), 17–20.

[51] KRUMM, J. (2021). Brownian bridge interpolation for human mobility? In Proceedings of the 29th
International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’21), Association
for Computing Machinery, New York, pp. 175–183.

[52] KRYLOV, N. V. (1980). Controlled Diffusion Processes. Springer, New York.
[53] KYLE, A. S. (1985). Continuous auctions and insider trading. Econometrica 53, 1315–1335.
[54] LEUNG, T., LI, J. AND LI, X. (2018). Optimal timing to trade along a randomized Brownian bridge. Internat.

J. Financial Studies 6, article no. 75.
[55] LIU, J. AND LONGSTAFF, F. A. (2004). Losing money on arbitrage: optimal dynamic portfolio choice in

markets with arbitrage opportunities. Rev. Financial Studies 17, 611–641.
[56] MEHR, C. B. AND MCFADDEN, J. A. (1965). Certain properties of Gaussian processes and their first-passage

times. J. R. Statist. Soc. B [Statist. Methodology] 27, 505–522.
[57] NI, S. X., PEARSON, N. D. AND POTESHMAN, A. M. (2005). Stock price clustering on option expiration

dates. J. Financial Econom. 78, 49–87.
[58] NI, S. X., PEARSON, N. D., POTESHMAN, A. M. AND WHITE, J. (2021). Does option trading have a pervasive

impact on underlying stock prices? Rev. Financial Studies 34, 1952–1986.
[59] OSHIMA, Y. (2006). On an optimal stopping problem of time inhomogeneous diffusion processes. SIAM J.

Control Optimization 45, 565–579.
[60] PEDERSEN, J. L. AND PESKIR, G. (2002). On nonlinear integral equations arising in problems of opti-

mal stopping. In Functional Analysis VII: Proceedings of the Postgraduate School and Conference held in
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