
Proceedings of the Royal Society of Edinburgh, 154, 660–672, 2024

DOI:10.1017/prm.2023.32

Convergence for the fractional p-Laplacian and its
application to the extended Nirenberg problem

Zhiwen Zhao
Beijing Computational Science Research Center, Beijing 100193, China
zwzhao365@163.com

(Received 2 November 2022; accepted 9 March 2023)

The main objective of this paper is to establish the convergence for the fractional
p-Laplacian of sequences of nonnegative functions with p > 2. Furthermore, we show
the blow-up phenomena for solutions to the extended Nirenberg problem modelled
by fractional p-Laplacian with the prescribed negative functions.
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1. Introduction and main results

The fractional Laplacian has nowadays become a focus of research due to its exten-
sive applications in describing anomalous diffusions in plasmas, flames propagation
and chemical reactions in liquids, population dynamics, geophysical fluid dynamics,
see [4, 7, 8] and the references therein. Moreover, it also has important applica-
tions in the fields of probability and finance, for example, see [1–3]. In particular,
it can be regarded as the infinitesimal generator of an isotropic stable Lévy diffu-
sion process. To better apply theories of the fractional Laplacian to practice, it is
significantly important to make clear its own properties, especially those different
from the classical Laplacian operator.

Before listing our main results, we first fix some notations. Let n � 1, p � 2 and
0 < σ < 1. Define the fractional p-Laplacian (−Δ)σ

p as follows:

(−Δ)σ
pu(x) = cn,σpP.V.

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|n+σp

dy,

where cn,σp is a positive constant and P.V. represents the Cauchy principal value. It
is worth pointing out that (−Δ)σ

p becomes the linear fractional Laplacian operator
(−Δ)σ if p = 2, while it is a nonlinear nonlocal operator if p > 2. The definition
of (−Δ)σ

pu is valid under the condition that u ∈ Cσp+α
loc (Rn) ∩ Lσp(Rn) for some

α > 0, where Cσp+α
loc := C

[σp+α],σp+α−[σp+α]
loc with [σp+ α] denoting the integer part
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of σp+ α,

Lσp(Rn) :=
{
u ∈ Lp−1

loc (Rn)
∣∣∣ ∫

Rn

|u(x)|p−1

1 + |x|n+σp
dx <∞

}
.

Recently, Du et al. [11] derived the following fact:

‘If ui → u in C2σ+α
loc as i→ ∞, and {(−Δ)σui} converges pointwisely,

then (−Δ)σui → (−Δ)σu− θfor some θ � 0.′

In particular, they constructed an example showing that the nonnegative constant
θ can be strictly positive, which is different from the classical Laplacian operator.
This discrepancy essentially stems from the nonlocal behaviour of the fractional
Laplacian operator. Inspired by their proof for the linear fractional Laplacian, in
this paper we further overcome the nonlinear difficulty for the fractional p-Laplacian
operator and prove that the above fact also holds for the nonlinear nonlocal operator
(−Δ)σ

p with p > 2. Moreover, our result can be extended to more general nonlinear
nonlocal operators. The principal result of this paper is stated as follows.

Theorem 1.1. Let n � 1, p > 2, 0 < σ < 1 and α > 0. Assume that a sequence of
nonnegative functions {ui} ⊂ Lσp(Rn) ∩ Cσp+α

loc (Rn) converges in Cσp+α
loc (Rn) to a

function u ∈ Lσp(Rn), and {(−Δ)σ
pui} converges pointwisely in R

n. Then for any
x ∈ R

n,

lim
i→∞

(−Δ)σ
pui(x) = (−Δ)σ

pu(x) − θ,

where θ is a nonnegative constant given by

θ = cn,σp lim
R→∞

lim
i→∞

∫
Bc

R

up−1
i (x)
|x|n+σp

dx.

Proof. For any fixed x ∈ R
n and R >> |x| + 1, let

(−Δ)σ
pu(x) − (−Δ)σ

pui(x)

= cn,σp

∫
BR(0)

|u(x) − u(y)|p−2(u(x)−u(y))−|ui(x)−ui(y)|p−2(ui(x) − ui(y))
|x− y|n+σp

dy

+ cn,σp

∫
Bc

R(0)

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|n+σp

dy

+ cn,σp

∫
Bc

R(0)

−|ui(x) − ui(y)|p−2(ui(x) − ui(y))
|x− y|n+σp

dy

=: Φi(x,R) + G(x,R) + Ψi(x,R). (1.1)

In light of the fact that ui → u in Cσp+α(B2R(0)), we obtain that for each 0 < ε < 1,
there exists an integer N > 0 such that for every i > N ,

‖ui − u‖Cσp+α(B2R(0)) � ε
p

min{1,p−2} , ‖ui‖Cσp+α(B2R(0)) � ‖u‖Cσp+α(B2R(0)) + 1.
(1.2)
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Define

Φi(x,R \ ε) := Φi(x,R) − Φi(x, ε), M := ‖u‖Cσp+α(B2R(0)) + 1,

where Φi(x, ε) denotes the integral in Φi(x,R) with the domain BR(0) replaced by
Bε(x). Using (1.2), we deduce that for x, y ∈ B2R(0), i > N ,∣∣|u(x) − u(y)|p−2(u(x) − u(y)) − |ui(x) − ui(y)|p−2(ui(x) − ui(y))

∣∣
� |u(x) − u(y)|p−2|(u− ui)(x) − (u− ui)(y)|

+
∣∣|u(x) − u(y)|p−2 − |ui(x) − ui(y)|p−2

∣∣ |ui(x) − ui(y)|
� C(p,M)‖ui − u‖min{1,p−2}

L∞(B2R(0)) � C(p,M)εp,

which yields that

|Φi(x,R \ ε)| � C(p,M)εp

∫
B2R(x)\Bε(x)

dy
|x− y|n+σp

� C(p, n, σ,M)ε(1−σ)p.

(1.3)
On the other hand, if σp+ α ∈ (0, 1], then it follows from (1.2) that

|Φi(x, ε)| � C(p, σ, α,M)
∫

Bε(x)

|x− y|(σp+α)(p−1)

|x− y|n+σp

� C(p, n, σ, α,M)ε(σp+α)(p−2)+α. (1.4)

When σp+ α ∈ (1,∞), utilizing (1.2) again, it follows from Taylor expansion that∣∣|ui(x) − ui(y)|p−2(ui(x) − ui(y)) − |∇ui(x)(x− y)|p−2∇ui(x)(x− y)
∣∣

� C(p, σ, α,M)
(
|∇ui(x)(x− y)|p−2 + |x− y|min{2,σp+α}(p−2)

)
|x− y|min{2,σp+α}

� C(p, σ, α,M)|x− y|min{p,(σ+1)p+α−2},

where we utilized the following element inequality:∣∣|a|p−2a− |b|p−2b
∣∣ � C(p)|a− b| (|a− b|p−2 + |b|p−2

)
, for a, b ∈ R

n.

By the same argument, we have∣∣|u(x) − u(y)|p−2(u(x) − u(y)) − |∇u(x)(x− y)|p−2∇u(x)(x− y)
∣∣

� C(p, σ, α,M)|x− y|min{p,(σ+1)p+α−2}.

Therefore, we obtain that if σp+ α ∈ (1,∞),

|Φi(x, ε)| � C(p, σ, α,M)
∫

Bε(x)

|x− y|min{p,(σ+1)p+α−2}

|x− y|n+σp
dy

� C(p, n, σ, α,M)εmin{(1−σ)p,p+α−2}, (1.5)

where we utilized the anti-symmetry of ∇u(x)(x− y) and ∇ui(x)(x− y) with
regard to the centre x. Consequently, combining (1.3)–(1.5), we deduce that for
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every i > N ,

|Φi(x,R)| � C(p, n, σ, α,M)

{
εmin{(1−σ)p,(σp+α)(p−2)+α}, if σp+ α ∈ (0, 1],
εmin{(1−σ)p,p+α−2}, if σp+ α ∈ (1,∞),

which implies that

lim
i→∞

Φi(x,R) = 0. (1.6)

Note that {(−Δ)σ
pui} is a pointwise convergent sequence, we then deduce from

(1.1) and (1.6) that

lim
i→∞

Ψi(x,R) exists and is finite. (1.7)

Since u ∈ Lσp(Rn) and R >> |x| + 1, then

lim sup
R→∞

∫
Bc

R(0)

|u(x) − u(y)|p−1

|x− y|n+σp
dy

� lim sup
R→∞

(
R

R− |x|
)n+σp ∫

Bc
R(0)

C(p)(up−1(x) + up−1(y))
|y|n+σp

dy = 0,

which yields that

lim
R→∞

G(x,R) = 0.

This, in combination with (1.1) and (1.6)–(1.7), leads to that lim
R→∞

lim
i→∞

Ψi(x,R)

exists and is finite,

(−Δ)σ
pu(x) − lim

i→∞
(−Δ)σ

pui(x) = lim
R→∞

lim
i→∞

Ψi(x,R). (1.8)

Denote

K1 := −up−2
i (y)ui(x),

K2 :=
(
up−2

i (y) − |ui(x) − ui(y)|p−2
)
ui(x),

K3 := −
(
up−2

i (y) − |ui(x) − ui(y)|p−2
)
ui(y),

Θ := −|ui(x) − ui(y)|p−2(ui(x) − ui(y)).

Then we have

up−1
i (y) −

3∑
j=1

|Kj | � Θ = up−1
i (y) +

3∑
j=1

Kj � up−1
i (y) +

3∑
j=2

|Kj |. (1.9)

For any given ε > 0, it follows from Young’s inequality that

|K1| � εup−1
i (y) +

C(p)
εp−2

up−1
i (x). (1.10)

We now divide into three cases to estimate K2 and K3 in the following.
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Case 1. Consider 2 < p � 3. Since

up−2
i (y) � (|ui(y) − ui(x)| + ui(x))p−2 � |ui(y) − ui(x)|p−2 + up−2

i (x),

|ui(y) − ui(x)|p−2 � up−2
i (y) + up−2

i (x),

then ∣∣∣up−2
i (y) − |ui(x) − ui(y)|p−2

∣∣∣ � up−2
i (x).

Hence it follows from Young’s inequality that

|K2| � up−1
i (x), |K3| � εup−1

i (y) +
C(p)

ε
1

p−2
up−1

i (x). (1.11)

Substituting (1.10)–(1.11) into (1.9), we derive

(1 − 2ε)up−1
i (y) − C(p)

εp−2
up−1

i (x) � Θ � (1 + ε)up−1
i (y) +

C(p)

ε
1

p−2
up−1

i (x). (1.12)

Case 2. Consider the case when p > 3 is an integer. From the binomial theorem
and Young’s inequality, we have

(a+ b)p−2 = ap−2 +
p−2∑
j=1

Cj
p−2a

p−2−jbj � (1 + ε)ap−2 + C(p)bp−2

p−2∑
j=1

ε−
p−2−k

k

� (1 + ε)ap−2 +
C(p)
εp−3

bp−2, for any a, b � 0. (1.13)

Using (1.13), we deduce

up−2
i (y) � (|ui(y) − ui(x)| + ui(x))p−2 � (1 + ε)|ui(x) − ui(y)|p−2 +

C(p)
εp−3

up−2
i (x),

which implies that

up−2
i (y) − |ui(y) − ui(x)|p−2 � ε|ui(x) − ui(y)|p−2 +

C(p)
εp−3

up−2
i (x)

� ε(1 + ε)up−2
i (y) +

C(p)
εp−3

up−2
i (x).

Analogously,

|ui(y) − ui(x)|p−2 − up−2
i (y) � εup−2

i (y) +
C(p)
εp−3

up−2
i (x).

Hence, we have

∣∣∣up−2
i (y) − |ui(y) − ui(x)|p−2

∣∣∣ � ε(1 + ε)up−2
i (y) +

C(p)
εp−3

up−2
i (x). (1.14)
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Utilizing (1.14) and Young’s inequality, we obtain

|K2| � ε(1 + ε)up−2
i (y)ui(x) +

C(p)
εp−3

up−1
i (x) � εup−1

i (y) +
C(p)
εp−3

up−1
i (x),

|K3| � ε(1 + ε)up−1
i (y) +

C(p)
εp−3

up−2
i (x)ui(y) � ε(2 + ε)up−1

i (y) +
C(p)
εp−2

up−1
i (x),

which, in combination with (1.9)–(1.10), gives that

Θ � (1 + 3ε+ ε2)up−1
i (y) +

C(p)
εp−2

up−1
i (x), (1.15)

Θ � (1 − 4ε− ε2)up−1
i (y) − C(p)

εp−2
up−1

i (x). (1.16)

Case 3. Consider the case when p > 3 is not an integer. On one hand, making use
of (1.13), we obtain

|ui(x) − ui(y)|p−2 � (ui(x) + ui(y))[p−2]+(p−[p])

�
(

(1 + ε)u[p−2]
i (y) +

C(p)
ε[p−3]

u
[p−2]
i (x)

)(
u

p−[p]
i (y) + u

p−[p]
i (x)

)

= (1 + ε)up−2
i (y) +

C(p)
ε[p−3]

u
p−[p]
i (y)u[p−2]

i (x)

+ (1 + ε)u[p−2]
i (y)up−[p]

i (x) +
C(p)
ε[p−3]

up−2
i (x). (1.17)

From Young’s inequality, we deduce

C(p)
ε[p−3]

u
p−[p]
i (y)u[p−2]

i (x) � εup−2
i (y) +

C(p)
εp−3

up−2
i (x), (1.18)

(1 + ε)u[p−2]
i (y)up−[p]

i (x) � εup−2
i (y) +

C(p)

ε
[p−2]
p−[p]

up−2
i (x). (1.19)

Substituting (1.18)–(1.19) into (1.17), it follows that

|ui(x) − ui(y)|p−2 − up−2
i (y) � 3εup−2

i (y) +
C(p)

ε
[p−2]
p−[p]

up−2
i (x). (1.20)

On the other hand, using (1.13) again, we have

up−2
i (y) � (|ui(y) − ui(x)| + ui(x))[p−2]+(p−[p])

�
(

(1 + ε)|ui(x) − ui(y)|[p−2] +
C(p)
ε[p−3]

u
[p−2]
i (x)

)

·
(
|ui(x) − ui(y)|p−[p] + u

p−[p]
i (x)

)

= (1 + ε)|ui(x) − ui(y)|p−2 +
C(p)
ε[p−3]

u
[p−2]
i (x)|ui(x) − ui(y)|p−[p]

+ (1 + ε)up−[p]
i (x)|ui(x) − ui(y)|[p−2] +

C(p)
ε[p−3]

up−2
i (x). (1.21)
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It follows from Young’s inequality that

C(p)
ε[p−3]

u
[p−2]
i (x)|ui(x) − ui(y)|p−[p] � ε|ui(x) − ui(y)|p−2 +

C(p)
εp−3

up−2
i (x), (1.22)

(1 + ε)up−[p]
i (x)|ui(x) − ui(y)|[p−2] � ε|ui(x) − ui(y)|p−2 +

C(p)

ε
[p−2]
p−[p]

up−2
i (x). (1.23)

Combining (1.20)–(1.23), we deduce

up−2
i (y) − |ui(x) − ui(y)|p−2 � 3ε|ui(x) − ui(y)|p−2 +

C(p)

ε
[p−2]
p−[p]

up−2
i (x)

� 3ε(1 + 3ε)up−2
i (y) +

C(p)

ε
[p−2]
p−[p]

up−2
i (x).

This, together with (1.20) again, gives that

∣∣∣up−2
i (y) − |ui(x) − ui(y)|p−2

∣∣∣ � 3ε(1 + 3ε)up−2
i (y) +

C(p)

ε
[p−2]
p−[p]

up−2
i (x). (1.24)

In light of (1.24), it follows from Young’s inequality that

|K2| � 3ε(1 + 3ε)up−2
i (y)ui(x) +

C(p)

ε
[p−2]
p−[p]

up−1
i (x)

� εup−1
i (y) +

C(p)

ε
[p−2]
p−[p]

up−1
i (x), (1.25)

|K3| � 3ε(1 + 3ε)up−1
i (y) +

C(p)

ε
[p−2]
p−[p]

up−2
i (x)ui(y)

� ε(4 + 9ε)up−1
i (y) +

C(p)

ε
[p−1]
p−[p]

up−1
i (x). (1.26)

Therefore, substituting (1.10) and (1.25)–(1.26) into (1.9), we derive

Θ � (1 + 5ε+ 9ε2)up−1
i (y) +

C(p)

ε
[p−1]
p−[p]

up−1
i (x), (1.27)

Θ � (1 − 6ε− 9ε2)up−1
i (y) − C(p)

ε
[p−1]
p−[p]

up−1
i (x). (1.28)

Observe that

lim
R→∞

lim
i→∞

∫
Bc

R(0)

up−1
i (x)

|x− y|n+σp
dy = up−1(x) lim

R→∞

∫
Bc

R(0)

dy
|x− y|n+σp

� up−1(x) lim
R→∞

∫
Bc

R−|x|(x)

dy
|x− y|n+σp

= 0.

(1.29)
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Since lim
R→∞

lim
i→∞

Ψi(x,R) exists and is finite, it follows from (1.12), (1.15)–(1.16)

and (1.27)–(1.29) that

lim
R→∞

lim
i→∞

Ψi(x,R) � cn,σp(1 + ε(1)p ) lim inf
R→∞

lim inf
i→∞

∫
Bc

R(0)

up−1
i (y)

|x− y|n+σp
dy,

lim
R→∞

lim
i→∞

Ψi(x,R) � cn,σp(1 − ε(2)p ) lim sup
R→∞

lim sup
i→∞

∫
Bc

R(0)

up−1
i (y)

|x− y|n+σp
dy,

where

ε(1)p =

⎧⎪⎨
⎪⎩
ε, if 2 < p � 3,
ε(3 + ε), if p > 3 is an integer,
ε(5 + 9ε), if p > 3 is not an integer,

ε(2)p =

⎧⎪⎨
⎪⎩

2ε, if 2 < p � 3,
ε(4 + ε), if p > 3 is an integer,
3ε(2 + 3ε), if p > 3 is not an integer.

Due to the fact that R >> |x| + 1, we have

(R− |x|)|y|
R

� |y − x| � (R+ |x|)|y|
R

, for y ∈ Bc
R(0).

Hence, we deduce

lim
R→∞

lim
i→∞

Ψi(x,R) � cn,σp(1 + ε(1)p ) lim inf
R→∞

lim inf
i→∞

∫
Bc

R(0)

up−1
i (y)
|y|n+σp

dy,

lim
R→∞

lim
i→∞

Ψi(x,R) � cn,σp(1 − ε(2)p ) lim sup
R→∞

lim sup
i→∞

∫
Bc

R(0)

up−1
i (y)
|y|n+σp

dy.

By virtue of the arbitrariness of ε and {ui} is nonnegative, we obtain

lim
R→∞

lim
i→∞

Ψi(x,R) = cn,σp lim
R→∞

lim
i→∞

∫
Bc

R(0)

up−1
i (y)
|y|n+σp

dy � 0.

This, together with (1.8), yields that theorem 1.1 holds. �

In order to show that the limit constant θ captured in theorem 1.1 may be
positive, we consider a sequence of nonnegative functions in the following. Choose
a smooth cut-off function η satisfying that

η(t) ≡ 0 in (−∞, 0], η(t) ≡ 1 in [1,∞)and 0 � η(t) � 1 in [0, 1]. (1.30)

Then for any 0 < s < t and j � 1, define

vj(x) := j−swj(R−1
j x), wj(x) :=

{
js + jtφ(x), in B6,

(1 − ψ(x))(js + jt), in Bc
6,

(1.31)

https://doi.org/10.1017/prm.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.32


668 Z.W. Zhao

where φ(x) = η(|x| − 3), and ψ(x) = η(|x| − 6), Rj = j
(t−s)(p−1)

σp β
1

σp with

β := cn,σp

(∫
B4\B3

φp−1(y)
|y|n+σp

dy +
∫

B6\B4

dy
|y|n+σp

+
∫

Bc
6

(1 − ψ(y))p−1

|y|n+σp
dy

)
.

(1.32)

Example 1.2. Let n � 1, p > 2 and 0 < σ < 1. If condition (1.31) holds, then we
obtain that vj converges to 1 in C2

loc(R
n), and

lim
i→∞

(−Δ)σ
pvj(x) = −1.

Remark 1.3. We here would like to point out that the examples constructed in
example 1.2 and theorem 2.1 were first given in [11].

Proof. It is easily seen from (1.31) that vj ∈ C∞
c (Rn), vj � 0 in R

n, vj = 1 in BRj
,

and ‖vj − 1‖C2
loc

→ 0, as i→ ∞. A direct computation gives that

(−Δ)σ
pvj(x) = j−s(p−1)R−σp

j (−Δ)σ
pwj(R−1

j x), for x ∈ BRj
. (1.33)

For any fixed x ∈ R
n, we have

j−t(p−1)(−Δ)σ
pwj(R−1

j x)

= −cn,σp

∫
B4\B3

φp−1(y)
|R−1

j x− y|n+σp
dy − cn,σp

∫
B6\B4

dy
|R−1

j x− y|n+σp

+
cn,σp

jt−s

∫
Bc

6

ψ(y)|ψ(y) − 1 + ψ(y)j−(t−s)|p−2

|R−1
j x− y|n+σp

dy

− cn,σp

∫
Bc

6

(1 − ψ(y))|ψ(y) − 1 + ψ(y)j−(t−s)|p−2

|R−1
j x− y|n+σp

dy

→ −β, as j goes to ∞,

where β is defined by (1.32). This, together with (1.33), gives that

lim
j→∞

(−Δ)σ
pvj(x) = β−1 lim

j→∞
j−t(p−1)(−Δ)σ

pwj(R−1
j x) = −1, in R

n.

The proof is complete. �

2. Blow-up analysis for the extended fractional Nirenberg problem

The extended fractional Nirenberg problem is equivalent to investigating the
following equation:

(−Δ)σ
pu(x) = K(x)uq(p−1)(x), for x ∈ R

n, (2.1)

where p � 2 and q ∈ R. It has been shown in [11] that there arises blow-up phe-
nomena for the linear fractional Laplacian due to the nonzero constant θ captured
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in theorem 1.1. Specially, for p = 2, the compactness of solutions to (2.1) will fail
in the region where K is negative. In the following, we follow the proof of theorem
1.3 in [11] and extend the result to the nonlinear case of p > 2. On the other hand,
when K is positive, Jin et al. [12–14] derived a priori estimates for the fractional
equation (2.1) with p = 2.

While these above-mentioned works are related to the fractional Nirenberg prob-
lem, there is another direction of research to study the classical elliptic equation
−Δu = K(x)up. When n = 1, 2 and 1 < p <∞, or n � 3 and 1 < p < n+2

n−2 , p is
called a subcritical Sobolev exponent, while it is the critical Sobolev exponent if
n � 3 and p = n+2

n−2 . In particular, the elliptic equation in the case of critical Sobolev
exponent corresponds to the Nirenberg problem, which is to seek a new metric con-
formal to the flat metric on R

n so that its scalar curvature is K(x). Generally, it
needs to establish priori estimates of the solutions for the purpose of obtaining the
existence of solutions. We refer to [9, 10] for the subcritical case. With regard to
the critical case, see [5, 15, 17] for positive functions K and [6, 16, 18] for K
changing signs, respectively.

Theorem 2.1. Assume that n � 1, p > 2, 0 < σ < 1, q ∈ R and s > − σp
p−1 . Then

there exist two positive constants c0 = c0(n, σ, p, q, s) and C0 = C0(n, σ, p, q, s), a
sequence of functions {Kj} ⊂ C∞(Rn) satisfying

−C0 � Kj(x) � −c0, c0 � |∇Kj(x)| � C0, and |∇2Kj(x)| � C0, in B2,

and a sequence of positive functions {uj} ⊂ C∞(Rn) such that

(−Δ)σ
puj(x) = Kj(x)u

q(p−1)
j (x), for x ∈ R

n, |x|suj(x) → 1, as |x| → ∞,

and

min
B1

uj → ∞, as j → ∞.

Proof. Let η and φ be defined in (1.30) and (1.31). For q ∈ R and s > − σp
p−1 , let

uj(x) =

{
j + jqφ(x), in BR,

(1 − ϕ(x))(j + jq) + ϕ(x)|x|−s, in Bc
R,

where ϕ(x) = η(|x| −R) and R = R(n, p, q, σ, s, j) > 9 is a sufficiently large con-
stant to be determined later. Then uj ∈ C∞(Rn) ∩ Lσp(Rn) and uj > 0 in R

n.
Denote

Kj(x) :=
(−Δ)σ

puj(x)

u
q(p−1)
j (x)

, in R
n.

Then Kj ∈ C∞(Rn). Moreover, {Kj} satisfies the following properties: there exists
four positive constants Ci := Ci(n, σ, p), i = 1, 2, 3, 4, such that for every j � 1,

(K1) −C1 � Kj(x) � −C2, and
3∑

i=1

|∇iKj(x)| � C3 in B2;
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(K2) ∇2Kj(0) � −C4In, where In denotes n× n identity matrix.

We first prove (K1). Observe that

c−1
n,σpKj(x) = −

∫
B4\B3

φp−1(y)
|x− y|n+σp

dy −
∫

BR\B4

dy
|x− y|n+σp

+
∫

Bc
R

|Aϕ(y)|p−2Aϕ(y)
|x− y|n+σp

dy :=
3∑

i=1

Ji, (2.2)

where Aϕ(y) := ϕ(y) − 1 + j1−qϕ(y) − j−q|y|−sϕ(y). For simplicity, let

γ := γ(n, σ, p) =
∫

Bc
1

dy
|y|n+σp

=
|Sn−1|
σp

,

τ :=τ(n, σ, p, s) =
∫

Bc
1

dy
|y|n+σp+s(p−1)

=
|Sn−1|

σp+ s(p− 1)
.

A straightforward computation yields that

0 � J1 � −
∫

B1(x)c

dy
|x− y|n+σp

= −γ,

and

−γ � J2 � −
∫

BR−2\B6

dy
|y|n+σp

= −(6−σp − (R− 2)−σp)γ.

For x ∈ B2, y ∈ Bc
R, we have |x− y| � |y|/2 in virtue of R > 9. Then

|J3| � 2(σ+1)p+n−2

∫
Bc

R

(1 + j1−q)p−1 + j−q(p−1)|y|−s(p−1)

|y|n+σp
dy

= 2(σ+1)p+n−2γ(1 + j1−q)p−1R−σp + 2(σ+1)p+n−2τj−q(p−1)R−σp−s(p−1).

For a sufficiently large R > 9, we have

(R− 2)−σpγ + 2(σ+1)p+n−2R−σp
(
γ(1 + j1−q)p−1 + τj−q(p−1)R−s(p−1)

)
� γ6−σp

2
,

which implies that

−3cn,σpγ � Kj(x) � −cn,σpγ6−σp

2
, ∀ x ∈ B2, j � 1.

Furthermore, after differentiating (2.2), it follows from a similar calculation that

3∑
i=1

|∇iKj(x)| � C(n, σ, p), for x ∈ B2, j � 1.

We proceed to verify property (K2). A simple calculation shows that for y ∈ Bc
3,

∂2
xkxl

(
1

|x− y|n+σp

)
(0) =

(n+ σp)[(n+ σp+ 2)ykyl − δkl|y|2]
|y|n+σp+4

. (2.3)
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Since the integral domain is symmetric, then we see from (2.2) to (2.3) that

∂2
xkxl

Kj(0) = 0, for k �= l.

If k = l, it follows from the radial symmetry of φ and ϕ that

[(n+ σp)cn,σp]−1∂2
xkxk

Kj(0)

= −σp+ 2
n

(∫
B4\B3

φp−1(y)
|y|n+σp+2

dy +
∫

Bc
R

|Aϕ(y)|p−2(j1−qϕ(y) −Aϕ(y))
|y|n+σp+2

dy

)

− σp+ 2
n

(∫
BR\B4

dy
|y|n+σp+2

− j1−q

∫
Bc

R

|Aϕ(y)|p−2ϕ(y)
|y|n+σp+2

dy

)

� −|B1|
(
4−(σp+2) −R−(σp+2) − 3j1−qR−(σp+2)

)
� −|B1|4−(σp+3), for a sufficiently large R > 9,

where we used the fact that |Aϕ(y)|p−2ϕ(y) � 3 in Bc
R. That is, property (K2)

holds.
From the radial symmetry of uj with respect to the origin, we know that Kj is

also radially symmetric. Then we have

∇Kj(0) = 0,

which, together with (K1)–(K2), leads to that for j � 1,

|∇Kj(x)| � c1, in B2ε0(4ε0e1), (2.4)

where e1 = (1, 0, ..., 0) ∈ R
n, ε0 := ε0(n, p, σ) ∈ (0, 1/4) is a small constant and

c1 := c1(n, p, σ) is a positive constant.
Define

ūj(x) := εs
0uj(ε0(x+ 4e1)), and K̄j(x) := ε

σp−s(p−1)(q−1)
0 Kj(ε0(x+ 4e1)).

Therefore,

(−Δ)σ
p ūj = K̄j(x)ū

q(p−1)
j , for x ∈ R

n.

Then combining (K1) and (2.4), we obtain

−C̄ � K̄j(x) � −c̄, c̄ � |∇K̄j(x)| � C̄, and |∇2K̄j(x)| � C̄, in B2,

where c̄ = c̄(n, σ, p, q, s) and C̄ = C̄(n, σ, p, q, s). Moreover, recalling the definition
of uj , we have

lim
|x|→∞

|x|sūj = 1, and min
B1

ūj = εs
0j → ∞, as j → ∞.

The proof is finished. �
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