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1. Introduction

1.1. The main concern of this paper is with the solution of infinite
linear systems

(1.1) xm+2k{m,n)xn = gm, m=N, N+l, • • •, 2V ̂  1

in which the kernel k is a continuous function of real positive variables
m, n which is homogeneous with degree —1, so that

(1.2) k(m, n) = m-^k{\, z) z = njm.

If k is a rational algebraic function it is supposed further that the con-
tinuity extends up to the axes m = 0, n > 0 and n = 0, m > 0; the possibly
additional restriction when k is not rational is discussed in § 1.2.

If the degree of k(m, n) were — d with d > 1, 2 2 £ » - i \k{m, n)\2

would converge, and Hilbert's theory based on completely continuous
bilinear forms over Hilbert space [1] would be applicable; the system
would be equivalent to an integral equation of Fredholm type. It will be
shown that, when d = 1, the system behaves like a singular integral equation
with Cauchy-type kernel; in typical cases, where the sequence {gm} is
arbitrary apart from convergence conditions, (1.1) can have several solutions
{xn}, with J k{m, n)xn converging at different rates for the different solutions.

The general theory is given in §§ 2—6, with a statement of its results
in §§ 4.9, 6.1 and 6.4. § 7 discusses asymptotic formulae for the solutions
and procedures for their approximate calculation. With trivial modification
the theory covers the integral equation

x(m)+ j°° k(m, n)x{n)dn = g(m), N>0

analogous to (1.1); this presents the simpler problem, and explicit formulae
for its solution are obtained in § 4.10.

In § 8 there is a summary consideration of systems that are more
general than but sufficiently 'close' to (1.1). With k(m, n) as in (1.1),
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the new systems have kernels of the forms (i) amk(m, n) with (am) a bounded
set of constants, (ii) k(m, n)(l+am)(l+bn), (iii) k(m,n){l-\-dmn) with
«m. *n. 4 . suitably small.

1.2. Hypotheses. Our theory is based on the simple remark that, if
the kernel is expressible in the form

(1.3) k(m, n) = J f{m, s)g(n, s)ds

in which the variables m, n are separated in the integrand, then (1.1)
expresses xm in terms of the auxiliary variable £ xnS(n> s)> an<i a n integral
equation for this auxiliary is immediately derivable. More than one represen-
tation of the form (1.3) is possible; the fruitful one is

J -C+tOO

(1.4) k(m, n) = —. K{s)m'-1n->ds, 0 < c < 1
2mJe_ix,

which by (1.2) is a consequence of the Mellin-type representation of the
kernel

(1.5) k(l, z) = —, f K{s)z-ds, 0 < c < 1.
2TU J c_ioo

To validate the theory K(s) must be suitably restricted, and the working
hypothesis which supplements (1.2) is

for z real positive k(l, z) is expressible in the form (1.5) where, with
the notation

(1.6) s = a+it

K(s) is regular in the band1 0 < a < 1, and for \t\ sufficiently large is regular
in —1 < a < 2 with

(1.7) K{s) = O(e-A|el)

uniformly in a, for some positive constant X.
Under the assumption of Mellin's theorem, K(s) in (1.5) is determined

by analytic continuation from

(1.8) K(s) = J" k(l, z)z'-1dz,

whence the satisfaction of the hypothesis just stated may be investigated.
For example, it is sufficient that k(l, z) be an analytic function regular at
2 = 0 and in the sector \arg z\ ^ d, and be single valued and O(z~1) for z ~ co;
for then the continuation of (1.8) is

(1.9) K(s) = (2*)-1 cosec ns f *(1, z)(-z)°-Hz

1 The term 'strip' is reserved for more particular use; see § 2.3.
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where C is a closed contour consisting of segments of the rays arg z = ±_d
and circular arcs near z = 0, oo on which |arg {—z)\ :£ n—6. Hence K(s)
sin ns is an integral function and there is an inequality of the form

\K(s)\ ^A |cosec:rs| exp (C\a-l\+{n-d)\t\);

so (1.7) is satisfied not merely for — 1 < a < 2 but for \ajt\ sufficiently
small. This hypothesis covers all rational k{m, n) which are continuous
for m Si 0, n > 0 and m > 0, n 2; 0 and homogeneous with degree — 1 ;
such a function gives the form

(1-10) *(i,,) = 2 _ i L _ ,

a finite sum of partial fractions in which each term has a =/= 0 and
|arg a\ < n, and (1.9) gives

(1.11) K(s) = n cosec ns J A f ] a'-\

The satisfaction of (1.5) by these forms may be verified by an elementary
calculation, without appeal to the general Mellin theorem.

In (1.9) it is not required that k(l, z) be globally single-valued; for
e x a m p l e w e c a n h a v e k(l, z) = (l+2az cosd+a2z2)~i w i t h a>0 a n d
—n < 6 < n, which gives K(s) = na~' cosec ns P^-^cos 0).

Another class of suitable kernels consists of meromorphic ones represen-
table by (1.10) with an infinite series on the right, provided that (i) each
term has ay± 0, (ii) the set (n— |arga|) has a positive lower bound, and
(iii) the series in (1.11) converges absolutely and uniformly for —1 sS a sg 2.
Other examples can be seen in a table of Mellin transforms [2].

The theory has a trivial extension to kernels of the form (tn/nyk' (m, n)
where k' satisfies our hypotheses, as is seen by applying to (1.1) the trans-
formation xn = ni f „. Thus an infinity of the kernel at n = 0 can be tolerated
provided that it has a compensating zero at m = 0; and vice versa.

1.3. Heuristic considerations. Dirichlet spaces. If we substitute from
(1.4) into (1.1) it becomes formally

(1.12) xm + — K(s)m'-1fN{s)ds = gm,

where

and thence, multiplying by wru and adding,

(1.14) fN(u)+ - L f ' ^ ( ^ ( s ) ^ - ^ ^ ^ ^ -
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These formahties will later be justified, but we may note immediately that
the condition Re u > c is required so that the series in the integrand of
(1.14) may converge.

It is familiar that, to obtain a workable theory of solution of a system
such as (1.1), an a priori restriction on the sequences {xn} to be considered
is necessary: we search for solutions in an assigned sequence-space. The
preceding formulae show that, for our problem, the relevant spaces are what
we call Dirichlet spaces Dx, with the definition

{xn} lies in Da if the Dirichlet series ^,xnn~' converges whenever
a > Re a.

Thus Da = Dp if a, /3 have the same real part, and Da C Dfi if Re a < Re /?.
The Dirichlet spaces present a notable contrast to Hilbert space and

its usual generalizations, in that their definition involves {xn} rather than
{\xn\}. We use them only descriptively, and do not need to norm them.

The values of a that are likely to be relevant may be seen by making
a further formal step from (1.14). Here

oo N-l

(1.15) 2* '" 1 "" = f ( H « - s ) - I » H H ' = £w(l+«—s), say,
N 1

where f(z) is Riemann's zeta function, which is everywhere continuable
apart from the pole at z = 1 where the residue is 1. Thus (1.14) can be
used to find the analytic continuation of /#(«) to any point to which
~£gm

m~u is continuable. Taking c < Re u < 1 we can displace the path
across s = « t o a position a = c' < 1, and for Re u < c' (1.14) is equivalent
to

(1.16) {l+K(u)}fN(u) +^~.f + "'K{s)fN(s)ts(l+u-s)ds = 2gmm-«,

whence we must expect /#(«) to have poles at all zeros of l-\-K(u) which
are to the left of a = c. Since at such a pole of /JV(W) the series (1.13) which
originally defined i t 2 cannot converge, we see that the relevant values of a
are the zeros of \-\-K{u) whose real parts are between 0 and 1, or a = 0 if
there are no such zeros. The logical sequence is that we begin by choosing
such an a, and confine the search for solutions {xn} to those that are in Dx.
Then (1.13) defines fa(s) for a > Re a, and — as will be proved in § 3.2 —
(1.1) implies (1.12), (1.14) with c chosen between Re a and 1; the restriction
c < 1 arises from (1.4). The passage from (1.1) to (1.14) may be reversed
by taking (1.12) as a definition of xm, and if — as will be proved — (1.14)
has solutions fN(s) these yield solutions {xm} in Dx.

2 The dummy symbol « is equivalent to s. Similar switches in dummies will often occur
below.
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There is here a slight air of paradox. If Re a.' < Re a, any solution
in Da, is in Da and hence is obtainable via (1.14) with c > Re a; but the
corresponding /JV(«) is regular at a, in spite of the suggestion from (1.16)
that it is there singular. The answer is that the suggestion must be wrong.
In fact, in the case that is contemplated (1.14) has a solution depending
linearly on at least one arbitrary constant, and a particular choice of this
constant renders /JV(M) regular at a and gives a solution {xn} which is in
the more restricted space Da,.

1.4. Treatment of the integral equation (1.14). Since the principal part
of ^m'-^-u for u near s is !/(«—s), we would obtain a singular integral
equation with Cauchy-type kernel by making u move on to the path of
integration; but this equation is not quite of the standard type, on account
of the residual singularity at s = oo. Also the emphasis for us is on analytic
properties of /JV(S) rather than its properties on an assigned path of in-
tegration. Hence we give a treatment from first principles, in which u is
always excluded from the paths of integration; we make no appeal to the
results regarding singular integral equations, but we use the leading ideas
of that theory [3].

The first of these ideas is to use a factorization

(1.17) l+K(s) = K+(s)K_(s)

in which the zeros and singularities of K+(s)[K_(s)] are just those of
l-]-K(s) to the left [right] of the line of integration a = c in (1.14), so that
K+(s)[K_(s)] is regular and non-zero for a > c[a < c]. Then (1.14) and
(1.16) show that K+(u)fa(u) is an analytic function with no singularities
except those of ^,gmtn~", and this can be taken as motivation for the
factorization. Of course, the factorization would also be the primary step
in an attack by Wiener-Hopf technique, but the characteristic step in
this technique — the determination of a function by appeal to Liouville's
theorem — does not seem to be applicable to our problem.

The second idea is to derive from (1.14) an equation which is free from
the potential singularity at u = s, by application to it of a suitably chosen
integral operator. One way to do this is to form the first iterate of the
equation, which has the same type of potential singularity as the original
equation, so that by suitable combination of the iterate with the original
the singularity can be eliminated. However, the critical point is that the
passage from the original to the derived equation should be reversible,
and for the procedure just suggested this is not the case. The fruitful
operator to use (§ 4) is, effectively, derived from (1.14) by taking the
singular part of its adjoint.
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2. The characteristic functions

For a given kernel k(m, n) the characteristic functions are K(s) as
introduced in (1.5) and defined by (1.8), and 1+K(s).

2.1. Special cases. When the kernel is rational the formula (1.9) shows
that K(s) has poles at most at s = 0, ± 1 , • • •, but in special cases some of
these points may not be poles. The most important of these cases are:

(i) If k(m, n) has a j-fold zero atm = 0, K(s) is regular at s = 1, 2, • • • /.
(ii) / / k(m, n) has an l-fold zero at n = 0, K(s) is regular at s = 0,

— 1, l+l.

These results follow from (1.8), where in case (i) k(l,z) = 0{z~i~1) for
z ~ oo, and in case (ii) k(l, z) has an /-fold zero at z = 0.

In these cases, then, the band of regularity of K(s) is — I < a < j+1,
and in (1.4) and consequential formulae the restriction —l<c<j-\-l
is sufficient.

2.2. Symmetry and pseudo-symmetry. We call k pseudo-symmetric if

(2.1) k(m, n) = mtrik'ifn, n) with k'(m, n) = k'(n, m)

where /, / are non-negative integers; if ; = I, k is symmetric. From the
homogeneity with degree —1 of k we have k{l, z*1) = zk(z, 1), while
from (2.1)

*(*. 1) = z'k'iz, 1) = *'ft'(l, z) = **-'A(l, z).

Hence (1.8) gives, by a change of variable z = u~l,

K(s) = f °°ft(l, z-^z'-'-i-z'^dz
(2.2) J o

This shows that K(s) has a centre of symmetry at s = |(1+/—/), a point
which bisects the axis of the band of regularity found in § 2.1.

2.3. The zeros and indices. The zeros of the characteristic function
1+K (s) will play an important part in the theory; they may be investigated
by standard methods, into which we do not here enter. For a general
theory we must allow that some of them may lie in the band of regularity
(0, 1) [or (—/, /+1) in the special case of § 2.1]; on account of (1.7) the
number in any interior part of this band must be finite, and if K(s) is
meromorphic the same will hold for the complete band.

By lines a = const, through these zeros the band of regularity is divided
into a number of strips 5.

For any such S, its index /x relative to \-\-K{s) is defined as the in-
crement in {2n)~l arg (l-fif(s)) as s runs from i— oo along any path in S
to i'oo; on account of (1.7) it is an integer (positive, negative or zero).
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For any two adjacent strips, the one on the right has the greater index,
the difference being equal to the number of zeros of l+i^(s) on the common
boundary, counted according to their multiplicity.

When the kernel is symmetric or pseudo-symmetric, and the centre-
line a = ^(l+j—l) of the band of regularity of l+i£(s) contains no zeros
of this function, (2.2) shows that the strip S which contains this line has
zero index; but if there are zeros on the line — necessarily even in number —
the strips on either side of it have non-zero indices ±yw, and there is no
strip with zero index.

For the signs of the set of indices of all the strips there are 7 possible
cases:

(i) all are + ; (ii) all —; (iii) there is only one strip, with index 0;
(iv) some are + and one 0; (v) some — and one 0; (vi) some + and some
— but none 0; (vii) all of + , 0, — occur.

The example k(m, n) = Aj(m-\-nla), where by (1.11)

l-\-K(s) = l-\-7tAa' cosecirs

gives each of the cases for suitably chosen real A, a, with a > 0:
For a = 1 we have case (iii) for 0 < %A < 1, (vii) for — 1 < nA < 0,

and (vi) for nA ^ — 1. For a =£ 1 we take A > 0 and note that, on the
imaginary axis s = it,

l+K(it) = 1+nA cosech^exp (it log a—\in).

The two points where sinh nt = ±nA divide the axis into three parts.
On each of the extreme parts \nA cosech?^| < 1, and

while on the middle part the difference between arg (l-\-K(it)) and
arg exp (it log a) is always between ±JT. Hence for the whole axis a = 0,
indented in either sense around the pole s = 0, the index differs by at
most 2 from

(2.3) 7T-2 log a arc sinh (nA).

For the line a = 1, indented around the pole s = 1, the corresponding
estimate is

(2.4) n~2 log a arc sinh (naA).

For fixed positive A, both (2.3) and (2.4) are large positive when a
is sufficiently large, and the latter is much the larger; so there are a large
number of strips all of positive index. Similarly, for fixed Aa they are both
large negative when a is sufficiently near 0, and there are a large number
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of strips all of negative index. Thus we get cases (i) and (ii). Case (iv) arises
from case (i) by keeping A fixed and allowing a to diminish continuously
until the leftmost strip acquires the index 0; and case (v) similarly arises
from case (ii).

2.4. Factorization. A factorization of l-\-K(s) such as is indicated
in (1.17) is relative to a zero-free strip as just defined; the factorizations
relative to two such strips are different, but simply related.

(i) / / the index of the strip is 0 we choose two paths a = c,c' in the
strip, with c < c', and define

(2.6)

S—Z

r 1 re'+ieo log (l+K(z))dz-\
KJs) = exp 8 V w ; for a < c'.

Here, with an appeal to (1.7), we take the logarithm to be that branch
which ~i£(z) = 0(e~A|'l) for t = Im.z~ — co; and because the index is
0 the logarithm will be 0(e~A|i|) for t~ +oo also. Hence the integrals
converge, and define regular functions of s in the respective half-planes;
so K+(s), K_(s) are there regular and never zero.

For c < a < c' both K+(s), K_(s) are defined, and their product is
the exp of a 'closed contour' integral, with the pole z = s of the integrand
inside. Hence

(2.7) K+(s)K_(s) = 1+K(s).

By appeal to analytic continuation, this relation now serves to define
each of K+, K_ in the half-plane where originally the other was defined,
in so far as K(s) can there be continued. The relation is then universally
valid, and shows that K+(s)[K_(s)] has just those zeros and singularities
of 1+K(s) as lie to the left [right] of the strip.

In (2.5) we can move the path of integration a little to the left, and
the formula shows that

K+(s) and its reciprocal are bounded for a 2? c and l-\-O(a~1) uniformly
for a ~ +oo.

Similarly

K_(s) and its reciprocal are bounded for a :g c' and l-\-0(a~1) uniformly
for a I~~I — oo.

If (1.7) holds in sectors centred on arg s = ±.\n, and not simply in a strip,
these asymptotic estimates may be strengthened to asymptotic expansions
in powers of s-1; in the case of (2.5) this is done by rotating the ends of the
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path of integration as as to lie along rays argz = ±(i3I+<5). <5 > 0, and
expanding (s—z)"1 in powers of s"1.

(ii) / / the index n of the strip is not zero we choose any points slt s2

to the right and left of the strip, respectively, and introduce the auxiliary
function

Since the index of {s—s^Ks—s^) for the strip is —1, the index of y>(s) is 0,
so there is a factorization y>(s) = f+(s)y>_(s) with the properties just
demonstrated. Thence we define

K+{s) = f+(s)(s-s2)", K_(s) = iMsMs-Si)-'.

and K+(s), K_(s) have the same properties, including (2.7), as in (i), except
that

(s+1— c)~>'K+(s) and its reciprocal are bounded for a 2g c and
1+0 (cr"1) uniformly for o *~~i + oo,

(s_l_c')/i^_(s) and its reciprocal are bounded for a ^ c' and
1+0 (a"1) uniformly for a ~ — oo.

By Liouville's theorem it can be proved that these factor-functions are
independent of the choice of the auxiliary points slt s2.

If (2.7) is the factorization relative to one strip, and if l+lf(s) has
zeros sx, • • • sr on its right hand boundary, then the factorization relative
to the next strip to the right must be

1+K(s) = K+(s) IT (ss,) • K_(s) IT (s-s,)-1 = K+(s) • K_(s);
x=l v-X

for the factors K+, K_ have the correct disposition of zeros and singularities,
and the correct normalization as shown in (2.8).

3. Convergence and commutation theorems

To justify the formal passage in § 1.3 from the linear system (1.1)
to the integral equation (1.14) we have to establish the validity of certain
commutations of summation and integration, involving Dirichlet series.
For this we appeal as necessary to the well known properties [4]:

if ^,xnn~' converges for a > a0, then (i) it converges uniformly in any
compact part of the half plane a 2; <T0+e > a0, and defines a function f(s)
which is regular and uniformly O(t) for \t\ ~ oo in this half plane; and (ii)
the series converges absolutely and uniformly in the half plane a 2; ao-\-l-\-e,
and f(s) is there bounded.
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3.1. LEMMA 1. Let %p{s) be regular in a strip a < a < /?, and for \t\ ~ oo
in the strip a < a < 1+/S let yi(s) be regular and O(e~x^) where A > 0,
and let {%„} be in the Dirichlet space Da; then for a < c < /?

(3.1) 2 *„ j^2v(s)n-ds = £ ' " f(s) 2 znn-ds,
the series on the left being necessarily convergent.

PROOF. Since {xn} is in Da, 2 *„»"* converges for cr Sg c and converges
absolutely for er ̂  c-\-\. Let the path cr = c be deformed into a position Z,
in which the sufficiently distant parts lie on a = c+1; by the hypothesis
on y (s) the deformation will not involve the crossing of any singularities
of this function. Then for integration along the far parts of L we have,
by absolute convergence,

jy(s)n-'ds = jy)(s) £ xnn~sds,

and by uniform convergence the same holds for integration along the in-
tervening part. Hence the analogue of (3.1), in which the integrations are
along L, is valid.

But since \n~*\ •g,n-e and \J,xnn-'\ ^A\t\ and f(s) = 0{erm), each
of the integrals along L is equal to the corresponding integral along a = c;
so (3.1) is established.

3.2. The integral equation equivalent to (1.1). The passage from (1.1)
via (1.4) to (1.12) involves the commutation (3.1), with y>(s) —K(s)m'-1;
so (1.12) is established provided {xn} is in some Dx with a < 1, and
oc < c < 1. s To pass thence to (1.14) we multiply (1.12) by f»~", sum,
and commute summation with integration. This commutation is justified
by absolute convergence, provided Re u > c, so (1.14) is established,
with the series 2 gm

m~u o n the right necessarily convergent — which means
that (1.1) cannot be satisfied by an {»„} in Da unless {gn} is in Da.

Conversely, suppose that {#„} is in Da and that (1.14) has a solution
/#(«) which is analytic for Re« > c, and continuous up to Rew = c,
and 0(Imu)A for some constant A and R e w S : a + e > a . Then JN(U)
satisfies also (1.16); and if \-\-K(u) ^ 0 for a < Re u < c', fa(u) is regular
for Re u > a.

Let xm be defined by (1.12), viz.
i /.c+ioo

(3-2) x"+V--\ K(s)m-^fN(s)ds = gm

for m — N, N+l, • • •. By the hypotheses on fN{s) we can here move the
line of integration to any position a = ax > a, and for such a a1 the integral

3 a < c < /+1 in the special case of § 2.1.

https://doi.org/10.1017/S1446788700026744 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026744


[11] Infinite linear systems with homogeneous kernel of degree —1 139

is Oinf1"1); also ^gmm~ai converges since {gm} is in Da. Hence ^,xmm~'
converges for a > ax, where ax—a may be arbitrarily small; so {xn} is
in Da. By multiplying (3.2) by m~u, summing over m, and subtracting
(1.14) we get

(3.3) 1 xmm-« = fN{u)
N

for Re u > c, and by continuation this holds for Re u > a. Finally, by
substituting from (3.3) into (3.2) and commuting the summation and
integration we arrive via (1.4) back at (1.1). To sum up:

THEOREM 1. For some a in the band of regularity, say (0, 1) of K(s)
let {gn} be in Da, and let l-\-K(s) ^ 0 in the strip a < a 5S c < 1. Then the
formulae (3.2), (3.3) establish a one-one correspondence between solutions
{xn} of (1.1) that are in Da and solutions /JV(W) of

(3.4) M«)+—. î sK
2 m J t-ioo N _

Rew> c

which are regular for Re u > a and 0(Im u)A for Re u 2; a + s > a- Here

(3.5) fiv(2) = C ( 2 ) - i » - z .
I

3.3. The adjoint system and integral equation. If we compound the
equations (1.1) with a set of multipliers ym we obtain

(3.6) 2 M . = 2y«&.

(3-7) » . + I »-*(»»,«)=*»,
provided that

(3.8) l!/™*™ converges

and

(3-9) Iy

The utility of this procedure is that (3.6) may be a 'nicer' equation than
any one of (1.1); e.g. the left member reduces to x, if hn = dnv in the adjoint
system (3.7). Taking hn = 0, (3.6) leads to the theorem that for (1.1) to
have any solution {zn} it is necessary that {gm} be orthogonal to every solution
(ym) of the homogeneous adjoint system 4 — provided of course that the

* The notation ( ) is used for row-vectors, { } for column-vectors.
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conditions (3.8), (3.9) are satisfied. In fact, the orthogonal condition is
sufficient also for solubility of (1.1), but the proof of this requires much
more effort, and is achieved only in § 6.

To perform on (3.7) operations that are strictly analogous to those
of § 1.3 we should begin by making in (1.4) the change of variable s' = 1—s,
so that the index of the summation variable m may become —s'. This
shows that the adjoint characteristic function isi?(l —s), and that properties
relative to left half-planes are adjoint to those for right half-planes. However,
when simultaneous consideration of the direct and adjoint systems is in
question it is clearest to apply (1.4) as it stands to both. Hence we are led
to the following adjoint of Theorem 1;

THEOREM 1A. Let a. < a < /9 be a zero-free strip of regularity of \-\-K(s),
and let (hn) be in D1_f. Then if a. < c' < /? the formulae

(3.10) f*(u) = 2 y m » - i , Vu+^-. f+t°°K(s)n->f*(s)ds = hn

establish a one-one correspondence between solutions (yn) of (3.7) that are in
Dx_fi and solutions f£(u) of

(3.11) f*{u) + -L f +'°°K(s)!;N(l-u+s)f*(s)ds = I *„»-! = hN(u),
Re u < c

which are regular for Re u < /? and O(lm u)A for Re u ^ /S—e < fi.
3.4. Further convergence theorems. We now consider propositions of

the form (3.8) and (3.9). The example xm = ym = (— l)m shows that the
presence of {xm}, (ym) in Do — and a fortiori in Da with a > 0 — is in-
sufficient to secure the convergence of ~^xmym. However, the zn, ym

that will be in question will satisfy (1.1) or (3.7) or some set of equations
such as (3.6) that are found a posteriori, and this is a decisive restriction.

LEMMA 2. Let a, /? be respectively to the left and right of a zero-free strip
of regularity of 1+K(s), let {xn} be in Da, and let (yn) be a solution in D^
of (3.7). Then 2 %nyn converges if 2 hnxn converges and if either (i) 2 xnn~'
converges absolutely for a > a, or (ii) 2A n » s - 1 has a regular continuation
into the parts of the strip /? :g a < /9+1 for which \t\ is sufficiently large and
is there at worst O\t\A for \t\ ~ oo, uniformly in a.

PROOF. The hypothesis on yn implies (3.10), so from the convergence
of ^xnhn will follow that of ^xnyn provided

c'—too

converges. If ^,xnn~' converges absolutely this is immediate, since
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K(s)fx(s) is exponentially small for tf~ ±oo. If the convergence is only
conditional we appeal to Lemma 1, for which we require the continuability
of /JV(S) through c' sS a ^ c ' + l with \t\ sufficiently large; and for this
latter we have from (3.11)

(1+K(u))f*(u) + -L r™K(s)tN(l-u+s)f*(s)ds = 2hnn»-i

for a < c < c' and Re u > c. The hypothesis (ii) on hn, together with
K(u) ~ 0 for Ira«»~ i o o , shows thence that f%(u) is continuable as
desired, the integral term being at worst algebraically large for Im u ~ ± oo
(from known properties of £(z), cf. § 5.1).

COROLLARY. / / (yn) is a solution in Dx_fi of the homogeneous adjoint
equation, it is sufficient that {zn} be in Da: Proof: hn — 0.

We now deal with the commutation property (3.9), supposing that
{xn} is in Da and (yn) in Dx_e, where a, /? are as in Lemma 2. On substitution
for k(m, n) from (1.4) the sum on the left becomes, by use of Lemma 1,

S-. I ym\ K(s)m°-yN(s)ds, Ms) = 2 * . » -

and this converges and equals

provided ^,ymms^1 is a finite summation or is absolutely convergent; or
provided the adjoint of the argument of Lemma 1 is applicable, which
involves a displacement of the far parts of the path to the left by one unit,
and so involves the leftward continuation of fN(s)- For this latter the
adjoint of the argument of Lemma 2 will serve, provided {#„} satisfies
(1.1) with {gn} suitably restricted.

The commutative property (3.9) will now follow from the symmetry
of the first expression in (3.12), under adjoint hypotheses to those just
indicated. Hence we obtain

LEMMA 3. Let a, ft be respectively to the left and right of a zero-free strip
of regularity of l+K(s), let {xn} be in Da and (yn) in Dx_fi and let a < c < /S.
Then (3.9) is valid provided

(i) 2 ym
m<i~x JS absolutely convergent, or {xn} satisfies (1.1) with 2 gn

n"'
continuable into the parts of the strip a— 1 < a < a for which \t\is sufficiently
large and uniformly O(\t\A) for \t\ ~ oo there; and

(ii) 2 xmm~"JS absolutely convergent, or (yn) satisfies (3.7) with 2 h^''1

continuable into /? 5S a < /S+l and uniformly 0(1*1 )̂ for \t\ ~ oo there.
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If the y-summation is finite the hypothesis (ii) is unnecessary and (i) is
satisfied.

NOTE. In the case of hn = k(m, n) with m fixed — which will arise
in § 6 — we can by use of (1.4) express 2 hn

n*~~x as an integral and hence
show that the continuation hypothesis in (ii) is satisfied; while for hn = 0
this is trivial. Similarly (i) is satisfied if gm — 0 or gm = k(m, n) with n
fixed.

4. Reduction of the integral equation (3.4)

The heuristic considerations underlying the following investigation
have been shown in § 1.4.

4.1. The kernel of (3.4) contains the singular factor far(l+«—s), and
to isolate its singular part we put

(4-1) &(*) = (2V-J)1

so that rjtf (z) is everywhere regular. The dependence of this function on N
will be discussed in § 5; at present all that we need is that it is Ojv(Imz)
on paths of integration where Rez is near 1, so that integrals where it is
multiplied by an exponentially small factor converge absolutely.

In (3.4) we take the path a — c to lie in a zero-free strip of 1+K(s),
of index fi, relative to which there is the factorization

(4.2) 1+K{s) = K+(s)K_(s)

with the properties shown in § 2.4.
To match (4.1) we put

(4.3) K+(s)fN(s) = (iV-|)-«/(s), gir(s) = (N-

the effect of the factors (N—J)~* here and in (4.1) is to absorb the grossest
part of the variation of fN(s). By these transformations (3.4) becomes

(4.4) -L f (K_(s) ~ - 1 - ) (— +m{l+u-s))f(s)ds =
2niJL\ K+(s)/\u—s /

where L is the path a = c, for u to the right of L.
4.2. For logical clarity we define, for s to the right of L,

(4.5)

F(s) =pL + ±-{ (K_(z)- J^-M— +Ml+s-z)\ f(z)dz-g{s),
K+(s) 2mJL\ K+{z)/\s—z I

a functional of any two functions /(s), g(s) which are regular in the strip
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containing L and are uniformly there 0\t\A for \t\ <~ oo, A being some
constant. Let L' be a path a = const, in the strip, to the right of L; then
by (4.5) and (2.8) F(s) is defined and regular on U, and is there A^
so for u not on L'

K_(s)J s-u

JiA tf+(s)K_(s)j s-« }L\ K_(s)J
* ) * f fc fs) * W
- « } L \ K_(s)J s-

by (1.7), (2.7) and (2.8) all the integrands here are exponentially small at
infinity, so the commutations that have been imposed on the double integrals
are justified by absolute convergence.

We wish now to handle the inner integral in the last term by splitting
it into two integrals, involving K+(s), 1/K_(s) separately, and evaluating
these from residues in the half planes to the right and left of L' where these
respective functions are regular. From (2.8) this can be done provided
the index (i is zero or negative, and when u, like z, is to the left of L' the
resulting value of the last term in (4.6) is

_[ (K M l \ /(«)& r (K (z)
 1 \ Mdz

h\ K+(z)jK_(z)(z-u) JL\ " U K+{z)JK_{u){u-z)'

The first of these terms agrees with the first term on the right of (4.6)
except that the respective paths of integration are L, L'; so taking now u
to be between these paths they combine to give, by the residue at s = u,

The second of the terms, when multiplied by (2m)~1K_(u), coincides with
a term in the expression (4.5) for F{u) and can thence be eliminated. We
state the result with the help of an auxiliary function G{u), as follows:

if f{s), g(s) are regular in the strip containing L, L' and are uniformly
O(tA) for t ~ zh00. and if u is between L, L' and the index ft of the strip is
not positive, then the statements
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\ rjN(l+s-z)ds-
j

are equivalent, where F(s) is defined by (4.5).
4.3. When fx > 0 we take fi-\-l distinct points u0, ult • • • u^ between

L and L', put u = ur in (4.6) and multiply it by the reciprocal of
JJ ' {ur—up), and add the results. Since
v*r

1 f 1

(4'9) = ( s ^ ) n ' ( « « ) '
r=0

reference to (2.8) shows that we shall obtain in the last term an inner
integrand which is 0(s~2), so it can be evaluated as before, and the result
can be expressed in partial fraction form as on the right of (4.9). This
form is maintained in the subsequent eliminations of integrals via the
F(uT), and the result is, with G(u) defined by (4.8),

f. G(ur)
-0 IT («r-«,)

\ / I

4.4. Returning to the case where /J, = —p' is negative, we could have
used in (4.6) an arbitrary polynomial factor P/('_i(s) of degree fi' — l in
place of the factor (s—w)"1. Hence we obtain

(4-11)
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4.5. The operator on the right of (4.7) has the same structure relative
to L', K+, K_ as that on the right of (4.5) has to L, K_, K+. Hence we
can establish similar transformations, as follows:

if F(s) is regular in the strip containing L, L' and uniformly O(tA)
for t~ ±00, and G{u) is thence defined by (4.7) for u between L, L', then
for ft ^ 0

and if (i = —(i < 0 and u0, ux, • • • u^ are in the strip,

' F(ur) £ 1

-o IT' («,-«,) -o IT' («,-s)
(4.13) «"" " "

L _ ± f (K w_ _L_\ £W*1
K+(ur) 27iiJL\ -Kl K+(s)J s-urf

4.6. The integral equation (4.4) is by (4.5) equivalent to F(s) = 0.
By (4.7) this implies G(u) = 0 when /* ^ 0, while for /* > 0 it implies
by (4.10)

» G(«r) _

•5 IT' K-s) = °'
which shows that G(w) is a polynomial PA_I(M) of degree ju—1. Hence,
referring to (4.8) and (4.11):

for g(u) regular in the strip and O(Im u)A for u ~ ±*oo, any solution
f(u) of (4.4) which is similarly behaved to g(u) must satisfy, for u between
L and V,

*-*) . f (K (s)

(S)
 l

^ ( « ) if ft > 0
is the index of the strip and P^-x is some polynomial of degree (i—l;

also if ii = —n' < 0, f(u) must satisfy

aw arbitrary polynomial P^_x of degree y!'—1.
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In (4.14) we can allow u to move on to the z-path L since ?£y(l+w—Z)
is there regular and in the inner integral \s—u\ is bounded away from 0;
and on account of the exponential smallness of K_ (z) — 1 jK+ (z) for z ~ ± i oo
this is a regular (Fredholm) equation. In § 5 we shall prove that it is soluble
by iteration when (for a given k(m, n)) N is sufficiently large.

4.7. Conversely, we shall now prove that the solution of (4.14) satisfies
(4.4). We assume that g(u), f(u) are regular in the strip and 0(lmu)A

for u ~ ±i'oo, the former by hypothesis and the latter consequentially,
as will be shown in § 5. Then by (4.5) F(s) is defined and regular to the
right of L; but for s to the left of L' (4.5) implies

(4.16)

F(s) = f(s)K_(s)+^~.j(K_(z)-~^ (-L +riN(l+s-z)j f(z)dz-g(s),

and from the two formulae it follows that F(s) is regular in the whole
strip and is there of the form O(tA) for t ~ ±oo. Hence we can appeal to
(4.12) or (4.13).

If ix = 0, (4.14) is by (4.8) equivalent to G(u) = 0, whence from
(4.12) F ( M ) = 0 ; SO /(«) satisfies (4.4).

If fi > 0 we can take P/8_1 in (4.14) to have arbitrary coefficients,
and comparison with (4.8) gives G(u) = Pp-^u). Thence by (2.8)

K_ {s)G(s) = O(s~1), G {s)jK+ (s) = 0 (s"1)

in the appropriate half planes. Hence in (4.12) we can split the integral
into two parts, and since u is to the right of L its value is G{u)jK+{u);
so F(u) = 0, as desired. It is plain that linear independence of a set of
polynomials -P^-i on the right of (4.14) implies linear independence of the
corresponding solutions f(u).

If fi < 0 we have G(u) ES 0, as when ft = 0, whence (4.13) shows that
F(u) is some polynomial of degree /*'— 1. We assume that the consistency
condition (4.15) is satisfied, and this along with (4.11) gives

where we have put

s_u

a polynomial involving u as an arbitrary parameter. Thus (4.7), where
G(u) = 0, becomes
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KM 1 \s*'F{s)ds

This is valid for R e » ~ — oo. But then, on the right, K_(u) = Oiu1*')
and the integral is 0(Re u)~x; so since F(u) is a polynomial it must be 0,
as desired.

4.8. By theorem 1 (§ 3.2) each solution of (4.4) leads to a solution of
(1.1). Before we give a formal statement of the results we shall verify
that when /* < 0 the consistency condition (4.15) is (as we would expect)
equivalent to the orthogonality of {gn} to every solution (yn) of the homogeneous
adjoint system (3.7). On substituting in (3.11) for £N from (4.1) and putting

(4.17) K_(s)f*(s)=(N-%)>f*(s)

this equation, with hn = 0, becomes

) ( i ) ( s ) i s =0;

and by arguments like those of §§ 4.2—4.7 this is proved to be equivalent to

( 4 i 9 ) -

when n = —/*' < 0, P/l>_1 being an arbitrary polynomial of degree /*' —1.
By the theory of § 5, (4.19) has a unique solution when N is sufficiently
large, and it is plain that the solutions corresponding to different polynomials
Pp'-i a r e linearly independent. Hence, via (4.18) and (3.10), we have /i'
solutions (yn) in D1_fi of the homogeneous (3.7), linearly independent, for
/S to the right of the strip in question.

For any such solution (yn) and any {gn} in Da, where a is to the left
of the strip, the corollary to Lemma 2 along with (3.7) gives

which by (4.3) and (4.17) becomes

(4.20) -!>„£„ = ±J^K+(u)-j^) g(u)f*(u)du.
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Also for /*(s) satisfying (4.18) and any /(s) which is regular in the strip
and O(tA) for t ~ ± oo we have, by commuting a double integral,

On the left we can replace the path L by L' and on the right interchange
the dummies u, s. Hence, combining this result with (4.20) and referring
to the definition (4.5) of F(s),

whence substitution for /*(«) from (4.19) gives

where

1 \Tj»(l-u+z)F(u)du

)
-[ IK UA

Suppose now that, for the given {gn}, /(s) is the solution of (4.14);
then by §4.7 F(«)is a polynomial of degree^'—1, so K+(u)F(u), F{u)jK_{u)
are O(u~l) in the right and left half-planes, respectively. In (4.21) the inner
integral in the last term equals F{s)jK_{s), and so, Q = 0. Hence

by (4.11). By (4.15) the vanishing of the right hand member is the con-
sistency condition, so its equivalence to 2 VnSn = 0 is established.
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4.9. Implications regarding the system (1.1). These follow immediately
by combining the results of §§ 4.6—4.8 with Theorem 1 (§ 3.2). The band
of regularity (in general 0 < a < 1) of l+i£(s) is divided into strips S
by lines a — const, through the zeros of this function. If any such S = S (a, /?)
has zeros a, /? on its left and right boundaries, respectively, and if the index
of the strip is fi, we have

THEOREM 2. For the system (1.1), in which N is sufficiently large and
{Sn} *s in A»> there is in association with any strip S(<x, ft) of index fi

(i) if fi — 0, one solution {xn} in Dx;
(ii) if p > 0, a general solution in Da depending linearly on y, arbitrary

constants, the coefficients of these constants giving linearly independent solutions
of the homogeneous system (1.1) with gn — 0;

(iii) if /i < 0, one solution in Da, provided only that {gn} is orthogonal
to each of the (—/x) linearly independent solutions in D^g of the homogeneous
system adjoint to (1.1).

(iv) The totality of solutions thus associated with any one of the strips S
is associated with the S that is furthest to the right.
(iv) is true because a solution in Da is automatically in any Ba, for which
Re a' > Re a.

The consistency of the preceding statements may be seen also by
consideration of the conditions that a solution in Da, (where the strip S'
to the right of a' has positive index ft) be actually in Da with Re a < Re a'.
These conditions are (a) that the associated fa(s) be regular at a', or at
the several «.' which may lie on the left boundary of S', and (b) that {gn}
be in Da. The condition (a) is equivalent to the vanishing of (l-\-K{u))fN(u)
at a', and this provides one relation between the arbitrary constants in-
volved in /#(«) for each a' on the boundary. Thus the number of solutions
in Da decreases stepwise as Re a decreases. For passage from a strip with
ft = 0 to one with n < 0 no arbitrary constants remain in /#(«), and regularity
at the zeros on the common boundary is secured only by the imposition of
restrictions on the gn.

At the heuristic level we may note that, for any solution {#„} of (1.1)
in the ordinary sense, ^k(m, n)xn must converge for every m; and since,
for fixed m, k(m, n) = 0{n~x) for n ~ oo it seems that ^a^w"1 must
converge. Then, unless ^,xnn~' has a = 1 as its abscissa of convergence,
{xn} is in some Da with a < 1. Thus the preceding theory covers all solutions
except possibly 'marginal' ones.

4.10. The integral equation

(4.22) x(m)+ j™k(m, n)x(n)dn = g(m), m^N>0.

is the continuous analogue of (1.1). From the homogeneity property (1.2)
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of the kernel, it is equivalent to equations in which the range of integration
is (1, oo) or (0, 1), by evident changes of variable. A particular example
of the latter form was solved by A. C. Dixon [5], using ingenious adhoccery,
or more compactly by Titchmarsh [6],

The methods of this paper lead directly to its solution. The analogues
of (3.2), (3.3), (3.5) are

•t i»c-\-ioo AOO

—. K{s)m'-1fN(s)ds = g(m), x{m)m-udm = jN(u),

ZN(z) = f tr'dn = , Re z > 1
JN Z — 1

and the analogue of (3.4) is, for Re u > c,

1 re+ioa K(s)N""fx(s)ds r°°

2niJll_iBO u—s ]N

By

(4.25) K+(s)fN(s)=N-f(s), GN(s) = N-*G(s)

this reduces to the form (4.4) with TJN = 0, so by (4.14), (4.15) the solution is

0 if a ^ 0

with the consistency condition in the case ft = —p' < 0

(4.27) £ (K+(s)- j ^ j P^1{s)G{s)ds = 0.

(4.26) gives all the solutions associated with a strip of index /n, under
the condition that the integral defining Gn(u) in (4 24) converges for u
in the strip. By taking the solutions thus associated with the furthest
strip to the right in the band of regularity of K(s) we get the totality of
solutions for which f£z(m)m-udm converges for some u in this band.

5. Iterative solution of the integral equation (4.14)

5.1. Estimates for r]N(s). We require estimates depending explicitly
on N. Writing N—-J = x we have by the definition (4.1)

(5.1) VN (s) = x'-1 CN{S)-—-

where (cf. [7])
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= 2 n~~* = — ir
2

c o t

(cot 7iz—i)z~'dz
I f*+<OO

. (cot
2i j x

nz-\-i)z~'dz,

with the latter formula holding for all s. The substitutions z =
thence give

2 exp (— £s log (l-\-v2jx2)) sin (s arc tan vjx)dv

and here

(5.2)

m Is arc tan —I
. \s\v \s\v

^ smh -i-J— < -iJ— exp
X X

sm I s arc tan

5.11. First let \s\ ̂  nx. Then for a ̂  0

(5.3) |JWJJT(S)|<2
* / * Jo

v2\ I v2fx2 ii v ^

For a = —<T' < 0 we use

/ v2\
°S I 1 + xV ~\ log (2v*[x2) if w ^ x.

Thus if j ; ^ x the modulus of the integrand in (5.2) is less than

„ „ \s\v la'v% \s\v\ 2|s|» , , %&—1L exp (— + 1L) ^ -U- exp (-1*,)

(since \s\ ̂  ĉa; and a'v ^ |s|af ^ ĉa;2); while for v ̂  a; it is less than

< ^ 2|s| '
• exp-

Hence for a = — a' < 0
2|j i /«o

\*Wr[s)\< — \x Jo

2\s\

ffi
9lcl / ^ / 9 \ a z*00

l i • e y t

a; \ a; / Jo

'' r(2+ff')
n*

Here, by Stirling's formula,
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so finally if \s\ ^nx

(5.4) \rjN(s) | ^ |^ |s |a : - 2 ^ A\s\N~*

where A is an absolute constant.
5.12. For \s\ > nx we shall restrict attention to estimates uniformly

valid for —H ^a^H, where H is an absolute but arbitrary constant.
These are derived from the approximate functional equation for the zeta
function [7], which gives, for |/| ^K> 0 and hence for \t\ ~2ji

where y is defined by 2nxy = \t\ and % = 2'n—1 sin |jrs.F(l— s)
Hence by (5.1)

xZN(s) :

By using an elementary estimate for 2 w'"1 we obtain

(5.5) xr)N(s) = O(\t\i)+O{x\t\-i), 0<a0

(5.6) aaj*(s) = 0 + O(x\t\-i), -H<a^-ao< 0;

for — a0 sS a ^ a0, a factor log \tjx\ is to be adjoined to the first term on
the right.

In view of (5.4) these estimates need be used only for \tjx\ 2g \n,
so we can simplify (and weaken) them by inserting positive powers of
\t\x\ on the right. Hence (5.5) gives x2rjN(s) = O(\t\%), and in combination
with (5.4) we have

(5.7) \VN(S)\ ^ J 1 ( l + |i|t)iV-2
) 0 < c0 ^ a ^ H, all t,

for some positive constant Ax.
5.2. Iterative solution of (4.14). We abbreviate the equation as

(5.8) /(«) - J ^ h i u , z)f{z)dt -

when t = Im z and

and h(u) is the function on the right of (4.14). We take u to lie on the same
path L as z, and write v = Im u, so taking a = 1 in (5.7)
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(5.11) |IJW(1+I»-Z)| ^ A1(l+2\v\i+2\t\i)N-\

K+(z) K_(u)

In (5.9) we have, from (2.8), (1.7) and (1.17), for absolute positive constants
A2, Az, and X' < A

(5.12) " ' • * - ' "'" X

so

(5.13)

In (5.10) the integration is along a path V to the right of L, so \s—u\
exceeds the positive constant Re (s—u). For TJN{1+S—z) there is an
inequality of the form (5.11), and for \K+{s) — ljK_(s)\ one of the form
(5.12)x. Hence we have the form

(5.14) ^(i*, z ) | ^

with A 4 an absolute constant.
For h(u) in (5.8) we have

(5.15) \h(u)

where p is some positive constant, and B a constant whose dependence
on N is not relevant.

For the solution of (5.8) we define an iterative sequence by

fn+1(u) = A(«) + J 4>x(u, z)fn(z)dt + j <f>2(u, z)fn{z)dt, n = 0, 1, 2, • • •

starting with fo(u) = h(u). Then, writing

we have

(5-17) lz-«(«)l ^ I l^i(«, *)z.(*)l* +

From the form in which |w| is involved in (5.13), (5.14) it is seen that
a hypothesis which is suitable for inductive verification is

(5.18) |zn(*)|^JIfn(l + |*K)(l + |*|t)

with Mn some constant. On substitution of this, along with (5.13), (5.14)
in (5.17) the integrals converge because of the exponential factor and we
obtain the form

with A5, At, A7 absolute constants. Hence Xn+i(u) satisfies an inequality
of the form (5.18), with

https://doi.org/10.1017/S1446788700026744 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026744


154 T. M. Cheny [26]

Mn+1[Mn = N-* max (At+A,, A6)

and we shall have Mn+1/Mn ^ q < 1 if

(5.20) N*^q-lxaax.{Ah+A1,A6), 0 < g< < 1.

To start the induction we have on the right of (5.17) %0(z) = fo(z) — h(z),
and by (5.15) \%0(z)\ ^ B(l + |2|'>). The difference in form between this and
(5.18) does not disturb the form (5.19) for #x(»); o r u v the values of the
constants Ah, Ae, A1 are altered. Hence if iV is large enough to satisfy (5.20)
we have

i n = 1, 2, • • •.

By standard arguments it follows that the sequence fn(z) converges uniformly
over any bounded range of Im z, that the limit function f[z) satisfies (4.14),
and that this is the only solution which is continuous and 0(|Im2|''1) for
any constant A.

All this holds for u on the path L in (4.14). For u not on L, but near
it, we now use (4.14) to define f(u), and the regularity of the integrands
secures that this gives an analytic function which is the continuation of
f(u) from L. Indeed, the equation shows that f(u) can be continued to all
points to the left of L where g(u) is regular. Finally, for u on L we can
in (4.14) replace the integrals along L' by integrals along a path to the left
of L, which gives a form in which the terms ??2v(l+**—z)IK_(u), g{u)jK_(u)
are replaced by ^{l+u—z)K+(u), g(u)K+(u); and hence f(u) can be
continued indefinitely to the right of L.

6. The general system (1.1)

6.1. We now suppose that in (1.1) N is not large enough — in relation
to k(m, n) — for solubility of (4.14) by iteration, so that this equation
may present the 'eigen-alternative' in which the homogeneous form has
non-trivial solutions. The theory regarding (1.1) may be based on the
Fredholm theorems, but this treatment cannot be quite straightforward
because, if fj, > 0, a non-homogeneous form of (4.14) is associated with
the homogeneous form of (1.1). It is preferable therefore to make a direct
investigation of (1.1) by partitioning this system. We choose an N' large
enough for Theorem 2 to apply to the solution for XN>, %N'+I> • •" of the
sub-set of equations for which m S: N'. The solution involves ZN, • • • #y-i
as parameters, and its substitution in the earlier equations reduces these
to a finite set in these parameters. The reduced set may present the 'eigen-
alternative', but this is then an algebraic phenomenon, quite distinct from
the transcendental phenomena associated with the index. Hence we shall
prove
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THEOREM 3. Let <x, ji be respectively to the left and right of a zero-free
strip of regularity of \-\-K(s) whose index is /i. Then

(i) the number of linearly independent solutions in Da of the homogeneous
system (1.1) is ft+p when (i > 0 or p when /u :£ 0, where p is a non-negative
integer;

(ii) the number of such solutions exceeds by fi, exactly, the number of
linearly independent solutions in Dt_^ of the homogeneous adjoint system,

(iii) when {gn} is in Da, the non-homogeneous system is soluble in Da

if and only if {gn} is orthogonal to all solutions in D^p of the homogeneous
adjoint system.

To prove this it is convenient to use matrix notation, taking
x = {xN, xN+1, • • •) and g = {gN, gN+1, • • •} as column vectors. For the
adjoint system we take y = (y^, y^+i, ''') as a row vector. Choosing
a large enough N' we partition these vectors:

(6.1) X

where x' = {xN, • • • xN._^,x" = {XN,,XN,+1, • • -Jetc. With a corresponding
partition

(6-2) («„„+*(* , •»)) =

(1.1) splits into

(6.3) Ax'+Bx"=g'

(6.4) Dx" =g"-Cx',

and the homogeneous adjoint system splits into

(6.5) yA+y"C=0

(6.6) y"D = —y'B.

In the manipulations that follow, the operations that involve infinite
matrices are validated by § 3.4; by Lemma 2 the series which define elements
of a product matrix converge, and by Lemma 3, applied to each element
of a triple product, such a product obeys the associative law. For example,
in (6.13)j we have the case of «/-finite summation, and in (6.13)2 the case
referred to in the Note to Lemma 3 where in the notation of that Lemma,
each column of H satisfies a system with gm = 0 and y" satisfies a system
(6.6) with

N'-l

K = -J.y'mKm>n)-
m=N
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6.2. The case fi^tO. By Theorem 2 the homogeneous system Dx" = 0
has fi linearly independent solutions in Dx which can be set out as a matrix
H of (i columns and infinitely many rows, and the most general solution
of (6.4) s in Da has the form

(6.7) x" = §"-Ex'+HX

where X is a column vector of pi arbitrary components. The conditions
that (6.7) satisfies (6.4) are

(6.8) D%" = g", DB = C, DH= 0.

By substitution of (6.7) into (6.3) this becomes

(6.9) (A—BE)x'+BHX=g'—B§"

This is a set of N'—N scalar equations, for whose satisfaction the com-
ponents of X as well as those of x' are disposable, so the critical thing is
the rank of the matrix (A—BE, BH) otN'—N rows andiV'— N+fi columns.
If this rank is N'—N the set is soluble for N'—N of the components of
x', X, without restriction on g', with the remaining components remaining
arbitrary, and the full system has a solution {x't x"} in Da depending
linearly on fi arbitrary constants. But if the rank is N'—N—fi the homo-
geneous system (6.9) with g' = §" = 0 has /i+p linearly independent
solutions (leading via (6.7) to a like number of solutions of the full homo-
geneous system), and the non-homogeneous (6.9) is soluble if and only
if g'—B%" is orthogonal to every solution y' of the adjoint system

(6.10)
(6.11)

This condition is

(6.12)

y'(A~BE)
y'(BH)

y'(g'-Bn

= 0
= 0.

= 0.

Considering now the solution of the homogeneous adjoint system,
post multiplication of (6.6) by H gives, in virtue of (6.8)3, y'(BH) = 0
as a necessary condition for its solubility for a y" in Dt_fi; and by Theorem 2
this condition is sufficient. Here we have used the associative properties

(6.13) (y'B)H = y'(BH), (y"D)H = y"(DH).

By use of (6.8)2 and similar associations the elimination of y" from (6.5)
and (6.6) gives y'(A— BE) = 0. Thus y' must satisfy (6.10) and (6.11);
and conversely any solution of these leads to a solution of (6.5) and (6.6).
By a well known theorem of algebra, (6.10) and (6.11) have just p linearly

* Where g" (by hypothesis) and each column of Cx' (direct proof via (1.4)) is in Da.
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independent solutions y' when the rank of the matrix (A—BE, BH) is
N'-N-p.

Thus we have established so much of (i), (ii) of Theorem 3 as belongs
to the case p S: 0.

As regards (iii) we observe that from (6.6) and (6.8) we have

yB§" = -y"D§" = -y"g"
so

y'(g'-Bn=y'g'+y"g"-

Hence, for any admissible y', y" the condition (6.12) is equivalent to
y'g'+y"g" = 0, i.e. to the orthogonality of {g'.g"} to any solution
(y't y") of the full homogeneous adjoint system. Since (6.12) is just the
condition for solubility via (6.9) of the direct system (6.3), (6.4), Theorem
3 (iii) is established, for the case fi ^ 0.

6.3. The case /.t = — /i' < 0 is similarly handled, and we omit the proof.
The treatment starts with an appeal to Theorem 2, whereby (i) y"D = 0
has a set of fi' solutions which can be combined in the form y" = XJ,
with A a row vector with y! arbitrary components and J a matrix of ft'
rows and oo columns; and (ii) (6.4) is soluble for x" if only J(g"—Cx') = 0.

6.4. Concerning inverse matrices. In the case of Theorem 3 where y S: 0
and p — 0 the system

(6.14) Mxp = (6mn+k(m, n))xp = gp = {(dmp)}

is soluble in Da, and any solution xp gives the pth column of a matrix X
which is a right inverse in Da of M: MX = / . If y = 0 there is only one such
X, but if y > 0 there are an infinity of them. If y = 0 there is also a left
inverse Y of M whose rows are in Dt_fi and are obtained by solving systems
adjoint to (6.14): YM = / ; but if yt, > 0 there can be no such inverse in
Dt_t since its multiplication into (6.14) would furnish for this system a
unique solution. These circumstances resemble those that can arise for
bounded matrices over Hilbert space [8].

In the case /t = 0, Lemma 3 gives Y(MX) = {YM)X, since the second
alternatives of hypotheses (i) and (ii) are satisfied by the particular gp

in (6.14) and its adjoint. Hence

(6.15) Y = YI = Y{MX) = (YM)X = IX = X.

Hence in the general case where there are several strips, of which an
interior one S(oc, /?) has index 0, we have in the case p = 0 — which always
holds when N is sufficiently large — there is a matrix M~x with rows in
Dx_0 and columns in Da, which is both a right- and left-inverse for M; this is
also one of the right [left] inverses associated with strips to the right [left]
of S(a, fi).
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When any possible solution of (1.1) that is relevant to a given context
is known, from that context, to be unique, Theorem 3 shows that the solution
cannot be associated only with a strip where fi > 0; and if there is a strip
with /i = 0we must have the case p = 0, wherein M has identical right
and left inverses. The solubility of (1.1) will then follow if (gn) lies in a Da

with a to the left of the strip. Thus, with the stated proviso, uniqueness im-
plies existence for the solution of (1.1).

7. Asymptotic formulae and procedures for approximation

7.1. Any solution {xn} of (1.1), of the wide class which we have been
considering, is in one-one correspondence with a solution /JV(S) of the
integral equation (3.4) in which the path of integration is suitably chosen.
The connexion is given by (3.2), which on substitution for fa(s) from
(4.3) and K(s) from (4.2) becomes

1 (•*•*<">

with /(s) satisfying (4.4) and (4.14), and K_(s), K+(s) defined relative
to the zero-free strip of regularity of 1+K(s) which contains the path
a = c. We have also to suppose that the path lies in the right half-plane
in which

converges, which is a restriction on {gn}. When there are strips of positive
index, our concern will often be with that solution for which 2 xnn~'
converges most rapidly, and then the path will be chosen in the strip of
least non-negative index in which (7.2) converges.

We confine attention now to the important case in which (i) K(s) is
meromorphic, with poles at s = 0, ± 1 , ±2, • • • at most, and (ii) gN{s)
has a meromorphic continuation. Then K+(s), K_(s) are meromorphic,
and by the concluding paragraph of § 5.2 /(s) is meromorphic. Hence in
(7.1) we can displace the path to the left, and from the residues at the
poles of the integrand that are thereby crossed we obtain an approximation
to xm which is clearly asymptotic for m ~ oo — for given /(s). The general
formulae are shown in § 7.2, and some examples in § 7.3. When xm has been
determined from these formulae, to adequate accuracy when m is sufficiently
large, the outstanding xm can be determined from a finite system by
straight arithmetic.

An alternative procedure, which may be more efficient, is to evaluate
an asymptotic formula, xm say, for all values of m and calculate the residual

(7-3) &. = &• - *«
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Then the exact solution xm = xm+x'm is to be determined from

(7.4) x'm

which may be more favourable for approximate solution. See § 7.4. Here
it is unnecessary that xm be derived from an asymptotic formula; we can
try with any xm that can plausibly be supposed an approximation.

Finally in § 7.5 we apply the calculation of residuals to the adjoint
system (3.7), taking hn = dpn. An exact solution of this system, in the
appropriate Dx_p, would give the successive rows of a left inverse for (1.1),
for p — N, N-\-l, • •', and its multiplication into (1.1) would yield the
explicit solution for each xm. The exact solution of the adjoint system is
of course in practice unobtainable, but there is an explicit approximation
to it; the residuals from this approximation give the coefficients in a reduced
system for the xm, and the reduced system so found is no longer singular;
it is of the simple type related to completely continuous bilinear forms over
Hilbert space. This procedure does not provide an existence theorem,
since (apparently) the passage from the original to the reduced system is
not reversible. Hence it serves merely for convenient calculation of a solution
which is already known to exist.

Some parts of what follows are suggestive only, but most of it (in-
cluding § 7.5) is rigorous.

7.2. Asymptotic formulae. In (7.1) the poles of the integrand are the
zeros of K+(s), all to the left of the path, (which we now denotegenerically
by a), and the poles of f(s), which by (4.14) are just the poles y of g{s)
or gx(s), with res. f(s) — res. g(s)/K_(y). In general the zeros a and poles
y are simple, and no y coincides with an a; then all the poles for (7.1) are
simple, and each term in the approximation to xm varies as a power of m.
If there are multiple poles they contribute logarithmic terms. In the general
case, displacement of the path to the left gives

(7.5)

N

which may be interpreted either as a finite sum plus a remainder-integral
(not exhibited) or as an asymptotic series.

Here /(a) is given implicitly by (4.14), where the integral on the left
is O(N~2). For the integral on the right, evaluation from residues at the
poles in the right half-plane is suggested, these poles being the zeros of
K_(s), which we denote generically by /?. For certain characteristic functions
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K(s), at least, the integral is thus expressed as a convergent series, whence
(4.14) gives

(76) f(s) g ( 5 ) I T m + o(
(7.6) /(s) - K^g) + 2,

2, {^S)K_{^

for the 'principal case' in which -P^-^w) = 0. A different method for
approximating to /(a) is shown in § 7.4 (ii).

7.3. Special cases.

(i) gm = m7-1

gives

N

whence by (4.3)
g(s) = (N-i)*ZN(l+s-y).

This has a simple pole at s = y, with residue (N— \)v. The middle term of
(7.5) combines with the term gm to give

(7 7) x ^ my~X | * y /(«)

where the first term is dominant if y is to the right of all the zeros a of

(ii) gn = Km< v)

arises as the coefficient of a component x, of the vector x' in (6.4), in which
case v < 2V'. By (1.4) this gives

(7.8) 0<c<l, Re«>c
J /.C'+tOO

= K(u)v-»-\ . K{s)v-'Zi,{l+u-s)ds,

c < c ' < l , Rew<c'.

The latter form shows that g(u) has as poles those of K(u) to the left of
its band of regularity, in general u = 0, —1, —2, • • •. At these points
K+(u) = oo, and (7.5) becomes

1 lm\y 1 /(K) I m \a

(7.9) *„ - * ( „ , „ - - ^ £ res.r K(S) (_) + - | ^ ( J J - J ) .
For the calculation of /(a) via (7.6) we requireg(s), andfor this an asymptotic
formula is obtained from (7.8) by displacing the path to the left across
the poles of K(s) at s = 0, — 1, • • •.
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(iii) gm = Smv> v^N

is a form from which the general system (1.1) may be formally built by
superposition; the corresponding solution {xm} gives the vth column of a
right inverse of the matrix (dmn-\-k(m, «)). Here

(7.10) gN[s) = „-, g(s) =

an integral function. Hence 2? is absent from (7.5), and substitution from
(7.6) gives

(7.11)

Since a runs through a sequence of values whose real parts decrease towards
— oo this form can be valid only when mjv is large, and since then
gm = ^m* — 0 this term has been omitted from (7.11).

When v is large and mfv small, a companion approximation is obtained
by substituting from (7.6) into (7.1) and splitting off the resulting term
in g(s), for which the path is displaced to the right across zeros /S of K_(s).
For the remaining terms involving 2# the path is displaced to the left
across zeros a of K+(s). This gives

(7.12)
1 /m\fi( 1 v 1 (N—W~a

Xm~~7mK'_(P)\*) U+^J " ?'(P-*)K'+(x) \~m~) +

a form in which the early terms are dominant when mjv and {N—\)jm
are both small.

7.4. Residuals.
(i) In (7.3) let us take

( 7 1 3 ) *

a form suggested by (7.7) for association with gm = m>'~1. Then by (1.4)

_ 2 m-ifrQ+s-y) res. K(s)l(l+K(y));

the contribution from the pole of £y at s = y has cancelled the term
my~^K (y). This gives a reduced system (7.4) for which {gm} is in Do, whereas
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by (7.13) the component {xm} of the full solution is only in Dy, where Re y
may exceed 0.

(ii) For the case where gar(s) is an integral function let us adopt a form
suggested by (7.5) and put

where on the right we have a sum over a finite set of p+1 zeros a of K+(s)
to the left of the line of integration in (1.4). An easy calculation gives

1 j.C+100

—

&m J c-ioo

Since K(s)-\-l — K+(s)K_(s) we have K(a.) = —1, so the residue at s = a
is -a.m*"1, and the sum of these residues cancels the middle term on the
right, irrespective of the values of the coefficients aa. We can then determine
the aa so thataa

(7.15) # » ( s ) + 2 « , t * ( l + s - a ) = 0 for s = 0, - 1 , •-;-},
a

whereby the poles of K(s) at these points are cancelled. Displacement of
the path across these points then gives, for m large

*«.+ 2 k (m,n)xn = l

Thus, with the aa determined from (7.15), the residuals gm in the
equations of high order are small, and the reduced system (7.4) is likely
to be adequately approximated by a finite system for the early x'm.

From (7.5) it is suggested that the solution of (7.15) should give

(7.16) aa*
f-

and the following 'argument' substantiates this. The /(s) which corresponds
— by (4.14) with P / ^ 1 = 0 — to an integral function g[s) is everywhere
regular, so reference to (4.3) shows that /jy(s) vanishes at the poles
s = 0, —1, • • • of K+(s) and has a pole at each zero a of K+(s) with residue
(N—\)-af(a.)jK'+{a.). Now in (3.4) we can displace the path to the left and
so obtain a continuation of fn(u) which is valid for any u to the right of the
displaced path. For such a u this gives, from residues at the poles of
K+{s)fN(s),

and the vanishing of fa(u) at u = 0, — 1, • • • gives asymptotic equations
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of the form (7.15), with coefficients as in (7.16). For a fixed a we can
expect (7.16) to be asymptotically true for p ~ oo in (7.15).

7.5. Derivation from (1.1) of a regular system. The suggestion for what
follows arises from scrutiny of the formulae (7.11), (7.12) which relate to
a right inverse of {8mn-\-k{m,«)). By differentiation of 1+K(s) =K+(s)K_(s)
we have if'(a) = K'+(a)K_(x) at a zero « of K+(s) and #'(/?) = K+(fi)K'_{p)
at a zero /? of K_(s). Also K{a) = if (/S) = — 1. Thus if we omit the inner
summations from (7.11), (7.12), each of them is a residue equivalent of

Kls)

where L is a path a = const, which separates the a on its left from the
/? on its right. Here it is to be noted (i) that the numerator factor K(s),
equal to —1 at a, ft, has been chosen so that by (1.7) the integral may
converge exponentially, and (ii) that the integrand is regular at the poles
of K(s).

Neither of the formulae which thus lead to (7.17) is 'valid' for m
near v, but now we can add dmv to the right of (7.17) and thus obtain a
sensible form from which to start ab initio a residual calculation.

We reap the best dividend from these ideas by applying them to the
adjoint system. In (3.7) we put

(the form adjoint to (7.17)) and calculate

(7.19) *„ = »„ .+2 »,«*(»»,»), P=N,N+1,---
m

Then any solution {xn} of (1.1) which satisfies convergence conditions
of the form (3.8), (3.9) must satisfy the equation (cf. (3.6))

(7-20) 2 V * n = 2 !/,*,&»•
n m

From (1.4) and (7.18) we have

mu-1-'du , ,

provided L is a path to the left of L' in the zero-free strip of 1+K (s)
containing L' (so that ^m"-1"' may converge absolutely). Now let L be
displaced to the right across L' to a position L" in the strip. The residue
of the inner integral at u = s gives to the outer integral the contribution

2m
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and the addition of ypn to this gives in all

" ^•JL
K(s)Ps-ln"'ds+8pn, = -HP. »)

by (1.4). Hence (7.19) gives

1 f K(s)P'-ids f X(M)W-»

2m JL. 1+K(s) JL,, 2m

When p, n are both large we can convert (7.21) into an asymptotic
series by displacing L' to the left across zeros a of l+i£(s) and L" to the
right across poles u = q = 1, 2, • • • of K(u):

(7-22) h ~ <V

where the argument of CN in. each term has its real part less than 1. The
leading term has q = 1 and a with a real part a.x less than 1, and on this
account the reduced system (7.20) is regular; indeed, the transformation
%n —

 w*?n gives a system

n

in which h'pn = 0(p~1+a^-tn~1+t), so 2Zl^V>l2 converges for any d in
ax—^ < d < J, a restriction that can be met because ax < 1.

It may be noted that when only one of p, n is large the leading term
in (7.22) gives the order of magnitude of hpn.

The logic of these calculations is as follows. To attain (7.20) we have
supposed that the {xn} in question satisfies (1.1), so we make the hypothesis
that {gn} is in Da and (if the index of the strip that contains L' is negative)
satisfies the consistency condition for solubility of (1.1). Then {xn} is in
DXi. Also, by Lemma 1 applied to (7.18), %ypmgm converges, and equals

is = G,.

and similarly ^,ypmxm converges. Also by (7.18) J y ^ w ' - 1 converges
absolutely to

provided c < a(L'), so for fixed p, (ypm) is in Dx_fi for any /? to the right
of L'. Finally (7.21) gives for 2 h^n*-1 a form like (7.21) with n~u replaced
by CJV(1+W—Z), SO this function is everywhere continuable and at most
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algebraically large for |Imz| ~ oo. Hence all the hypotheses of Lemma 3
are satisfied, and (7.20) is established. To sum up,

THEOREM 4. / / a. is to the left of a zero-free strip of regularity of
which contains the paths L' and L" (to the right of L'), and if {gn} is in Da,
then any solution {xn} of (1.1) which is in Da satisfies the 'Fredholm' equation

H9K\ r T *" f K(s)p8~lds f K(u)tN(l+s-u)n-»du(7-25) • ' - ? s i - J L
where Gp is defined by (7.24).

Here if the index of the strip is positive there is no restriction of {xn}
to any one of the solutions, and the implication is that in this case (7.25)
must present the eigen-alternative. There is the correlative circumstance
that there is no left-inverse for (1.1) which is associated with the strip in
question, so we cannot expect the 'set of multipliers' (7.18) to yield a
reduced system that is close to an explicit solution for {xp}.

For the calculation of the xn we would usually use (7.25) only for the
larger values of p, say p S: N', whereby xN,, xN'+1, • • • are determined in
terms of XN, • • • «ti'-\ a s parameters; it is easily proved that this may
be achieved by the obvious iterative procedure. The higher coefficients on
the left are approximated by (7.22), and for Gp there is the asymptotic
equivalent of (7.24) got by displacing the path to the left, if ^,gmm~s is
continuable. The outstanding coefficients, for which p but not n is large,
may be obtained arithmetically from (7.19). This requires the evaluation
of the ypm from (7.18), for which asymptotic formulae, obtained by dis-
placing the path to the right or left, are valid except for p near m; in this
outstanding case numerical integration may be needed, but only the one
parameter pjm is here involved.

8. Extensions of the theory

We shall consider briefly some systems of the form

that are in some sense close to (1.1), k(m, n) being the kernel hitherto
considered.

8.1. cmn = am, a bounded sequence. For /jv(s) = %xnn~' we find as in
§ 1.3 the integral equation

(8.2) fN(u) + ~ f+t°°K(s)fN(s) | amm^-«ds = J £ „ » - ,

https://doi.org/10.1017/S1446788700026744 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026744


166 T. M. Cherry [38]

for Re u > c. The behaviour of this equation depends on the behaviour
of the Dirichlet series <f>(z) = 2 1 , , * ' 1 ' 1 for analytic continuation across
the line Re z = 0. For example

(i) am = l - ( - l ) - gives </>(z) = (2-2-)C(l+«)
(ii) am = (-l)«+i gives ^(z) = (1—2—)C(l+z)
(iii) am = ( - i )«+ i+ i / m gives <f>(z) = (i_2-)C(l+«)+C(2+«).

For (i) we have a pole at z = 0 with residue 1, (ii) is everywhere regular,
and (iii) has a pole at z = — 1. In case (i) the equation is singular and the
theory and conclusions are like those of §§ 3—6, but in cases (ii), (iii) the
equation is regular and the Fredholm theory applies to it; when it has a
solution,

»c+

Je-i

K{s)amm-ifj,{s)ds = gm

gives a corresponding solution of (8.1).
8-2. cmn = (l+am)(l+bn); an, bm = 0{nr*) for some positive 6. By

substituting for k(m, n) from (1.4) we get a form in which the variables
m, n are separated in the integrand, and as in § 1.3 we find the equivalent
integral equation

^". f K{s)fN(s) 2 m-«-i(l+am)(l+bm)ds
(8.3)

for fN(s) =2,xn(l+bn)n—. Thus in place of CN{Z) we have CN{Z)+XN{Z),
where

= | (am+bm+ambm)m->,
N

a Dirichlet series converging absolutely for R e z > l — 5 , so that
XN(z) = O(N1-"-f) for R e z ^ l - | ^ . In (4.4) r)N(l+u-s) is replaced
by r]N(l+u—s) + (N-l)u-'XN(l+u~s), and the additional term is 0(N~')
for Re (u—s) > — %d. The same adjustment applies to (4.14) and the
conclusions of §§ 3—6 remain valid, the work requiring only trivial modi-
fications.

The continuation of /#(«) to the left of the path L in (8.3), such as
would be required for work like that of § 7, is interesting. It is given by
converting (8.3) to

(8.4)

(l+K{u))fN(u)+±-.{ K(s)fN(s){CN(l+u-s)+XN(l+u-s))ds=gN(u)

with L' just to the right of L. In the first instance u is restricted to the strip
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of breadth d to the left of L' in which XN is regular, and /«•(«) is therein
regular, provided gzv(w) is so. Hence we can displace the path in (8.4) to
the left through a distance < d, and so obtain a further continuation,
provided gy(u) permits it. This process continuous until }N(U) acquires a
pole at a zero a of 1+if (M). But when the path is moved across this pole
an additional residue-term carrying the factor ^( l+w—a) enters, and the
singularities of this function become dominant; for example x*/(z) maY
have a natural boundary Res = 1—6, and then /#(«) has a corresponding
boundary on Re u = Re a—6.

8.3.

(8-5) cmn = l+dmn, dmn = O(»-«»-').

We confine attention mainly to the case where there is a zero-free
strip of regularity a < a < /S of l-\-K(s) whose index is 0. The complete
system (8.1) can be partitioned as in § 6, so as regards the circumstances
that are peculiar to the case (8.5) we can confine attention to the case
(§ 6.4) where the matrix

M = (dmn+k(m, n))

has a left- and right-inverse M"1 with columns in Da and rows in Dx_f.
Writing D = (k(m, n)dmn) the system (8.1) is

(8.6) Mx+Dx=g.

If convergence conditions are satisfied this implies

(8.7) x+M^Dx = M'xg,

which in turn implies (8.6). Thus (8.7) is equivalent to (8.6), and we are
to find conditions on K, rj under which it is regular.

From (1.4) and (8.5) we have, for the typical element of D,

k(*», n)dmn = O K - ' - ' * - ' )

for any c for which (1.4) is applicable: in general 0 < c < 1, or in the
case of § 2.1 — I < c < j + 1. As regards Mrx the typical element ypm is
given asymptotically by (7.18), so for all p, m we have

(8-8) ypm = d^+Oip^m-"')

for any c' between a and /?. For M~^D the typical element is then

hp» = I S U * K »)«*•.. = *&>. n)dpn+ 2 0(P°'-im°+«-°'n-°-v)
m m

(8.9) = O(p<!-1-*n-<'-'i)+O(p'>'-1n-e-i)

provided
(8.10) C'-C+K > 0,
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so that the m-summation may converge. Then the last term in (8.9) is
dominant, and if the sum of its indices < —1 the reduced system (8.7) is
regular. Hence we require

(8.11) —K<c'—c<rj,

which is to be satisfiable by a choice of c' between a, /S and a choice of c
between —I and ; + l; and this is so if

(8.12) K+7] > 0, K >—/?-/, V>OL-l-j.

Under these conditions the Hilbert theory, including the Fredholm
Alternative theorems, is applicable to (8.7). Its solubility will of course
depend on M"1g belonging to a suitable sequence-space. For example,
if gm = 0{ma-1), the typical element J,myfimgm of Mr*-g is O(pe'-1), by
(8.8), where c' > a. By (8.9) and (8.11), then,

1 hpn0{n°'-i)
n=N'

converges and is o(pc'~1) for N' ~ oo; so if we omit from (8.7) a finite set
of the early equations, the remaining infinite system is soluble by a diagonal-
based iteration.

An alternative and more practical procedure for reducing the system
(8.6) is to left-multiply it by the approximation to M~l given by (7.18);
the typical coefficient in the reduced system then contains an extra com-
ponent as shown on the right of (7.21). Indeed, we can use (7.18) as a set
of multipliers irrespective of the index of the strip a < a < /$ with which
they are associated, and the reduced system is regular under the conditions
(8.12); but the equivalence of the reduced and original systems is not thereby
established.
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