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Abstract

Motivated by near-identical graphs of two increasing continuous functions—one related to Zaremba’s
conjecture and the other due to Salem—we provide an explicit connection between fractals and regular
sequences by showing that the graphs of ghost distributions, the distribution functions of measures
associated to regular sequences, are sections of self-affine sets. Additionally, we provide a sufficient
condition for such measures to be purely singular continuous. As a corollary, and analogous to Salem’s
strictly increasing singular continuous function, we show that the ghost distributions of the Zaremba
sequences are singular continuous.

2020 Mathematics subject classification: primary 11B85; secondary 28A80.
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1. Motivation

For each integer k � 2, we define the k-Zaremba sequence, zk, by zk(n) := eT
1 B(n)k e1,

where e1 := (1 0)T , the string (n)k = is · · · i1i0 is the base-k expansion of n and B(n)k :=
Bis · · ·Bi1 Bi0 where

Bi =

(
i + 1 1

1 0

)
for i = 0, 1, . . . , k − 1. (1.1)

The sequence zk is a lexicographical enumeration of the denominators of the conver-
gents of all continued fractions of numbers x ∈ (0, 1) with all partial quotients bounded
by k; see Coons [6] for results relating to their power series generating functions. In
1972, Zaremba [22] conjectured that there is a positive integer k such that zk takes all
positive integer values. Bourgain and Kontorovich [5] proved that the set of values
of z50 has full density in N; this was improved by Huang [16] and Jenkinson and
Pollicott [17], who proved the analogous result for z5.
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FIGURE 1. The ghost distributions of the 2-regular Salem sequence with (b0, b1) = (2, 3) (left) and the
Zaremba sequence z2 (centre), and their pointwise difference, Salem minus Zaremba (right).

Our story starts with trying to gain a better understanding of z2 by studying the limit

Z2(x) := lim
N→∞

1
2 · 4N

2N x∑
m=0

z2(2N + m)

over the fundamental intervals [2N , 2N+1) of the normalised partial sums of z2 for
x ∈ [0, 1). We plotted Z2(x) and immediately saw a picture we recognised—a strictly
increasing singular continuous function whose construction is due to Salem—or so we
thought. In fact, these curves are remarkably close to one another, but not the same
(see Figure 1). Exact agreement occurs at the points (0, 0), (1/2, 2/5) and (1, 1) by
design, and there appear to be two more points of equality, roughly at x = 5/12 and
x = 2/3. The interesting part for us here is that the maximum difference between these
two curves is at most 0.003.

One may be interested in why these curves are so close, but not equal. Indeed, as
it turns out, and as we shall see later on, the Salem curve lives in the plane, while
the Zaremba curve Z2(x) is the projection of a three-dimensional curve, which is just
barely three-dimensional—it is extremely close to being planar.

In the early 1940s, Salem [20] provided a simple direct construction of a family
of strictly increasing singular continuous functions from [0, 1] to [0, 1]. At the time,
this was quite novel—according to Salem, ‘functions of this type usually have been
obtained by “convolutions” of functions of the Cantor type and the proof that they
are singular strictly increasing functions is somewhat difficult’. Recall that a function
is singular continuous provided it is continuous and has almost everywhere zero
derivative. Here we consider Salem’s example, with parameter λ0 = 2/5. In this case,
we denote Salem’s self-affine set by As, which is the unique attractor of the iterated
function system Ss = {S0, S1} : [0, 1]2 → [0, 1]2, where

S0

(
x
y

)
=

(
1/2 0
0 2/5

) (
x
y

)
and S1

(
x
y

)
=

(
1/2 0
0 3/5

) (
x
y

)
+

(
1/2
2/5

)
. (1.2)

Figure 2 shows how the attractor As is developed by iterating the system Ss starting
with the line segment joining (0, 0) and (1, 1) as a seed.
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FIGURE 2. The line segment from (0, 0) to (1, 1) after applying Ss, 0 (left), 4 (centre) and 10 (right) times.

REMARK 1.1. We use the term ‘singular continuous function’ in our paper to directly
relate to the cited paper of Salem. Nowadays—especially since we are dealing with
increasing singular continuous functions—it is more common to define an increasing
singular continuous function as the distribution function of a singular continuous
(Lebesgue–Stieltjes) measure.

Motivated by the near-identical pictures in Figure 1, we wondered if the results
concerning Salem’s curve As hold for the function Z2(x). In particular, can Z2(x)
be derived from the attractor of an iterated function system? And, is Z2(x) a strictly
increasing singular continuous function?

In this paper we provide positive answers to these questions as well as some
generalisations.

2. Results

The Zaremba sequences, zk, are examples of regular sequences, which are gener-
alisations of automatic sequences. A sequence f is k-automatic provided there is a
deterministic finite automaton that takes in the base-k expansion of a positive integer n
and outputs the value f (n). Automatic sequences can be described in many ways; the
one most appropriate for our current purposes is via the k-kernel,

kerk( f ) := {( f (k�n + r))n�0 : � � 0, 0 � r < k�}.

A sequence f is k-automatic if and only if its k-kernel is finite [13, Proposition V.3.3].
It is immediate that an automatic sequence takes only a finite number of values.
A natural generalisation to sequences that can be unbounded was given by Allouche
and Shallit [1]; a real-valued sequence f is called k-regular if the R-vector space
Vk( f ) := 〈kerk( f )〉R is finite-dimensional over R. The set of k-regular sequences admits
an algebraic structure; it forms a ring under pointwise addition and convolution.

Let k � 2 be an integer, f be a k-regular sequence and let the set of sequences
{ f = f1, f2, . . . , fd} be a basis for Vk( f ). Set f(m) = ( f1(m), f2(m), . . . , fd(m)) and for
each a ∈ {0, . . . , k − 1} let Ba be the d × d real matrix such that, for all m � 0,
f(km + a) = f(m) Ba. We call the Ba digit matrices and write B := {B0, B1, . . . , Bk−1}.
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Since the d × d digit matrices of a regular sequence are formed using a basis of Vk( f ),
the positive integer d is minimal; we call such a regular sequence d-dimensional. See
the seminal paper of Allouche and Shallit [1] for details on existence and the finer
definitions. It follows that there is w ∈ Rd×1 such that for each i ∈ {1, . . . , d} and n > 0,

fi(m) = wT B(m)k ei = wT Bis · · ·Bi1 Bi0 ei,

where ei is the ith d × 1 elementary column vector, (m)k = is · · · i1i0 is the base-k
expansion of m and B(m)k := Bis · · ·Bi1 Bi0 . Set B :=

∑k−1
a=0 Ba.

Throughout this paper, we let ρ(M) denote the spectral radius of the matrix M and
denote the joint spectral radius of a finite set of matricesM := {M1, M2, . . . , M�} by

ρ∗(M) = lim sup
n→∞

max
1�i0,i1,...,in−1��

‖Mi0 Mi1 · · ·Min−1‖1/n,

where ‖ · ‖ is any submultiplicative matrix norm—here, we will exclusively use the
standard operator norm. This quantity was introduced by Rota and Strang [19] and has
a wide range of applications. For an extensive treatment, see Jungers [18]. Set

Σ(n) :=
kn+1−1∑
m=kn

f (m) and μn :=
1
Σ(n)

kn+1−kn−1∑
m=0

f (kn + m) δm/kn(k−1),

where δx denotes the unit Dirac measure at x. We can view (μn)n∈N0
as a sequence

of probability measures on the 1-torus, the latter written as T = [0, 1) with addition
modulo 1. Here, we have simply reinterpreted the (normalised) values of the sequence
( f (m))m�0 between kn and kn+1 − 1 as the weights of a pure point probability measure
on T supported on the set {m/(kn(k − 1)) : 0 � m < kn(k − 1)}.

With the above notation, Coons et al. [7, Theorem 6] recently proved that if f is
a nonnegative real-valued k-regular sequence, such that the spectral radius ρ(B) is
the unique simple dominant eigenvalue of B and ρ∗(B) < ρ(B), then the pure point
probability measures μn converge weakly to a continuous probability measure μ f on T.
The measure μ f is called the ghost measure of f, and its distribution function is called
the ghost distribution of f. This measure first appeared in Baake and Coons [2] in
relation to Stern’s diatomic sequence, but without a prescribed name.

Here, we show that the ghost distribution of a regular sequence can be obtained
by a fractal geometric construction. Recall that an affine contraction S : Rn → Rn is
a transformation of the form S(x) = T(x) + b, where T is a linear contraction on Rn

representable as an n × n matrix and b ∈ Rn. A finite family of affine contractions
S = {S1, . . . , Sm}, with m � 2, is called an iterated function system, and the unique
attractor (or invariant set), provided it exists, for an iterated function system of affine
contractions is called a self-affine set; see Falconer [14, Ch. 9] for details on iterated
function systems over Rn. In particular, [14, Ch. 9, Theorem 9.1] guarantees the
existence and uniqueness of the self-affine sets we produce in this paper. The following
result answers the question of Z2(x) being an attractor of an iterated function system.

THEOREM 2.1. Suppose f is a nonnegative k-regular sequence, ρ(B) is the unique
simple dominant eigenvalue of B, ρ∗(B) < ρ(B) and there is a real number c > 0 such
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that Σ(n) ∼ c · ρ(B)n as n grows. Then the graph of the ghost distribution of f is an
affine image of a section of a self-affine set.

In fact, we explicitly describe the self-affine set of Theorem 2.1.
Towards answering our question on the singular continuity of Z2(x), we consider

the generalisations of Salem’s example as follows. Let k � 2 be a positive integer.
We call a one-dimensional nonnegative regular sequence f a Salem sequence and
refer to the digit matrices of a Salem sequence simply as digits. For example, the
Salem attractor As is related to the 2-regular Salem sequence s = (s(n))n�0 given by
s(n) = 2s0(n)3s1(n), where s0(n) and s1(n) count the number of 0s and 1, respectively,
in the binary expansion of n—the careful reader will notice the use of the subscript
s in the above discussion of Salem’s iterated function system. In a later section, we
consider the characterisation of ghost measures of Salem sequences. By modifying the
original proof of Salem, we are able to prove the following general result, a corollary
of which shows that Z2(x) is singular continuous.

THEOREM 2.2. Suppose f is a nonnegative k-regular sequence, ρ(B) is the unique
simple dominant eigenvalue of B, ρ∗(B) < ρ(B) and there is a real number c > 0 such
that Σ(n) ∼ c · ρ(B)n as n grows. If

k−1∏
j=0

‖Bj‖1/k <
ρ

k
, (2.1)

then the ghost measure of f is purely singular continuous.

This paper is organised as follows. In the next section, with the proof of Theorem 2.1
as a goal, we provide an explicit relationship between the solution of a dilation equation
and the attractor of an iterated function system of affine contractions (Lemma 3.1). In
that section, we use Salem’s singular continuous function as a motivating example.
In Section 4 we consider ‘Salem sequences’ as generalisations of Salem’s example,
and of standard missing-digit sequences, and provide a complete characterisation
of their ghost measures. These sequences can be viewed as weighted generalisa-
tions of the standard middle-thirds Cantor set—their ghost distributions are gener-
alisations of the Devil’s staircase. In Section 5 we apply our results to the Zaremba
sequences by showing that any nontrivial Zaremba ghost measure is singular contin-
uous with respect to Lebesgue measure; that is, its distribution function has almost
everywhere zero derivative. Finally, in Section 6, we consider some subtleties of our
approach.

3. Dilation equations, self-affine sets and ghost distributions

In this section we prove Theorem 2.1. To do this we provide an explicit relationship
between the solution of a dilation equation and the attractor of an iterated function
system of affine contractions.
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Let ρ = ρ(B) be the unique simple dominant eigenvalue of B and let vρ be the d × 1
eigenvector associated to ρ. We define the vector-valued function F : R→ Rd by

F(x) =
k−1∑
a=0

ρ−1 Ba · F(kx − a) where F(x) =

⎧⎪⎪⎨⎪⎪⎩
0 for x � 0
vρ for x � 1.

(3.1)

Functional equations such as (3.1) are known as dilation equations or two-scale
difference equations in the literature; seminal work on these was done by Daubechies
and Lagarias [9, 10] and their relationship to regular sequences was initiated by Dumas
[11, 12]. The function F exists and is unique if ρ(B) > ρ∗(B). Moreover, the function
F is Hölder continuous with exponent α for any α < logk( ρ/ρ∗).

LEMMA 3.1. Let k � 2 be an integer and f be a k-regular sequence where the spectral
radius ρ = ρ(B) is the unique dominant eigenvalue of B and ρ(B) > ρ∗(B). Let F(x) be
the unique solution of (3.1). Then the graph

F f := {(x, F(x)) : x ∈ [0, 1]} ⊂ [0, 1]d+1

of F(x) is a self-affine set. In particular, F f is the attractor of the iterated function
system S f = {S0, . . . , Sk−1} : [0, 1]d+1 → [0, 1]d+1 where, for j ∈ {0, 1, . . . , k − 1},

Sj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y0
...

yd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
(

1/k 01×(k−1)

0(k−1)×1 ρ−1 Bj

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y0
...

yd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
(

j/k∑j−1
a=0 ρ

−1 Bavρ

)
.

Note that Lemma 3.1 is a two-way correspondence, providing a way to go back
and forth between iterated function systems of contractions and solutions of dilation
equations. As an example, here, as in the first section, we consider Salem’s singular
continuous function, with parameter λ0 = 2/5, and denote Salem’s self-affine set by
As, which is the unique attractor of the iterated function system Ss from (1.2). We
can interpret the attractor As as the restriction to [0, 1] of the graph of the function
Fs : R→ R satisfying

Fs(x) =
2
5
· Fs(2x) +

3
5
· Fs(2x − 1) where Fs(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x � 0
1 x � 1.

(3.2)

If Fs is the unique solution to the dilation equation (3.2), then we claim that the set
{(x, Fs(x)) : x ∈ [0, 1]} is the attractor As of Salem’s iterated function system Ss. To
see this, we write Fs := {(x, Fs(x)) : x ∈ [0, 1]}, and show that S(Fs) = Fs. As a first
step, we note that (0, 0) ∈ Fs so that this set is not trivially empty. Second, we take
(x)2 = .x1x2 · · · ∈ [0, 1] and consider (x, Fs(x)). Now,

S0

(
x

Fs(x)

)
=

(
1/2 0
0 2/5

) (
x

Fs(x)

)
=

(
x/2

(2/5)Fs(x)

)
=

(
.0x1x2 · · ·
(2/5)Fs(x)

)
=

(
y

(2/5)Fs(2y)

)
,
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where y := .0x1x2 · · · , so y ∈ [0, 1/2] and x = 2y. Thus, 2y − 1 � 0, so (3.2) gives

2
5 · Fs(2y) = 2

5 · Fs(2y) + 3
5 · Fs(2y − 1) = Fs(y),

and so S0(Fs) ⊆ Fs. Similarly,

S1

(
x

Fs(x)

)
=

(
1/2 0
0 3/5

) (
x

Fs(x)

)
+

(
1/2
2/5

)

=

(
.1x1x2 · · ·

(3/5)Fs(x) + 2/5

)
=

(
w

(3/5)Fs(2w − 1) + 2/5

)
,

where w := .1x1x2 · · · , so w ∈ [1/2, 1] and x = 2w − 1. Thus, 2w � 1, so (3.2) gives

2
5 +

3
5 · Fs(2w − 1) = 2

5 · Fs(2w) + 3
5 · Fs(2w − 1) = Fs(w),

and so S1(Fs) ⊆ Fs. Thus, Ss(Fs) ⊆ Fs. The reverse inclusion follows by using the
above equalities backwards.

The proof of the lemma follows similarly.

PROOF OF LEMMA 3.1. Let (x)k = .x1x2 · · · ∈ [0, 1] and consider (x, F(x)). For
j ∈ {0, 1 . . . , k − 1}, we have

Sj

(
x

F(x)

)
=

(
1/k 01×(k−1)

0(k−1)×1 ρ−1 Bj

) (
x

F(x)

)
+

(
j/k∑j−1

a=0 ρ
−1 Bavρ

)

=

(
x/k + j/k

ρ−1 BjF(x) +
∑j−1

a=0 ρ
−1 Bavρ

)

=

(
.jx1x2 · · ·

ρ−1 BjF(k(.jx1x2 · · · ) − j) +
∑j−1

a=0 ρ
−1 Bavρ

)
.

To finish the proof, it is enough to show that

F(.jx1x2 · · · ) = ρ−1 BjF(k(.jx1x2 · · · ) − j) +
j−1∑
a=0

ρ−1 Bavρ.

We can now compute F(.jx1x2 · · · ) using (3.1). Since y := .jx1x2 · · · ∈ [0, 1], we have
ky − a � 1 for a ∈ {0, . . . , j − 1}, and ky − a � 0 for a ∈ { j + 1, . . . , k − 1}. Thus, for
this y, using the definition of F(x) outside of (0, 1), we have F(ky − a) = F(1) = vρ,
for a ∈ {0, . . . , j − 1}, and F(ky − a) = 0, for a ∈ { j + 1, . . . , k − 1}. Thus,

F(y) =
k−1∑
a=0

ρ−1 BaF(ky − a)

=

k−1∑
a=j+1

ρ−1 BaF(ky − a) + ρ−1 BjF(ky − j) +
j−1∑
a=0

ρ−1 BaF(ky − a)
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= 0 + ρ−1 BjF(ky − j) +
j−1∑
a=0

ρ−1 BaF(1)

= ρ−1 BjF(ky − j) +
j−1∑
a=0

ρ−1 Bavρ,

which shows that S f (F f ) ⊆ F f . As above, the reverse inclusion follows by using the
above equalities in the reverse direction. �

It turns out, for Salem’s sequence s, that the ghost distribution of s is the
attractorAs, which itself is precisely the solution Fs, of the dilation equation (3.2). In
general, the relationship between the ghost distribution and the solution of the dilation
equation is only slightly more complicated. A recent result, recorded below, makes
this relationship between the regular sequence, the dilation equation and the attractor
explicit; see Theorem 5 and its proof in Coons et al. [7].

THEOREM 3.2 (Coons, Evans and Mañibo). Suppose f is a nonnegative k-regular
sequence, ρ(B) is the unique simple dominant eigenvalue of B, ρ∗(B) < ρ(B) and there
is a real number c > 0 such that Σ(n) ∼ c · ρ(B)n as n grows. If F(x) is the solution to
(3.1), then

μ f ([0, x]) =
eT

1

(
F
(1 + (k − 1)x

k

)
− F

(1
k

))

eT
1

(
F(1) − F

(1
k

)) . (3.3)

We now prove Theorem 2.1 by combining Theorem 3.2 with Lemma 3.1.

PROOF OF THEOREM 2.1. We have two cases depending on the distinctness of the
digit matrices of f. Firstly, if all of the digit matrices are equal, then the sequence f
is constant between powers of k, and so the ghost measure is just standard Lebesgue
measure, whose distribution function is clearly self-affine. Secondly, suppose the digit
matrices of f are not all equal. Combining the result of Lemma 3.1—that the solution
of the related dilation equation is self-affine—we obtain the desired conclusion, noting
that the relationship in (3.3) shows that the ghost distribution is the affine image of a
section of the solution of a dilation equation. �

Figure 3 provides an illustration of Theorem 2.1 for the Zaremba sequence, z2. Here,
the corresponding functions Sj : [0, 1]3 → [0, 1]3 are

S0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/2 0 0
0 1/4 1/4
0 1/4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and S1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/2 0 0
0 1/2 1/4
0 1/4 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/2
3/8
1/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where the (normalised) digit matrices ρ−1Bj appear in the lower block of the linear
part of Sj.
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382 M. Coons, J. Evans, Z. Groth and N. Mañibo [9]

FIGURE 3. The function Z2(x) (right) is the affine image of a section of the 2-Zaremba attractor (left).

4. Characterisation of ghost distributions of Salem sequences

Here we characterise the spectral type of the ghost measures of one-dimensional
regular sequences, that is, the Salem sequences.

It is clear that if the digits (nonnegative real numbers) of a nonzero Salem sequence
are all equal then the resulting ghost measure is precisely Lebesgue measure. The
result is quite different when the digits are not all equal. Indeed, Salem [20] showed
that the ghost distribution of a positive 2-regular Salem sequence whose two digits
are not equal is singular continuous; Salem’s result and proof have also appeared in
Billingsley [4, page 407]. The main result of this section is the following proposition.

PROPOSITION 4.1. Let f be a k-regular Salem sequence with digits b0, b1, . . . , bk−1 that
are not all equal.

(a) If only b0 is nonzero, then the ghost measure is the zero measure.
(b) If only one of the digits is nonzero and b0 = 0, then the ghost measure is pure

point.
(c) If more than one of the digits is nonzero, then the ghost measure is singular

continuous.

PROOF. Parts (a) and (b) are straightforward. If b0 is the only nonzero digit, then
since all base expansions of positive integers start with a digit other than zero, the
Salem sequence is the zero sequence, and so its measure is the zero measure; this
proves (a). If only one of the digits is nonzero, say bj with j � 0, then the ghost measure
is supported on the single number in [0, 1] whose k-ary expansion is 0.jjjjj · · · , so that
the ghost measure is equal to the delta measure δj/(k−1); this proves (b).

Case (c) splits into two cases. The first is also straightforward—the case where one
of the digits is zero. If one of the digits is zero and at least two are not zero, then the
ghost measure is supported on an uncountable set of measure zero: the set of numbers
in [0, 1] whose k-ary expansions contain only the k-ary digits j with bj � 0.
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Thus, we can suppose that none of the bj are zero. Using Theorem 2.1, to
show that the ghost measure is singular continuous, it is enough to show that the
associated Salem attractor, or solution to the related dilation equation, provided for in
Lemma 3.1 is singular continuous, that is, the attractor of the iterated function system
S := {S0, . . . , Sk−1} with

Sj

(
x
y

)
=

(
1/k 0
0 bj/b

) (
x
y

)
+

(
j/k∑j−1

a=0 ba/b

)
,

where b := b0 + b1 + · · · + bk−1. We write the points of the attractor as (x, S(x)), and
note that S(x) is the solution to the dilation equation

S(x) =
1
b

k−1∑
a=0

ba · S(kx − a) where S(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x � 0
1 x � 1.

We use an old argument of Salem involving simply normal numbers. Recall that a
real number x is simply normal to the base k, provided each k-ary digit occurs in its
base expansion with frequency 1/k, and that Lebesgue-almost all numbers in [0, 1] are
simply normal to the base k. Let x ∈ [0, 1] be a simply normal number to the base k with
base-k expansion (x)k = 0.x1x2x3 · · · . Note that for such x and any j ∈ {0, 1, . . . , k − 1},
the number of xi = j with i up to n is n/k + o(n). Now, for each n � 0, set

yn = x +
bn+1

kn+1 where bn+1 =

⎧⎪⎪⎨⎪⎪⎩
1 if xn+1 = 0
−1 otherwise.

The first n digits in the k-ary expansion of yn agree with those of x, thus
∣∣∣∣∣S(x) − S(yn)

x − yn

∣∣∣∣∣ < kn+1(bx1/b)(bx2/b) · · · (bxn/b)

�
( k
b

k−1∏
j=0

b1/k
j

)n
· k ·

( k−1∏
j=0

bj

)|r(n)|
,

where |r(n)| = o(n) as n→ ∞. Also, since S is continuous and increasing, the
derivative of S exists almost everywhere. To finish our proof, it is enough to invoke
the arithmetic-geometric mean inequality, to see that

k
b

k−1∏
j=0

b1/k
j <

k
b

(b0 + b1 + · · · + bk−1

k

)
= 1,

so that |S(x) − S(yn)|/|x − yn| → 0 as n→ ∞. �

The careful reader acquainted with so-called ‘missing-digit’ sets, such as the
middle-third Cantor set, may recognise that the ghost measures of Salem sequences are
precisely the generalisation of standard mass distributions supported on missing-digit
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FIGURE 4. The Devil’s staircase (left)—the ghost distribution of the standard Cantor middle-thirds
set—along with the ghost distributions of the 3-regular Salem sequences with digits (b0, b1, b2) equal to

(1, 0, 2) (middle) and (2, 0, 1) (right).

sets. Ghost measures of Salem sequences are self-similar, that is, they satisfy the
relation

μ =

k−1∑
j=0

1
k

( μ ◦ T−1
j ),

where Tj : [0, 1]→ [0, 1] is the affine contraction Tj(x) = (bj/b)x +
∑j−1

a=0(ba/b); com-
pare [14, Section 17.3]. For example, the standard Cantor measure, supported on real
numbers x ∈ [0, 1] with a ternary expansion not containing the digit 1, is the ghost
measure of the 3-regular Salem sequence with (b0, b1, b2) = (1, 0, 1). Indeed, it follows
from self-similarity that the measure μ must be spectrally pure, that is, it is either
pure point, purely absolutely continuous or purely singular continuous; see Varju [21]
for the case of Bernoulli convolutions. Unlike standard missing-digit distributions,
corresponding to choosing only the digits 0 or 1 for our Salem sequence construction,
in our context we can choose different weights, which then, by Proposition 4.1, give
new singular continuous distributions; see Figure 4 for the standard Cantor distribution
(the Devil’s staircase) and two Salem sequence variants.

It is interesting to note that the Cantor distribution was one of the first examples of
a singular continuous function, while Salem’s contribution was ‘to give simple, direct
constructions of strictly increasing singular functions’. While at the time these seemed
to be very different ideas, our definition of the Salem sequence shows in fact that
these are just two examples of the same phenomenon. These functions seem to arise in
many contexts, for example, in the study of Riesz products (see Benedetto, Bernstein
and Konstantinidis [3, Figure 3]).

REMARK 4.2. Note that the Zaremba ghost measure is not self-similar, so, in
particular, it is not the ghost measure of any Salem sequence. There are a host of
ways to see this, the easiest of which is that the matrices in the affine maps in (1.1)
do not share a nontrivial invariant subspace, so do not commute, and hence are not
simultaneously diagonalisable.
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5. Singular continuity of Zaremba’s ghost distributions

In this section we prove Theorem 2.2, and as a corollary that Zk(x) is singular
continuous for every k � 2.

PROOF OF THEOREM 2.2. Since f is nonnegative, its ghost distribution and the related
attractor are both increasing functions on [0, 1], and so of bounded variation. Thus,
they are almost everywhere differentiable. Additionally, since by Theorem 2.1 the
ghost distribution of f is an affine section of the related attractor, to prove that the
ghost distribution of f is a singular continuous function, it is enough to prove that
the first two coordinates of the related attractor give the graph of a singular continuous
function. We note that the attractor is continuous since ρ = ρ(B) > ρ∗(B).

Now, denote by (x, S(x)) the points of the curve defined by the first two coordinates
of the solution of the related dilation equation or attractor. As in the proof of
Theorem 4.1 above, we let x ∈ [0, 1] be a simply normal number with base-k expansion

(x)k = 0.x1x2x3 · · ·.

We remind the reader that, for such x and any j ∈ {0, 1, . . . , k − 1}, the number of xi = j
with i up to n is n/k + o(n). Now, for each n � 0, set

yn = x +
bn+1

kn+1 where bn+1 =

⎧⎪⎪⎨⎪⎪⎩
1 if xn+1 = 0
−1 otherwise.

The first n bits in the binary expansion of yn agree with those of x, thus∣∣∣∣∣S(x) − S(yn)
x − yn

∣∣∣∣∣ < kn+1 · |eT
1 ( ρ−1Bx1 )(ρ−1Bx2 ) · · · (ρ−1Bxn )vρ|

< (kρ−1)n · ‖Bx1 Bx2 · · ·Bxn‖ · k · ‖eT
1 ‖ · ‖vρ‖

�
(
kρ−1

k−1∏
j=0

‖Bj‖1/k
)n
· k · ‖vρ‖

( k−1∏
j=0

‖Bj‖
)|r(n)|

,

where |r(n)| = o(n) as n→ ∞, and, as it does throughout this paper, ‖ · ‖ denotes the
standard Euclidean norm for a vector and the induced operator norm for a matrix. But
since we have assumed that (2.1) holds, there is a constant a < 1 such that

∣∣∣∣∣S(x) − S(yn)
x − yn

∣∣∣∣∣ < cn · k · ‖v‖
( k−1∏

j=0

‖Bj‖
)|r(n)|

= o(1).

Since the derivative of S(x) exists almost everywhere, by the above, it is zero for
Lebesgue-almost all x ∈ [0, 1]; that is, S(x), and therefore μzk ([0, x]), is singular
continuous. �

Recall that

ρ = ρ(B) = ρ(B0 + B1 + · · · + Bk−1) � ‖B0 + B1 + · · · + Bk−1‖.
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Thus, using submultiplicativity of the operator norm for matrices, if (2.1) holds, it
implies that

‖B0B1 · · ·Bk−1‖1/k <
1
k
· ‖B0 + B1 + · · · + Bk−1‖,

which is exactly the arithmetic-geometric mean inequality for the operator norm of
matrices. That is, (2.1) is a strong version of the arithmetic-geometric mean inequality
(recall that our assumptions imply that the Bi are not all equal). As we shall see, in the
case of the Zaremba sequence zk such an inequality holds.

COROLLARY 5.1. The ghost measure of the Zaremba sequence zk is singular
continuous.

PROOF OF COROLLARY 5.1. A result of Coons et al. [7, Theorem 6] shows that the
ghost measure of zk is continuous. Now, since the matrices

Bi =

(
i + 1 1

1 0

)

for the Zaremba sequence are all symmetric and nonnegative, the operator norm is
equal to the largest eigenvalue. Thus,

‖Bi‖ =
i + 1 +

√
(i + 1)2 + 4
2

and ρ =
k(k + 1) + k

√
(k + 1)2 + 16

4
.

Since k � 2,

k−1∏
i=0

‖Bi‖1/k =
1
2

k∏
i=1

(i +
√

i2 + 4)1/k <
(k + 1) +

√
(k + 1)2 + 16
4

=
ρ

k
.

An application of Theorem 2.2 finishes the proof. �

Note that (2.1) does not hold in general. It is not even true for strictly positive
symmetric matrices. For a counterexample, note that

∥∥∥∥∥∥
(
1 1
1 1

)∥∥∥∥∥∥
1/2 ∥∥∥∥∥∥

(
2 1
1 1

)∥∥∥∥∥∥
1/2

= (3 +
√

5)1/2 > 2.288 >
5 +
√

17
4

=
1
2
· ρ

((
3 2
2 2

))
.

Under some natural assumptions on the matrices Bi, one can associate a Lyapunov
exponent χB to the matrix semigroup 〈B〉 given by χB = limn→∞ n−1 log ‖Bin−1 · · ·Bi0‖,
which, by the seminal result of Furstenberg and Kesten [15], exists and is constant for
almost every sequence (in)n�0 ∈ {0, . . . , k − 1}N. Trivially, e χB � ρ∗. Another sufficient
condition for the singularity of the ghost measure is that χB < log(ρ/k). We note,
however, that Lyapunov exponents are difficult to compute in general—the conditions
in Theorem 2.2 are comparatively easier to verify for concrete examples.
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6. Concluding remarks

In this paper, we connected the ghost measure of a regular sequence to an attractor
of an iterated function system of affine contractions. We then proved that certain ghost
measures are singular continuous by showing that the related attractor is a singular
continuous curve. Our results rested on the set of given digit matrices satisfying a
strong version of the arithmetic-geometric mean inequality (2.1). This is used to show
that, in the fundamental region [km, km+1r), most values of a regular sequence are
smaller than the average value of the sequence. This means that there are only a small
number of values that are pushing up the average. In fact, it is not hard to show that the
maximal values of a regular sequence have density zero in each fundamental region.

The following proposition is a generalisation of a result of Coons and Spiegelhofer
[8, Proposition 2.3.20] originally proved in the special case where f is the Stern
sequence.

PROPOSITION 6.1. Suppose f is a nonnegative k-regular sequence, ρ(B) is the unique
simple dominant eigenvalue of B, ρ/k < ρ∗(B) < ρ(B) and there is a real number c > 0
such that Σ(n) ∼ c · ρ(B)n as n grows. For m � 0, let gm be the function defined on
[0, 1] by

gm(x) =
1

( ρ∗)m · f (km + �km(k − 1)x�).

Then the sequence {gm(x)}m�0 of functions converges to zero for λ-almost all x in [0, 1].

PROOF. By assumption, the sum of f over the interval [km, km+1) is asymptotic to c1ρ
m

for some c1 > 0. Set Mm := maxn∈[km,km+1) f (n). To prove the proposition, we need to
show that there are exponentially few integers n in [km, km+1) such that f (n) � εMm,
for any given ε > 0. By the nonnegativity of f, the number N of such integers satisfies
NεMm � c1ρ

m, therefore N � c1ρ
m/(Mmε) � (ρ/ρ∗)m/ε. Since ρ∗ > ρ/k, there are

exponentially few integers n such that f (n) is large; in particular, there is a K < 1
such that λ({x ∈ [0, 1] : gm(x) � ε}) � Km/ε. It follows that

λ({x ∈ [0, 1] : ∃m � M such that gm(x) � ε}) = λ
( ⋃

m�M

{x ∈ [0, 1] : gm(x) � ε}
)

�
∑
m�M

λ({x ∈ [0, 1] : gm(x) � ε}) � 1
ε

∑
m�M

Km =
1
ε
· KM

1 − K
.

Thus,

λ({x ∈ [0, 1] : gm(x) < ε for all m � M}) � 1 − 1
ε
· KM

1 − K
,

so that

1 = λ
( ⋃

M�1

{x ∈ [0, 1] : gm(x) < ε for all m � M}
)
= λ(Aε),
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where Aε = {x ∈ [0, 1] : ∃M � 1such that gm(x) < ε for all m � M}. Therefore,

λ({x ∈ [0, 1] : gm(x)→ 0 as m→ ∞}) = λ
(⋂
ε>0

Aε
)
= λ

(⋂
n�1

A1/n

)
= 1. �

The following corollary is immediate.

COROLLARY 6.2. Suppose ρ(B) is the unique simple dominant eigenvalue of B and
ρ/k < ρ∗(B) < ρ(B). Then for Lebesgue-almost all (x)2 = 0.x1x2x3 · · · ∈ [0, 1], we have
limn→∞(ρ∗)−n · ‖Bx1 Bx2 · · ·Bxn‖ = 0.

Unfortunately, Corollary 6.2 is not strong enough to replace (2.1).
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