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In this paper we revisit the paradigm of space science turbulent dissipation traditionally
considered as myth (Coroniti, Space Sci. Rev., vol. 42, 1985, pp. 399–410). We
demonstrate that due to approach introduced by Pitaevskii (Sov. J. Expl Theor. Phys.,
vol. 44, 1963, pp. 969–979; (in Russian)) (the effect of a finite Larmor radius
on a classical collision integral) dissipation induced by effective interaction with
microturbulence produces a significant effect on plasma dynamics, especially in the
vicinity of the reconnection region. We estimate the multiplication factor of collision
frequency in the collision integral for short wavelength perturbations. For waves
propagating transverse to the background magnetic field, this factor is approximately
(ρekx)

2 with ρe an electron gyroradius and where kx is a transverse wavenumber.
We consider recent spacecraft observations in the Earth’s magnetotail reconnection
region to the estimate possible impact of this multiplication factor. For small-scale
reconnection regions this factor can significantly increase the effective collision
frequency produced both by lower-hybrid drift turbulence and by kinetic Alfvén
waves. We discuss the possibility that the Pitaevskii’s effect may be responsible for
the excitation of a resistive electron tearing mode in thin current sheets formed in
the outflow region of the primary X-line.

1. Introduction
There are three main triggering processes for magnetic reconnection in equilibrium

collisionless plasma systems: Landau resonance of tearing mode perturbations
and demagnetized ions (e.g. Schindler 1974; Galeev & Zelenyi 1976), inertia of
magnetized electrons (e.g. Laval, Pellat & Vuillemin 1966; Porcelli et al. 2002;
Zelenyi & Artemyev 2013, and references therein) and effective collisions induced by
particle scattering on electromagnetic turbulence (e.g. Huba, Gladd & Papadopoulos
1977; Coroniti 1980; Büchner & Zelenyi 1987). All these three processes can drive
the instability of an equilibrium (or quasi-equilibrium) current sheet and result in
magnetic field reconfiguration. The situation can be much more complicated for
dynamical plasma systems where the turbulent magnetic reconnection destroys (or
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reforms) current sheets and magnetic discontinuities (Servidio et al. 2011; Greco
et al. 2012; Rappazzo et al. 2012; Karimabadi et al. 2013). However, in this study
we concentrate on consideration of small perturbations of an equilibrium current sheet.
This is typical situation for magnetic reconnection in the Earth’s magnetotail where
the ion Landau resonance is considered to be a main candidate for tearing mode
excitation (Schindler 2006; Zelenyi et al. 2008; Sitnov & Swisdak 2011) where the
numerous spacecraft observations have revealed the manifestations of reconnection
events (e.g. Petrukovich et al. 1998; Baumjohann 2002; Angelopoulos et al. 2008;
Nagai et al. 2011). However, many physical problems of ion (resonant) tearing mode
still remain unsolved (see discussion in Pellat, Coroniti & Pritchett 1991; Quest,
Karimabadi & Brittnacher 1996; Sitnov et al. 2002). Thus, the idea of effective
dissipation induced by particle scattering due to wave–particle interaction appears
to be quite promising. Previous estimates (Coroniti 1985) and modern spacecraft
observations (e.g. Eastwood et al. 2009) were somewhat pessimistic concerning this
idea – the observed level of electromagnetic turbulence appears to be insufficient to
support the required effective collision conductivity in the Earth’s magnetotail. In this
paper, we consider an additional effect responsible for the enhancement of effective
collisions. Although, we concentrate on magnetotail reconnection, the proposed effect
can also be important for laboratory devices where a weakly collisional reconnection
geometry is reproduced (Le et al. 2015).

The kinetic investigation of current sheet stability with the effects of particle
effective collisions requires the consideration of the Vlasov–Maxwell equations with
a collision integral (e.g. Zelenyi & Artemyev 2013, and references therein). Due to
the complicated form of the full collision integral (Pitaevskii & Lifshitz 1981), the
practical approach is reduced to the inclusion of an approximate form of this integral
into a kinetic equation. For example, one of the most popular forms of the collision
operator Y[ f ] acting on the velocity distribution f = f0 + δf has been proposed by
Bhatnagar, Gross & Krook (1954):

Y[ f ] =−ν
(
δf −

(
n
n0
+ m

T
〈v〉 v

)
f0

)
, (1.1)

where ν is Coulomb collision frequency (later treated more generally as a frequency
of effective collisions due to interaction of electrons with different wave modes), m
and T are the mass and temperature of the particles, f0 and n0 are the unperturbed
velocity distribution and plasma density and

〈v〉 = n−1
0

∫
vδf dv

n=
∫
δf dv.

 (1.2)

We also note that
∫

vf0 dv = 0 and n0 =
∫

f0 dv.
The integral (1.1) describes the relaxation of the velocity distributions to the initial

state f0. This integral does not include any derivatives of the perturbation δf and thus
does not take into account any information about the internal fine structure of δf . In
this paper, we show how the consideration of exact form of the collision integral can
modify the effective frequency ν with particle gyration in the background magnetic
field produces significant modulations in the distribution function δf .
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2. Collisions in a weakly magnetized plasma

To consider the effect of a finite electron gyroradius on effective collisions below we
use the full expression of the Landau form of the collision integral Y[ f ]=−m−1(∇ · s)
where the density of particle flux s has the following components (Pitaevskii &
Lifshitz 1981):

sα = πe2Λ

m

∑
β

∫ (
∂f (v′)
∂v′β

+ mv′β
T

f (v′)
)

f0(v)
w2δβα −wαwβ

w2
dv′

− πe2Λ

m

∑
β

∫ (
∂f (v)
∂vβ
+ mvβ

T
f (v)

)
f0(v

′)
w2δβα −wαwβ

w2
dv′, (2.1)

where w= v − v′, α, β = x, y, z, Λ= ln(λDq2/T) and λD is the Debye length.
Considering the perturbation δf = f (v) exp(iΦ) of the initial distribution function

f0(v), the phase of the perturbation is Φ = k · r −ωt. The corresponding perturbations
to the electromagnetic field are δB = B exp(iΦ), δE = E exp(iΦ), while the
background magnetic field is B0 = B0ez. The wave vector of perturbations k is
assumed to lie in the (x, z) plane. In this case, the perturbation of the Valsov
equation takes the form

∂δf
∂t
+ v

∂δf
∂r
+ q

mc
[v× B0]∂δf

∂v
+ Y[δf ] =− q

m

(
δE+ 1

c
[v× δB]

)
∂f0

∂v
. (2.2)

We introduce the force F = (q/m)(E + c−1[v × B]), cylindrical velocity coordinates
vx = v⊥ cos θ , vy = v⊥ sin θ and rewrite (2.2) as

−iωδf + ikzvzδf + ikxv⊥ cos θδf − qB0

mc
∂δf
∂θ
+ Y[δf ] =− q

m
FeiΦ ∂f0

∂v
, (2.3)

where [v × B0](∂/∂v)=−B0(∂/∂θ). Then we divide (2.3) by exp(iΦ) and introduce
Ω0 = qB0/mc, λ=ω− kzvz:

− i(λ− kxv⊥ cos θ)f −Ω0
∂f
∂θ
+ Y[ f ] =−F

∂f0

∂v
. (2.4)

We introduce the function W = (λθ − kxv⊥ cos θ)/Ω0 and function g(v)= f (v) exp(iW).
Thus, (2.4) can be rewritten as

∂g
∂θ
+ eiWY[ge−iW] =−F

∂f0

∂v
eiW . (2.5)

To derive the dispersion relation for perturbations, one should substitute into (2.5) the
Maxwell equations for electromagnetic field perturbations (∼F) expressed through
function g (see, e.g. Zelenyi & Artemyev 2013). In this case, the final wave
frequency/growth rate would depend on collision frequency (e.g. for the simplified
collision integral (1.1) the operator Y is proportional to collision frequency ν).
However, we would like to estimate the effect of a finite electron gyroradius
on collision frequency ν. Thus, we compare the term ∼Y for the two systems:
when simplified (1.1) can be used and Y ∼ ν and when the full collision integral
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Y[ f ] = −m−1(∇ · s) with (2.1) should be taken into account. For this reason, we
carefully consider the second term in (2.5) and estimate the main part of this term∫ θ

eiWY[ge−iW] dθ. (2.6)

In the limit kx
√

2T/m/Ω0� 1, function g exp(−iW) contains the fast oscillating term
∼ exp(ikxv⊥ sin θ/Ω0)= exp(ikxvy/Ω0). Thus, in (2.1) we should keep the main terms
corresponding to the derivative ∂f /∂vy. The first term in (2.1) contains the integral∫
(∂f /∂v′y) dv′y∼ f . Therefore, the second term with ∂f /∂vy is more important and we

can write:

sα ≈−πe2Λ

m

(
∂f (v)
∂vy
+ mvy

T
f (v)

)
Aα(v) (2.7)

Aα(v)=
∫

f0(v
′)

w2δyα −wywβ

w2
dv′. (2.8)

The main part of sα from (2.8) is

sα ≈−i
kx

Ω0

πe2Λ

m
g(v)e−iWAα(v). (2.9)

Thus, the integrand of (2.6) takes the form

eiWY[ge−iW] =− k2
x

Ω2
0

πe2Λ

m2
g(v)Aα(v). (2.10)

In dimensionless form (2.10) can be written as

eiWY[ge−iW] =−2k2
xT

Ω2
0 m

Ỹ[ f ]eiW, (2.11)

where Ỹ is the initial collision integral (2.1) without derivatives over fast oscillation
terms. Equation (2.11) shows that the effect of a finite electron gyroradius provides
the multiplication factor 2k2

xT/Ω2
0 m. This factor is omitted in the simplified form of

the collision integral (1.1). Therefore, if we operate with the collision frequency ν
from (1.1) then this expression for collision frequency ν (Coulomb or effective) should
be multiplied by the term 2k2

xT/Ω2
0 m � 1. Of course, for a complete investigation

of system stability one should consider the full collision integral (2.1), but for many
applications the simplified approach with collision frequency ν can be applied with the
corresponding correction ∼2k2

xT/Ω2
0 m. Finally, we come to the following expression

for the effective collision frequency in a system with weakly magnetized electrons:

νeff ≈
{
ν(kxρe)

2 kxρe > 1
ν kxρe 6 1,

(2.12)

where ρe = √2T/m/Ω0 is the electron gyroradius. Note, that (2.12) provides only
a simplified estimate of the effect of electron finite gyroradius on system stability.
However, this simplified expression gives us the opportunity to estimate this effect
for realistic system parameters. In the next section we use the modified collision
frequency (2.12) to estimate the effect of effective conductivity in the regions with
weak magnetic field, in particular in the reconnection regions in near-Earth plasma
systems.
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FIGURE 1. Schematic view of the X-line region.

(a) (b)

FIGURE 2. Factor X as a function of Lx for two values of Bz and four values of electron
temperature T .

3. Estimates of kxρe parameter for space plasma reconnection systems

Let us consider the classical 2-D X-line with magnetic field configuration B =
B0(z/Lz)ex+Bz(x/Lx)ez (see scheme in figure 1). The reversal of the Bx magnetic field
component in the neutral plane z = 0 generates so-called neutral region |z| <√ρ0Lz

with ρ0 =
√

2Tmc/eB0 where particles are not affected by the Bx magnetic field and
can move practically freely along the y-axis (Dobrowolny 1968). The same region
appears around the x= 0 plane due to Bz reversal: |x|<√ρzLx with ρz=

√
2Tmc/eBz.

Particles, moving within this region are affected by the effective (averaged gyroradius)
magnetic field with amplitude B̃z = Bz

√
ρzLx/Lx = Bz

√
ρz/Lx, while the effective

particle gyroradius is equal to the spatial scale ρe =
√

2Tmc/eB̃z = √ρzLx. If we
assume that the X-line is generated by the tearing instability with a wavelength equal
to Lx= 2π/kx (see the scheme in figure 1), then the factor from (2.12) can be written
as

X = (kxρe)
2 = ρzLx

(
2π

Lx

)2

= 4π2 ρz

Lx
. (3.1)

Figure 2 shows values of X as a function of electron temperature T , Lx and Bz. For the
initial stage of the tearing instability (when Bz is still very small) with a wavelength
Lx which is not too long the factor X is larger than one. Thus, the effect of a finite
electron gyroradius can amplify energy dissipation due to effective collisions.
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To estimate the effect of the factor X on magnetic reconnection in real plasma
systems we consider the effective collisions induced by two types of turbulence: lower-
hybrid drift (LHD) turbulence (Huba et al. 1977) and kinetic Alfvén wave (KAW)
turbulence (Chaston et al. 2009).

Wavelengths of the electromagnetic LHD mode (∼ρe
√

mi/me (Daughton 2003))
and KAW (<0.3ρe(mi/me) (Voitenko 1998; Chen et al. 2014)) are small enough to
consider these waves to be small-scale magnetic field perturbations for the large-scale
reconnection process. On the other hand, these modes effectively interact both with
ions (through the Cherenkov resonance kv = ω (Karney 1978; Karimabadi et al.
1990; Chaston et al. 2014)) and electrons (through the Landau resonance k‖v‖ = ω
(Hasegawa 1976; Cairns & McMillan 2005)). Both modes are widely observed in the
vicinity of the reconnection region where their contributions to the electromagnetic
field turbulence are the strongest among wave modes (Eastwood et al. 2009; Fujimoto,
Shinohara & Kojima 2011; Huang et al. 2012). Thus, LHD and KAW can the provide
an exchange of energy between the ions and electrons, supporting the anomalous
(effective) conductivity. The general form of the frequency of effective collisions ν is
provided by the quasi-linear equation (Galeev & Sagdeev 1979):

ν = 1
mn0vD

∫
Wk
Γ (k)
ω(k)

k
d3k
(2π)3

, (3.2)

where vD is particle drift velocity (i.e. en0vD is a current density), Γ (k) is a wave
growth/damping rate, ω(k) is a wave frequency and Wk is a wave energy density. For
current sheet configurations the maximum value of νLHD was derived by Huba, Drake
& Gladd (1980):

νLHD ≈
ω2

pe

ωLH

E2
y

8πn0Te
, (3.3)

where ωpe is the plasma frequency, ωLH≈Ωe
√

me/mi and Ωe= eBz/mec is the electron
gyrofrequency, Te is electron temperature and Ey corresponds to the amplitude of wave
electric field oscillations.

For KAW the maximum growth rate corresponds to Landau excitation Γ ≈ ω/kvD

(Hasegawa & Mima 1978) where the wave frequency is ωKAW = k‖vA

√
1+ (k⊥ρi)2

with ion gyroradius ρi and Alfvén velocity vA (Hasegawa 1976). The corresponding
collision frequency can be estimated as

νKAW ≈ωKAWΓ
ω2

pe

k2
‖v

2
Te

E2
y

4πn0mev
2
D
≈ ω2

pe

ωKAW

v3
A

v2
DvTi

E2
y

8πn0Te
≈ ω2

pe

ωKAW

E2
y

8πn0Te
, (3.4)

where we take into account that k⊥ρi ∼ 1, vD ∼ vTi ∼ vA.
Following Coroniti (1985), one can determine the critical amplitude of electric field

energy E2
y necessary to organize the magnetic field dissipation within the domain with

spatial scale ∼Lz ∼ ρi:

(E2
y)LHD

8πn0Te
= MA

X

√
mi

me

vAvTi

c2
≈ MA

X

√
mi

me

(vA

c

)2
(3.5)

(E2
y)KAW

8πn0Te
= MA

X
ωKAW

Ωi

(vA

c

)2 ≈ MA

X

(vA

c

)2
, (3.6)
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where MA is an Alfvén–Mach number for a particle flowing to the reconnection
region. Generally MA ∼ 0.1 for magnetospheric physics, while (vA/c)2 ≈ 10−5 for the
Earth’s magnetotail. Equation (3.6) shows that one can decrease the estimate for the
critical amplitude of wave electric field proportionally to ∼1/

√
X ∼ 1/3–1/10 (see

figure 2) after taking into account the Pitaevskii effect. For magnetotail current sheets
the typical amplitude of LHD waves can reach 10 mV m−1 (Eastwood et al. 2009;
Fujimoto et al. 2011; Norgren et al. 2012), while the estimate of the amplitude from
(3.6) is

√
(E2

y)LHD ∼ 30/
√

X mV m−1 (Coroniti 1985). Thus, a factor X ∼ 10 can
help to produce the necessary magnetic energy dissipation due to effective collisions.
Amplitudes of KAW electric field are often weaker ∼1 mV m−1 (Chaston et al. 2012).
The critical amplitude for KAW is

√
(E2

y)KAW is of the order of ∼1/
√

X mV m−1. The
Pitaevskii effect of reducing the estimate (3.6) 2–3 times demonstrates an important
role of KAW in running magnetic reconnection. Therefore, we conclude that in
realistic magnetotail conditions for both cases (LHDI and KAW) the effect of finite
electron gyroradius can increase effective collisions and help to overturn Coroniti
(1985) objections.

4. Discussion and conclusions
The additional effect of the enhancement of effective collisions for kρe > 1

perturbations was taken into account in the analysis of the electron resistive tearing
mode (Zelenyi & Taktakishvili 1981). This mode is excited by ν 6= 0 with the growth
rate γ = νX(γ0/kx

√
2Teme) where γ0/kx

√
2Teme = 2π−1/2(ρe/Lz)

3/2(1 − k2
xL2

z )/kxLz is
the growth rate of the electron tearing mode (Laval et al. 1966; Galeev & Sudan
1985). Therefore, for X factor high enough, the growth rate of the resistive tearing
mode increases. This mode is produced by effective collisions and cannot be stabilized
by electron magnetization (in contrast to the classical electron tearing mode (Schindler
1974; Galeev & Zelenyi 1976)). Moreover, for a tearing mode with kρe > 1 the WKB
approximation in the investigation of current sheet stability can be safely applied
(Lembege & Pellat 1982) supporting the validity of the expressions for the growth
rates γ and γ0 derived for the case where the wavelength is not too long.

Effective collisions are often considered in numerical models of magnetic
reconnection as a trigger for the reconnection process (Daughton, Lapenta & Ricci
2004; Daughton et al. 2011; Karimabadi et al. 2013). In this case, estimates of the
reconnection rate can be based on the classical theory of an effective conductivity
(Galeev & Sudan 1985; Yoon & Lui 2006) with a proper estimate for the effective
collision rate. Thus, the effect of fine structured velocity distributions (when ρkx > 1)
can be very important. The same effect can be provided by numerical resistivity
which supports the slow growth of magnetic islands when the tearing instability is
saturated by nonlinear effects (Lipatov & Zelenyi 1982).

Figure 2 shows that the most pronounced effect of a finite electron gyroradius
corresponds to small-scale reconnection (i.e. small Lx) where instead of one large-scale
X-line we deal with a chain of small-scale magnetic islands. Indeed, strong anisotropy
of electrons accelerated in the primary reconnection region generates high-amplitude
curvature currents (Egedal, Le & Daughton 2013; Artemyev et al. 2015) responsible
for the formation of very thin current sheets with vanishing Bz magnetic field
(Nakamura et al. 2006; Artemyev et al. 2013; Le et al. 2014). Instability of such thin
current sheets results in secondary reconnection in the outflow region of the primary
large-scale X-line (so-called plasmoid instability) with the corresponding birth of a
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. Two cases of Cluster spacecraft crossing a reconnection region (see the
characteristic reversal of Bz). Both cases are taken from Artemyev et al. (2015).

multitude of small-scale X- and O-magnetic points (Daughton et al. 2011; Huang,
Bhattacharjee & Forbes 2013). Thus, the secondary reconnection of such thin current
sheets can occur within the region of kxρe > 1. To illustrate this scenario we show
two events of Cluster spacecraft observations of magnetic reconnection in the Earth’s
magnetotail (see figure 3). The characteristic Bz reversal and plasma flows vx indicate
that Cluster is in close vicinity to the X-line. We calculate the electron gyroradius
ρe using local measurements of the Bz and By magnetic field (Bx is assumed to
be zero). Around the X-line ρe reaches ∼1000 km, thus X becomes larger than
one for Lx < 6RE. For example, the secondary reconnection with a wavelength of
approximately ∼2RE corresponds to an increase of effective collision frequency by
a factor X ∼ 3. We also note that for both events shown in figure 3, current sheet
thicknesses were approximately ∼800 km and ∼600 km (see estimates of current
density amplitudes in Artemyev et al. 2015). Thus, for Lx ∼ 2RE the ratio Lx/Lz ∼ 18
and the corresponding current sheets are very prolonged and stretched.

To conclude, we consider the effects of a finite electron gyroradius for current sheet
stability in the case when effective collisions are present in the system. Following
Pitaevskii (1963) we demonstrate that a fast electron gyrorotation results in a fine
structure of the perturbations of the electron distribution function. As a result, the
full expression for the collision integral gives a multiplication factor X∼ (kxρe)

2 for
collision frequency (where kx is a transverse wavenumber). For realistic conditions in
the Earth’s magnetotail this factor can often be larger than one and thus can increase
the effect of particle scattering by electromagnetic turbulence. We show that effect of a
finite electron gyroradius should be particularly strong for the secondary reconnection
of very thin current sheets formed in the outflow region of the primary X-line.
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