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Abstract. We present a microlocal version of the Riemann—Hilbert correspondence for regular
holonomic D-modules. We show that a regular holonomic system of microdifferential equations
is associated to a perverse sheaf concentrated in degree 0. Moreover, we show that this perverse
sheaf can be recovered from the local system it determines on the complementary of its singular
locus. We characterize the classes of perverse sheaves and local systems associated to regular
holonomic systems of microdifferential equations.
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Irreducible holonomic D-modules characterize multivalued holomorphic functions
modulo the action of the fundamental group in the same way that irreducible
polynomials characterize algebraic numbers modulo the action of the Galois group.
To microlocalize a D-module is equivalent to focalize our attention on the
singularities of the multivalued holomorphic solutions of the system. Riemann
showed with is study of the hypergeometric differential equation that this point
of view can be quite efficient.

The main purpose of this paper is to study the perverse sheaves associated to
D-modules that come from systems of microdifferential equations. We show that
the structure of these perverse sheaves is much simpler than the structure of an
arbitrary perverse sheaf. These sheaves are concentrated in degree zero and they
can be recovered from the local system they determine on the complementary of
the ramification locus of the solutions of the system.

Several papers have been dedicated to the presentation of combinatorial
descriptions of perverse sheaves (cf. [MV], [Ma], [Na], [GMV].). We show that
in this case there is a very simple description in terms of certain linear representations
of the fundamental group of the complementary of the ramification locus. We call
these representations hypergeometric because the monodromy of a Gauss
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hypergeometric function is an example of an hypergeometric representation. The
hypergeometric representation of a holonomic system of microdifferential equations
of multiplicity one along the conormal of the cusp y?> = x?"*! equals the monodromy
of some Gauss hypergeometric function (cf. [NS]).

We can find in [A] another approach to the microlocalization of the de Rham
functor. Our approach produces a statement that does not need to use the language
of derived categories. Moreover, it provides a combinatorial description of the
objects. It opens the door to a systematic study of the systems of PDE’s with
characteristic variety equal to a given Lagrangian variety.

It is a pleasure to thank M. Kashiwara for proposing this problem to us as well as
for several useful discussions.

1. Introduction

We will assume that the reader has some knowledge of the theory of sheaves on
manifolds (cf. [KS]) and of the theory of regular holonomic D-modules (cf. [KK]

or [Bj]).

Let X denote a complex manifold. Let n: 7*X — X be the cotangent bundle of X
Let A be a germ of a conic Lagrangian variety at p € 7*X \ 75 X. We say that Aisin
generic position at p if n='(n(p)) N A = Cp. We will denote by RH,(D) the full
subcategory of the category of regular holonomic Dy r)-modules M that satisfy
the following conditions.

(@) Char(M) N~ (n(p)) = Cp.
(b) If uis a germ of an holomorphic vector field at n(p) such that u(n(p)) # 0 then
the C-linear map u -: M — M is invertible.

We will denote by RH,(€) the full subcategory of the category of regular holonomic
Ex p-modules M that satisfy the condition

(@ suppM Nz!(n(p)) = C*p.

THEOREM 1.1 [KK]. The functor
ty: RH,(D) — RH,(E), Mi—Ex, ®py ., M

is an equivalence of categories. Its inverse is the base change functor v, that associates
to an Ex p-module N the Dy n)-module N.

Let us recall the Riemann—Hilbert correspondence for D-modules.

DEFINITION 1.2. A Cy-module is called constructible if there is a decreasing
sequence

(X)jen: X =Xo D X1 DXy
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of closed analytic subsets of X such that N; > oX; = @ and, for each j > 0, the sheaf
Fly\x,, 1s a locally constant Cyx;\y,,,-module.

Let Df(X ) be the full subcategory of the derived category D(X) whose objects are
complexes

F:--~—>Fk—>Fk+1—>--'

such that H/(F)=0 for almost all j and the cohomology groups H/(F) are
constructible.

DEFINITION 1.3. We say that a complex F € Df(X) satisfies the conditions of
support if

codim(suppH/(F)) > j, for all j.

We say that a complex F € Df,(X ) is a perverse sheaf if F and its Verdier dual satisfy
the conditions of support. We will denote by Perv(X) the full subcategory of Df(X )
whose objects are the perverse sheaves.

THEOREM 1.4 (cf. [K], [Mb1,Mb2]). The functor
DRy: RH(Dy)— Perv(X),
Mi—RHomp,(Ox, M)

is an equivalence of categories.

It is possible to recover the characteristic variety of a coherent Dy-module from
DR x(M).

DEFINITION 1.5. Let X be a C! manifold. Let p € T*X. Let F € D’(X). We say

that p & SS(F) if there is an open neighbourhood U of p such that if a € X, f is
a C' real function defined on a neighbourhood of @ and df(a) € U, we have

(Rr{x:f(x> >0 F )az 0.
We call SS(F) the micro-support of F.

THEOREM 1.6 [KS]. Let M be a coherent Dy-module. Then
Char(M) = SS(DR x M).

The following characterization of the micro-support will be very useful.

THEOREM 1.7 [KS]. Assume that X is an open subset of a finite-dimensional real
vector space E. Let p = (xo, &) € T*X and let F € Ob(D*(X)). Then p & SS(F) if
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and only if there are an open neighbourhood U of 0, an ¢ > 0 and a proper closed
convex cone vy verifying the following conditions.

@ Oeyandy\{0}C{ve E: (v,&) <0}.
(b) If H={x:{(x—x,¢&)= —¢ and L={x:{x—x,¢&)=—¢}, then
HN(U+7y) CX and we have a natural isomorphism

RI(H N (x+7), F)>T(LN (x +7), F),

forall x e U.

2. An Equivalence of Categories

Remark 2.1. Let A be a germ of a conic Lagrangian variety atp € T*X \ T3 X. If Ais
in generic position we can assume that X is a copy of C"*! with coordinates (x, 7),
where x = (x1,...,x,), p = (0, dr), and there is a triple (Q, A, Y), where A is an
open polydisk of C""!, Q is a conic open neighbourhood of p and Y is a
closed hypersurface of A, defined by a Weierstrass polynomial f(x,1?) =
M4 Zﬁ”:f)l a;(x)¢" such that T% X Nn~'(Q) is a representative of A.

There are C > 0 and a neighbourhood U of 0 such that

11| < Clx| if (x, 1) € YNA. (1)

LEMMA 2.2. Let F be a perverse sheaf with micro-support in generic position. Then
H/(F) =0, for all j > 2.

Proof. Let us fix g € X. If SS(F)Nn~!(g) = {g} then F is a local system in a
neighbourhood of ¢ and H/(F) =0 in a neighbourhood of ¢, for all j > 1. If
SS(F)Nn~'(q) # {q} then there is p € n~!(g), p # ¢, such that

SS(F)Nn~l(q) = Cp.

Following Remark 2.1, we assume that p = (0, d?). Moreover, choosing A small
enough, we can assume that the line

L,={(x,1) e A:x=a}

is non characteristic for all a. By the Cauchy-Kowalevsky—Kashiwara theorem (cf.
chapter 5 of [K2]), F|,, is a perverse sheaf for all a. Hence

H(F) = H(FIL,), =0,

for all (a,1) € A and all j > 2. O

DEFINITION 2.3. Let p € T*X \ Ty X. We will denote by Perv,(X) the category of
germs at n(p) of perverse sheaves F that satisfy the following conditions.
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(@) SS(F)Nnn(p)) = Cp.
(b) Frp) =0.
(c) F is concentrated in degree 0.

Let Y be the germ at n(p) of an hypersurface Y such that 7% X N n~!(n(p)) = Cp. We
will denote by Perv,(X, Y) the category of germs at n(p) of sheaves F such that
F € Perv,(X) and SS(F) Cc Ty X U T3 X.

Let M be a regular holonomic £y ,-module in generic position. Let DR,(M) be
the germ at n(p) of the perverse sheaf DR(v,M).
THEOREM 2.4. We have an equivalence of categories

DR, : RHy(Ex) — Perv,(X).
DEFINITION 2.5. We call the functor DR, the Microlocal Riemann—Hilbert
Correspondence.

Proof. We will follow the notations of Remark 2.1. Set F = DR(M). Locally, we
can identify the germ at 0 of de Rham complex of M with the Koszul complex

K (Mo, 0y, ..., 0y, ;). ()
Since 9, : M — M is invertible, (2) is exact. Hence

H/(F), =0, for all j. (3)
By Lemma 2.2

H/(F) =0, for all j > 2.

Let 7: A — C" be the projection on the first n coordinates. By Remark 2.1 and
Proposition 5.4.17 of [KS] there is a neighbourhood of the origin of C" where
SS(Rt, H'(F)) is contained in the zero section. Hence Rt H'(F) is a local system
in a neighbourhood of the origin of C". Therefore I'(L,, H'(F)) does not depend
on a, for small a. By Remark 2.1

[(Ly, H'(F)) = ®peynr, H'(F),,

['(Ly, H'(F)) = H'(F), = 0.

Hence, H!(F) = 0.
We will now complete the proof by showing that, if M € RH(Dy), if Char(M)is in
generic position at n(p) and if DR( M)y, € Perv,(X), then

Mz € RHy(Dy).
The Dy r(,)-module

M= EX»P ®DX.n(p) Mﬂ(ﬂ)
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is in RH,(Dyx). We have a Dy np)-linear morphism ¢ : My, — M, defined by
o) =1 u. Let M be a representative of M in a small polydisk A. If A is small
enough, the morphism ¢ extends into a morphism of Dx-modules. We have an exact
sequence

0—> Ny = M|y > M — N> — 0.

If A is small enough, the £4-modules

Er®p, M|y and Ep ®p, M

are isomorphic outside the zero section. Therefore Ny and N, are integrable
connections. Since DR(N1),) = DR(N2)y,) = 0, N1 and N vanish in a neighbour-
hood of n(p). Therefore the Dy ,-modules M) and M are isomorphic. O

3. An Extension Result

DEFINITION 3.1. Let G be a group and let ® a linear representation of G into a
finite dimensional vector space E. Let (g;);; be a set of generators of G. We say
that the family (g;);c; is ®-hypergeometric if there is a family (E;),.; of linear
subspaces of E such that E = ®;;E;, E; %20, for all i, and

{(x e £:0(g)(x) = x} = ®j»E;, foralli

We say that a linear representation ® is hypergeometric if there is a family of
generators (g;);; of G such that (g;),c; is ®-hypergeometric.

Let X be a simply connected open subset of the complex plane. Let 7 be a finite
subset of Xj. Set X = Xy \ /. Choose a€ X and b el. We say that a loop
v € m1(X, a) is b-simple if y is homotopic to the trivial loop in X U {b}. We say that
a family of free generators (y;),e; of mi(X, a) is simple if y, is b-simple for all b € 1.

Let H be a local system on X. Let @y be the associated linear representation of
n1(X, a). We say that H is hypergeometric if there is a simple family of generators
(vp)per Of mi(X, @) wich is ®p-hypergeometric.

Remark 3.2. Let @ be a linear representation of a group G. Let (g;),.; and (/;),; be
two families of generators of G. If (g;);c; 1s a ®@-hypergeometric family and #; is
conjugated to g; for each 7 then (/;),.; is a ®-hypergeometric family.

EXAMPLE 3.3. Set Xy =C, I ={0,1}. The sheaf of solutions of a Gauss
hypergeometric differential equation on C \ {0, 1} is an hypergeometric local system.

DEFINITION 3.4. Let X be a complex manifold. Let Y be the germ at ¢ € X of an

hypersurface of X. We say that a system of local coordinates (x, ..., x,, ) defined
on an open neighbourhood of ¢ is adapted to Y if there is a Weierstrass polynomial
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flx, )=+ Zf’;l a;(x)¢ defined on an open polydisk A such that ¥ N A = 7~1(0),
for some representative Y of Y.

Let H be the germ at ¢ of a local system on X\ Y. We say that H is an
hypergeometric local system at gq, relatively to a system of local coordinates
(x1,...,Xn, t) adapted to Y if f~l|171(a)\y is an hypergeometric local system for all
a € 1(A) such that = '(@)NY C Y,.,. Here H denotes a representative of H and
7 denotes the projection (xy, ..., X,, )i—>(x1, ..., X,).

We say that H is an hypergeometric local system at ¢ if H is an hypergeometric
local system at ¢ relatively to some system of local coordinates (xi, .. ., X,, t) adapted
to Y.

Remark 3.5. If H is an hypergeometric local system at g then ®j; is an
hypergeometric representation of the fundamental group of the complementary
of Y.

LEMMA 3.6. Let X be a simply connected open subset of the complex plane. Let I be
a finite subset of Xy. Let F be a constructible sheaf on Xy that is locally constant on
Xo\I. Choose aeX\I, and paths J,:[0,11—> X, bel such that
0p([0, 1D N 6.([0, 1]) = {a}, if b # ¢, and 5;1(1) ={1}. Let ¢, : F, — F, denote the
analytic continuation along dp, for all b € 1. We have an isomorphism of complexes

RI(Xy, F)—>F, ® ®pe; Fy—>F!, (4)

where (s, (sb)per) = (5 + @p(6))pes-
Proof. Set L = Upe[05([0, 1]). There is a family (W;),.g of limited open subsets of C
such that

Wi =Use W, YVt e R, U W, = Xo, N\ W, = L.

By the non characteristic deformation lemma (Proposition 2.7.2 of [KS]), H*(W;, F)
does not depend on ¢. Therefore

H*(Xy, F) = H*(L, F), for all k.

Since L is a locally compact topological space of dimension 1, H*(Xy, F) = 0, for all
k>=2.Set U=L\1, Uy, =2054(0,1]), for all b € I. We have

F, ifk=0,
Hk(UﬁUb,F):Hk(U,F):{O ;fk;éo.
F,, ifk=0,
Hk(Ub’F)z{o,b if k£ 0. 0

LEMMA 3.7. Let I be a finite set. Let E be a vector space and for each j € I let
¢; : V; — E be a linear map. The following statements are equivalent.
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1. The linear map from E ® @;c;V; into E', defined by
(%, (X)je D)= (X + @,(X))jer

is an isomorphism.
2. The maps ¢; are injective and E is isomorphic to ®je/E/ V).
3. There is a family (Ej);c; of subspaces of E such that

0 (Vi) = ®jz1E;, forallkel. ]

In order to prove Theorem 3.10 we will need to prove a Hartogs type theorem for
perverse sheaves with micro-support in generic position.

Let F be a constructible complex on a complex manifold X. Let p be a non singular
point of SS(F). We say that F is perverse at p if there is a submanifold Y of X and
there is a finite dimensional vector space L such that F is isomorphic to a shift
of Ly in the localization D’(X; p) of D’(X).

By the results of section 10.3 of [KS], the following statements are equivalent.

(a) F is a perverse sheaf.

(b) Foreach non singular point p of SS(F) such that n: SS(F) — X has constant rank
in a neighbourhood of p, F is perverse at p.

(¢) For each irreducible component A of SS(F) there is a point p € A such that F is
perverse at p.

THEOREM 3.8. Let F be a constructible complex on a complex manifold X. If the
micro-support of F is in generic position at p, for all p € SS(F)\ Ty X and if F is
perverse outside an analytic subset Z of X of codimension two, then F is perverse.

Proof. Let A be an irreducible component of SS(F). Since A ¢ n~'(Z), there is a
point p € A in the conditions of statement (b). Hence all irreducible components
of SS(F) verify statement (c). O

Let Y be a hypersurface of a complex manifold X. Consider the open inclusions
JiX\NY=>XN\ Y, 10 X\ Yyipe—X.

LEMMA 3.9. Letp e T*X \ T3 X. Let Y be the germ at n(p) of a hypersurface such
that Ty X is in generic position. If F € Perv,(X, Y) then the following statements hold.

(@) Thereis an open neighbourhood W of n(p) such that forall y € Y,.q N W thereis an
open neighbourhood U of y, there is a local system S on U and there is a perverse
sheaf G on U such that Fly =S® G and all the eigenvalues of the
monodromy around Y of G|y are different from 1.

(b) The sheaves j,j~'i"'F and i~'F are isomorphic.

Proof. We can assume that there is a system of local coordinates (yy, ..., y,, 5) on
U such that y=0 and YN U = {s = 0}. Let M ; be the Dy-module given by a
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generator u and relations
(0 —AHu=0, du=0 i=1... 5

The monodromy along Y of the local system DR(Mj. ;)| y equals ’J,f/ll.

Let M be an element of RH,(€y) associated to F by the microlocal
Riemann-Hilbert correspondence. Let M be a representative of the Dy (,)-module
M on an open neighbourhood W of n(p). We can assume that there is a section
u of M on W such that the germ of u at z generates the fiber of M at z, for all
z € W. We can assume that the map n: T3 X Nn~'(W) — W is injective. Given
ye Y NW, let U be a simply connected open neighbourhood of y contained
in U such that there is a system of local coordinates (yy, ..., y,,s) on U verifying
the conditions refered above. Let ¢ be a point of T3 X such that n(g) =y. We
can assume that there is a Dy-module N that is a representative of the
Dy ny-module M,. Moreover, we can assume that there is a section v of N on
U that is a representative of the element 1 ® u of the Dy z)-module M,. There
is one and only one morphism of Dy-modules ¥ : M|y — AN such that
Y(uly) = v. The kernel and the cokernel of i are integrable connexions. Since
the fiber at y of DR(N) vanishes, the cokernel of y vanishes. Setting
G = DR(N), we have the exact sequence

0—->S—Fly—>G—0, (%)

where S is a local system on U. The Dy-module N is a direct sum of Dy-modules of
type My ;. The exact sequence (5) splits since the following statements are
equivalent.

(i) The complex DR(Mj ;), vanishes.
(i) The eigenvalues of the monodromy of DR(My ;)| x\y are all different from 1.
(iii) The complex number A is not an integer.

Statement (b) is a straightforward consequence of statement (a). OJ

THEOREM 3.10. Let p € T*X \ Ty X. Let Y be the germ at n(p) of a hypersurface
such that Ty X is in generic position. The following statements hold.

L If F € Pervy(X, Y), then F|y\y is a hypergeometric local system at m(p).

2. If Sisalocal systemon X \ Y, iyj,S € Perv,(X, Y) ifand only if S is a hypergeometric
local system at 7(p).

3. If F € Pervy(X, Y), then F = iyj,j~'i"'F.

Proof. Set S = F|y\y. Let (x1, ..., x,, 7) be a system of local coordinates adapted
to Y. Choose o € t(A) such that t=!(2) N Y C Y. Choose a €t '(x)\ Y. Set
I=tY)NY, E=S, Let (y,),; be a simple family of generators of
(@) \ Y. Set V}, = ker(y, — Id), for each b € I. By Lemma 3.9 V}, equals the fiber
of F at b. By Lemma 3.6 and Lemma 3.7 there is a family (£}),; of linear subspaces
of E such that Vj = @.4E.. Therefore the family (y,),c; is ®s-hypergeometric.
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We will now prove statement (2). Let S be an hypergeometric local system on
X\ Y at n(p). We can assume that we are in the conditions of Remark 2.1. Set
F = iyj,S. It follows from (1) that we can assume that A = t~!(7(A)).

By Lemma 3.9 and Theorem 3.8, in order to prove statement (2) it is enough to
show that

SS(F) C T4 X U TLX. (6)

By Theorem 8.5.5 of [KS], the micro-support of F is a closed Lagrangian subvariety
of T*X. Hence we can assume that there is a finite family (Z;);.; of irreducible
complex analytic subsets of X such that

SS(F) = TyX U T4X UUie T3 X, (7)

codim Z; = 2, for all i, and 0 € Z;, for all i. We will assume / nonempty in order to
reach a contradiction. Set Z = U;c;Z;. It follows from the definition of F that
Z C Yiing. Let p: X — C’ denote the restriction to X of the linear projection
(X1, ..., Xp, O—(x1, ..., x7), where [ = dimZ. We can assume the following facts.

() The restriction of p to Z is a finite map. The set p(Z) is an open neighbourhood of
the origin of C’. There is a dense Zariski open set w of p(Z) such that

p Ho)NZ 0= dimZ; =1,

p N w)nZc Zyeg.

The set P}X is the graph of a continous map from Y into the dual of P"(C).
Therefore we can assume that for each two-dimensional linear subspace V' of
the dual of C"*!

14 ¢ UztEY(T;X)a' (8)

There is yy € Z N p~'(w) such that Z is transversal to the fibers of p in a neigh-
bourhood of yg. There is one and only one iy such that yy € Z;,. It follows from
(8) that there is f§ € (T }/_0 X ) such that

Yo

B & Vaey (Ty X),- )
We will reach the desired contradiction showing that

B & SS(F),,. (10)
Let p denote the restriction to X of the real linear projection
X1y ooy X, D= (X1, ..., X1, 3(x,)). Let o denote the linear projection
(X1, ..., x)—>(x1, ..., x;). We can assume that the following facts hold.

(B) There is an open neighbourhood @ of p(yg) such that the restriction of p to
Z N p~Y(®) is injective and f = d(Nx,).
(y) There is a dense Zariski open subset @ of ¢~ !(®) such that ¥ Nt~ (@) C Yy
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Let 9, ¢ be two positive real numbers. Set

Hz; = {(X, t) : §ﬁ(xn) = — 8}7
L ={(x,1):R(x,) = —¢},
P X = = =0, (%) =0, R < — Ol

Let E denote the real linear subspace of C"*! spanned by y. The following state-
ments hold.

(6) If ¢ is small enough LN Y N(E +y) C Y, for all y close enough to yj.

() If we choose ¢ small enough then LN Y N(y+y)=LNYN(E+y), forall y
close enough to yj.

(n) Ifwechoose d small enough, the conormal of the regular part of the boundary of y
as a subset of E does not intersect Uyey (T3 X),.

(6) 1If y is close enough to y, the set Y N (E + y) contains at most a point of the
singular locus of Y. If this point exists, it belongs to the set p~'(®) N Z.

Since S is an hypergeometric local system and the intersection of Y with
LN (y+ E) equals the intersection of Y with a fiber of 7, it follows from (9), (),
Lemma 3.9, Lemma 3.7 and Lemma 3.6 that

RI(LN(y+7y),F)=0, for all y close enough to yy. (1D
If

HNQ@+9)N Y =9 (12)
then

RI(LN(y +7), F)>RT(H, N (y +7), F). (13)

The proof of (13) is quite similar to the proof of the implication (1), = (3) of the
Proposition 5.1.1 of [KS]. The main ingredients of the proof of (13) are (1) and
the non characteristic deformation lemma.

If the equality (12) does not hold, it follows from (0) that there is zg € Z,., such
that

O+H)NG+9)N Yug =+ E) N Yying = {20}

We will assume that y # zy. The proof in the case y = z¢ is quite similar. Notice that
20+ 01(y — z0) + 7y C inty1p(z0 + 02(y — z0) +7)

if and only if 6; < 8,. Moreover,
No=1((z0 + 0y — 20) +7) N (20 + Hpe)) = (v +7) N (20 + H.), (14)

Ng=o ((zo + Oy — z0) +7) N (20 + Hp;)) = {z0}. (15)
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It follows from (0), (), (8) and the non-characteristic deformation lemma that
RI (inty1£(z0 + 0(y — 20) +7) N (20 + Hoe)). Fly1£).

does not depend on 0, for 0 €]0, 5[ and for some 5 > 1. Since the sets {z,} and
H,N(y+7) are compact,

0 = RI'({zo}, F) — RI((zo + H,) N (y + 7). F).

We will now prove statement (3). It follows from Lemma 3.9 that we have an exact
sequence

0— ijj i'F—-F— G—0.

It follows from the Lemma 3.9 that n(SS(G)\ T5X) is an analytic subset of
codimension greater or equal than two of X. Since SS(G) is in generic position,
G=0.

COROLLARY 3.11. Let X be a complex manifold and q a point of X. Let Y be a
germe at q of an hypersurface of X. Assume that there is p € n~'(q) such that
T3 X Nn'(g) = Cp. Thena germ at q of alocal system H on X \ 'Y is hypergeometric
if and only if H is hypergeometric relatively to all systems of local coordinates of X
adapted to Y.

Proof. By 3.10 (2) ijj.H is a perverse sheaf at g. By the proof of 3.10 (1) H is a
hypergeometric local system relatively to all systems of local coordinates of X
adapted to Y. O

COROLLARY 3.12. Let X be a complex manifold. Let Y be a germ of a point a of an
hypersurface Y of X, such that Ty X is in generic position. Let p be a point of Ty X such
that n(p) = a. Let A be the germ of a Lagrangian variety of T* X that is isomorphic to
Ty X. The category of germs at p of regular holonomic systems with support on A and
the category of hypergeometric representations of the fundamental group of the comp-
lementary of Y are equivalent.
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