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In this work, we study the Sobolev stability of shear flows near Couette in the 2D
incompressible magnetohydrodynamics (MHD) equations with background magnetic
field (α, 0)� on T × R. More precisely, for sufficiently large α, we show that when the
initial datum of the shear flow satisfies ‖U(y) − y‖HN+6 � 1, with N > 1, and the

initial perturbations uin and bin satisfy ‖(uin, bin)‖HN+1 = ε � ν
5
6+δ̃ for any fixed

δ̃ > 0, then the solution of the 2D MHD equations remains ν−( 1
3+ δ̃

2 )ε-close to
(eνt∂yy U(y), 0)� for all t > 0.
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1. Introduction

1.1. Problem statement and background

Consider the 2D incompressible MHD equations on T × R:⎧⎪⎨⎪⎩
∂tũ+ ũ · ∇ũ− b̃ · ∇b̃ = νΔũ−∇p̃,
∂tb̃+ ũ · ∇b̃− b̃ · ∇ũ = μΔb̃,
divũ = divb̃ = 0.

(1.1)

Here T is the periodized interval [0, 1], ũ = ũ(t, x, y) : [0,∞) × T × R → R2

denotes the velocity, b̃ = b̃(t, x, y) : [0,∞) × T × R → R2 denotes magnetic field,
p̃ = p̃(t, x, y) : [0,∞) × T × R → R denotes pressure, ν denotes the inverse Reynolds
number, and μ denotes the inverse magnetic Reynolds number. For a derivation of
(1.1) and a general overview of MHD equations we refer the reader to [17, 30].

Note that the shear profile us = (eνt∂yyU(y), 0)� is a solution of (1.1) in any
uniform magnetic field bs = (α, 0)�, where U(y) is a given smooth function, and
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2 T. Chen and R. Zi

α is a constant in R. A natural question is to study the long time stability of the
equilibrium state (us, bs). To this end, let us introduce the perturbations u and b
by ũ = u+ us and b̃ = b+ bs. Then (u, b) solves⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ Ū∂xu+
(
Ū ′u2

0

)
− α∂xb− νΔu = −u · ∇u+ b · ∇b−∇p̃,

∂tb+ Ū∂xb−
(
Ū ′b2

0

)
− α∂xu− μΔb = −u · ∇b+ b · ∇u,

∇ · u = ∇ · b = 0,

u(0) = uin, b(0) = bin,

(1.2)

where we have used the notations u = (u1, u2)�, b = (b1, b2)� and Ū = eνt∂yyU(y).
The corresponding perturbed vorticity and current density take the form of

ω = ∂xu
2 − ∂yu

1, j = ∂xb
2 − ∂yb

1.

Let ψ and φ be the steam functions such that

u = (−∂yψ, ∂xψ)� = ∇⊥ψ, b = (−∂yφ, ∂xφ)� = ∇⊥φ.

Then we infer from (1.2) that the system of (ω, j) is of the following form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tω + Ū∂xω − α∂xj − Ū ′′∂xψ − νΔω = −(u · ∇)ω + (b · ∇)j,
∂tj + Ū∂xj − α∂xω + Ū ′′∂xφ+ 2Ū ′∂xyφ− μΔj = −(u · ∇)j + (b · ∇)ω

+2∂xyψ(2∂xxφ− j) − 2∂xyφ(2∂xxψ − ω),
u = ∇⊥ψ, b = ∇⊥φ,
Δψ = ω, Δφ = j.

(1.3)

The mathematical theory of the stability of shear flows gained quite some atten-
tion in the last decade. The nonlinear stability of the 2D Couette flow on T × R

in the Euler equation was first obtained by Bedrossian and Masmoudi in [6] when
the initial perturbation is smoother than the Gevrey space of class 2. In particular,
the inviscid damping, an important hydrodynamic phenomenon manifests itself
as the algebraic decay of the velocity for the inviscid fluids, was rigorously justified
at the nonlinear level in [6]. A generalization of the results in [6] to the finite chan-
nel T × [0, 1] for initial perturbation with compact support was given by Ionescu
and Jia in [22]. The nonlinear inviscid damping for a class of monotone shear flows
was proved in [23] and [33], independently. The stability results for the 2D Cou-
ette flow in inhomogeneous fluids can be found in [16, 51]. The instability result
for the 2D Couette flow on T × R was shown by Deng and Masmoudi in [18] when
the initial perturbation is less smooth than the Gevrey space of class 2. For more
general shear flows, the stability/instability results are more difficult to achieve due
to the presence of nonlocal term. We refer to [15, 25, 26, 45, 52] for the linear
inviscid damping results for general monotone shear flows, and to [24, 46, 47] for
the linear stability results for non-monotone shear flows.
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Stability of shear flows in 2D MHD 3

If the viscosity is taken into consideration, consider the toy model

∂tg + y∂xg = νΔg, (t, x, y) ∈ [0,∞) × T × R

it is not difficult to show that the non-zero mode g�= undergo enhanced dissipation,
namely for some c > 0 there holds

‖g�=(t)‖L2 � e−cν
1
3 t‖g(0)‖L2 . (1.4)

The inviscid damping mentioned above and the enhanced dissipation demonstrated
in (1.4) are two main stability mechanisms which are closely related to the stability
threshold problem. That is, how small should initial perturbations be in terms of
the viscous coefficient to ensure nonlinear stability? Since the early experiments of
Reynolds [36], the the linear stability or instability of shear flows at high Reynolds
number has been a classical problem in applied fluid mechanics [10, 27, 35, 39,
48]. Significant progress has been made by Bedrossian, Germain and Masmoudi
in [3–5] for the nonlinear stability of the Couette flow on T × R × T by using
the time dependent Fourier multiplier method. Then Wei and Zhang [44] proved
the nonlinear stability of the Couette flow on T × R × T as long as the initial
perturbation satisfying ‖uin‖H2 � Re−1 with Re the Reynolds number. For the
2D the domain T × R, a series of results can be found in [7, 8, 34]. Recently, Li,
Masmoudi and the first author of this paper [29] studied the relationship between
the size and the regularity of the initial perturbation that ensures the nonlinear
asymptotic stability. For the periodic finite channels, a delicate resolvent estimate
method was developed in [12, 14]. In particular, Chen, Wei and Zhang showed that
the size of the initial perturbation in [44] still ensures the stability of the Couette
flow in the presence of physical boundary in [14].

In the presence of magnetic field, the behaviours of the shear flows become more
complicated. On the one hand, it is classically known that a strong background
magnetic field can have a stability effect on a conducting fluid, see [11, 40, 42],
for instance. On the other hand, the magnetic field may destabilize the system [13]
even with shear flows (including Couette flow) that are asymptotically stable. Tata-
ronis and Grossmam [41] predicted that the decaying of the vertical components
of velocity and magnetic field due to the phase mixing. Ren and Zhao [38] gave a
rigorous mathematical proof under the assumption that the magnetic field is posi-
tive and strictly monotone. In [20], Hirota, Tatsuno and Yoshida investigated the
linearized behaviour of the ideal MHD equation around Couette flow (kfy, 0) and
linear magnetic field (kmy, 0). They predicted that if |kf | < |km|, then the magnetic
island appears in the final state, namely the linear asymptotic stability fails, and if
|km| < |kf |, then linear damping holds and the magnetic island will be destructed.
Recently, the generation of magnetic island was rigorously proved by Zhai, Zhang
and Zhao in [49], and the rigorously mathematical proof for the destruction of
magnetic fields was given by Ren, Wei and Zhang in [37]. We refer to [28, 32] for
more recent results for the linear stability results on shear flows in magnetic field.
For the nonlinear stability result on this direction, Liss [31] proved that for strong
and suitably oriented background fields α(σ, 0, 1)�, the Couette flow (y, 0, 0)� is
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asymptotically stable provided the initial perturbations uin and bin satisfy

‖uin‖HN + ‖bin‖HN � ν = μ, (1.5)

with N sufficiently large.
In this paper, under the same condition ν = μ in [31], we study the nonlinear

stability of the time dependent shear flow us = (Ū(t, y), 0) in a uniform magnetic
field bs = (α, 0)� on T × R. More precisely, for 0 < ν = μ� 1, given an initial
norm Xi and a final norm Xf , our goal in this paper is determine a constant
γ = γ(Xi,Xf ) � 0 as small as possible, such that if the initial perturbations ūin

and b̄in satisfy

‖(uin, bin)‖Xi
� c0ν

γ , (1.6)

for c0 sufficiently small (independent of ν), then the solution of (1.1) is global in
time and converges back to (us, bs) as t→ ∞ in the sense that

‖(u, b)‖L∞Xf
� c0, lim

t→∞ ‖(u(t), b(t))‖Xf
= 0. (1.7)

1.2. The main result

Our main result is stated as follows.

Theorem 1.1. Let N > 1, μ = ν ∈ (0, 1]. There exist two sufficiently large con-
stants α0 > 0 and C � 1 independent of ν, such that for all |α| � α0, if the shear
flow U = U(y) satisfies

‖U(y) − y‖HN+6(R) = δ � C−1, (1.8)

with δ independent of ν, and the initial perturbation obeys

‖(ωin, jin)‖HN + ‖(uin, bin)‖HN = ε � C−1ν
5
6+δ̃, (1.9)

for any fixed δ̃ > 0, then the global in time solution (ω, j) to (1.3) obeys∥∥(ω, j) ◦ (x+ tŪ(t, y), y)
∥∥

L∞(0,∞;HN (T×R))
� Cεν−( 1

3+ δ̃
2 ), (1.10)

and the enhanced dissipation estimate∥∥(ω �=, j�=) ◦ (x+ tŪ(t, y), y)
∥∥

L2(0,∞;HN (T×R))
� Cεν−

1
2− δ̃

2 . (1.11)

Remark 1.2. The bounds (1.10) and (1.11) follow from (4.3), (4.5) in theorem 4.1
and lemma A.1 immediately. So the rest part of this paper aims to prove theorem
4.1.

Remark 1.3. It is not difficult to obtain the explicit enhanced dissipation decay
e−cν

1
3 t for (ω �=, j�=) like (1.4). In fact, we just need to change the multiplier K̃
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(see (4.2)) slightly. Let e �= be a multiplier defined by

ê�=f(k, η) = e1k �=0cν
1
3 tf̂(k, η).

Set

M = e�=K̃.

Replacing the multiplier K̃ in (4.10) by M, the proof of proposition 4.3 is still valid.

In particular, one can use (3.21) to absorb the bad term cν
1
3

∥∥∥MZ±
�=
∥∥∥2

L2
arising from

the time evolution of e�= for sufficiently small c (see § 2.3 for the definition of Z±).
We refer to [50] for more details of the use of the multiplier e�= to get the explicit

enhanced dissipation decay e−cν
1
3 t.

Remark 1.4. At first glance, it looks as if the loss ν−
1
2 on the right hand side

of (1.11) might come from the diffusion −νΔ(ω, j). As a matter of fact, roughly
speaking, due to the linear growth 〈t〉 caused by the stretch 2Ū ′∂xyφ (together with
the oscillation stemming from the strong background magnetic field (α, 0)�) and

the enhanced dissipation e−cν
1
3 t as mentioned in remark 1.3, (ω �=, j�=) behaves like

〈t〉e−cν
1
3 t. Clearly,

∥∥∥〈t〉e−cν
1
3 t
∥∥∥

L2
t

≈ ν−
1
2 . This explains the loss ν−

1
2 on the right

hand side of (1.11).

Remark 1.5. Compared with the Couette flow case Ū(t, y) = U(y) = y, the extra
exponent δ̃ in (1.9) is derived from the linear stretch term 2Ū ′∂xyφ in (1.3), which
is absent in the 2D Navier–Stokes equations around shear flows near Couette (see
[8]). It is open whether one can remove the extra exponent δ̃ in (1.9).

Remark 1.6. The constant C in theorem 1.1 depends on 1
|α| . As a matter of fact,

if α = 0, the oscillations −α∂xj and −α∂xω disappear in (1.3). As a result, instead
of the linear growth 〈t〉 in the case |α| � α0, for α = 0 the linear stretch term
2Ū ′∂xyφ in (1.3) will lead to 〈t〉2 growth even for Ū(t, y) = U(y) = y, which costs
more smallness of the initial perturbations in terms of some power of ν to ensure
the stability.

1.3. Notations

(1) Throughout this paper, we use the standard notation

〈x〉 =
√

1 + x2

we write 〈∇〉s for the operator with symbol

〈∇〉s =
(
1 + k2 + η2

) s
2 .

(2) We use the notation f � g to mean that there exist some constant C > 0 such
that f � Cg. This constant C may depend on N and α, but not on ν.
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(3) For a function f(x, y), We denote the projection of f onto the zero frequencies
in x by

f0(y) =
∫

T

f(x, y)dx.

Then we write

f� = (x, y) = f(x, y) − f0(y)

for the projection onto the nonzero frequencies in x.

(4) The Fourier transform of function f is denoted by

F(f) = f̂(k, η) =
1
2π

∫
T×R

e−i(kx+ηy)f(x, y)dxdy.

The Fourier multiplier with symbol m(t, k, η) is given by

mf = F−1 (m(t, k, η)Ff) .

(5) For any a ∈ R, we use the shorthand notation

Ot
a = ea∂xt (1.12)

to denote the multiplier with symbol eiakt. We then write ∂tO
t
a to denote the

Fourier multiplier with symbol iakeiakt.

(6) For s � 0, we define the Sobolev space Hs by using the norm

‖f‖Hs := ‖〈∇〉s f‖L2 .

The notation LpLq = Lp
tL

q
x,y is used for the Banach space Lp([0, T ];Lq(Ω))

with norm

‖f(t, x)‖LpLq =
∥∥‖f(t, ·)‖Lq

∥∥
Lp .

(7) For two real functions f and g , we write the associated inner product as

〈f, g〉 =
∫

T×R

fgdxdy,

and denote

〈f, g〉Hs = 〈〈∇〉sf, 〈∇〉sg〉 .
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2. Reformulations and key ideas of the proof

2.1. Elsässer variables under the restriction μ = ν

Since we focus on the case ν = μ in this paper, the symmetry of the system (1.3)
enables us to reformulate it by using the Elsässer variables

w±=ω ∓ j.

Then w± solves

∂tw
± + Ū∂xw

±±α∂xw
± − νΔw± ∓ 2Ū ′∂xyΔ−1(w− − w+) − Ū ′′∂xΔ−1w∓

= −∇⊥Δ−1w∓ · ∇w± + ∂xyΔ−1w∓(2∂xxΔ−1w± − w±)

− ∂xyΔ−1w±(2∂xxΔ−1w∓ − w∓).

Such kind of variables have played important roles in the study of large time
behaviours of solutions to MHD equations in the absence of shear flows [2, 9, 19,
43], and the nonlinear stability result [31] where the three dimensional Couette
flow (y, 0, 0)� is taken into consideration as mentioned in § 1.

Similar to the 3D case, the background magnetic field (α, 0)� introduces oscil-
lations (see the −α∂xw

± terms in (2.1)) that may stabilize the system. Following
[31], we define the profiles

z± = Ot
±αw

±

to hide the oscillations in the new unknowns z±, where Ot
±α is defined in (1.12).

Then z± solves

∂tz
± + Ū∂xz

± − νΔz± + Ū ′∂xyΔ−1
(
z± −Ot

±2αz
∓)− Ū ′′∂xΔ−1Ot

±2αz
∓

= −∇⊥Δ−1Ot
±2αz

∓ · ∇z± + ∂xyΔ−1Ot
±2αz

∓(2∂xxΔ−1z± − z±)

− ∂xyΔ−1z±(2∂xxΔ−1Ot
±2αz

∓ −Ot
±2αz

∓).

(2.1)

2.2. Change of coordinates

In this paper we use the coordinate transform introduced by Bedrossian, Vicol
and Wang in [8] to unwind the decaying background shear flow Ū(t, y) in (2.1):{

X = x− tŪ(t, y)
Y = Ū(t, y). (2.2)

Denote the spatial derivatives of the shear flow in the new coordinates as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(t, Y (t, y)) = ∂yŪ(t, y),
b(t, Y (t, y)) = ∂2

yŪ(t, y),
c(t, Y (t, y)) = ∂3

yŪ(t, y),
d(t, Y (t, y)) = ∂4

yŪ(t, y).

(2.3)

Note that by the chain rule, we have

b = a∂Y a. (2.4)
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For any function h̃ in the (x, y) coordinates, the corresponding function h in the
(X,Y ) coordinates is given by

h(t,X, Y ) = h̃(t, x, y).

Then ∇h̃ and Δh̃ can be rewritten in the new coordinate system (2.2) in terms of
h as follows (the notations ∇t and Δt are introduced naturally):

∇h̃(t, x, y) = (∂xh̃, ∂yh̃) = (∂Xh, a(∂Y − t∂X)h) = (∂t
Xh, ∂

t
Y h) = ∇th, (2.5)

and

Δh̃(t, x, y) = (∂XX + a2∂L
Y Y + b∂L

Y )h = Δth

= ΔLh+
(
(a2 − 1)∂L

Y Y + b∂L
Y

)
h

= Δ̃th+ b∂L
Y h,

(2.6)

where we have used the notations

∂L
Y = ∂Y − t∂X , ∂L

Y Y = (∂Y − t∂X)2,

and the modified Laplace operator is given by

Δ̃t = ΔL + (a2 − 1)∂L
Y Y , with ΔL = ∂XX + ∂L

Y Y . (2.7)

Finally, using the fact ∂tŪ = ν∂2
yŪ and the definitions of a and b, we have

∂th̃ = ∂th+ ∂Xh(−Ū − t∂tŪ) + ∂Y h∂tŪ = ∂th− Y ∂Xh+ νb∂L
Y h. (2.8)

In particular,

∂t∂yŪ = ∂ta+ νb∂Y a, and ∂t∂
2
yŪ = ∂tb+ νb∂Y b,

which, together with the fact ∂tŪ = ν∂2
yŪ imply that

∂ta = νc− νb∂Y a, and ∂tb = νd− νb∂Y b. (2.9)

2.3. Definition of Δ−1
t and system (2.1) under new coordinates

In this subsection, we first give the definition of the inverse of Δt in the spirit
of Antonelli, Dolce, and Marcati [1]. For the sake of completeness, we sketch the
definitions below.

To begin with, assume that a2 − 1 = (a2 − 1)(t, Y ) and b = b(t, Y ) are given func-
tions in L∞(R+;H1(R)), then the fact that Δ−1

L is well defined for k = 0 enables
us to define an operator on L2(T × R):

Λ̃ =
(
(a2 − 1)∂L

Y Y + b∂L
Y

)
(−ΔL)−1, (2.10)

with

‖Λ̃‖L2→L2 � C∗
(
‖a2 − 1‖L∞H1 + ‖b‖L∞H1

)
, (2.11)

for some constant C∗ � 1, see proposition 4.1 in [1] for more details.
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Definition 2.1. Assume that (‖a2 − 1‖L∞H1 + ‖b‖L∞H1) � δ such that C∗δ < 1,
then for k = 0, let us define

Δ−1
t := Δ−1

L Λ, i.e. ΛΔt = ΔL, (2.12)

where

Λ := (I − Λ̃)−1 =
∞∑

n=0

Λ̃n.

Remark 2.2. For the operator Λ, we also have the following useful identity

Λ = I + Λ̃Λ. (2.13)

Now we are in a position to rewrite (2.1) under the coordinates defined by (2.2).
To this end, let us denote

Z±(t,X, Y ) = z±(t, x, y),

U1
0 (t, Y ) = u1

0(t, y),

B1
0(t, Y ) = b10(t, y).

Note that

∂L
XY Δ−1

t = ∂L
XY Δ−1

L ΔLΔ−1
t = SΛ, with S = ∂L

XY Δ−1
L , (2.14)

and

∇⊥Δ−1Ot
±2αz

∓
0 · ∇z± = −∂y∂

−1
yy z

∓
0 ∂xz

±=−∂y∂
−1
yy w

∓
0 ∂xz

±=
(
u1

0 ± b10
)
∂xz

±
� = .

Then it follows from (2.1) that the equations of Z± take the form of

∂tZ
± − νΔ̃tZ

± + a2SΛ
(
Z± −Ot

±2αZ
∓)− b∂XΔ−1

t Ot
±2αZ

∓ = NL±, (2.15)

or

∂tZ
± − νΔLZ

± + SΛ
(
Z± −Ot

±2αZ
∓) = LP± + NL±, (2.16)

where

NL± := NLT± + NLS1± + NLS2±, (2.17)

with

NLT± = −
(
U1

0 ±B1
0

)
∂XZ

±
� = −∇⊥

t Δ−1
t Ot

±2αZ
∓
� = ·∇tZ

±,

NLS1± = aSΛOt
±2αZ

∓
� = (2∂XXΔ−1

t Z±
� = −Z±),

NLS2± = −aSΛZ±
� = (2∂XXΔ−1

t Ot
±2αZ

∓
� = −Ot

±2αZ
∓),

and

LP± := −(a2 − 1)SΛ
(
Z± −Ot

±2αZ
∓)+ b∂XΔ−1

t Ot
±2αZ

∓ + ν(a2 − 1)∂L
Y Y Z

±.
(2.18)

Here ‘NLT’, ‘NLS’ and ‘LP’ stand for ‘nonlinear transport’, ‘nonlinear stretch’ and
‘linear perturbation’, respectively.
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2.4. Toy model and key ideas

Compared with the Navier–Stokes equations around 2D shear flows near Couette
[8], and the MHD equations around 3D Couette flows [31], we will encounter new
difficulties for the MHD equations around 2D shear flows near Couette. In order to
track the difficulties precisely, let us consider the toy model

∂tf
± + SΛf± − νΔLf

± = 0, (2.19)

or equivalently in Fourier variables

∂tf̂± +
k(η − kt)

k2 + (η − kt)2
Λ̂f± − ν

(
k2 + (η − kt)2

)
f̂± = 0. (2.20)

It is worth pointing out that if the shear flow is the Couette flow, i.e., Ū(t, y) =
U(y) = y, the operator Λ in (2.20) will not appear. This scenario is reminiscent of
the toy model introduced by Bedrossian, Germain and Masmoudi in [3] for the 3D
Navier–Stokes equations near Couette:

∂tĝ(t, k, η, l) +
2k(η − kt)

k2 + (η − kt)2 + l2
ĝ(t, k, η, l)

− ν
(
k2 + (η − kt)2 + l2

)
ĝ(t, k, η, l) = 0.

To balance the interaction between 2k(η−kt)
k2+(η−kt)2+l2 ĝ and −ν(k2 + (η − kt)2 + l2)ĝ,

the authors in [3] constructed a multiplier m(t, k, η, l) satisfying

∂tm

m
=

2k(η − kt)
k2 + (η − kt)2 + l2

for t ∈
[η
k
,
η

k
+ 1000ν−

1
3

]
.

More precisely, the two dimensional analogue of the multiplier m(t, k, η, l) is given
as follows:

(1) if k = 0 : m(t, 0, η) = 1;

(2) if k = 0, η
k < −1000ν−

1
3 : m(t, k, η) = 1;

(3) if k = 0,−1000ν−
1
3 < η

k < 0:
• m(t, k, η) = k2+η2

k2+(η−kt)2 if 0 < t < η
k + 1000ν−

1
3 ,

• m(t, k, η) = k2+η2

k2+(1000kν− 1
3 )2

if t > η
k + 1000ν−

1
3 ;

(4) if k = 0, η
k > 0:

• m(t, k, η) = 1 if t < η
k ,

• m(t, k, η) = k2

k2+(η−kt)2 if η
k < t < η

k + 1000ν−
1
3 ,

• m(t, k, η) = k2

k2+(1000kν− 1
3 )2

if t > η
k + 1000ν−

1
3 .
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Stability of shear flows in 2D MHD 11

Notice, in particular, that

ν
2
3 � m(t, k, η) � 1, (2.21)

and

m(t, k, η) � k2

k2 + (η − kt)2
. (2.22)

In our case, for the Couette flow, it suffices to use m
1
2 (t, k, η) instead of m(t, k, η)

to suppress the potential growth caused by the linear stretch term k(η−kt)
k2+(η−kt)2 f̂

±.
Nevertheless, for general shear flows the presence of the operator Λ may amplify
the linear stretch effect since the norm of Λ may be larger than 1 even though
the shear flow Ū is close to Couette. Roughly speaking, one can regard the linear
stretch term in (2.20) as (1 +O(δ̃)) k(η−kt)

k2+(η−kt)2 f̂
± with δ̃ > 0. Then it is natural to

modify the multiplier m
1
2 (t, k, η) so as to suppress the extra growth resulting from

the operator Λ. To this end, our strategy is to replace m
1
2 (t, k, η) with m̃

1
2 (t, k, η),

where m̃(t, k, η) is defined by

m̃(t, k, η) = m1+ 3
2 δ̃(t, k, η), (2.23)

with arbitrary δ̃ > 0. Note that

∂tm̃(t, k, η)
m̃(t, k, η)

=
(

1 +
3
2
δ̃

)
∂tm(t, k, η)
m(t, k, η)

. (2.24)

Then (2.21) and (2.22) reduce to

ν
2
3+δ̃ � m̃(t, k, η) � 1, (2.25)

and

m̃(t, k, η) �
(

k2

k2 + (η − kt)2

)1+ 3
2 δ̃

. (2.26)

For (t, k, η) ∈ [0,∞) × Z\{0} × R, let us define the following three disjoint sets

Ddam =
{

(t, k, η) : t <
η

k

}
,

Ddis =
{

(t, k, η) :
η

k
< −1000ν−

1
3

}
∪
{
−1000ν−

1
3 <

η

k
, t � η

k
+ 1000ν−

1
3

}
,

Dmul =
{

(t, k, η) : −1000ν−
1
3 <

η

k
� 0, t <

η

k
+ 1000ν−

1
3

}
∪
{

(t, k, η) :
η

k
> 0,

η

k
� t <

η

k
+ 1000ν−

1
3

}
.

Then the effects of the linear stretch are summarized as follows:

(1) if (t, k, η) ∈ Ddam, then k(η − kt) � 0, and thus the linear stretch term behaves
as a damping.

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.6


12 T. Chen and R. Zi

(2) if (t, k, η) ∈ Ddis, we have ∣∣∣t− η

k

∣∣∣ � 1000ν−
1
3 ,

and thus

|k(η − kt)|
k2 + (η − kt)2

� 1
10003

ν
(
k2 + (η − kt)2

)
, (2.27)

which means that the linear stretch is dominated by the dissipation.

(3) by the definition of m̃, there holds

|k(η − kt)|
k2 + (η − kt)2

1Dmul
(t, k, η) =

1
1 + 3

2 δ̃

−∂t(m̃1/2)(t, k, η)
m̃1/2(t, k, η)

, (2.28)

that is to say, the effect of the linear stretch is balanced by the evolution of m̃
1
2

on Dmul.

Remark 2.3. Clearly, the following decomposition of unity holds

1 = 1Ddam
(t, k, η) + 1Ddis

(t, k, η) + 1Dmul
(t, k, η), for all

(t, k, η) ∈ [0,∞) × Z\{0} × R.

Then it follows from (2.27) and (2.28) that

|k(η − kt)|
k2 + (η − kt)2

(2.29)

=
k(η − kt)

k2 + (η − kt)2
1Ddam

(t, k, η) +
|k(η − kt)|

k2 + (η − kt)2
1Ddis

(t, k, η)

− 1
2

1
1 + 3

2 δ̃

˙̃m(t, k, η)
m̃(t, k, η)

� k(η − kt)
k2 + (η − kt)2

1Ddam
(t, k, η) +

1
10003

ν
(
k2 + (η − kt)2

)
− 1

1 + 3
2 δ̃

∂t(m̃1/2)(t, k, η)
m̃1/2(t, k, η)

.

The treatment of the general shear flow (Ū , 0)� is much more complicated than
that of the Couette flow (y, 0)�. In fact, for the case Ū(t, y) = U(y) = y, once the
multiplier m(t, k, η) is well defined as above, then it is straightforward to deal with
the linear stretch term, see (3.24). In particular, the damping effect stemming from
the linear stretch term when (t, k, η) ∈ Ddam can be ignored. However, for the case
that U(y) is close to y, the appearance of the operator Λ makes the damping effect of
the linear stretch k(η−kt)

k2+(η−kt)2 Λ̂f± unclear even though (t, k, η) ∈ Ddam. Our strategy
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Stability of shear flows in 2D MHD 13

is to isolate the damping effect by using (2.13):

1Ddam

k(η − kt)
k2 + (η − kt)2

Λ̂f± = 1Ddam

k(η − kt)
k2 + (η − kt)2

f̂± + 1Ddam

k(η − kt)
k2 + (η − kt)2

̂̃ΛΛf±.

(2.30)

The first term on the right hand side of (2.30) is the main part, and the second
term is the perturbation. Some delicate commutator estimates will be performed to
treat the perturbation. As a result, lots of errors appear. To close the estimates, the
damping effect captured by the main part of the linear stretch in (2.30), together
with the dissipation and other good terms, will be used to absorb the errors. See
Step I of § 4.1 for more details.

In addition, the presence of the operator Λ leads us to estimate the composition
B ◦ Λ for some multiplier B involved in this paper. The continuity of B ◦ Λ depends
on the commutator estimates of B. That’s why we give a collection of commutator
estimates in Appendix B. In particular, some extra terms appear in the commu-

tator estimate of

√
−∂t(m̃

1
2 )

m̃
1
2

K̃, see lemma B.4. This motivates us to establish a

composition inequality for the multipliers whose commutator estimates have extra
errors with better commutator estimates, see lemma C.1 for the details.

On the other hand, it is worth pointing out that the above toy model (2.19)
ignored the oscillation terms Ot

±2αSΛf∓, which should be taken into consideration
as well in the energy estimates. In order to take advantage of the oscillator Ot

α,
noting that

Ôt
α =

1
iαk

∂tÔt
α for k = 0, (2.31)

integrating by parts with respect to the time variable will be exploited as that in
[31]. In this way, we will inevitably encounter the time derivative of the operator
Λ. To achieve this, using again (2.13), we obtain an important relation

∂tΛ = Λ∂tΛ̃Λ, (2.32)

where ∂tΛ̃ is derived from (2.10)

∂tΛ̃ =
[
2(a2 − 1)S + b∂XΔ−1

L + 2Λ̃S
]

+
(
2a∂ta∂

L
Y Y + ∂tb∂

L
Y

)
(−ΔL)−1 =: Λ̃1

t + Λ̃2
t .

(2.33)

See the estimates of OLS5 in Step II of § 4.1 for more details.
Finally, we would like to remark that, unlike [1], the coefficients a and b hidden

in the definition of Δ−1
t are time dependent (see (2.10) and (2.12)), and ∂ta and ∂tb

are involved when performing integrating by parts in time (see (2.33)). Accordingly,
recalling (2.3) and (2.9), we find that some higher derivatives of Ū are actually
involved. This partially explains the extra regularities required in (1.8).

3. Stability of the Couette flow

For comparison, we discuss in this section the case that the shear flow is the Couette
flow. In fact, under the condition Ū(t, y) = U(y) = y, the change of coordinates (2.2)

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.6


14 T. Chen and R. Zi

reduces to

X = x− ty, Y = y. (3.1)

Without causing confusion, we continue to use the unknowns and notations
introduced in § 2. Then it is easy to see that the system (2.15) now reads

∂tZ
± − νΔLZ

± + S
(
Z± −Ot

±2αZ
∓)

= −∇⊥
LΔ−1

L Ot
±2αZ

∓ · ∇LZ
± + SOt

±2αZ
∓(2∂XXΔ−1

L Z± − Z±)

− SZ±(2∂XXΔ−1
L Ot

±2αZ
∓ −Ot

±2αZ
∓). (3.2)

The purpose of this section is to establish the following theorem.

Theorem 3.1. Let μ = ν ∈ (0, 1], N > 1. There exist a universal constant α0 > 0,
and a positive constant δ depending only on N and α, such that if |α| � α0 and

‖(ωin, jin)‖HN + ‖(uin, bin)‖HN = ε � δν
5
6 , (3.3)

then the following estimates hold

‖Z±‖L∞HN + ν
1
2 ‖∇LZ

±‖L2HN � εν−
1
3 , (3.4)

‖(u1
0 ∓ b10)‖L∞HN + ν

1
2 ‖∂y(u1

0 ∓ b10)‖L2HN � ε. (3.5)

and

‖Z±
�=‖L2HN � εν−

1
2 . (3.6)

Theorem 3.1 will be proved by using the Fourier multiplier method. In other
words, the norms involved in the proof are defined based on special, time-dependent
Fourier multipliers. Apart from the multiplier m(t, k, η) defined in § 2, we also need
two extra multipliers that are modified from the ones introduced in the study of
the stability of the three dimensional Couette flow in [3]. More precisely, define

−Ṁ1

M1
=

k2

k2 + |η − kt|2
and M1(0, k, η) = 1; (3.7)

− Ṁ2

M2
=

ν
1
3(

ν
1
3
∣∣t− η

k

∣∣)2

+ 1
and M2(0, k, η) = 1. (3.8)

The multiplier M1 is used to capture the inviscid damping effect in terms of the
L2 time integrability, and M2 is designed to show the enhanced dissipation effect.
Clearly, M1 and M2 can be given explicitly, and then one deduces that

Mi ≈ 1, for i = 1, 2. (3.9)

For more properties of multiplier M1 and M2, one can refer to lemma 4.1 of [8].
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Let us denote

M := M1M2, K := 〈∇〉N m1/2M. (3.10)

Then from (2.21) and (3.9), we find that for any f = f(X,Y ) ∈ HN ,

ν
1
3 ‖f‖HN � ‖m 1

2 f‖HN ≈ ‖Kf‖L2 � ‖f‖HN . (3.11)

In addition, we need to estimate the interactions between the non-zero modes in
the treatment of the nonlinear terms, so the following lemma is introduced.

Lemma 3.2. Let N > 1. Then for all f ∈ L2HN and g such that ∇Lg ∈ L2HN ,
there holds

‖∇⊥
LΔ−1

L f�= · ∇Lg�=‖L1HN

� C

⎛⎝‖Kf�=‖L2L2 + ν−
1
3

∥∥∥∥∥∥
√
−Ṁ
M
Kf�=

∥∥∥∥∥∥
L2L2

⎞⎠ ‖∇LKg �=‖L2L2 . (3.12)

Proof. We first write

∇⊥
LΔ−1

L f�= · ∇Lg�= = −∂L
Y Δ−1

L f�=∂Xg�= + ∂XΔ−1
L f�=∂L

Y g�=.

Thanks to (2.22), there hold

|k| �
√
k2 + (η − kt)2m1/2, i.e. |∂X | � |∇L|m1/2, (3.13)

and

|∂L
Y Δ−1

L | � |η − kt|
k2 + (η − kt)2

� 1√
k2 + (η − kt)2

� m1/2, k = 0. (3.14)

Combining these two estimates with (3.11) yields

‖∂L
Y Δ−1

L f�=∂Xg�=‖L1HN

� ‖m1/2f�=‖L2HN ‖∇Lm
1/2g�=‖L2HN ≈ ‖Kf�=‖L2L2‖∇LKg �=‖L2L2 . (3.15)

To estimate ∂XΔ−1
L f� = ∂L

Y g� =, in view of (2.21), (2.22) and the definition of M ,
we arrive at

|∂XΔ−1
L | � |k|

k2 + (η − kt)2
� min

⎧⎨⎩−Ṁ1

M1
,

√
−Ṁ1

M1
,

√
−Ṁ
M
m1/2

⎫⎬⎭ , (3.16)

and

|∂L
Y | � ν−1/3m1/2|∇L|. (3.17)

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.6


16 T. Chen and R. Zi

Accordingly,

‖∂XΔ−1
L f�=∂L

Y g�=‖L1HN � ν−
1
3

∥∥∥∥∥∥
√
−Ṁ
M
m1/2f�=

∥∥∥∥∥∥
L2HN

‖m1/2∇Lg�=‖L2HN

≈ ν−
1
3

∥∥∥∥∥∥
√
−Ṁ
M
Kf�=

∥∥∥∥∥∥
L2L2

‖∇LKg �=‖L2L2 . (3.18)

It follows from (3.15) and (3.18) that (3.12) holds. This completes the proof of
lemma 3.2. �

3.1. Proof of theorem 3.1

To prove theorem 3.1, it suffices to establish the following a priori estimates:

‖KZ±‖L∞L2 + ν
1
2 ‖∇LKZ

±‖L2L2 +

∥∥∥∥∥∥
√

−Ṁ
M
KZ±

∥∥∥∥∥∥
L2L2

� 8ε, (3.19)

and ∥∥u1
0 ∓ b10

∥∥
L∞HN + ν

1
2
∥∥∂y(u1

0 ∓ b10)
∥∥

L2HN � 8ε. (3.20)

Indeed, (3.4) is a direct consequence of (3.11) and (3.19), and (3.5) is nothing but
(3.20). To prove (3.6), by the definition of M2, we have

1 � ν−
1
6

⎛⎝√−Ṁ2

M2
(t, k, η) + ν

1
2 |k, η − kt|

⎞⎠ . (3.21)

It follows that

‖KZ �=‖L2L2 � ν−
1
6

⎛⎝ν 1
2 ‖∇LKZ �=‖L2L2 +

∥∥∥∥∥∥
√

−Ṁ
M
KZ �=

∥∥∥∥∥∥
L2L2

⎞⎠ . (3.22)

Thus, (3.6) follows from (3.11), (3.19) and (3.22) immediately.
Next we will prove (3.19) and (3.20) by using the standard continuity method.

First of all, the local well-posedness of the 2D MHD equations in HN ensures that
there exists a T0 > 0, such that

‖KZ±‖L∞(0,T0;L2) + ν
1
2 ‖∇LKZ

±‖L2(0,T0;L2) +

∥∥∥∥∥∥
√

−Ṁ
M
KZ±

∥∥∥∥∥∥
L2(0,T0;L2)

� 2ε,

and ∥∥u1
0 ∓ b10

∥∥
L∞(0,T0;HN )

+ ν
1
2
∥∥∂y(u1

0 ∓ b10)
∥∥

L2(0,T0;HN )
� 2ε.

Then define T ∗ � ∞ to be the maximum of all time T such that (3.19) and (3.20)
hold on [0, T ]. By the continuity, T ∗ > T0.
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We are left to prove that the constant 8 on the right of (3.19) and (3.20) can be
replaced by 4, which implies that T ∗ = ∞. In fact, we have the following propositon.

Proposition 3.3. Let μ = ν ∈ (0, 1], N > 1. Assume that (3.19) and (3.20) hold on
[0, T ∗]. There exist a universal constant α0 > 0 and a positive constant δ depending
only on N and α, such that if |α| � α0 and (3.3) holds, then the same estimates
in (3.19) and (3.20) hold with the occurrences of 8 on the right-hand side replaced
by 4.

The proof of proposition 3.3 will be achieved in the following two subsections.

3.2. Improvement of (3.19)

Recalling the definition of the multiplier K in (3.10), from (3.2), we derive the
following energy identity:

1
2
‖KZ+(t)‖2

L2 + ν‖∇LKZ
+‖2

L2L2

+

∥∥∥∥∥∥
√

−Ṁ
M
KZ+

∥∥∥∥∥∥
2

L2L2

+

∥∥∥∥∥
√
−∂t(m1/2)

m1/2
KZ+

∥∥∥∥∥
2

L2L2

=
1
2
‖KZ+(0)‖2

L2 −
∫ t

0

〈
SKZ+,KZ+

〉
dt′ +

∫ t

0

〈
SOt

2αKZ
−,KZ+

〉
dt′

+
∫ t

0

〈
KZ+,K

(
∂tZ

+
)
NL
〉
dt′

=
1
2
‖KZ+(0)‖2

L2 + LS + OLS + NL. (3.23)

By the definition of m, we have

LS �
∥∥∥∥∥
√
−∂t(m1/2)

m1/2
KZ+

∥∥∥∥∥
2

L2L2

+
ν

2
‖∇LKZ

+‖2
L2L2 . (3.24)

Thanks to the fact (2.31), one can estimate OLS by integrating by parts in time:

OLS =
5∑

i=1

OLSi, (3.25)

where

OLS1 =
1
2α

〈
S∂−1

X Ot
2αKZ

−
� = (t),KZ+(t)

〉
,

OLS2 = − 1
2α

〈
S∂−1

X Ot
2αKZ

−
� = (0),KZ+(0)

〉
,
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OLS3 = − 1
2α

∫ t

0

〈(
S

2K̇
K

+ Ṡ

)
∂−1

X Ot
2αKZ

−
� =,KZ+

〉
dt′,

OLS4 = − 1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
� =,K∂tZ

+
〉

dt′,

OLS5 = − 1
2α

∫ t

0

〈
S∂−1

X Ot
2αK∂tZ

−
� =,KZ+

〉
dt′.

Clearly,

OLS1 + OLS2 � 1
2|α|

(
‖KZ−

�= (t)‖L2‖KZ+
�= (t)‖L2 + ‖KZ−

�= (0)‖L2‖KZ+
�= (0)‖L2

)
.

(3.26)

To bound OLS3, in Fourier variables, we find that

K̇

K
=
∂t(m1/2)
m1/2

+
Ṁ

M
=

1
2
ṁ

m
+
Ṁ

M
. (3.27)

On the support of ṁ, there holds

ṁ

m
=

2k(η − kt)
k2 + (η − kt)2

= 2S(t, k, η). (3.28)

Thus,

∣∣∣∣∂t(m1/2)
m1/2

∣∣∣∣+ |S| � |k(η − kt)|
k2 + (η − kt)2

� min

⎧⎨⎩1
2
,

√
−Ṁ1

M1

⎫⎬⎭ . (3.29)

Moreover,

|Ṡ| � k2

k2 + (η − kt)2
= −Ṁ1

M1
� −Ṁ

M
. (3.30)

It follows that

OLS3 � 2
|α|

∥∥∥∥∥∥
√

−Ṁ
M
KZ−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
KZ+

∥∥∥∥∥∥
L2L2

. (3.31)

As for OLS4, in view of (3.2), we have

OLS4 =
4∑

i=1

OLS(i)
4 , (3.32)
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with

OLS(1)
4 = − ν

2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,KΔLZ

+
〉

dt′,

OLS(2)
4 =

1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,KSZ

+
〉

dt′,

OLS(3)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,KO

t
2αZ

−
�=
〉

dt′,

OLS(4)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
∂tZ

+
)
NL
〉

dt′.

Integrating by parts, and using the fact |S| � 1
2 , we have

OLS(1)
4 =

ν

2α

∫ t

0

〈
S∂−1

X Ot
2α∇LKZ

−
�= ,∇LKZ

+
〉

dt′

� ν

4 |α| ‖∇LKZ
−
�=‖L2L2‖∇LKZ

+
�=‖L2L2 .

Thanks to the fact |S| �
√

− Ṁ1
M1

, one deduces that

OLS(2)
4 � 1

2 |α|

∥∥∥∥∥∥
√

−Ṁ
M
KZ+

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
KZ−

�=

∥∥∥∥∥∥
L2L2

.

Owing to the periodicity in X variable, we find that

OLS(3)
4 = − 1

4α

∫ t

0

∫
T×R

∂X

(
S∂−1

X Ot
2αKZ

−
� =

)2

dXdY dt′ = 0. (3.33)

To bound OLS(4)
4 , by (3.2), we get

OLS(4)
4 =

1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
∇⊥

LΔ−1
L Ot

2αZ
−·∇LZ

+
)〉

dt′

− 1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
SOt

2αZ
−(2∂XXΔ−1

L Z+−Z+)
)〉

dt′

+
1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
SZ+(2∂XXΔ−1

L Ot
2αZ

− −Ot
2αZ

−)
)〉

dt′

= NLT + NLS1 + NLS2, (3.34)

with

NLT =
1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
� =,K

(
∇⊥

LΔ−1
L Ot

2αZ
−
� = ·∇LZ

+
� =

)〉
dt′

+
1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
� =,K

(
∇⊥

LΔ−1
L Ot

2αZ
−
0 · ∇LZ

+
� =

)〉
dt′
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+
1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
� =,K

(
∇⊥

LΔ−1
L Ot

2αZ
−
� = ·∇LZ

+
0

)〉
dt′

= NLT (=, =) + NLT (0, =) + NLT (=, 0).

By using lemma 3.2, we are led to

NLT (=, =)

� 1
|α| ‖KZ

−
�=‖L∞L2‖∇⊥

LΔ−1
L Ot

2αZ
−
�= · ∇LZ

+
�=‖L1HN

� 1
|α| ‖KZ

−
�=‖L∞L2

⎛⎝‖KZ−
�=‖L2L2 + ν−

1
3

∥∥∥∥∥∥
√
−Ṁ
M
KZ−

�=

∥∥∥∥∥∥
L2L2

⎞⎠ ‖∇LKZ
+
�=‖L2L2

� ν−
5
6 ε3. (3.35)

In view of (3.16), one deduces that

NLT (=, 0) =
1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
∂XΔ−1

L Ot
2αZ

−
�=∂Y Z

+
0

)〉
dt′

� 1
|α| ‖KZ

−
�=‖L∞L2

∥∥∥∥∥∥
√
−Ṁ
M
KZ−

�=

∥∥∥∥∥∥
L2L2

‖∂Y Z
+
0 ‖L2HN

� ν−
1
2 ε3. (3.36)

Recalling that z± = Ot
±αw

±, we then have z±0 = w±
0 = ω0 ∓ j0. Consequently,

∂yz
±
0 = ∂yω0 ∓ ∂yj0 = −

(
∂yyu

1
0 ∓ ∂yyb

1
0

)
,

and hence

∂y∂
−1
yy z

±
0 = −

(
u1

0 ∓ b10
)
. (3.37)

Using (3.13), we arrive at

NLT (0, =) = − 1
2α

∫ t

0

〈
S∂−1

X Ot
2αKZ

−
�= ,K

(
∂Y ∂

−1
Y Y O

t
2αZ

−
0 ∂XZ

+
�=
)〉

dt′

� 1
|α| ‖KZ

−
�=‖L2L2‖∂Y ∂

−1
Y Y Z

−
0 ‖L∞HN ‖∂XZ

+
�=‖L2HN

� 1
|α| ‖KZ

−
�=‖L2L2‖u1

0 + b10‖L∞HN ‖∇LKZ
+
�=‖L2L2

� ν−
2
3 ε3. (3.38)

NLS1 and NLS2 can be treated in the same way, we only estimate NLS2 now.
To this end, we infer from (2.22) that

|S| � |k(η − kt)|
k2 + (η − kt)2

� |k|√
k2 + (η − kt)2

� m1/2. (3.39)

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.6


Stability of shear flows in 2D MHD 21

This, together with (2.21) and the obvious fact |∂XXΔ−1
L | � 1, implies that

NLS2 � 1
|α| ‖KZ

−
�=‖L∞L2‖SZ+(2∂XXΔ−1

L Ot
2αZ

− −Ot
2αZ

−)‖L1HN

� 1
|α| ‖KZ

−
�=‖L2L2‖m1/2Z+‖L2HN

(
ν−

1
3 ‖m1/2Z−‖L∞HN

)
� ν−

2
3 ε3. (3.40)

Note that OLS5 can be treated in the same manner as OLS4, and NL in (3.23)
can be treated in the same way as OLS(4)

4 . On the other hand, one can obtain an
energy identity for KZ− similar to (3.23), and estimate the corresponding right
hand side terms analogously. Putting the energy estimates for KZ+ and KZ−

together, we find that for sufficiently large |α|, LS, OLS1, OLS3, OLS(1)
4 , OLS(2)

4

can be obsorbed by the left hand. In conclusion, there exist a universal constant
α0 > 0, and a positive constant C depending only on N and α, such that if |α| > α0,
we have

‖KZ±(t)‖2
L2 + ν‖∇LKZ

±‖2
L2L2 +

∥∥∥∥∥∥
√
−Ṁ
M
KZ±

∥∥∥∥∥∥
2

L2L2

� 2‖KZ±(0)‖2
L2 + Cν−

5
6 ε3,

(3.41)

which suffices to improve (3.19) as long as ε� ν
5
6 .

3.3. Improvement of (3.20)

Since u2
0 = b20 = 0, we derive from (1.2) for Ū(t, y) = U(y) = y that (u1

0, b
1
0) solves{

∂tu
1
0 − ν∂yyu

1
0 = −

(
u · ∇u1 − b · ∇b1

)
0
,

∂tb
1
0 − ν∂yyb

1
0 = −

(
u · ∇b1 − b · ∇u1

)
0
.

Accordingly, in the coordinate system (3.1), we have

∂t

(
U1

0 ∓B1
0

)
− ν∂Y Y

(
U1

0 ∓B1
0

)
= −

(
(U� = ±B� =) · ∇L(U1

� = ∓B1
� =)

)
0
. (3.42)

Then

1
2

∥∥(U1
0 ∓B1

0)(t)
∥∥2

HN + ν‖∂Y (U1
0 ∓B1

0)‖2
L2HN

=
1
2

∥∥(U1
0 ∓B1

0)(0)
∥∥2

HN

−
∫ t

0

〈
U1

0 ∓B1
0 ,
(
(U� = ±B� =) · ∇L(U1

� = ∓B1
� =)

)
0

〉
HN

dt′. (3.43)
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Thanks to the divergence free condition, we have

−
∫ t

0

〈
U1

0 ∓B1
0 ,
(
(U� = ±B� =) · ∇L(U1

� = ∓B1
� =)

)
0

〉
HN

dt′

=
∫ t

0

〈
∂Y (U1

0 ∓B1
0),
(
(U� =2 ±B� =2)(U1

� = ∓B1
� =)

)
0

〉
HN

dt′

�
∥∥∂Y (U1

0 ∓B1
0)
∥∥

L2HN

∥∥U� =2 ±B� =2
∥∥

L2HN

∥∥U1
� = ∓B1

� =
∥∥

L∞HN . (3.44)

Note that

u � =2 ±b � =2= ∂xΔ−1(ω ± j) = ∂xΔ−1w∓=∂xΔ−1Ot
αz

∓,

and

u1
� = ∓b1� = =−∂yΔ−1(ω � = ∓j� =) = −∂yΔ−1w±

� == −∂yΔ−1Ot
−αz

±
� = .

Then in view of (3.14) and (3.16), we find that

∥∥U� =2 ±B� =2
∥∥

L2HN =
∥∥∂XΔ−1

L Ot
αZ

∓∥∥
L2HN �

∥∥∥∥∥∥
√

−Ṁ
M
KZ∓

∥∥∥∥∥∥
L2L2

, (3.45)

and

‖U1
� = ∓B1

� = ‖L∞HN =
∥∥∥∂L

Y Δ−1
L Ot

−αZ
±
� =

∥∥∥
L∞HN

�
∥∥∥KZ±

� =
∥∥∥

L∞L2
. (3.46)

Substituting (3.44)–(3.46) into (3.43), noting that the coordinate system (3.1) is
the same as the original system in y variable, and using the hypotheses (3.19) and
(3.20), we are led to

1
2

∥∥(u1
0 ∓ b10)(t)

∥∥2
HN + ν

∥∥∂y(u1
0 ∓ b10)

∥∥2
L2HN

� 1
2

∥∥(u1
0 ∓ b10)(0)

∥∥2
HN + C

∥∥∂y(u1
0 ∓ b10)

∥∥
L2HN

∥∥∥∥∥∥
√
−Ṁ
M
KZ−

�=

∥∥∥∥∥∥
L2L2

∥∥∥KZ+
�=
∥∥∥

L∞L2

� 1
2
‖(u1

0 ∓ b10)(0)‖2
HN + Cν−

1
2 ε3, (3.47)

which is sufficient to improve (3.20) provided ε� ν
1
2 . Combining (3.41) with (3.47),

we complete the proof of proposition 3.3 and hence of theorem 3.1.
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4. Stability of the shear flow close to Couette

In this section, we study the stability of the shear flow (Ū(t, y), 0)� =
(eνt∂yyU(y), 0)�, with U(y) satisfying

‖U(y) − y‖HN+6 � δ. (4.1)

The multiplier that will be used in this section is given by

K̃ := 〈∇〉N m̃1/2M, (4.2)

where m̃ and M are given in (2.23) and (3.10), respectively. To simplify the
presentation, let us denote

|S|d =:
∣∣∂L

XY Δ−1
L

∣∣
d

=
∣∣∂L

XY Δ−1
L

∣∣1Ddam
, with symbol

|k(η − kt)|
k2 + (η − kt)2

1Ddam
(t, k, η).

The aim of this section is to establish the following theorem.

Theorem 4.1. Let N > 1. Assume that the shear flow (U(y), 0) satisfies (4.1),
and ‖(ωin, jin)‖HN + ‖(uin, bin)‖HN = ε � δν

5
6+δ̃. Then there exist two positive con-

stants α0 and δ0 independent of ν, such that for all |α| � α0 and δ � δ0, the solution
to (1.2) and the profile Z± satisfy the global in time estimates

∥∥Z±∥∥
L∞HN + ν

1
2
∥∥∇LZ

±∥∥
L2HN � ν−( 1

3+ δ̃
2 )ε, (4.3)∥∥U1

0 ∓B1
0

∥∥
L∞HN + ν

1
2
∥∥∂y(U1

0 ∓B1
0)
∥∥

L2HN � ε, (4.4)

and ∥∥∥Z±
�=
∥∥∥

L2HN
� ν−

1
2− δ̃

2 ε. (4.5)

Similar to lemma 3.2, we give the following lemma to treat the non-zero frequency
interactions of the nonlinear term.

Lemma 4.2. Let N > 1. Assume that (4.1) holds with δ sufficiently small. Then for
all f ∈ L2HN and g such that ∇Lg ∈ L2HN , there holds

‖∇⊥
t Δ−1

t f�= · ∇tg�=‖L1HN

� Cν−δ̃

1 − Cδ

⎛⎝‖K̃f�=‖L2L2 + ν−
1
3

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃f�=

∥∥∥∥∥∥
L2L2

⎞⎠∥∥∥∇LK̃g �=
∥∥∥

L2L2
.
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Proof. In view of (2.25) and (2.26), there hold

|k| � ν−δ̃/2
√
k2 + (η − kt)2m̃1/2, i.e. |∂X | � ν−δ̃/2|∇L|m̃1/2, (4.6)

|∂L
Y Δ−1

L | � |η − kt|
k2 + (η − kt)2

� 1√
k2 + (η − kt)2

� ν−δ̃/2m̃1/2, for k = 0, (4.7)

|∂XΔ−1
L | � |k|

k2 + (η − kt)2
� ν−δ̃/2

√
−Ṁ1

M1
m̃1/2, (4.8)

and

|∂L
Y | � ν−( 1

3+ δ̃
2 )m̃1/2|∇L|. (4.9)

Note that the condition (4.1) ensures that (A.3) holds. This, together with the
commutator estimates (B.1), (B.9), enables us to use lemma C.1 and the fact

∇⊥
t Δ−1

t f�= · ∇tg�= = −a∂L
Y Δ−1

L Λf�=∂Xg�= + a∂XΔ−1
L Λf�=∂L

Y g�=,

to obtain

‖∇⊥
t Δ−1

t f�= · ∇tg�=‖L1HN

� ‖a∂L
Y Δ−1

L Λf�=∂Xg�=‖L1HN + ‖a∂XΔ−1
L Λf�=∂L

Y g�=‖L1HN

� Cν−δ̃ (1+ ‖a− 1‖L∞HN )

⎛⎝‖m̃1/2Λf�=‖L2HN + ν−
1
3

∥∥∥∥∥∥
√
−Ṁ1

M1
m̃1/2Λf�=

∥∥∥∥∥∥
L2HN

⎞⎠
× ‖∇Lm̃

1/2g�=‖L2HN

� Cν−δ̃

1 − Cδ

⎛⎝‖m̃1/2f�=‖L2HN + ν−
1
3

∥∥∥∥∥∥
√
−Ṁ1

M1
m̃1/2f�=

∥∥∥∥∥∥
L2HN

⎞⎠ ‖∇Lm̃
1/2g�=‖L2HN .

Then (4.2) follows immediately. �

4.1. Proof of theorem 4.1

The proof of theorem 4.1 is similar to that of theorem 3.1. By the definition of
M2, (3.22) still holds with K replaced by K̃, it suffices to establish the following a
priori estimates:

‖K̃Z±‖L∞L2 + ν
1
2 ‖∇LK̃Z

±‖L2L2 +

∥∥∥∥∥∥
√

−Ṁ
M
K̃Z±

∥∥∥∥∥∥
L2L2

� 8ε, (4.10)

and ∥∥U1
0 ∓B1

0

∥∥
L∞HN + ν

1
2
∥∥∂y(U1

0 ∓B1
0)
∥∥

L2HN � 8ε. (4.11)

Let us define T ∗ to be the end point of the largest interval [0, T ] such that (4.10)
and (4.11) hold for all 0 � t � T . We are left to establish the following proposition.
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Proposition 4.3. Assume that the conditions in theorem 4.1 hold, and that (4.10)
and (4.11) hold on [0, T ∗]. Then there exist two positive constants α0 and δ0 inde-
pendent of ν, such that for all |α| � α0 and δ � δ0, the same estimates in (4.10)
and (4.11) hold with the occurrences of 8 on the right-hand side replaced by 4.

Proof. We first improve (4.10). Similar to (3.23), from (2.16) and the definition of
K̃ in (4.2), we have the following energy identity:

1
2
‖K̃Z+(t)‖2

L2 + ν‖∇LK̃Z
+‖2

L2L2 +

∥∥∥∥∥∥
√

−Ṁ
M
K̃Z+

∥∥∥∥∥∥
2

L2L2

+

∥∥∥∥∥
√

−∂t(m̃1/2)
m̃1/2

K̃Z+

∥∥∥∥∥
2

L2L2

=
1
2
‖K̃Z+(0)‖2

L2 −
∫ t

0

〈
K̃SΛZ+, K̃Z+

〉
dt′ +

∫ t

0

〈
K̃Ot

2αSΛZ−, K̃Z+
〉

dt′

+
∫ t

0

〈
K̃Z+, K̃LP+

〉
dt′ +

∫ t

0

〈
K̃Z+, K̃NL+

〉
dt′

=
1
2
‖K̃Z+(0)‖2

L2 + LS + OLS + LP + NL. (4.12)

The improvement of (4.10) will be achieved by the following four steps.

Step I: estimates of LS. We first split LS into two parts:

LS = − 1
4π2

∑
k �=0

∫∫
K̃(k, η)

k(η − kt)
k2 + (η − kt)2

(
1Ddam

(t, k, η) + 1Dc
dam

(t, k, η)
)

× Λ̂Z+
�= (k, η)K̃(k, η) ¯̂

Z+
�= (k, η)dηdt

= LSdam + LS∗. (4.13)

Thanks to (2.13), one can split LSdam into two parts

LSdam = −
∥∥∥∥√|S|dK̃Z+

�=

∥∥∥∥2
L2L2

− 1
4π2

∑
k �=0

∫∫
K̃(k, η)

|k(η − kt)|
k2 + (η − kt)2

1Ddam

× ̂̃ΛΛZ+
�= (k, η)K̃(k, η) ¯̂

Z+
�= (k, η)dηdt

=: LSdam
1 + LSdam

2 .
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By the definition of Λ̃ in (2.10), there holds∣∣∣∣̂̃ΛΛZ+
�=

∣∣∣∣ (k, η)
�
∫

ξ

(
|â2 − 1|(η − ξ)

(ξ − kt)2

k2 + (ξ − kt)2
+ |b̂|(η − ξ)

|ξ − kt|
k2 + (ξ − kt)2

)
|Λ̂Z+

�= |(k, ξ)dξ

�
∫

ξ

(
|â2 − 1|(η − ξ) + |b̂|(η − ξ)

)
|Λ̂Z+

�= |(k, ξ)dξ.

Combining this with (B.8), (B.11), and (A.3) yields

LSdam
2

� C
∑
k �=0

∫∫∫
〈η − ξ〉N+(1+ 3

2 δ̃)+ 3
2

(
|â2 − 1|(η − ξ) + |b̂|(η − ξ)

)
| ̂̃KΛZ+

�= |(k, ξ)

×
(√

|k(ξ − kt)|
k2 + (ξ − kt)2

+

√
|k|

k2 + (ξ − kt)2

)

×
√

k(η − kt)
k2 + (η − kt)2

1Ddam
|̂̃KZ+

�= |(k, η)dξdηdt

� Cδ

⎛⎝∥∥∥∥√|S|dK̃ΛZ+
�=

∥∥∥∥
L2L2

+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃ΛZ+

�=

∥∥∥∥∥∥
L2L2

⎞⎠∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥
L2L2

.

(4.14)

Using (B.8), (B.9), (B.11), lemma C.1 and (2.29), we find that∥∥∥√|S|K̃ΛZ+
�=
∥∥∥

L2L2

� 1
1 − Cδ

∥∥∥√|S|K̃Z+
�=
∥∥∥

L2L2
+

Cδ

1 − Cδ

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃ΛZ+

�=

∥∥∥∥∥∥
L2L2

� 1
1 − Cδ

(∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥
L2L2

+

√
1

10003
ν

1
2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2

+
1√

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
L2L2

⎞⎠+
Cδ

(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

,

(4.15)

where |S| denotes the multiplier with symbol |k(η−kt)|
k2+(η−kt)2 . Substituting this into

(4.14), and using (B.8), (B.9) and lemma C.1 again to bound the second term on
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the right hand side of (4.14), one deduces that

LSdam
2 � Cδ

{
1

1 − Cδ

(∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥
L2L2

+

√
1

10003
ν

1
2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2

+
1√

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
L2L2

)
+

Cδ

(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

+
1

1 − Cδ

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

}∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥
L2L2

�
(

2Cδ
1 − Cδ

+
Cδ

2(1 − Cδ)2

)∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥2
L2L2

+
Cδ

2(1 − Cδ)

⎛⎝ 1
10003

ν
∥∥∥∇LK̃Z

+
�=
∥∥∥2

L2L2

+
1

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
2

L2L2

⎞⎠
+

Cδ

2(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
2

L2L2

. (4.16)

Next we turn to bound LS∗. From (2.27) and (2.28), we infer that

LS∗ � 1
4π2

∑
k �=0

∫∫
K̃(k, η)

|k(η − kt)|
k2 + (η − kt)2

1Dc
dam

|Λ̂Z+
�= |(k, η)K̃(k, η)|Ẑ+

�= |(k, η)dηdt

� ν

10003

∑
k �=0

∫∫
K̃(k, η)

(
k2 + (η − kt)2

)
|Λ̂Z+

�= |(k, η)K̃(k, η)|Ẑ+
�= |(k, η)dηdt

+
1

1+ 3
2 δ̃

∑
k �=0

∫∫
K̃(k, η)

−∂t(m̃1/2)(t, k, η)
m̃1/2(t, k, η)

|Λ̂Z+
�= |(k, η)K̃(k, η)|Ẑ+

�= |(k, η)dηdt

� ν

10003
‖∇LK̃ΛZ+

�=‖L2L2‖∇LK̃Z
+
�=‖L2L2

+
1

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃ΛZ+

�=

∥∥∥∥∥
L2L2

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
L2L2

. (4.17)

By virtue of (B.8) and lemma C.1, we have

‖∇LK̃ΛZ+
�=‖L2L2 � 1

1 − Cδ
‖∇LK̃Z

+
�=‖L2L2 . (4.18)
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Now we are left to bound
∥∥∥∥√−∂t(m̃1/2)

m̃1/2 K̃ΛZ+
�=

∥∥∥∥
L2L2

. In fact, thanks to (B.8), (B.10),

and lemma C.1, we are led to∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃ΛZ+

�=

∥∥∥∥∥
L2L2

� 1
1 − Cδ

∥∥∥∥∥
√

−∂t(m̃1/2)
m̃1/2

K̃Z+
�=

∥∥∥∥∥
L2L2

+

√
1 + 3

2 δ̃

10003

Cδ

(1 − Cδ)2
ν

1
2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2

+
Cδ
√

1 + 3
2 δ̃

(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

+
Cδ
√

1 + 3
2 δ̃

1 − Cδ

∥∥∥√|S|K̃ΛZ+
�=
∥∥∥

L2L2
, (4.19)

where we have used (4.18) to bound ‖∇LK̃ΛZ+
�=‖L2L2 , and used (B.8), (B.9) and

lemma C.1 to bound
∥∥∥∥√− Ṁ1

M1
K̃ΛZ+

�=

∥∥∥∥
L2L2

, respectively. It follows from (4.15) and

(4.19) that∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃ΛZ+

�=

∥∥∥∥∥
L2L2

� 1
(1 − Cδ)2

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
L2L2

+

√
1 + 3

2 δ̃

10003

2Cδ
(1 − Cδ)2

ν
1
2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2

+
Cδ
√

1 + 3
2 δ̃

(1 − Cδ)2

∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥
L2L2

+
Cδ
√

1 + 3
2 δ̃

(1 − Cδ)3

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

.

(4.20)

Substituting (4.18) and (4.20) into (4.17), and using Cauchy–Schwarz inequality,
we arrive at

LS∗ � 1
1−Cδ

1
10003

ν‖∇LK̃Z
+
�=‖2

L2L2 +
1

1 + 3
2 δ̃

1
(1−Cδ)2

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
2

L2L2

+
1

1+ 3
2 δ̃

Cδ

(1−Cδ)2

⎛⎝1 + 3
2 δ̃

10003
ν
∥∥∥∇LK̃Z

+
�=
∥∥∥2

L2L2
+

∥∥∥∥∥
√

−∂t(m̃1/2)
m̃1/2

K̃Z+
�=

∥∥∥∥∥
2

L2L2

⎞⎠
+

1
2

1
1 + 3

2 δ̃

Cδ

(1 − Cδ)2

⎛⎝(1 +
3
2
δ̃

)∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥2
L2L2
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+

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
2

L2L2

⎞⎠

+
1
2

1
1 + 3

2 δ̃

Cδ

(1 − Cδ)3

⎛⎜⎝(1 +
3
2
δ̃

)∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
2

L2L2

+

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
2

L2L2

⎞⎟⎠
=

Cδ

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z+

�=

∥∥∥∥∥
2

L2L2

+
1

(1 − Cδ)2
1

10003
ν‖∇LK̃Z

+
�=‖2

L2L2

+
Cδ

2(1 − Cδ)2

∥∥∥∥√|S|dK̃Z+
�=

∥∥∥∥2
L2L2

+
Cδ

2(1 − Cδ)3

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
2

L2L2

,

where

Cδ :=
1

(1 − Cδ)2
+

3Cδ
2(1 − Cδ)2

+
Cδ

2(1 − Cδ)3
, (4.21)

which is increasing in δ ∈ (0, 1
3C ], and Cδ → 1 as δ → 0+.

Step II: estimates of OLS. Similar to (3.25), we write

OLS =
5∑

i=1

OLSi, (4.22)

where

OLS1 =
1
2α

〈
K̃∂−1

X Ot
2αSΛZ−

�= (t), K̃Z+(t)
〉
,

OLS2 = − 1
2α

〈
K̃∂−1

X Ot
2αSΛZ−

�= (0), K̃Z+(0)
〉
,

OLS3 = − 1
2α

∫ t

0

〈
∂−1

X Ot
2α

(
S

2 ˙̃K
K̃

+ Ṡ

)
K̃ΛZ−

�= , K̃Z
+

〉
dt′,

OLS4 = − 1
2α

∫ t

0

〈
K̃S∂−1

X Ot
2αΛZ−

�= , K̃∂tZ
+
〉

dt′,

OLS5 = − 1
2α

∫ t

0

〈
K̃S∂−1

X Ot
2α∂t(ΛZ−

�= ), K̃Z+
〉

dt′.

We postpone the treatment of the nonlinear terms in OLS4 and OLS5 to Step IV,
and focus on the linear terms here. The estimates for OLS1 and OLS2 are the same
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as (3.26), and thus omitted. To estimate OLS3, similar to (3.27)–(3.29), we have

˙̃K
K̃

=
∂t(m̃1/2)
m̃1/2

+
Ṁ

M
=

1
2

˙̃m
m̃

+
Ṁ

M
,−

˙̃m
m̃

= (1 +
3
2
δ̃)

2k(η − kt)
k2 + (η − kt)2

1Dmul
(t, k, η) = 2(1 +

3
2
δ̃)S(t, k, η)1Dmul

(t, k, η),

and

∣∣∣∣∂t(m̃1/2)
m̃1/2

∣∣∣∣ � (1 +
3
2
δ̃)|S| �

(1 + 3
2 δ̃)|k(η − kt)|

k2 + (η − kt)2
� (1 +

3
2
δ̃)min

⎧⎨⎩1
2
,

√
−Ṁ1

M1

⎫⎬⎭ .

Combining these calculations with (3.30), and using (B.8), (B.9) and lemma C.1,
we are led to

OLS3 � C

|α|

∥∥∥∥∥∥
√

−Ṁ
M
K̃ΛZ−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z+

∥∥∥∥∥∥
L2L2

� C

|α|
1

1 − Cδ

∥∥∥∥∥∥
√

−Ṁ
M
K̃Z−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z+

∥∥∥∥∥∥
L2L2

. (4.23)

To bound OLS4, by (2.16), we have

OLS4 =
5∑

i=1

OLS(i)
4 , (4.24)

where

OLS(1)
4 = − ν

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃ΔLZ
+
〉

dt′,

OLS(2)
4 =

1
2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃SΛZ+
〉

dt′,

OLS(3)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃O
t
2αZ

−
�=
〉

dt′,

OLS(4)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃LP+
〉

dt′,

OLS(5)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃NL+
〉

dt′.
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Integrating by parts, using the fact |S| � 1
2 and (4.18), we have

OLS(1)
4 =

ν

2α

∫ t

0

〈
S∂−1

X Ot
2α∇LK̃ΛZ−

�= ,∇LK̃Z
+
〉

dt′

� ν

4|α| ‖∇LK̃ΛZ−
�=‖L2L2‖∇LK̃Z

+
�=‖L2L2

� ν

4|α|(1 − Cδ)
‖∇LK̃Z

−
�=‖L2L2‖∇LK̃Z

+
�=‖L2L2 . (4.25)

Thanks to the fact |S| �
√
− Ṁ1

M1
, one deduces that

OLS(2)
4 � 1

2|α|

∥∥∥∥∥∥
√

−Ṁ
M
K̃ΛZ+

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
K̃ΛZ−

∥∥∥∥∥∥
L2L2

� 1
|α|(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z+

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z−

∥∥∥∥∥∥
L2L2

. (4.26)

Owing to the periodicity in X variable, we find that

OLS(3)
4 =

1
4α

∫ t

0

∫
T×R

∂X

(
S∂−1

X Ot
2αK̃ΛZ−

�=
)2

dXdY dt′ = 0. (4.27)

By (2.18), we deduce that

OLS(4)
4 =

3∑
i=1

OLS(4,i)
4 , (4.28)

with

OLS(4,1)
4 =

1
2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃
(
(a2 − 1)SΛ

(
Z+
�= −Ot

2αZ
−
�=
))〉

dt′,

OLS(4,2)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃
(
b∂XΔ−1

t Ot
2αZ

−
�=
)〉

dt′,

OLS(4,3)
4 = − ν

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃
(
(a2 − 1)∂L

Y Y Z
+
�=
)〉

dt′.

Using |S| �
√
− Ṁ1

M1
, (A.3) and lemma C.1, we have

OLS(4,1)
4 � 1

2|α|

∥∥∥K̃SΛZ−
�=
∥∥∥

L2L2

∥∥∥K̃ ((a2 − 1)SΛ
(
Z+
�= −Ot

2αZ
−
�=
))∥∥∥

L2L2

� Cδ

|α|

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃ΛZ−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Λ

(
Z+
�= −Ot

2αZ
−
�=
)∥∥∥∥∥∥

L2L2
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� Cδ

|α|(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

×

⎛⎝∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

⎞⎠ . (4.29)

Noting that

∂XΔ−1
t = ∂XΔ−1

L Λ,

and∣∣∣F (b∂XΔ−1
t Ot

2αZ
−
�=
)∣∣∣ (t, k, η) �

∫
ξ

|b̂|(η − ξ)
|k|

k2 + (ξ − kt)2
| ̂ΛOt

2αZ
−
�= |(k, ξ)dξ

�

⎛⎝|b̂| ∗

⎛⎝√−Ṁ1

M1
| ̂ΛOt

2αZ
−
�= |

⎞⎠⎞⎠ (t, k, η), (4.30)

then we have

OLS(4,2)
4 � Cδ

|α|

∥∥∥K̃SΛZ−
�=
∥∥∥

L2L2

∥∥∥∥∥∥K̃
√

−Ṁ1

M1
ΛOt

2αZ
−
�=

∥∥∥∥∥∥
L2L2

� Cδ

|α|(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
2

L2L2

. (4.31)

Integrating by parts and using (2.4), we find that

OLS(4,3)
4 =

ν

α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃
(
b∂L

Y Z
+
�=
)〉

dt′

+
ν

2α

∫ t

0

〈
∂L

Y S∂
−1
X Ot

2αK̃ΛZ−
�= , K̃

(
(a2 − 1)∂L

Y Z
+
�=
)〉

dt′

� Cδν

|α|(1 − Cδ)

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∂L
Y K̃Z

+
�=
∥∥∥

L2L2

+
Cδν

4|α|

∥∥∥∂L
Y K̃ΛZ−

�=
∥∥∥

L2L2

∥∥∥∂L
Y K̃Z

+
�=
∥∥∥

L2L2

� Cδν

|α|(1 − Cδ)

∥∥∥∇LK̃Z
−
�=
∥∥∥

L2L2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2
, (4.32)

where we have used (A.3), (A.8) to bound
∥∥∥K̃(b∂L

Y )
∥∥∥

L2L2
and

∥∥∥K̃((a2 − 1)∂L
Y )
∥∥∥

L2L2
.

The estimates of OLS(5)
4 will be postponed in Step IV.
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Now we rewrite OLS5 as follows:

OLS5 = − 1
2α

∫ t

0

〈
K̃S∂−1

X Ot
2αΛ∂tZ

−
�= , K̃Z

+
�=
〉

dt′

− 1
2α

∫ t

0

〈
K̃S∂−1

X Ot
2α∂tΛZ−

�= , K̃Z
+
�=
〉

dt′

= OLS5,1 + OLS5,2.

To estimate OLS5,1, instead of using (2.16), up to the nonlinear terms and some
linear errors, we write ∂tZ

− in terms of νΔtZ
− by virtue of (2.6) and (2.15)

∂tZ
− = νΔtZ

−−νb∂L
Y Z

−−a2SΛ
(
Z−
�= −Ot

−2αZ
+
�=
)

+ b∂XΔ−1
t Ot

−2αZ
+
�= + NL−.

Then thanks to the relation (2.12), we have

Λ∂tZ
−
�= = νΔLZ

−
�= − νΛ

(
b∂L

Y Z
−
�=
)
− Λ

(
a2SΛ

(
Z−
�= −Ot

−2αZ
+
�=
))

+ Λ
(
b∂XΔ−1

t Ot
−2αZ

+
�=
)

+ ΛNL−
�=.

Thus,

OLS5,1 =
5∑

i=1

OLS(i)
5,1, (4.33)

where

OLS(1)
5,1 = − ν

2α

∫ t

0

〈
K̃∂−1

X Ot
2αΔLZ

−
�= , K̃SZ

+
�=
〉

dt′,

OLS(2)
5,1 =

ν

2α

∫ t

0

〈
K̃∂−1

X Ot
2αΛ

(
b∂L

Y Z
−
�=
)
, K̃SZ+

�=
〉

dt′,

OLS(3)
5,1 =

1
2α

∫ t

0

〈
K̃∂−1

X Ot
2αΛ

(
a2SΛ

(
Z−
�= −Ot

−2αZ
+
�=
))

, K̃SZ+
�=
〉

dt′,

OLS(4)
5,1 = − 1

2α

∫ t

0

〈
K̃∂−1

X Ot
2αΛ

(
b∂XΔ−1

t Ot
−2αZ

+
�=
)
, K̃SZ+

�=
〉

dt′,

OLS(5)
5,1 = − 1

2α

∫ t

0

〈
K̃∂−1

X Ot
2αΛNL−

�=, K̃SZ
+
�=
〉

dt′.

Similar to (4.32), we obtain

∣∣∣OLS(1)
5,1

∣∣∣+ ∣∣∣OLS(2)
5,1

∣∣∣ � ( ν

4|α| +
Cδν

|α|(1 − Cδ)

)∥∥∥∇LK̃Z
−
�=
∥∥∥

L2L2

∥∥∥∇LK̃Z
+
�=
∥∥∥

L2L2
.

(4.34)
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Similar to (4.26) and (4.29), we arrive at

OLS(3)
5,1 � 1

2|α|
(∥∥∥K̃Λ

(
SΛ
(
Z−
�= −Ot

−2αZ
+
�=
))∥∥∥

L2L2

+
∥∥∥K̃Λ

(
(a2 − 1)SΛ

(
Z−
�= −Ot

−2αZ
+
�=
))∥∥∥

L2L2

)
‖K̃SZ+

�=‖L2L2

�
(

1
|α|(1 − Cδ)2

+
Cδ

|α|(1 − Cδ)2

)∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

×

⎛⎝∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

⎞⎠ . (4.35)

Clearly, OLS(4)
5,1 can be bounded in the same way as (4.31)

∣∣∣OLS(4)
5,1

∣∣∣ � Cδ

|α|(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
2

L2L2

. (4.36)

The estimates of OLS(5)
5,1 will be postponed in Step IV.

To estimate OLS5,2, we split it into two parts according to (2.32) and (2.33):

OLS5,2 = − 1
2α

∫ t

0

〈
K̃∂−1

X Ot
2α∂tΛZ−

�= , K̃SZ
+
〉

dt′ = OLS(1)
5,2 + OLS(2)

5,2,

where

OLS(1)
5,2 = − 1

2|α|

∫ t

0

〈
K̃∂−1

X Ot
2αΛΛ̃1

t ΛZ
−
�= , K̃SZ

+
�=
〉

dt′,

OLS(2)
5,2 = − 1

2|α|

∫ t

0

〈
K̃∂−1

X Ot
2αΛΛ̃2

t ΛZ
−
�= , K̃SZ

+
�=
〉

dt′.

From (A.8) and (3.29), we obtain

OLS(1)
5,2 � 1

|α|

∥∥∥K̃ΛΛ̃1
t ΛZ

−
�=
∥∥∥

L2L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

� 1
|α|

Cδ

(1 − Cδ)2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

.
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The rest part OLS(2)
5,2 can be bounded as follows. Using the definition of Λ̃2

t in (2.33),
lemmas A.2 and C.1, we are led to∥∥∥K̃Λ̃2

t ΛZ
−
�=
∥∥∥

L2L2

� C

∥∥∥∥(〈·〉N+(1+ 3
2 δ̃)
(
|â∂ta| + |∂̂tb|

))
∗ | ̂̃KΛZ−

�= |
∥∥∥∥

L2
t L2

k,η

� C
∥∥∥〈·〉N+(1+ 3

2 δ̃)
(
|â∂ta| + |∂̂tb|

)∥∥∥
L2

t L1
η

‖K̃ΛZ−
�=‖L∞L2

� C

1 − Cδ

(
‖a∂ta‖

L2HN+(1+ 3
2 δ̃)+1 + ‖∂tb‖

L2HN+(1+ 3
2 δ̃)+1

)
‖K̃Z−

�=‖L∞L2

� Cδν1/2

1 − Cδ
‖K̃Z−

�=‖L∞L2 .

Then it follows this and lemma C.1 that

OLS(2)
5,2 � 1

|α|(1 − Cδ)

∥∥∥K̃Λ̃2
t ΛZ

−
�=
∥∥∥

L2L2

∥∥∥K̃SZ+
�=
∥∥∥

L2L2

� Cδν1/2

|α|(1 − Cδ)2

∥∥∥K̃Z−
�=
∥∥∥

L∞L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

. (4.37)

Step III: estimates of LP. By (2.18), we rewrite LP as

LP =
∫ t

0

〈
K̃Z+, K̃LP+

〉
dt′ = LP1 + LP2 + LP3, (4.38)

where

LP1 = −
∫ t

0

〈
K̃Z+

�= , K̃
(
(a2 − 1)SΛ(Z+

�= −Ot
2αZ

−
�= )
)〉

dt′,

LP2 =
∫ t

0

〈
K̃Z+

�= , K̃
(
b∂XΔ−1

L ΛOt
2αZ

−
�=
)〉

dt′,

LP3 = ν

∫ t

0

〈
K̃Z+, K̃

(
(a2 − 1)∂L

Y Y Z
+
)〉

dt′.

To estimate LP1, let us denote Z� =:= Z+
� = −Ot

2αZ
−
�= , and rewrite LP1 as

LP1 = − 1
4π2

∑
k �=0

∫ t

0

∫
η

∫
ξ

K̃(k, η) ̂(a2 − 1)(η − ξ)
k(ξ − kt)

k2 + (ξ − kt)2
Λ̂Z�=(k, ξ)

× K̃(k, η) ¯̂
Z+
�= (k, η)dξdηdt′.
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Swapping the positions of η and ξ in (A.11), then using the resulting inequality,
(A.3), lemma C.1, and (4.15), we have

LP1 � C
∑
k �=0

∫ t

0

∫
η

∫
ξ

〈η − ξ〉N+(1+ 3
2 δ̃)+ 3

2 |â2 − 1|(η − ξ)

×
√

|k(ξ − kt)|
k2 + (ξ − kt)2

| ̂̃KΛZ�=|(k, ξ)

×
(√

|k(η − kt)|
k2 + (η − kt)2

+

√
|k|

k2 + (η − kt)2

)
|̂̃KZ+

�= |(k, η)dξdηdt

� Cδ
∥∥∥√|S|K̃ΛZ�=

∥∥∥
L2L2

⎛⎝∥∥∥√|S|K̃Z+
�=
∥∥∥

L2L2
+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

⎞⎠
� Cδ

1 − Cδ

⎛⎝∥∥∥√|S|K̃Z �=
∥∥∥

L2L2
+

Cδ

1 − Cδ

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z �=

∥∥∥∥∥∥
L2L2

⎞⎠
×

⎛⎝∥∥∥√|S|K̃Z+
�=
∥∥∥

L2L2
+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

⎞⎠
� Cδ

1 − Cδ

(∥∥∥∥√|S|dK̃Z±
�=

∥∥∥∥2
L2L2

+
1

10003
ν
∥∥∥∇LK̃Z

±
�=
∥∥∥2

L2L2

+
1

1 + 3
2 δ̃

∥∥∥∥∥
√
−∂t(m̃1/2)

m̃1/2
K̃Z±

�=

∥∥∥∥∥
2

L2L2

+

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z±

�=

∥∥∥∥∥∥
2

L2L2

)
. (4.39)

Now we turn to estimate LP2. Compared with (4.31), we need an extra commuta-

tor estimate of
√∣∣∂XΔ−1

L

∣∣. Indeed, using (A.8), (A.9) and lemma C.1, one easily
deduces that

LP2 � C
∑
k �=0

∫ t

0

∫
η

∫
ξ

K̃(k, η)
(
|b̂|(η − ξ)

k2

k2 + (ξ − kt)2
|Λ̂Z−

�= |(k, ξ)
)

× |̂̃KZ+
�= |(k, η)dξdηdt′

� C
∑
k �=0

∫ t

0

∫
η

∫
ξ

〈η − ξ〉N+(1+ 3
2 δ̃)+1|b̂|(η − ξ)

|k|√
k2 + (ξ − kt)2

| ̂̃KΛZ−
�= |(k, ξ)

× |k|√
k2 + (η − kt)2

|̂̃KZ+
�= |(k, η)dξdηdt′

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.6


Stability of shear flows in 2D MHD 37

� Cδ

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃ΛZ−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

� Cδ

1 − Cδ

∥∥∥∥∥∥
√

−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z+

�=

∥∥∥∥∥∥
L2L2

. (4.40)

To bound LP3, it is natural to divide it into two parts as follows

LP3 = ν

∫ t

0

〈
K̃Z+

�= , K̃
(
(a2 − 1)∂L

Y Y Z
+
�=
)〉

dt′

+ ν

∫ t

0

〈
K̃Z+

0 , K̃
(
(a2 − 1)∂Y Y Z

+
0

)〉
dt′

=: LP3, �= + LP3,0.

Similar to (4.32), we obtain

LP3, �= � Cδν‖∇LK̃Z
+
� = ‖2

L2L2 . (4.41)

For LP3,0, integrating by parts and using (2.4) and (A.3) yields

LP3,0 � Cν‖a2 − 1‖L∞HN ‖∂Y Z
+
0 ‖2

L2HN + Cν‖b‖L2HN ‖Z+
0 ‖L∞HN ‖∂Y Z

+
0 ‖L2HN

� Cδ

(
ν
∥∥∥∇LK̃Z

+
0

∥∥∥2
L2L2

+
∥∥∥K̃Z+

0

∥∥∥2
L∞L2

)
. (4.42)

Step IV: nonlinear estimates. We first collect all the above nonlinear terms to
be estimated:

OLS(5)
4 = − 1

2α

∫ t

0

〈
S∂−1

X Ot
2αK̃ΛZ−

�= , K̃NL+
�=
〉

dt′,

OLS(5)
5,1 = − 1

2α

∫ t

0

〈
K̃∂−1

X Ot
2αΛNL−

�=, K̃SZ
+
�=
〉

dt′,

NL =
∫ t

0

〈
K̃Z+, K̃NL+

〉
dt′.

(4.43)

Owing to lemma C.1 and the fact |S| � 1
2 , we observe that the bounds of the three

quantities are essentially the same. To avoid unnecessary repetition, we only sketch
the treatment of NL by modifying the nonlinear estimates in the Couette case, see
(3.35)–(3.40). In fact, recalling the definition of NL± (2.17), we write

NL =
∫ t

0

〈
K̃Z+, K̃NLT+

〉
dt′ +

∫ t

0

〈
K̃Z+, K̃NLS+

〉
dt′ = NLT + NLS,

here we use the shorthand notation NLS± := NLS1± + NLS2±. Noting that〈
K̃Z+

0 , K̃
(
(U1

0 +B1
0)∂XZ

+
)〉

= 0,
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by virtue of (4.6), (4.8), lemmas 4.2 and C.1, and the hypotheses (4.10) and (4.11),
one deduces that

NLT � ‖K̃Z+
�=‖L2L2‖U1

0 +B1
0‖L∞HN ‖∂XZ

+
�=‖L2HN

+ ‖K̃Z+‖L∞L2‖∇⊥
t Δ−1

t Ot
2αZ

−
�= · ∇tZ

+
�=‖L1HN

+ ‖K̃Z+‖L∞L2

∥∥∥a∂XΔ−1
L ΛOt

2αZ
−
�=∂Y Z

+
0

∥∥∥
L1HN

� Cν−
δ̃
2 ‖K̃Z+

�=‖L2L2‖U1
0 +B1

0‖L∞HN ‖∇LK̃Z
+
�=‖L2L2

+ Cν−δ̃‖K̃Z+‖L∞L2

⎛⎝‖K̃Z−
�=‖L2L2 + ν−

1
3

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

⎞⎠
× ‖∇LK̃Z

+
�=‖L2L2

+ Cν−
δ̃
2 ‖K̃Z+‖L∞L2

∥∥∥∥∥∥
√
−Ṁ1

M1
K̃Z−

�=

∥∥∥∥∥∥
L2L2

‖∂Y Z
+
0 ‖L2HN

� Cν−
5
6−δ̃ε3. (4.44)

Similar to (3.40), using (2.21), (2.23), (3.39), (A.3), (A.1), and lemma C.1, we arrive
at

NLS � C‖K̃Z+‖L∞L2

(∥∥∥aSΛOt
2αZ

−
�= (2∂XXΔ−1

L ΛZ+
�= − Z+)

∥∥∥
L1HN

+
∥∥∥aSΛZ+

�= (2∂XXΔ−1
L ΛOt

2αZ
−
�= −Ot

2αZ
−)
∥∥∥

L1HN

)
� C‖K̃Z+‖L∞L2

(
ν−

δ̃
2 ‖m̃1/2Z∓

�=‖L2HN

)(
ν−( 1

3+ δ̃
2 )‖m̃1/2Z±

� = ‖L2HN

)
+ C‖K̃Z+

�=‖L2L2

(
ν−

δ̃
2 ‖m̃1/2Z∓

�=‖L2HN

)(
ν−( 1

3+ δ̃
2 )‖m̃1/2Z±

0 ‖L∞HN

)
� Cν−

2
3−δ̃ε3. (4.45)

Now collecting the above estimates in Step I–IV, we conclude that there exist
positive constant α0 (sufficiently large) and δ0 (sufficiently small) independent of
ν, such that if |α| � α0 and δ � δ0, there holds

‖K̃Z+(t)‖2
L2 + ν‖∇LK̃Z

+‖2
L2L2 +

∥∥∥∥∥∥
√

−Ṁ
M
K̃Z+

∥∥∥∥∥∥
2

L2L2

� 3‖K̃Z+(0)‖2
L2 + Cν−

5
6−δ̃ε3, (4.46)

where the constant C depends only on N and α. It suffices to improve (4.10) as
long as ε� ν

5
6+δ̃.
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The improvement of (4.11) is similar to that of (3.20). Firstly, we write the
equations of U1

0 ∓B1
0 :

∂t

(
U1

0 ∓B1
0

)
− ν∂Y Y

(
U1

0 ∓B1
0

)
= ν(a2 − 1)∂Y Y

(
U1

0 ∓B1
0

)
+ νb∂Y

(
U1

0 ∓B1
0

)
−
(
(U� = ±B� =) · ∇t(U1

� = ∓B1
� =)

)
0
.

Then we have the energy identity

1
2

∥∥(U1
0 ∓B1

0)(t)
∥∥2

HN + ν‖∂Y (U1
0 ∓B1

0)‖2
L2HN

=
1
2

∥∥(U1
0 ∓B1

0)(0)
∥∥2

HN

−
∫ t

0

〈
U1

0 ∓B1
0 ,
(
(U� = ±B� =) · ∇L(U1

� = ∓B1
� =)

)
0

〉
HN

dt′

+ ν

∫ t

0

〈
U1

0 ∓B1
0 , (a

2 − 1)∂Y Y

(
U1

0 ∓B1
0

)〉
HN dt′

+ ν

∫ t

0

〈
U1

0 ∓B1
0 , b∂Y

(
U1

0 ∓B1
0

)〉
HN dt′

=
1
2

∥∥(U1
0 ∓B1

0)(0)
∥∥2

HN +
3∑

q=1

Iq. (4.47)

Using the divergence free condition ∇t · (U ±B) = 0, we find that

I1 =
∫ t

0

〈
∂Y

(
U1

0 ∓B1
0

)
, a
(
(U2

�= ±B2
�=)(U1

� = ∓B1
� =)

)
0

〉
HN

dt′

+
∫ t

0

〈
U1

0 ∓B1
0 , ∂Y a

(
(U2

�= ±B2
�=)(U1

� = ∓B1
� =)

)
0

〉
HN

dt′.

Recalling (2.4), it is easy to rewrite ∂Y a as follows

∂Y a = b+
(

1
1 − (1 − a)

− 1
)
b = b+ b

+∞∑
n=1

an.

Combining this with (A.3) yields ν
1
2 ‖∂Y a‖L2HN � δ. On the other hand, similar to

(3.45) and (3.46), we have

∥∥U� =2 ±B� =2
∥∥

L2HN =
∥∥∂XΔ−1

L ΛOt
αZ

∓∥∥
L2HN � ν−

δ̃
2

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z∓

∥∥∥∥∥∥
L2L2

,

and

‖U1
� = ∓B1

� = ‖L∞HN =
∥∥∥a∂L

Y Δ−1
L ΛOt

−αZ
±
� =

∥∥∥
L∞HN

� ν−
δ̃
2

∥∥∥K̃Z±
� =

∥∥∥
L∞L2

.
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It follows that

I1 � ν−δ̃ (1 + ‖a− 1‖L∞HN )
∥∥∂Y (U1

0 ∓B1
0)
∥∥

L2HN

×

∥∥∥∥∥∥
√

−Ṁ
M
K̃Z∓

∥∥∥∥∥∥
L2L2

∥∥∥K̃Z±
� =

∥∥∥
L∞L2

+ ν−δ̃‖∂ta‖L2HN

∥∥U1
0 ∓B1

0

∥∥
L∞HN

∥∥∥∥∥∥
√
−Ṁ
M
K̃Z∓

∥∥∥∥∥∥
L2L2

∥∥∥K̃Z±
� =

∥∥∥
L∞L2

.

(4.48)

Integrating by parts, and using (A.3), it is easy to see that

I2 + I3 � δν‖∂Y (U1
0 ∓B1

0)‖2
L2HN + δν

1
2 ‖U1

0 ∓B1
0‖L∞HN ‖∂Y (U1

0 ∓B1
0)‖L2HN .

(4.49)

Substituting (4.48) and (4.49) into (4.47), and using the hypotheses (4.10) and
(4.11), we have

‖(U1
0 ∓B1

0)(t)‖2
HN + ν‖∂Y (U1

0 ∓B1
0)‖2

L2HN � 2‖(U1
0 ∓B1

0)(0)‖2
HN + Cν−

1
2−δ̃ε3,

(4.50)

for some constant C independent of ν. Combining (4.46) and (4.50), one deduces
proposition 4.3 under the hypotheses ε� ν

5
6+δ̃ and hence of theorem 4.1. �

Appendix A. Estimates for the coefficients a and b

To begin with, we give a lemma to discuss the relation between the new coordinate
system (2.2) and the original (x, y). Please refer to [21] and [8] for the proof.

Lemma A.1. Let s′ � 2, s′ � s � 0, f ∈ Hs(R), and g ∈ Hs′
(R) be such that

‖g‖Hs′ � δ. Then, there holds

Cs,s′(δ)−1 ‖f ◦ (I + g)‖Hs � ‖f‖Hs � Cs,s′(δ) ‖f ◦ (I + g)‖Hs , (A.1)

where the implicit constant obey Cs,s′(δ) → 1 as δ → 0.

From the properties of the heat equation and lemma A.1, we can deduce the
energy estimates of the coefficients a and b.

Lemma A.2. Let s � 0. Assume that U(y) satisfies

‖U(y) − y‖Hs+2 � δ � 1, (A.2)

then there holds

‖a− 1‖L∞Hs + ‖b‖L∞Hs + ν
1
2 ‖b‖L2Hs � δ, (A.3)

and

‖∂ta‖L2Hs−1 + ‖∂tb‖L2Hs−1 � δν1/2. (A.4)
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Proof. Note that ∂l
yŪ , l � 0 solves

∂t∂
l
yŪ − ν∂l+2

y Ū = 0, ∂l
yŪ |t=0 = ∂l

yU.

Therefore, integrating by parts, we have

ν‖∂2
yŪ‖2

L2Hs = −
∫

R

〈∂y〉s∂t

(
∂yŪ − 1

)
〈∂y〉s

(
∂yŪ − 1

)
dy = −1

2
d
dt

‖∂yŪ − 1‖2
Hs ,

and

ν‖∂l+2
y Ū‖2

L2Hs = −
∫

R

〈∂y〉s∂t∂
l+1
y Ū〈∂y〉s∂l+1

y Ūdy = −1
2

d
dt

‖∂l+1
y Ū‖2

Hs , l � 1.

Consequently,

1
2
‖∂yŪ − 1‖2

L∞Hs + ν‖∂2
yŪ‖2

L2Hs � 1
2
‖U ′ − 1‖2

Hs ,

and
1
2
‖∂l+1

y Ū‖2
L∞Hs + ν‖∂l+2

y Ū‖2
L2Hs � 1

2
‖∂l+1

y U‖2
Hs , l � 1.

Combining these two estimates with (2.3), (2.9) and lemma A.1, we find that

‖a− 1‖L∞Hs + ν
1
2 ‖b‖L2Hs � ‖∂yŪ − 1‖2

L∞Hs + ν
1
2 ‖∂2

yŪ‖L2Hs � ‖U ′ − 1‖Hs � δ,

‖b‖L∞Hs � ‖∂2
yŪ‖L∞Hs � ‖U ′′‖Hs � δ, ‖∂ta‖L2Hs−1

� Cν (‖c‖L2Hs−1 + ‖b‖L2Hs−1‖∂Y a‖L∞Hs−1)

� Cν (‖c‖L2Hs−1 + ‖b‖L2Hs−1‖a− 1‖L∞Hs)

� Cν
(
‖∂3

yŪ‖L2Hs−1 + ‖∂2
yŪ‖L2Hs−1‖∂yŪ − 1‖L∞Hs

)
� Cν1/2 (‖U ′′‖Hs−1 + ‖U ′ − 1‖Hs−1‖U ′ − 1‖Hs)

� δν
1
2 ,

and

‖∂tb‖L2Hs−1 � Cν (‖d‖L2Hs−1 + ‖b‖L∞Hs−1‖∂Y b‖L2Hs−1)

� Cν (‖d‖L2Hs−1 + ‖b‖L∞Hs−1‖b‖L2Hs)

� Cν
(
‖∂4

yŪ‖L2Hs−1 + ‖∂2
yŪ‖L∞Hs−1‖∂2

yŪ‖L2Hs

)
� Cν1/2 (‖U ′′′‖Hs−1 + ‖U ′′‖Hs−1‖U ′ − 1‖Hs)

� δν
1
2 .

This completes the proof of lemma A.2. �

Remark A.3. In this paper, we choose s = N + 4. Then (A.2) reduces to (4.1).
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Appendix B. Commutator estimates

To deal with the nonlinear terms, we need the following lemmas to exchange fre-
quencies. The first one can be regarded as an analogue of Lemma A.1 in [3]. We
give a proof below for the sake of completeness.

Lemma B.1. The multiplier m̃ satisfies

m̃(t, k, η) � 〈η − ξ〉2(1+ 3
2 δ̃)m̃(t, k, ξ). (B.1)

Proof. We only consider the case k = 0.

Case 1: η
k < −1000ν−

1
3 , m̃(t, k, η) = 1. It suffices to estimate m̃−1(t, k, ξ).

Case 1.1 : −1000ν−
1
3 < ξ

k < 0. Now we have

m̃−1(t, k, ξ) �

⎛⎜⎝1 +
(
1000ν−

1
3

)2

1 +
(

ξ
k

)2

⎞⎟⎠
1+ 3

2 δ̃

�

⎛⎜⎝ 1 +
(

η
k

)2
1 +
(

ξ
k

)2

⎞⎟⎠
1+ 3

2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

Case 1.2 : if ξ
k > 0, ξ

k < t < ξ
k + 1000ν−

1
3 .

m̃−1(t, k, ξ) =
(
k2 + (ξ − kt)2

k2

)1+ 3
2 δ̃

=

(
1 +
(
ξ

k
− t

)2
)1+ 3

2 δ̃

�
(

1 +
(
η

k
− ξ

k

)2
)1+ 3

2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

Case 1.3 : if ξ
k > 0, t > ξ

k + 1000ν−
1
3 .

m̃−1(t, k, ξ) =
(

1 +
(
1000ν−

1
3

)2
)1+ 3

2 δ̃

�
(

1 +
(
η

k
− ξ

k

)2
)1+ 3

2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

Case 2: −1000ν−
1
3 < η

k < 0.
Case 2.1 : 0 < t < η

k + 1000ν−
1
3 , and m̃(t, k, η) = ( k2+η2

k2+(η−kt)2 )1+
3
2 δ̃.

• Case 2.1.1: −1000ν−
1
3 < ξ

k < 0.

m̃(t, k, ξ) �
(

k2 + ξ2

k2 + (ξ − kt)2

)1+ 3
2 δ̃

, ∀ t � 0. (B.2)
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Therefore,

m̃(t, k, η)
m̃(t, k, ξ)

�

⎛⎜⎝ 1 +
(

η
k

)2
1 +
(

ξ
k

)2 ·
1 +
(

ξ
k − t

)2

1 +
(

η
k − t

)2
⎞⎟⎠

1+ 3
2 δ̃

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1+( ξ
k−t)2

1+( η
k −t)2

)1+ 3
2 δ̃

, if
∣∣η
k

∣∣ � ∣∣∣ ξk ∣∣∣(
1+( η

k )2

1+( ξ
k )2

)1+ 3
2 δ̃

, if
∣∣η
k

∣∣ > ∣∣∣ ξk ∣∣∣
� 〈η − ξ〉2(1+ 3

2 δ̃).

• Case 2.1.2: ξ
k > 0, t > ξ

k . In this case,

m̃(t, k, ξ) �
(

k2

k2 + (ξ − kt)2

)1+ 3
2 δ̃

. (B.3)

Therefore,

m̃(t, k, η)
m̃(t, k, ξ)

�

⎛⎜⎝(1 +
(η
k

)2
)
·
1 +
(

ξ
k − t

)2

1 +
(

η
k − t

)2
⎞⎟⎠

1+ 3
2 δ̃

�
(

1 +
(
η

k
− ξ

k

)2
)1+ 3

2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

where we have used η
k < 0 < ξ

k < t.

Case 2.2 : t > η
k + 1000ν−

1
3 , and m̃(t, k, η) = ( k2+η2

k2+(1000kν− 1
3 )2

)1+
3
2 δ̃.

• Case 2.2.1: −1000ν−
1
3 < ξ

k < 0. In this case,

m̃(t, k, ξ) �
(

k2 + ξ2

k2 + (1000kν−
1
3 )2

)1+ 3
2 δ̃

, (B.4)

Thus,

m̃(t, k, η)
m̃(t, k, ξ)

�
(
k2 + η2

k2 + ξ2

)1+ 3
2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).
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• Case 2.2.2: ξ
k > 0, t > ξ

k . In this case,

m̃(t, k, ξ) �
(

1
1 + (1000ν−

1
3 )2

)1+ 3
2 δ̃

, (B.5)

Thus,

m̃(t, k, η)
m̃(t, k, ξ)

�
(

1 +
(η
k

)2
)1+ 3

2 δ̃

�
(

1 +
(
η

k
− ξ

k

)2
)1+ 3

2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

Case 3: η
k > 0.

Case 3.1 : η
k < t < η

k + 1000ν−
1
3 , and m̃(t, k, η) = ( k2

k2+(η−kt)2 )1+
3
2 δ̃.

• Case 3.1.1: −1000ν−
1
3 < ξ

k < 0. In this case, (B.2) holds. Therefore,

m̃(t, k, η)
m̃(t, k, ξ)

�
(

k2

k2 + ξ2
· k

2 + (ξ − kt)2

k2 + (η − kt)2

)1+ 3
2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

• Case 3.1.2: ξ
k > 0. Now (B.3) still holds. Thus,

m̃(t, k, η)
m̃(t, k, ξ)

�
(
k2 + (ξ − kt)2

k2 + (η − kt)2

)1+ 3
2 δ̃

� 〈η − ξ〉2(1+ 3
2 δ̃).

Case 3.2 : t > η
k + 1000ν−

1
3 , and m̃(t, k, η) = ( 1

1+(1000ν− 1
3 )2

)1+
3
2 δ̃.

• Case 3.2.1:−1000ν−
1
3 < ξ

k < 0. Using (B.4), we have

m̃(t, k, η)
m̃(t, k, ξ)

� 1. (B.6)

• Case 3.2.2: ξ
k > 0, In this case, In this case, (B.5) holds. Consequently, (B.6)

holds as well.

The proof of lemma B.1 is completed. �

Recalling the definition of K̃ in (4.2), using (B.1) and the following fact

|k, η − kt| � 〈η − ξ〉|k, ξ − kt|, for k = 0. (B.7)

we get the following corollary immediately.

Corollary B.2. The multiplier K̃ satisfies

K̃(t, k, η) � 〈η − ξ〉N+(1+ 3
2 δ̃)K̃(t, k, ξ). (B.8)

In view of the definitions of M1 and M2 in (3.7) and (3.8), respectively, using

(B.7) again, one easily derives the commutator estimates for
√
− Ṁi

Mi
, i = 1, 2.
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Lemma B.3. For k = 0 there hold

√
−Ṁi(t, k, η)
Mi(t, k, η)

� 〈η − ξ〉

√
−Ṁi(t, k, ξ)
Mi(t, k, ξ)

, for i = 1, 2, (B.9)

Finally, the estimates of
√
−∂t(m̃1/2)

m̃1/2 is given below.

Lemma B.4. For k = 0 there holds

√
−∂t(m̃1/2)(t, k, η)

m̃1/2(t, k, η)
K̃(t, k, η)

� 〈η − ξ〉N+(1+ 3
2 δ̃)+1

⎛⎝√−∂t(m̃1/2)(t, k, ξ)
m̃1/2(t, k, ξ)

+

√
1 + 3

2 δ̃

10003
ν

1
2
(
k2 + (ξ − kt)2

) 1
2

+

√
1 +

3
2
δ̃

√
|k(ξ − kt)|

k2 + (ξ − kt)2
1Ddam

)
K̃(t, k, ξ)

+

√
1 +

3
2
δ̃〈η − ξ〉N+(1+ 3

2 δ̃)+ 3
2

√
−Ṁ1(t, k, ξ)
M1(t, k, ξ)

K̃(t, k, ξ). (B.10)

Proof. Using (B.7), it is not difficult to verify that

√
|k(η − kt)|

k2 + (η − kt)2
� 〈η − ξ〉 3

2

√
|k|

k2 + (ξ − kt)2
+ 〈η − ξ〉

√
|k(ξ − kt)|

k2 + (ξ − kt)2
. (B.11)

From the above inequality and (2.29) with η replaced by ξ, we are let to

√
|k(η − kt)|

k2 + (η − kt)2

� 〈η − ξ〉
(√

|k(ξ − kt)|
k2 + (ξ − kt)2

1Ddam
+

√
1

10003
ν

1
2
(
k2 + (ξ − kt)2

) 1
2

+
1√

1 + 3
2 δ̃

√
−∂t(m̃1/2)(t, k, ξ)

m̃1/2(t, k, ξ)

)
+ 〈η − ξ〉 3

2

√
−Ṁ1(t, k, ξ)
M1(t, k, ξ)

.
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Combining this with (2.28) yields√
−∂t(m̃1/2)(t, k, η)

m̃1/2(t, k, η)

� 〈η − ξ〉

⎛⎝√−∂t(m̃1/2)(t, k, ξ)
m̃1/2(t, k, ξ)

+

√
1 + 3

2 δ̃

10003
ν

1
2
(
k2 + (ξ − kt)2

) 1
2

+

√
1 +

3
2
δ̃

√
|k(ξ − kt)|

k2 + (ξ − kt)2
1Ddam

)
+

√
1 +

3
2
δ̃〈η − ξ〉 3

2

√
−Ṁ1(t, k, ξ)
M1(t, k, ξ)

.

(B.12)

Then (B.10) is a consequence of (B.8) and (B.12). We complete the proof of lemma
B.4. �

Appendix C. Composition inequalities for the operator Λ in HN

Since Λ is involved in the definition of Δ−1
t , recalling the relation (2.14), it is

inevitable to deal with the composition B1 ◦ Λ for some multiplier B1. Based on
the commutator estimates of B, we establish the following composition inequality.

Lemma C.1. Let l ∈ N+, and Bi, 1 � i � l be Fourier multipliers, satisfying

|B1(k, η)| �
l∑

i=1

Ci〈η − ξ〉βi |Bi(k, ξ)|, (C.1)

for some constants Ci > 0 and βi � 0, 1 � i � l. If ‖a2 − 1‖L∞HN+β+1 +
‖b‖L∞HN+β+1 � δ

2 with β = max {β1, · · · , βl}, then we have

‖B1Λf�=‖HN � 1
1 − C1δ

‖B1f�=‖HN +
δ

1 − C1δ

l∑
i=2

Ci‖BiΛf�=‖HN . (C.2)

Proof. We first write ΔL in terms of Δt

ΔL = Δt − (a2 − 1)∂L
Y Y − b∂L

Y .

Then

Λf�= = ΔLΔ−1
t f�= = f�= − (a2 − 1)∂L

Y Y Δ−1
t f�= − b∂L

Y Δ−1
t f�=, (C.3)

and thus

‖B1Λf�=‖HN

� ‖B1f�=‖HN +
∥∥B1

(
(a2 − 1)∂L

Y Y Δ−1
t f�=

)∥∥
HN +

∥∥B1

(
b∂L

Y Δ−1
t f�=

)∥∥
HN . (C.4)
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Thanks to (C.1), using Young’s inequality for convolution, we find that∥∥B1

(
(a2 − 1)∂L

Y Y Δ−1
t f�=

)∥∥
HN

=

⎛⎝∑
k �=0

∫
η

∣∣∣∣〈k, η〉NB1(k, η)
∫

ξ

(â2 − 1)(η − ξ)(ξ − kt)2Δ̂−1
t f�=(k, ξ)dξ

∣∣∣∣2 dη
⎞⎠ 1

2

�
l∑

i=1

Ci

(∑
k �=0

∫
η

(∫
ξ

〈η − ξ〉N+β ̂|a2 − 1|(η − ξ)

× 〈k, ξ〉N |Bi(k, ξ)|
(
k2 + (ξ − kt)2

) ̂|Δ−1
t f�=|(k, ξ)dξ

)2

dη

) 1
2

�
l∑

i=1

Ci‖〈·〉N+β â2 − 1‖L1
η
‖BiΛf�=‖HN , (C.5)

where we have used the fact Λ = ΔLΔ−1
t in the last line above. Similarly, for k = 0,

there holds

|ξ − kt| � |k(ξ − kt)| � 1
2
(
k2 + (ξ − kt)2

)
.

Thus, we have∥∥B1

(
b∂L

Y Δ−1
t f�=

)∥∥
HN

=

⎛⎝∑
k �=0

∫
η

∣∣∣∣〈k, η〉NB1(k, η)
∫

ξ

b̂(η − ξ)(ξ − kt)Δ̂−1
t f�=(k, ξ)dξ

∣∣∣∣2 dη
⎞⎠ 1

2

�
l∑

i=1

Ci

(∑
k �=0

∫
η

(∫
ξ

〈η − ξ〉N+β |b̂|(η − ξ)

× 〈k, ξ〉N |Bi(k, ξ)|
(
k2 + (ξ − kt)2

) ̂|Δ−1
t f�=|(k, ξ)dξ

)2

dη

) 1
2

�
l∑

i=1

Ci‖〈·〉N+β b̂‖L1
η
‖BiΛf�=‖HN . (C.6)

Substituting (C.5) and (C.6) into (C.4), and using the restriction on a and b, we
arrive at

‖B1Λf�=‖HN

� ‖B1f�=‖HN +
l∑

i=1

Ci

(
‖〈·〉N+β â2 − 1‖L1

η
+ ‖〈·〉N+β b̂‖L1

η

)
‖BiΛf�=‖HN
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� ‖B1f�=‖HN +
√
π

l∑
i=1

Ci

(
‖a2 − 1‖L∞HN+β+1 + ‖b‖L∞HN+β+1

)
‖BiΛf�=‖HN

� ‖B1f�=‖HN +
l∑

i=1

Ciδ‖BiΛf�=‖HN ,

and hence (C.2) follows. This completes the proof of lemma C.1. �

Corollary C.2. Let B be Fourier multiplier satisfying

|B(k, η)| � C〈η − ξ〉β |B(k, ξ)|,

where C and β are two positive constants. If ‖a2 − 1‖HN+β+2 + ‖b‖HN+β+2 � δ
2 ,

then we have

‖BΛ̃f�=‖HN � Cδ‖Bf�=‖HN , (C.7)

and

‖BΛΛ̃1
t Λf�=‖HN � Cδ

(1 − Cδ)2

∥∥∥∥∥∥B
√
−Ṁ1

M1
f�=

∥∥∥∥∥∥
HN

, (C.8)

where Λ̃ and Λ̃1
t are given in (2.10) and (2.33), respectively.

Proof. Recalling the definition of Λ̃ in (2.10), following the proof of (C.5) and (C.6)
with Δ−1

t replaced by (−ΔL)−1, we get (C.7) immediately. Now we turn to prove
(C.8). In fact, using (2.33) and lemma C.1, we are led to

‖BΛΛ̃1
t Λf�=‖HN � 1

1 − Cδ
‖BΛ̃1

t Λf�=‖HN

� 1
1 − Cδ

(
2
∥∥B ((a2 − 1)SΛf�=

)∥∥
HN

+
∥∥B (b∂XΔ−1

L Λf�=
)∥∥

HN + 2
∥∥∥B (Λ̃SΛf�=

)∥∥∥
HN

)
. (C.9)

In view of (3.16) and (3.29), similar to (C.5) and (C.6), and using the commutator
estimate (B.9) and lemma C.1, we arrive at∥∥B ((a2 − 1)SΛf�=

)∥∥
HN +

∥∥B (b∂XΔ−1
L Λf�=

)∥∥
HN

� C
∥∥∥〈η − ξ〉N+β

(
̂(a2 − 1) + b̂

)∥∥∥
L1

η

∥∥∥∥∥∥B
√
−Ṁ1

M1
Λf�=

∥∥∥∥∥∥
HN

� Cδ

1 − Cδ

∥∥∥∥∥∥B
√
−Ṁ1

M1
f�=

∥∥∥∥∥∥
HN

.
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Moreover, it follows from (C.7), (3.29), and lemma C.1 that

∥∥∥B (Λ̃SΛf�=
)∥∥∥

HN
� Cδ

∥∥∥∥∥∥B
√
−Ṁ1

M1
Λf�=

∥∥∥∥∥∥
HN

� Cδ

1 − Cδ

∥∥∥∥∥∥B
√
−Ṁ1

M1
f�=

∥∥∥∥∥∥
HN

.

Substituting the above two inequalities into (C.9) yields (C.8). The proof is
completed. �
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