L))

Check for
updates

Proceedings of the Royal Society of Edinburgh, page 1 of 51
DOI:10.1017/prm.2024.6

On the Sobolev stability threshold for shear flows
near Couette in 2D MHD equations

Ting Chen
School of Mathematics and Statistics, Central China Normal University,
Wuhan, 430079, P. R. China (1255193542@Qqq.com)

Ruizhao Zi

School of Mathematics and Statistics, and Key Laboratory of Nonlinear
Analysis & Applications (Ministry of Education), Central China Normal
University, Wuhan, 430079, P. R. China (rzz@ccnu.edu.cn)

(Received 16 June 2023; accepted 14 January 2024)

In this work, we study the Sobolev stability of shear flows near Couette in the 2D
incompressible magnetohydrodynamics (MHD) equations with background magnetic
field («, 0)—r on T x R. More precisely, for sufficiently large «, we show that when the
initial datum of the shear flow satisfies |U(y) — y|| yn+6 < 1, with N > 1, and the

P
initial perturbations ui, and bi, satisfy ||(win, bin)|| gr+1 = € < v6 19 for any fixed

- 3
6 > 0, then the solution of the 2D MHD equations remains 1/7(%+§)e—close to
(et U(y),0)T for all t > 0.
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1. Introduction

1.1. Problem statement and background

Consider the 2D incompressible MHD equations on T x R:

Qi+ a-Vi—b-Vb=vAu— Vp,
Ob+1-Vb—b- Vi = pAb, (1.1)
divie = divb = 0.

Here T is the periodized interval [0,1], @ = a(t,z,y):[0,00) x T x R — R?
denotes the velocity, b = B(tmc,y) :[0,00) x T x R — R? denotes magnetic field,
p=p(t,z,y) : [0,00) x T x R — R denotes pressure, v denotes the inverse Reynolds
number, and p denotes the inverse magnetic Reynolds number. For a derivation of

(1.1) and a general overview of MHD equations we refer the reader to [17, 30].
Note that the shear profile u, = (e¥*?vU(y),0)T is a solution of (1.1) in any
uniform magnetic field by = (a,0) ", where U(y) is a given smooth function, and
(© The Author(s), 2024. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh
1

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press


mailto:1255193542@qq.com
mailto:rzz@ccnu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2024.6&domain=pdf
https://doi.org/10.1017/prm.2024.6

2 T. Chen and R. Zi

« is a constant in R. A natural question is to study the long time stability of the
equilibrium state (us,bs). To this end, let us introduce the perturbations u and b
by @& = u+ us and b = b+ bs. Then (u, b) solves

Opu + Udyu + (U

/

2
v ) — dyb —vAu = —u-Vu-+b-Vb— Vp,

0
- U'v?
8tb+Uazb_( 0 )—aazu—ﬂAb=—u~Vb+b~Vu, (1.2)
V-u=V-0=0,

U(O) = Uin, b(O) = bina

where we have used the notations u = (uy,us) ", b= (b1,b2)" and U = "% U(y).
The corresponding perturbed vorticity and current density take the form of

w = 0,u® — Gyul, j = 0,b% — aybl.
Let 1 and ¢ be the steam functions such that
u= (=01, 000)" =V, b= (-0y$,020)" =V,
Then we infer from (1.2) that the system of (w, j) is of the following form

0w + Udpw — a0yj — U"0pth —vAw = —(u- V)w + (b- V)3,

017 +U0pj — adpw + U" 0,0 + 20U Oy — pAj = —(u-V)j+ (b- V)w
+2a$y7/}(2a"cr¢ —J) - 2amy¢(28mc¢ - w), (1.3)

w=Viy, b=vis,

AY=w, A¢=].

The mathematical theory of the stability of shear flows gained quite some atten-
tion in the last decade. The nonlinear stability of the 2D Couette flow on T x R
in the Euler equation was first obtained by Bedrossian and Masmoudi in [6] when
the initial perturbation is smoother than the Gevrey space of class 2. In particular,
the inviscid damping, an important hydrodynamic phenomenon manifests itself
as the algebraic decay of the velocity for the inviscid fluids, was rigorously justified
at the nonlinear level in [6]. A generalization of the results in [6] to the finite chan-
nel T x [0, 1] for initial perturbation with compact support was given by Ionescu
and Jia in [22]. The nonlinear inviscid damping for a class of monotone shear flows
was proved in [23] and [33], independently. The stability results for the 2D Cou-
ette flow in inhomogeneous fluids can be found in [16, 51]. The instability result
for the 2D Couette flow on T x R was shown by Deng and Masmoudi in [18] when
the initial perturbation is less smooth than the Gevrey space of class 2. For more
general shear flows, the stability /instability results are more difficult to achieve due
to the presence of nonlocal term. We refer to [15, 25, 26, 45, 52] for the linear
inviscid damping results for general monotone shear flows, and to [24, 46, 47] for
the linear stability results for non-monotone shear flows.
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If the viscosity is taken into consideration, consider the toy model
Org + yorg = vAg, (t,z,y) €[0,00) x T xR

it is not difficult to show that the non-zero mode g undergo enhanced dissipation,
namely for some ¢ > 0 there holds

1
lg(®)ll 2 < €= [lg(0)]] 2 (1.4)

The inviscid damping mentioned above and the enhanced dissipation demonstrated
in (1.4) are two main stability mechanisms which are closely related to the stability
threshold problem. That is, how small should initial perturbations be in terms of
the viscous coefficient to ensure nonlinear stability? Since the early experiments of
Reynolds [36], the the linear stability or instability of shear flows at high Reynolds
number has been a classical problem in applied fluid mechanics [10, 27, 35, 39,
48]. Significant progress has been made by Bedrossian, Germain and Masmoudi
in [3-5] for the nonlinear stability of the Couette flow on T x R x T by using
the time dependent Fourier multiplier method. Then Wei and Zhang [44] proved
the nonlinear stability of the Couette flow on T x R x T as long as the initial
perturbation satisfying ||ui,|z2 < Re™" with Re the Reynolds number. For the
2D the domain T x R, a series of results can be found in [7, 8, 34]. Recently, Li,
Masmoudi and the first author of this paper [29] studied the relationship between
the size and the regularity of the initial perturbation that ensures the nonlinear
asymptotic stability. For the periodic finite channels, a delicate resolvent estimate
method was developed in [12, 14]. In particular, Chen, Wei and Zhang showed that
the size of the initial perturbation in [44] still ensures the stability of the Couette
flow in the presence of physical boundary in [14].

In the presence of magnetic field, the behaviours of the shear flows become more
complicated. On the one hand, it is classically known that a strong background
magnetic field can have a stability effect on a conducting fluid, see [11, 40, 42],
for instance. On the other hand, the magnetic field may destabilize the system [13]
even with shear flows (including Couette flow) that are asymptotically stable. Tata-
ronis and Grossmam [41] predicted that the decaying of the vertical components
of velocity and magnetic field due to the phase mixing. Ren and Zhao [38] gave a
rigorous mathematical proof under the assumption that the magnetic field is posi-
tive and strictly monotone. In [20], Hirota, Tatsuno and Yoshida investigated the
linearized behaviour of the ideal MHD equation around Couette flow (k;y,0) and
linear magnetic field (k,,y, 0). They predicted that if |ks| < |k, |, then the magnetic
island appears in the final state, namely the linear asymptotic stability fails, and if
|km| < |ky|, then linear damping holds and the magnetic island will be destructed.
Recently, the generation of magnetic island was rigorously proved by Zhai, Zhang
and Zhao in [49], and the rigorously mathematical proof for the destruction of
magnetic fields was given by Ren, Wei and Zhang in [37]. We refer to [28, 32] for
more recent results for the linear stability results on shear flows in magnetic field.
For the nonlinear stability result on this direction, Liss [31] proved that for strong
and suitably oriented background fields a(c,0,1)T, the Couette flow (y,0,0)" is
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asymptotically stable provided the initial perturbations w;, and b;, satisfy
[tinl| g~ + [[bin ||y <v=p, (1.5)

with NV sufficiently large.
In this paper, under the same condition v = p in [31], we study the nonlinear

stability of the time dependent shear flow us = (U(t,y),0) in a uniform magnetic
field by = (a,0)" on T x R. More precisely, for 0 < v =y < 1, given an initial
norm X; and a final norm X, our goal in this paper is determine a constant
v =7(X;,Xr) > 0 as small as possible, such that if the initial perturbations i,
and by, satisfy

[ (tin, bin) [ , < cov”, (1.6)

for ¢o sufficiently small (independent of v), then the solution of (1.1) is global in
time and converges back to (us,bs) as t — oo in the sense that

10, O)l| oo x; S o, Jim [(u(t),0(8))]| x, = O (1.7)
1.2. The main result
Our main result is stated as follows.
THEOREM 1.1. Let N > 1, u=wv € (0,1]. There exist two sufficiently large con-
stants ag > 0 and C > 1 independent of v, such that for all |a| = ag, if the shear
flow U = Ul(y) satisfies
1U(y) — ZUHHN+6(R) =6<C, (1.8)
with § independent of v, and the initial perturbation obeys

. 1 5435
1 (@ins Jin) [l + 1l (ttin, bin) | v = € < O™ st (1.9)

for any fized § > 0, then the global in time solution (w,j) to (1.3) obeys

1

. = (L1498
H(wv.j) © (aj + tU(t’y)’y)HLOG(O,oo;HN('ﬂ‘x]R)) < Cev (3+2)7 (110)

and the enhanced dissipation estimate

wlon

. — _1_
H(w¢,3¢)0(CE+tU(t,y),y)HLQ(O)OO;HN(TxR)) <Cev 272, (1.11)

REMARK 1.2. The bounds (1.10) and (1.11) follow from (4.3), (4.5) in theorem 4.1
and lemma A.1 immediately. So the rest part of this paper aims to prove theorem

4.1.

REMARK 1.3. It is not difficult to obtain the explicit enhanced dissipation decay
1 ~
e~ for (wx,jx) like (1.4). In fact, we just need to change the multiplier K
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(see (4.2)) slightly. Let e be a multiplier defined by

e f(k,m) = M=o f (k).
Set
M = e;ﬁk.
Replacing the multiplier K in (4.10) by M, the proof of proposition 4.3 is still valid.

L2
MZ H arising from
L2

In particular, one can use (3.21) to absorb the bad term w3

the time evolution of e for sufficiently small ¢ (see § 2.3 for the definition of ZF).
We refer to [50] for more details of the use of the multiplier e to get the explicit
1

enhanced dissipation decay e=¢V*?,

REMARK 1.4. At first glance, it looks as if the loss v~% on the right hand side
of (1.11) might come from the diffusion —vA(w,j). As a matter of fact, roughly
speaking, due to the linear growth (t) caused by the stretch 2U’d,,¢ (together with
the oscillation stemming from the strong background magnetic field (o, 0)") and

1

—cv3t

the enhanced dissipation e as mentioned in remark 1.3, (wx, jx) behaves like

1 1
(tye=¥?t. Clearly, ‘ (tye=ev?t
hand side of (1.11).

z on the right

1 . . —
,RYTE. This explains the loss v
Lt

REMARK 1.5. Compared with the Couette flow case U(t,y) = U(y) = y, the extra
exponent ¢ in (1.9) is derived from the linear stretch term 2U’0,,¢ in (1.3), which
is absent in the 2D Navier-Stokes equations around shear flows near Couette (see
[8]). It is open whether one can remove the extra exponent ¢ in (1.9).

REMARK 1.6. The constant C' in theorem 1.1 depends on Wll As a matter of fact,

if & = 0, the oscillations —ad,j and —ad,w disappear in (1.3). As a result, instead
of the linear growth (t) in the case |a| > ag, for a =0 the linear stretch term
20" 0,y¢ in (1.3) will lead to (t)? growth even for U(t,y) = U(y) = y, which costs
more smallness of the initial perturbations in terms of some power of v to ensure
the stability.

1.3. Notations

(1) Throughout this paper, we use the standard notation
(z) = V1+a2
we write (V)® for the operator with symbol
(V) = (1+ K +7°)"%.

(2) We use the notation f < ¢ to mean that there exist some constant C' > 0 such
that f < Cg. This constant C' may depend on N and «, but not on v.
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(3) For a function f(z,y), We denote the projection of f onto the zero frequencies
in x by

= ,y)dx.
fo(y) / f(z,y)dz
['hen we write

= (x,y) = flz,y) — foy)

for the projection onto the nonzero frequencies in x.

(4) The Fourier transform of function f is denoted by

F(f) = fkon) = —

=— / e ety (5 y)dady.
27 Jrxr

The Fourier multiplier with symbol m(t, k,n) is given by
mf =F 1 (m(t k,n)Ff).
(5) For any a € R, we use the shorthand notation
Of = ¢19:t (1.12)

to denote the multiplier with symbol e?®**. We then write 9,0, to denote the
Fourier multiplier with symbol iake ¥t

(6) For s > 0, we define the Sobolev space H® by using the norm

1Al e = 1OV Fll 2 -

The notation LPL? = LyL% , is used for the Banach space LP([0,T7]; L(S2))
with norm

”f(t’x)HLqu = HHf(tﬂ ')HL"HLP'

(7) For two real functions f and g , we write the associated inner product as

(f.9) = fgdady,
TxR

and denote

(f:9)me = ((V)°1,(V)°g) .
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2. Reformulations and key ideas of the proof

2.1. Elsasser variables under the restriction p = v

Since we focus on the case v = p in this paper, the symmetry of the system (1.3)
enables us to reformulate it by using the Elsésser variables

wh=w F 7

Then w* solves
Sywt + U0, wr+ad,wt — vAw™ F QU’axyA_l(w_ —w) = U"9, A" w¥
= VATVt + 0, AT T (20, A7 wE — wd)
— Dy AT 0 E (20, AT 0T — w ).

Such kind of variables have played important roles in the study of large time
behaviours of solutions to MHD equations in the absence of shear flows [2, 9, 19,
43], and the nonlinear stability result [31] where the three dimensional Couette
flow (y,0,0)" is taken into consideration as mentioned in § 1.

Similar to the 3D case, the background magnetic field («,0) T introduces oscil-
lations (see the —ad,w* terms in (2.1)) that may stabilize the system. Following
[31], we define the profiles

2 = 0L w*

to hide the oscillations in the new unknowns z*, where O, is defined in (1.12).
Then zF solves

Oz + Udpe™ —vAZE + U0,y A7 (25 = Oy 2 ) = U"0,A710!,, 27
= VA0, 2T - Vet + 0, AT 0!, 2T (20, A7 2 — 27F) (2.1)

— Dy AT 2% (20,, AT O, 2T — Oy 27T).

2.2. Change of coordinates

In this paper we use the coordinate transform introduced by Bedrossian, Vicol
and Wang in [8] to unwind the decaying background shear flow U (¢,y) in (2.1):

X =z —tU(t,y)
{Y_U(t,y). ! (2.2)

Denote the spatial derivatives of the shear flow in the new coordinates as follows

a(t7 Y(t7 y)) = ay(?(tv y)’
b(t, Y (t,y)) = 0yU(ty), (2.3)
c(t,Y(t,y)) = 8§q(t,y),
dt,Y (t,y)) =0,U(t,y).
Note that by the chain rule, we have
b = adya. (2.4)
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For any function % in the (z,y) coordinates, the corresponding function h in the
(X,Y) coordinates is given by

h(t,X,Y) = h(t,z,y).

Then VA and Ah can be rewritten in the new coordinate system (2.2) in terms of
h as follows (the notations V; and A, are introduced naturally):

Vh(t,z,y) = (8.h,0,h) = (Oxh,a(dy — tdx)h) = (O%h,dLh) = Vih,  (2.5)
and
Ah(t,z,y) = (Oxx + a?0fy +bIE)h = Ash
= Arh+ ((a® — 1)0%y +00%) h (2.6)
= Ah + bOER,
where we have used the notations
o =0y —tox, 0&y = (0y —tdx)?,
and the modified Laplace operator is given by
Ay =Ap + (e - 1)0Ly, with Ap =dxx + 0Ly (2.7)
Finally, using the fact 0,U = V{?gU and the definitions of a and b, we have
Ovh = Oh + Ox h(—U — t0,U) + 8y hdU = d;h — Y dx h 4 vbdEh. (2.8)
In particular,
8t3y(_] = 0ia + vboya, and 8,:85[7 = 0tb + vbdy b,
which, together with the fact 8,U = v92U imply that

Oia = vc— vbOya, and Ob= vd— vbdyb. (2.9)

2.3. Definition of At_l and system (2.1) under new coordinates

In this subsection, we first give the definition of the inverse of A; in the spirit
of Antonelli, Dolce, and Marcati [1]. For the sake of completeness, we sketch the
definitions below.

To begin with, assume that a? — 1 = (a? — 1)(¢,Y) and b = b(¢,Y) are given func-
tions in L>(RT; H'(R)), then the fact that A;' is well defined for k # 0 enables
us to define an operator on L?(T x R):

A= ((a® - 1)0y +b0%) (—AL) 7Y, (2.10)
with
Al L2r2 < O (HCLQ — oot 4+ bl Lo ) (2.11)

for some constant C, > 1, see proposition 4.1 in [1] for more details.
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DEFINITION 2.1. Assume that (||a® — 1| g + ||bl|pe 1) < 6 such that C.6 < 1,
then for k # 0, let us define

A= AT, e AA =AL, (2.12)

where
A= (I-RA)~" =) A"
n=0

REMARK 2.2. For the operator A, we also have the following useful identity
A=T+AA. (2.13)

Now we are in a position to rewrite (2.1) under the coordinates defined by (2.2).
To this end, let us denote

ZEX)Y) = 25 (t,2,y),

Note that
OXy A7 = 0%y ATTALA Y = SA, with S =0%, A", (2.14)
and
VEAT O, 2l - V2t = —0,0,,) 2§ 0,27 =-0,0,,} wf 0.2 = (ug + by) 0,27 = .

Then it follows from (2.1) that the equations of Z* take the form of
WZE —VvAZE +a*SA (ZF - 01,,2F) —bOx A 104, ZT =NLF,  (2.15)

or
0Z* —vALZ* + SA (Z* - 0!,,Z7F) = LP* + NL*, (2.16)
where
NL* := NLT* + NLS1* + NLS2%, (2.17)
with
NLT* = — (Uj + B}) 0x Z = —V{ A 0Ly 27 = Vi 2%,
NLSI* = aSAO%,, 2T = (20xxA; ' Z7 = —Zi),
NLS2* = —aSAZ7 = (20xxA; 040, 2T = =04y, Z7),
and
LPE = —(a? = 1)SA (Z% — 0!, Z7) + bOx A7 00 Z7T + v(a® — 1)0E, Z*.

(2.18)

Here ‘NLT’, ‘NLS’ and ‘LP’ stand for ‘nonlinear transport’, ‘nonlinear stretch’ and
‘linear perturbation’, respectively.
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2.4. Toy model and key ideas

Compared with the Navier—Stokes equations around 2D shear flows near Couette
[8], and the MHD equations around 3D Couette flows [31], we will encounter new
difficulties for the MHD equations around 2D shear flows near Couette. In order to
track the difficulties precisely, let us consider the toy model

Oft + SAfT —vALfT =0, (2.19)
or equivalently in Fourier variables

e (P k) FE =0 2a0)

BfE +
It is worth pointing out that if the shear flow is the Couette flow, i.e., U(t,y) =
U(y) =y, the operator A in (2.20) will not appear. This scenario is reminiscent of
the toy model introduced by Bedrossian, Germain and Masmoudi in [3] for the 3D
Navier—Stokes equations near Couette:

2k(n —kt)
kz + (7’ _ kt)2 + lzg(t)k7n)l)
— v (k* + (n— k) +1?) g(t, k,m,1) = 0.

atg(ta ka 7, l) +

To balance the interaction between %g and —v(k? + (n — kt)? +12)g,

the authors in [3] constructed a multiplier m(t, k,n, 1) satisfying
orm 2k(n — kt) nomn 1

= for te | 241000073,
m Rt (n-k2+iz O e[k’k+ Vz}

More precisely, the two dimensional analogue of the multiplier m(¢, k,7,1) is given
as follows:

(1) if k=0:m(t,0,n) =1;
(2) itk # 0,2 < 10000~ 5 : m(t, k,n) = 1;

(3) if k # 0, -10000~5 < 2 < 0:

o m(t k1) = e i 0 <t < 2+ 100007 3,

_ k2 +n? : ] -3,
o mit, k) = k24 (1000kv ™5 )2 ift> 7 + 1000073

(4) if k #0,2 > 0:
o m(t,k,n) =1ift <,

1

o m(t k) = e i <t <} 41000075,

K if £ > 7+ 100007 3.

tkn) =—""--5—
° m( ’ 777) k2+(1000ky_%)2 1
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Notice, in particular, that

Wi

< mlt, ko) <1, (2.21)

and
k2

ey (2.22)

m(t, k,n) 2

In our case, for the Couette flow, it suffices to use m2 (¢, k,7) instead of m/(t, k 77)
to suppress the potential growth caused by the linear stretch term +?¢7 k,:z)z fE.
Nevertheless, for general shear flows the presence of the operator A may amplify
the linear stretch effect since the norm of A may be larger than 1 even though
the shear flow U is close to Couette. Roughly speaking, one can regard the linear

stretch term in (2.20) as (1 + O(S))#_ﬁ%ﬁ7£ with & > 0. Then it is natural to

modify the multiplier m2 (t,k,n) so as to suppress the extra growth resulting from
the operator A. To this end, our strategy is to replace m2 (t,k,n) with me (t,k,n),
where m(t, k,n) is defined by

it k) = m' 3 (1, k), (2:23)
with arbitrary 6 > 0. Note that

duitkn) _ (), 35 damlt ko)
it ko) (1 25> ' 224

Then (2.21) and (2.22) reduce to

vE¥0 <t k) < 1, (2.25)

)

and

e
O

2 1+
it k) > (M) . (2.26)

For (t,k,n) € [0,00) x Z\{0} x R, let us define the following three disjoint sets

<3

Daom = { t k 77
(t,k,m) : L < — 10000~ 5} U {—10001/*% < %,t >y 1000;/*%},

{(
{

u{(t,k,n) - >O’E <t< %+1oooy—§}.

Ddzs =

o

(t,k,n) : —1000v~ 3

mul -

??‘\3

<0t < n 4 1000u—§}

Then the effects of the linear stretch are summarized as follows:

(1) if (t,k,n) € Dggm, then k(n — kt) > 0, and thus the linear stretch term behaves
as a damping.
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(2) if (t,k,n) € Dgy;s, we have
’tf %’ > 100003,
and thus

k=KDl _ 1
k2 + (n— kt)2 ~ 10003

v (k* + (n— kt)?), (2.27)
which means that the linear stretch is dominated by the dissipation.
(3) by the definition of 7, there holds

k(n — kt 1 =9, (m?)(t,k,
k2| —‘57277_ k?t|)2 1D7nul (t?k7n) = t( )( n)

, (2.28)
that is to say, the effect of the linear stretch is balanced by the evolution of e
on Dy

REMARK 2.3. Clearly, the following decomposition of unity holds

1=1p,,. (t,k,n)+1p,, (t,kn)+1p, ,(t,kn), for all
(t, k1) € [0,00) x Z\{0} x R

Then it follows from (2.27) and (2.28) that

|k(n — k)|

K2+ (n — kt)? 2.2
K2+ (n — kt)? (2.29)
k2 + (77 — kit)z Ddam( ) 77]) + k2 + (77 — kt)2 Dd,s( R ,?7)

11 it k,n)
21+ 35 m(t, k,mn)
k(n — kt) 1
S T e tk,
Rt (g ka2 e (R 55
1o P)(t,k,n)
1436 m2(t,k,n)

v (k* + (n — kt)?)

The treatment of the general shear flow (U,0) " is much more complicated than
that of the Couette flow (y,0)". In fact, for the case U(t,y) = U(y) = y, once the
multiplier m(¢, k,n) is well defined as above, then it is straightforward to deal with
the linear stretch term, see (3.24). In particular, the damping effect stemming from
the linear stretch term when (¢, k,7n) € Dgam can be ignored. However, for the case
that U (y) is close to y, the appearance of the operator A makes the damping effect of

Fn—kt) X F% unclear even though (t,k,n) € Dgam- Our strategy

the linear stretch Prn—kt)?
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Stability of shear flows in 2D MHD 13
is to isolate the damping effect by using (2.13):

k(n —kt) = k(n—kt) - k(n—kt) %
AfE—1 Tyl AAS=.

Daam k2 + (77 — kt)Q f Daam k2 + (77 — k,t)gf t 1Dgam k2 + (77 — kt)g /
(2.30)

The first term on the right hand side of (2.30) is the main part, and the second
term is the perturbation. Some delicate commutator estimates will be performed to
treat the perturbation. As a result, lots of errors appear. To close the estimates, the
damping effect captured by the main part of the linear stretch in (2.30), together
with the dissipation and other good terms, will be used to absorb the errors. See
Step I of § 4.1 for more details.

In addition, the presence of the operator A leads us to estimate the composition
B o A for some multiplier B involved in this paper. The continuity of B o A depends
on the commutator estimates of B. That’s why we give a collection of commutator
estimates in Appendix B. In particular, some extra terms appear in the commu-

1o
tator estimate of —Lm;)K, see lemma B.4. This motivates us to establish a
M2

composition inequality for the multipliers whose commutator estimates have extra
errors with better commutator estimates, see lemma C.1 for the details.

On the other hand, it is worth pointing out that the above toy model (2.19)
ignored the oscillation terms O%,,SAf¥, which should be taken into consideration
as well in the energy estimates. In order to take advantage of the oscillator O,
noting that

or,

[e3

1 —~
= t
; kath for k#0, (2.31)

integrating by parts with respect to the time variable will be exploited as that in
[31]. In this way, we will inevitably encounter the time derivative of the operator
A. To achieve this, using again (2.13), we obtain an important relation

oA = A9, AA, (2.32)

where ;A is derived from (2.10)
A= [2(a2 —1)S +box AL+ 2]\5} + (2a01a0%y +0,p0%) (—AL) "t = A} + A7
(2.33)

See the estimates of OLS5 in Step IT of § 4.1 for more details.

Finally, we would like to remark that, unlike [1], the coefficients a and b hidden
in the definition of A; ! are time dependent (see (2.10) and (2.12)), and ;a and 9;b
are involved when performing integrating by parts in time (see (2.33)). Accordingly,
recalling (2.3) and (2.9), we find that some higher derivatives of U are actually
involved. This partially explains the extra regularities required in (1.8).

3. Stability of the Couette flow

For comparison, we discuss in this section the case that the shear flow is the Couette
flow. In fact, under the condition U(t,y) = U(y) = vy, the change of coordinates (2.2)
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reduces to
X=z—-ty, Y=y (3.1)

Without causing confusion, we continue to use the unknowns and notations
introduced in § 2. Then it is easy to see that the system (2.15) now reads

WZF —vALZE+ S (ZF - 0y, Z7)
= —ViA[ 0L ZF -V ZF + 80, 2T (20xx AL 2% — Z7F)
— SZE(20xx A0 ZT — Oy, Z7). (3.2)

The purpose of this section is to establish the following theorem.

THEOREM 3.1. Let p=wv € (0,1], N > 1. There ezist a universal constant oy > 0,
and a positive constant § depending only on N and «, such that if |a] > ag and

[l(wins Jin) |z~ =+ || (tin, bin) [ gy = € < (51/%, (3.3)

then the following estimates hold

1Z5 | + V2|V LZE L2y S 75, (3.4)
1(ud F 05 | e sy + v21|0y (u F b3 p2mrv S € (3.5)

and
HZi”LQHN Sei (3.6)

Theorem 3.1 will be proved by using the Fourier multiplier method. In other
words, the norms involved in the proof are defined based on special, time-dependent
Fourier multipliers. Apart from the multiplier m(t, k,n) defined in § 2, we also need
two extra multipliers that are modified from the ones introduced in the study of
the stability of the three dimensional Couette flow in [3]. More precisely, define

M, k2

—— =————— and M(0,k,n) =1, 3.7
TR — 1(0,k,m) (3.7)
i 1

_ M2 v and  M(0,k,n) = 1. (3.8)

Mz (v |t—g|>2+1

The multiplier M; is used to capture the inviscid damping effect in terms of the
L? time integrability, and M, is designed to show the enhanced dissipation effect.
Clearly, M; and M, can be given explicitly, and then one deduces that

M;~1, for i=1,2. (3.9)

For more properties of multiplier M; and Ms, one can refer to lemma 4.1 of [8].
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Stability of shear flows in 2D MHD 15

Let us denote
M := MMy, K := (V)" m'2M. (3.10)
Then from (2.21) and (3.9), we find that for any f = f(X,Y) € HY,
il fllan S 2l = K flle S 1 Fllax (3.11)

In addition, we need to estimate the interactions between the non-zero modes in
the treatment of the nonlinear terms, so the following lemma is introduced.

LEMMA 3.2. Let N > 1. Then for all f € L>H" and g such that Vg € L?H",
there holds

IVTAL 2 - Vigllpimy

L w
< C I fellpane +v %H\/—Mm IVeKgslpors  (3.12)

L2L2

Proof. We first write
VAL fz-Vige = 0y A7 f20x94 + Ox AL f20¥92.
Thanks to (2.22), there hold

k| < VE2+ (n— kt)2m!?, ie. |0x| < |Viim!'/?, (3.13)

and

— kt 1
OFAL < =kt <m/2, k#0. (3.14)

+m—kt)* " R+ (n— k)2~

Combining these two estimates with (3.11) yields

|0y AL f20x g4l L1 v
Sm 2 ol e |[Vem' 2gsl| peps ~ | K fellperz VoK gellpere.  (3.15)

To estimate dx A, ' f = 0kg =, in view of (2.21), (2.22) and the definition of M,
we arrive at

_ : M My, | M
|8XAL1|<m<mm —ﬁiv _ﬁia _Mmlﬂ ) (3.16)

and

0L < v=3ml 2|V, (3.17)
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Accordingly,
-1 L < ,,—% M 1/2 1/2
[0x AL f20v g4l Sv73 ™ f# Im™ =V Lg4llp2pv
L2HN
1 M
S (Vv 9/ IVLKgz|p2re. (3.18)
L2112

It follows from (3.15) and (3.18) that (3.12) holds. This completes the proof of
lemma 3.2. O

3.1. Proof of theorem 3.1
To prove theorem 3.1, it suffices to establish the following a priori estimates:

M
|KZ¥| o2 + 02 |VLKZF | 122 + —MKZi < 8, (3.19)
L2L2
and
U F 00| oo gy + 22 1|0y (ud F 00)|| 1o gy < e (3.20)

Indeed, (3.4) is a direct consequence of (3.11) and (3.19), and (3.5) is nothing but
(3.20). To prove (3.6), by the definition of M, we have

M.
LSvms (| =2 (b k) + v [kon —kt| ] (3.21)
My
It follows that
_1 1 M
1K Zgllpere Sv75 | v2 IVLEZ2 pope + |\ — 37 K2 : (3.22)

L2L?

Thus, (3.6) follows from (3.11), (3.19) and (3.22) immediately.

Next we will prove (3.19) and (3.20) by using the standard continuity method.
First of all, the local well-posedness of the 2D MHD equations in H”Y ensures that
there exists a Ty > 0, such that

1 [ M
K Z* || poo(0,1:22) + V2| VLK ZF | 120,10 12) + —MKZi < 2,
L2(0,To;L?)

and
18 % 58] e oy % 11000 T 08| 2y < 26

Then define T* < oo to be the maximum of all time 7" such that (3.19) and (3.20)
hold on [0, T]. By the continuity, T* > Tp.
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Stability of shear flows in 2D MHD 17

We are left to prove that the constant 8 on the right of (3.19) and (3.20) can be
replaced by 4, which implies that T* = oco. In fact, we have the following propositon.

PROPOSITION 3.3. Let p=v € (0,1], N > 1. Assume that (3.19) and (3.20) hold on
[0,T*]. There exist a universal constant ag > 0 and a positive constant 6 depending
only on N and «, such that if || > g and (3.3) holds, then the same estimates
in (3.19) and (3.20) hold with the occurrences of 8 on the right-hand side replaced

by 4.
The proof of proposition 3.3 will be achieved in the following two subsections.

3.2. Improvement of (3.19)

Recalling the definition of the multiplier K in (3.10), from (3.2), we derive the
following energy identity:

1
§||Kz+(t)”2L2 +VIIVLEZT Lo

M
M

o)

+
KZ + 7

L2L2

+

L2L?
t

1 ‘ ! —
:§||KZ+(O)||%2 —/0 (SKZ*,KZ*')dt +/0 (SOLKZ™ KZTydt
t
+ [ (52 K @2) o ) a
0
1
= §||KZ+(0)||32 + LS + OLS + NV L. (3.23)

By the definition of m, we have

2

_8t(m1/2)

+
K7

LS < + gnvazﬂﬁm. (3.24)

L2L2

Thanks to the fact (2.31), one can estimate OLS by integrating by parts in time:

5
OLS =) OLS;, (3.25)
i=1

where

o0 - & (3008577 - 0710}

2c X 2 / 7 7
. 1 —1 ¢ - _ +
OLS = —5— <saX 03 KZ, =(0),KZ (0)>»
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. .
OLS; = —i/ §28 1§ o5'0L K77 = K7+ Y ar
2a J, K X T2/ ’

1 ! -1t — + /

OLS, = ——2a/0 (505104, K2, = Ko, z*+)at,
OLS; = 1 t SO 0L Ko,Z7 =, KZTYdt
5= 7204 o X 2c t / .

Clearly,

1 _ _
OLS: + OLS: < 5 (IKZZ (012 [KZE ()1 + 1K ZZ )12 | K25 (0)12)

|

To bound OLSs3, in Fourier variables, we find that

koGt N1
K ml/2 M 2m M’
On the support of 1, there holds
m 2k(n — kt)
— = ————"==25(t,k,n).
m Rk 25k
Thus,
du(m1/2) [k(n — kD) 1 [ an
S 181 < s <min gy [
m1/2 + | ‘ )2 + (77 _ kt)Q i 2 ]\41
Moreover,
G F_ an_
S k24 (n— kt)? M,y M
It follows that
2 M M
OLS; < — —-—KZ, ——KzZ*
P M©# \ "
L2132 212

As for OLSy, in view of (3.2), we have

4
OLS; = Y _OLS{’,
i=1
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with
t
n_ v —1 ¢ - + /
oLs{V = 2@/0 <saX 08 K25 KA Z >dt,
1t
OLS{ = - / <Sa§1O§aKZ;,KSZ+>dt’
0
@ _ L - t 7=\
oLs{ =5 | <saX OZQKZ¢,KOQQZ¢>dt,
t
@ _ 1 1t - +
OLS _—%/0 (505 O KZZ, K (9,27) ) .
Integrating by parts, and using the fact |S| < 5, we have

t
oLs{) = - / SaglogavLKZ;,vLKZ+>dt’

T |||VLKZ¢||L2L2\|VLKZ+||L2L2

Thanks to the fact |S| < /— %1 one deduces that

(2) 1 M I M _
OLS, m M_MKZ?é “_MKZ7£

L2L2 L2L2

Owing to the periodicity in X variable, we find that
@__ 1 [ 2
oLs® = — / Ox (S@;lOgaKZ7 :) dXdYdt' = 0. (3.33)
dov TxR
To bound OLSE:L), by (3.2), we get

1 t
s - & [ (s 2 k5

1
 2a

<sa 104 K75, K (SO5, 2 (20xx A7 24 =27)) ) at
+ %/0 <Sa§1O§aKZ;, K (SZ%(20xx AL 0,2 — o;aZ*))> dt’
=NLT + NLS1+NLS2, (3.34)
with
NLT = i /Ot (5050 KZ; = K (VEAL' 027 = V125 =) ) dt

+ i t <53§(10§aKZ7 — K (ViAZIOéaZo_ vz =)>dt’
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1 ! —1 — N 1
+£/0 <SBX 0L KZ, = (VLA 04,2, = VLZO)>d
= NLT(£,#) + NLT(0,#) + NLT(#,0).

By using lemma 3.2, we are led to

NZT@é¢>

HKZ 2 IVEAL 00025 - V0 Z i

1 _ _ _1 M _
SEHKZ;&HL“’H 1K Z ez + 75 |\ =3 K22 IVLEZ |2 r2

L2L2
<vToed (3.35)

In view of (3.16), one deduces that

1
2

1 | M
< —||KZZ ||~ -—KZ, Zs
~ o H ;é”L L2 M + |0y 0 lz2mw~

L212
e3. (3.36)

t
NLT(£,0) = / <58§103(XKZ;,K(BXAZIOéaZ;ByZJ»dt’
0

[N

Sy

Recalling that z* =0 w , we then have zoi = wgt = wo F jo. Consequently,

ayzo = Oywo F OyjJo = — (ayyuo F ayybo) ,
and hence
0y0y, 25 = — (uf F bp) - (3.37)
Using (3.13), we arrive at

t
NLT(0,#) = ,L / Sa;(logaKZ;,K(aya;;ogaz(;axz;g»dt'

|KZ || L2120y 05y Zg e v |0x 22 | p2mrn

N |
]
< EHKZ;HHHHU}) +0ollLoean VLK ZE | 1212

SV

W

. (3.38)

NLS1 and NLS2 can be treated in the same way, we only estimate ALS2 now.
To this end, we infer from (2.22) that

[k —kt)| _ K
||\2 _L4)2 Y 5 )
R4 —kt2 k2 + (n— ki)

<m!'/2. (3.39)
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This, together with (2.21) and the obvious fact |OxxA;'| < 1, implies that

1 _ _ _ _
NLS2 S —|IKZ, |2 1S 2T (20xx AL 05,27 = 05,27 )|~

~ laf

< Yikzs 127+ —3|\m/2z-

~ af | 75||L2L2||m lLzm~ (V72 |Im | oo

<yied (3.40)

Note that OLS; can be treated in the same manner as OLS,, and N'L in (3.23)

can be treated in the same way as OLSE;Q. On the other hand, one can obtain an
energy identity for KZ~ similar to (3.23), and estimate the corresponding right
hand side terms analogously. Putting the energy estimates for KZT and KZ~
together, we find that for sufficiently large |«|, LS, OLS;, OLSs, OLSS), OLSEE)
can be obsorbed by the left hand. In conclusion, there exist a universal constant
ap > 0, and a positive constant C' depending only on N and «, such that if |a| > ay,
we have

2
7,
IKZ5 O3 + VIV K25 B+ |\ -3, K 25| < 2AKZHO)B + Cv i,

L2L2
(3.41)

which suffices to improve (3.19) as long as € < ve.

3.3. Improvement of (3.20)
Since u2 = b2 = 0, we derive from (1.2) for U(t,y) = U(y) = y that (ug, b}) solves

Oup — vOyuf = — (u-Vul —b- Vbl)o ,
Oeby — vOyyby = — (u- Vb —b-Vu'), .

Accordingly, in the coordinate system (3.1), we have
8, (Ug F Bo) —voyy (Ug F By) = = (U= £B=)-Vi(Uy = FB) =)),. (342)
Then
5 @8 5 BOO | +¥10v (U F B i
= 2 W = BYO) o

t
- /0 <U01 F By, (Uz=+B=) VL (U) = +B) :))0>HN dt'. (3.43)
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Thanks to the divergence free condition, we have

t
- [ (U F B (W82 VoW =FB)2),), d
0

N /0 <8Y(U01 + 36)7 ((U/:2 iBFQ)(U} - :FBl/ :))O>HN a

< 10 (03 % B g 1022 28220 o 10 = 5B = - (340)
Note that

u/:2 :I:b/:2: 0. A Hw+j) = 3xA71w:F:8folOf1z:F,

and

uy=Fby==-0,A " weFj ) = —9,A wy == —9,A710 127 =
Then in view of (3.14) and (3.16), we find that

M

I F
K7 . (3.45)

L2L2

||U/:2 iBF2||L2HN - HaXAzloleZFHLQHN S

and

1 _ 1 _ _ L A—1nNt + _ + _
U} = FBY = | penn = HaYAL oz _HLOCHN < HKZ/ _HLWLQ. (3.46)

Substituting (3.44)—(3.46) into (3.43), noting that the coordinate system (3.1) is
the same as the original system in y variable, and using the hypotheses (3.19) and
(3.20), we are led to

1
3 10 T 80O+ [0 5 F 05) [
M

1 _
< @b F O +C 10y F ) | o [\ 37K %2 |KZE

L2L2

L>~L?

1 L
< 5w F 0) )| 7x + Cv =€, (3.47)

which is sufficient to improve (3.20) provided € < v2. Combining (3.41) with (3.47),
we complete the proof of proposition 3.3 and hence of theorem 3.1.
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4. Stability of the shear flow close to Couette

In this section, we study the stability of the shear flow (U(t,y),0)" =
(e’t?vyU (y),0) T, with U(y) satisfying

1U(y) = yllav+s < 0. (4.1)

The multiplier that will be used in this section is given by

K = (V)N w2 M, (4.2)

where m and M are given in (2.23) and (3.10), respectively. To simplify the
presentation, let us denote

|k(n — kt)]

|S|d = |8f(yAZ = |ag(yAzl| 1Dda‘nl7 Wlth Symbol m Ddam(t,k7’l7).

1
L4
The aim of this section is to establish the following theorem.

THEOREM 4.1. Let N > 1. Assume that the shear flow (U(y),0) satisfies (4.1),
and || (win, jin) |z + || (in, bin) || g~y = € < 60670, Then there exist two positive con-
stants g and oy independent of v, such that for all |a| = ag and § < dg, the solution
to (1.2) and the profile Z* satisfy the global in time estimates

125 oy + 7% V225 gy S v FF e (4.3)
108 F Boll e o + 22 105(U3 F B[ gy S € (4.4)

and
|2z ., . sviie (4.5)

Similar to lemma 3.2, we give the following lemma to treat the non-zero frequency
interactions of the nonlinear term.

LEMMA 4.2. Let N > 1. Assume that (4.1) holds with ¢ sufficiently small. Then for
all f € L2HY and g such that Vg € L2H", there holds

”thAt_lf# : Vtg#”LlHN

Ollis ~ _ M1 ~ ~
ST1-¢Cs K fellrzpe +v H\/—MIKJC# HVLKQ;«E’

L2L?

Wl

r2r?’
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Proof. In view of (2.25) and (2.26), there hold

k| S v K2+ (n — k)22, e |0x| S v 2V w2, (4.6)
_ — kt| 1 5

NP < <yTRRYZ for k40, (47

Oy AL k% 4+ (n — kt)? k2 + (n—kt)2 ™ 7 (4.7)

_ k| _z M .
Al < | <2 | My 4.
[OxAL ] K2+ (g — k)2 S M (4.8)

and

1

10E| < v GHIml/2v,). (4.9)

Note that the condition (4.1) ensures that (A.3) holds. This, together with the
commutator estimates (B.1), (B.9), enables us to use lemma C.1 and the fact

VAT frVigy = —adE AT A fL0x gz + aOx AT A L0894,
to obtain

VA - Vegzllpmy
< O AL A f20x g2l i~ + [|a0x AL A 207 g2 11 g

. [ or
SOV (Ut a1 o) |7 A S zms + 075 |\ [ =37 m! 2L
1

L2HN
< IVt gzl gz
Cv? M
< 0 (12l 078 |\ -T2 ) IV g .
L2HN
Then (4.2) follows immediately. O

4.1. Proof of theorem 4.1

The proof of theorem 4.1 is similar to that of theorem 3.1. By the definition of
Ms, (3.22) still holds with K replaced by K, it suffices to establish the following a
priori estimates:

i _ | M-
|KZ*| e + 02 |VLKZF | 122 + —MKZi < 8, (4.10)

L2L2
and
U8 F B[ e gyn + 12 ||0y(UG F BY)|| o pn < 8e. (4.11)

Let us define T* to be the end point of the largest interval [0, 7] such that (4.10)
and (4.11) hold for all 0 < ¢t < T'. We are left to establish the following proposition.
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PROPOSITION 4.3. Assume that the conditions in theorem 4.1 hold, and that (4.10)
and (4.11) hold on [0, T*]. Then there exist two positive constants g and 6y inde-
pendent of v, such that for all |a| = ap and § < dy, the same estimates in (4.10)
and (4.11) hold with the occurrences of 8 on the right-hand side replaced by 4.

Proof. We first improve (4.10). Similar to (3.23), from (2.16) and the definition of
K in (4.2), we have the following energy identity:

2
Lk - M
SIEZE Ol +vIVLKZT|fape + EKZJF

L2L2
2
o) s

+ ml/2

L2L2
1 - t N - t ~ N
- = 0|2, — , ¢+ - ¢
SIEZH )1 KSAZH Kzt ar KOL SNz~ Kz dt’
0 0

t, B t -
+/0 <KZ+,KLP+>dt’+/O (Kz* RNL*)ar

1 -
= §HKZ*(0)H%2 + LS+ OLS+ LP + NL. (4.12)

The improvement of (4.10) will be achieved by the following four steps.
Step I: estimates of LS. We first split LS into two parts:

_ 77 _k(n—kt)
- 47'('2 Z //K ’I’] kt) (1Ddam (ta ]‘%77) + 1D(‘;am (t7 kﬂ?))
k0
x NZL (k) K (k, m) 22 (k) dpt
= L8%™ L 18", (4.13)

Thanks to (2.13), one can split LS?™ into two parts

2
Lsdem — H S|, KZ%

L2L2

Z// |k = th)Q 1D,

k0
% RAZ (ko m) K (kym) Z:£ (k m)dndt
=: LS{“™ + LS5,
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By the definition of A in (2.10), there holds

e
'AAZ¢

(k,m)

23 (£ — kt)? ; € — ki v
< /6 (|a —1|(n— §)m + [0 (n — 5)1624‘(5—7“)2> |AZ;|(k75)d§

< [ (=110 + bltn — ) IAZTI . )de

3

Combining this with (B.8), (B.11), and (A.3) yields

Lsdam
<Cy [[[m=g 0t (@1 - ¢+ Bl - ) IRAZE (k)
k#0
([ Re=R0l [
k% + (& — kt)? k% + (€ — kt)?
k(n — kt) A
mlDdam|KZ¢\(k,ﬂ)d§d77dt
e H S|, KAZE + AAKAZ+ H S|, K7+
! “llpere My Lape e
(4.14)
Using (B.8), (B.9), (B.11), lemma C.1 and (2.29), we find that
Vv KAZ*‘
H 151 #llp2r2
Co M1
VISIRZ| SLRAZE
C’(S H 151 # L2L2 1-C6 M1
L2L2
L (Isukzz| 4yt ViR 2t
S1-C6 TN e e 10002 L2r2
1 e (ml/2) . o) My - .
+—— 13 + 3|\ 7 KZ ;
[ = /2 # _ 2 #
1 + %6 m L2]2 (1 06) Ml L2L2
(4.15)
where |S| denotes the multiplier with symbol % Substituting this into

(4.14), and using (B.8), (B.9) and lemma C.1 again to bound the second term on
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the right hand side of (4.14), one deduces that

1 _ 1 . _
dam < + 1 +‘
Lsdem < Cé{ — ( H |S|,K 22 ot Vioog?? [vekz] .,
1 By (m1/2) _ ) o) U

+ - K7 o —KZ}

— - # -

1+ %6 m1/2 L2L2 (1 06)2 Ml L2L2

1 M, - .

LK KZ%
pererd (v } H Slak22]| ..
L2L2
206 ?
< S KZ+
(1 - 05 ( ) 1Sla L2I2
iy 2
2(1 — 05 10003 ’VL ‘ 2L
1/2 2
CO(m?) =
1+ gé miz A
- 2
Co My -
— |-~ KZ: . 4.1
Toa—oee ||\ Tt (4.16)
L2L2
Next we turn to bound LS*. From (2.27) and (2.28), we infer that
Nk —kt)| kt)l ¥ -
<z 2 [ K g, INZE B (k)| 25 (k)

k+#£0

< 05 2 [ &y (0 (r = 02 RZ ) R ) 25 ()

—3t m!2)(t,k,n) T
K(k = AZJr k k Z+ k,m)dndt
1+351;// S ) AL R (k) 2R n)
S 10003||VLKA2+||L2L2HVLKZJFHL?L?
1 O (m1/2) Dy (m1/2) -
+ 1351V tm1/2 KAZ;Z —7tm1/2 ; (4.17)
+ 2 122 1212
By virtue of (B.8) and lemma C.1, we have
IVLEAZL < an KZ%)| (4.18)
L 75 212 X 1_05 L 76 L2[2. .
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Now we are left to bound H \/ — 6t7(hﬁf/lé2) f(AZ;éF

and lemma C.1, we are led to

[0l 2) o

. In fact, thanks to (B.8), (B.10),

L2L2

L2L2
1 D (m/2) - 1+35 ¢ .
< - KZ+‘
1-C6 mt/? e “\ To007 T ="’ HVL #llrzre

Co\/1+ 36 M 06«/1+ 6H\/|§KAZ H

+7 N

(4.1
(1—C6)2 M, 77 ’ %)

L2L?

where we have used (4.18) to bound ||VL}~(AZ;‘J2||L2L27 and used (B.8), (B.9) and

lemma C.1 to bound ‘ Ml KAZ"' , respectively. It follows from (4.15) and
L2L?
(4.19) that
/-2
L2L2
1 A
< (1_05)2 ml/2 KZ#
L2L2
1435 205
\ Kz
TV To005 = oy IIVE L2r2
o) 1+35 C5\/1+ 35 JVe
+ 181, K 25 TR L Y Ay %
(1 d L2[12 (1 - 06)3 Ml #
L2L2
(4.20)

Substituting (4.18) and (4.20) into (4.17), and using Cauchy—-Schwarz inequality,
we arrive at

2

1 1 1 1 RAGRSF
LS" < 5 KZ}|32p DL S K7z
< e VR 2R e + 55 +26 (1-C0)? mi/z
1 cs 1+ 30 8
. Kz* St el
i a—cep | 10008” HVL ?é’ L2r2 H mi/2
2 L2L>2

L. o (1 - 35) H S|, KZ2 2

21+ 35 (1—Co)? 2 N | SRS
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2
Op(m!/?) = 0
T w2 #

L2L?

1
— = 1 (5 ——KZ""
g(s = ca) - H\/ M,

2
Op(m!/?) = 0
T w2 KZ#

N)

L2L2

L2L?

1+ 35

1 1
+7 VHVLKZ HL2L2

2
81&( 1/2)K N
(1—C6)2 1000

ml/2 #

L2L2
5 2
cs M,
t o I\~ K ZE :
Lo 20—00)3 |\ T

Co

ooy

|81, K 2%

L2L2

where

N < R <
(1—-C0)2 " 2(1—C8)2 " 2(1—Co)®

Cs .= (4.21)

,%},andC’gelaS(SHO—l—.

Step II: estimates of OLS. Similar to (3.25), we write

which is increasing in 6 € (0

5

OLS =Y OLS;, (4.22)

i=1

where
OLS; = <Ka 104, SAZ; (t (),f(z+(t)>,
OLS; = —— <I~(6§10§aSAZ;(O), KZ4(0)),
_ 1 ! -1t 2[;( < - K7t /
OLS; = —%/0 <8X oL, (SRJFS) KAZ; KZzV)dr,
I L _
_ —1t - + /
OLS4ff%/O (KS0x'0b, Az, Kozt ) at,
I AP _
- - /
OLSE,:—%/O <KS§X ozaat(Az¢),KZ+>dt.

We postpone the treatment of the nonlinear terms in OLS, and OLS5 to Step IV,
and focus on the linear terms here. The estimates for OLS; and OLSs are the same
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as (3.26), and thus omitted. To estimate OLS3, similar to (3.27)—(3.29), we have

1m

K _om'?) M _ 1w M
K m1/2 M 2m M m
_ 5y 2k(n — ) _ 3
- ( 25) k2 + ( leul (t’kvn) - 2(1 + 26)S(tak7n)1Dmul (t7k777)7
and
0y (m'/?) 3 (14 20)[k(n — kt)| 3.1 | g
— 1 < — < < — _ S
iz | S (1+ 25)|5| S TRy m—RE S (1+ 2(5)m1n 5 7

Combining these calculations with (3.30), and using (B.8), (B.9) and lemma C.1,
we are led to

cll | M- [ M -
< _ - _ +
OLS;3 < ol ]MKAZ;,é H MKZ

L2L2 1212
c 1 M - M -
<2 WW-Zkz LRzt . 42
ol 1= C5 H # Y; (423)
L2L.2 2.2
To bound OLSy, by (2.16), we have
5 .
OLS; = Y _OLS{’, (4.24)

i=1

where

t
oLs{ = -~ /0 (505 O KAZZ, KALZY ) at,

ot “1nt Ag— F +\ g4/
7%/0 <S@X Ob, KAZ; KSAZ >dt,

oLs{? =
t
3) _ 1 —1t — 1Nt — /
OLS __5/0 (505104, KAZ5, KOS, 22 ) at',
OLS™ _l/t <53—10t KAZ; f(LP+>dt’
4 200 0 X 2 7 ’
1

t
1t 7 — NT A+ ’
—a/o <SaX 0%, KAZ,, KNL >dt.

oLs{” = -
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Integrating by parts, using the fact |S| < 3 and (4.18), we have

t
oLs{) = i /O (805104, VLKAZZ VLR Z" ) at

//\

4| | ||VLKAZ ||LQL2 Hv[zI(Z—i_||l/2L2

v

4la|(1 = C3)

N

IVLKZZ |22 VLK Z2 | 21

Thanks to the fact |S| < {/— % , one deduces that

[ a1 [ a7
s < ——KAZ* T RKAZ
OLS| <7 |H ¥

L2L2 L2L2

M 1 -
gi \— K7t \[— K2z
la[(1— C6)2 M M

L2L2 L2L2

Owing to the periodicity in X variable, we find that
@_ 1 [ 1ot 2
OLS{) = — / Ox (505108, KAZZ ) dXdYdt' =0.
dov TxR
By (2.18), we deduce that
3 .
oLs{” = 3" oLs{™,

with

1

OLs{h! = o

/ <Sa 0L, KAZ;, K ((a2 ~1)SA (z; —ot,
oLs(+? :—i / <saglogaKAz;,K(baXA;logaz;»dt’,
0

t
OLs{") = —i/o (50x' 0L KAZ K (0 = )0}y 23 ) ).

Using |S] < \/—%—1, (A.3) and lemma C.1, we have

oLs{*) < 2la\ HKSAZA

L2L2
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(4.25)

(4.26)

(4.27)

(4.28)

).

L2L2
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co My ~
< - -7 ———
= al(1 - C9)2 \/ MlKZ¢

L2L2

M - | My -
—Kz¥ f—KZ ) 4.2
L2212 L2]2

Ox Ayt = 0xALA,

Noting that

and

|7 (b0x A7 08,25 )| (8 Ky ) /|b| 0 - 5)1@(!6'1@:)

< (“A) * (\/ 77|A02a 7&|)) (t7k7n>7 (430)

> Ml + _
s K,/—EAozaz;é
L2L2
2
cé M1 _
<— 0 SRz, . 4.31
fal(i—cop ||\ ", (4.31)

L2L2

IAOS, Z o2z |(k,€)dg

then we have

OLs{"? < ij |ksaz|

Integrating by parts and using (2.4), we find that
t
(43) _V 1At A T— Lot /
oLs(+? = a/o <SaX O2QKAZ¢,K(b8YZ¢>>dt
v [ osogon, kazs, & (0 - DokzE)) ar
+%O<YX20¢ 2> ((a_l)y¢)>t

< |a|(f&/05) ﬁ Kz Haékz;’

L2L2

L2L?

051/
4|04\

el M B

obrazz| | |esRz]

L2L2

e (4.32)

where we have used (A.3), (A.8) to bound Hk(ba’L/)HLsz and Hf(((a2 - 1)8%/)‘

22
The estimates of OLSEE’) will be postponed in Step IV.
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Now we rewrite OLS5 as follows:

t
oLss = —5- [ (Rsoy'oh,n0i2; Rz} )a
0

1 t

_%0

— OLSs,; + OLS; 5.

<f(sa;<10§aatAz;, f(2;> at’

To estimate OLSs 1, instead of using (2.16), up to the nonlinear terms and some
linear errors, we write 9;Z~ in terms of vA;Z~ by virtue of (2.6) and (2.15)

8.2~ = vAZ —vbdLZ~ —a?SA (Z; - Oigazg) +b0x A 0y, ZE + NL™,
Then thanks to the relation (2.12), we have
N Z7 = v ZZ — A (00827 ) — A (a2SA (22 - 05,75 ))
+A (baXA;lo£2a2;) + ANL;.
Thus,
OLSs,; = Z OLS{). (4.33)
where

t
OLS!| = _i / Ka);logaALz;,R52;>dt’

oL = - / Ka <105, A (bay ) KSZ+>d
OLSS’l_—/ (K05 0 (a5 (27 - 015,21 ) )  KSZE ) at,
OLsf,,‘*{fff/ Ka 2108 A (baXA Lot 7&) KSZ+>

OLS{) = —5— /0 <Ka§10§aANL;,R52;> dt'.

Similar to (4.32), we obtain

‘fL

lors(| + |ors®)| < (4|a| + |a|(f6—6'5> (v

/|

Vo KZ} ‘

r2re’
(4.34)

L2L2
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Similar to (4.26) and (4.29), we arrive at

L2L2

oLs?) < 2la\ (HKA (SA (Z’ 022a2;))’

+ HKA ((a2 _ 1)SA( — 0ot 7&))‘

M,
,/ KZ+
(|a| (1-C9)? |a| 1—C5 ‘
L2L>2
M - M
H —ﬁiKzg + \/—ﬁlKZ* . (4.35)

L2112 L2112

o) IRSZE 12

Clearly, OLSgg can be bounded in the same way as (4.31)

2
AKZY . (4.36)

L2L2

Co M1

(4)
‘OLS Stali=coe |\ "

The estimates of OLSS; will be postponed in Step IV.
To estimate OLS5 2, we split it into two parts according to (2.32) and (2.33):

L[ty -
OLS52 = — 5 / <K6§1O§aatAZ;,KSZ+> dt’ = OLSY) + OLSY,
0

where
OLS{) = — - t <f<a;(lo§aAA}AZ;, f<52;> a
2|l Jo
@) Y maiot T2 -
— - t - + !
OLSEd =501 /. <K8X OZQAAtAZ¢,KSZ¢>dt

From (A.8) and (3.29), we obtain

My

KZ+
M,

ors{) < HKAA Azz|

L2L2

1 co M, -, Ml
< s IV 57K 22 K7}
|Oé| (1—05)2 M1 M1

L2L2 L2L?
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The rest part OLSS% can be bounded as follows. Using the definition of A? in (2.33),

lemmas A.2 and C.1, we are led to

HKA2

<C <>N (1+39) (|a?9;1| + |5/t\b|>> « |KAZZ |
L2132
tHEn

<C|ey 2 (jadial +1031) | ., IKAZS oo

C -
< =55 (ladhall vz + ||atb||L2HN+<l+gs)+l) K2 (|12

ootz
< 705||KZ¢HLOOL2.

Then it follows this and lemma C.1 that

2) « 2 Qo+
OLSE) < oy |[KAMAZ o, | RS2,
Covt/? M1
<" i *H LRz . A
la|(1 — C0)2 H Zllpere ||\ My (437)
L2L2

Step III: estimates of LP. By (2.18), we rewrite LP as

t
P = / (Rz* RUP*) di' = LPy + LP, + LPs, (4.38)
0

where
LP) =— /Ot <f(2;, K ((a2 ~1)SA(ZE — ogaz;))>dt’,
- + -1 t o— /
LPs :/0 <KZ¢,K(b8XAL A02az¢)>dt,
LPy = u/t <f<z+, K ((a® - 1)a¢YZ+)> dt'.
0

To estimate LP1, let us denote Z =:= Z;r = —OEQZ;, and rewrite LP; as

Pr=— QZ/ //Kkn 2 —1)(n— ey (g(g kijt) AZ(k,€)

k0
x K (k,n) 2% (k,n)dedndt’.
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Swapping the positions of  and ¢ in (A.11), then using the resulting inequality,
(A.3), lemma C.1, and (4.15), we have

zﬂ\cz//fngNm““wtwmg>

k+#£0

e i RAZ (k)

k(= kt)] L =T
X<¢W+m—my+ P oy | K25 et
% M
cs|viEs ., (Hmzm e )
L2[2

M, -
——KZ
L2L2 05 My a )
L2[2

— Kzt
M, T )
L2L2

+LVHV f(zi’Q
Lape 100037 11V ET A e e

s Iz

X <H\/|S|I~{Z+ T

(e

() -
ml/2 KZ#

1
1+35

2
Ml +

KZ . 4.39

- M > ( )

L2L2 L2[2

Now we turn to estimate £P2. Compared with (4.31), we need an extra commuta-

tor estimate of ,/‘(‘)XAZII. Indeed, using (A.8), (A.9) and lemma C.1, one easily
deduces that

cmsc%%[ﬂékmeMW—aW+éimpBiwfﬂ

x |K ZL|(k, n)dédndt!

YN+(1+35)41 Y
k#///nf 10~ )~ e A2 1159

|K|

x—KZ+ k,n)d¢dndt’
k2+<n_kt)2| |(k,m)d&dn
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Ml ~ . Ml ~ +
\06 1KAZ£ 1KZ£

L2L2 L2L2

C(S Ml ~ Ml ~
< _— _— . .
S1-¢ A/ II(Zé 1KZi_ (440)

L2L2 L2L2

To bound L7Ps, it is natural to divide it into two parts as follows
t
LPs=v /0 (Rz: K (@~ oky 25) Y ar

+ u/ot (KZ§ K (0 = 1)oyy 25 ) ) dt
=: LP3 4+ LP3y.
Similar to (4.32), we obtain
LP3 2 <COV|VLKZT = |22)2. (4.41)
For LP3 0, integrating by parts and using (2.4) and (A.3) yields
£Ps0 < Ovlla? = Ul v |9y ZF Zesr + CVIbl onn | 2 oo 0 |0y 2 s
<Cs <1/ "VLRZJ“iZLZ + HRZJH;H) . (4.42)

Step IV: nonlinear estimates. We first collect all the above nonlinear terms to
be estimated:

t

) 1 —1t 7 — NT A+ /
OLS!| _—%/0 (505104, KAz, RNLE ) a,
ors®) — _ L t<f(a—1ot ANL, KSZ+>dt’ (4.43)

> 2a X Z2a #’ # ) ’

t ~ ~
Nﬁ:/ <KZ+,KNL+>dt’.
0

Owing to lemma C.1 and the fact |S| < §, we observe that the bounds of the three
quantities are essentially the same. To avoid unnecessary repetition, we only sketch

the treatment of AL by modifying the nonlinear estimates in the Couette case, see
(3.35)(3.40). In fact, recalling the definition of NL* (2.17), we write

t t
NL = / <KZ+, KNLT+> at’ + / <KZ+, KNLS+> at' = NLT + NLS,
0 0
here we use the shorthand notation NLS* := NLS1% + NLS2%. Noting that

<f(zo+, K (UL + Bg>axz+)> —0,
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by virtue of (4.6), (4.8), lemmas 4.2 and C.1, and the hypotheses (4.10) and (4.11),
one deduces that

NLT < ||KZf |22 1Ug + Byl v 10x ZE || L2 i
K ZY | oo 2|V AT 0502 - Vo ZE | 1w
K ZY | oo 2

aaXAglegaZ;ang(

L*HN
S -~
< Cv™ 2 ||KZ;||L2L2||U& + B(%”LxHNHVLKZ;HL?L?

_§y 5 o ol My~
+CV K2 | poere | |KZZ || 202 + 075 —ﬁiKz;é

L2L2
X ||VL[~(Z;2||L2L2
S5 M1 o
+CZ/ 2||KZ+||L°°L2 _MKZ3£ ||8YZS_||L2HN
L212
<Cr 7963, (4.44)

Similar to (3.40), using (2.21), (2.23), (3.39), (A.3), (A.1), and lemma C.1, we arrive
at

NLS < O|KZF | poer (HaSAOgaZ;(%XXAglAZ; - Z+)]

LlHN>

b S~ —(148y ~
<CNRZ s (v 3225 o ) (v 3D 1225 = [p2mv )

L1HN
+[|asazoxxar a0y, z; - 04,27)

= _3 .~ (14dy <
+ CIRZE | pere (v 5022 | pnn ) (v G Dt 228 o v )

2_

< Cr 358, (4.45)

Now collecting the above estimates in Step I-IV, we conclude that there exist

positive constant « (sufficiently large) and dy (sufficiently small) independent of
v, such that if || > ag and § < d, there holds

2
2 ” M
IKZ ()22 + V||V LK ZF |22 + \/EKT

L2L?

<3|KZH(0)|2: + Cr 3706, (4.46)

where the constant C' depends only on N and «. It suffices to improve (4.10) as
long as € < v6+9,
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The improvement of (4.11) is similar to that of (3.20). Firstly, we write the
equations of U] F Bj:

0 (Uy F By) — vdyy (Uy ¥ By) = v(a® — 1)0yy (Uy F By) + vbdy (Uy F BY)
—(U==£BF)-Vi(U; =5B)=)),-

Then we have the energy identity
5 W8 % BEO [ + vy (03 F B
= W = BHOx
- /Ot <U01 T B, ((U~+B) -V (U)=FB} :))O>HN at
+ u/ot (Us ¥ By, (a® = 1)dyy (Us F Bh)) yn dt’
+ u/ot (Us ¥ By, bdy (Ug F BY)) yn At
1 2 >
= W3 F B[ + Zl (4.47)
-
Using the divergence free condition V; - (U £ B) = 0, we find that
I = /Ot (ov (U3 % B)) .a (U2 £ BY(U) = FB)=)),)  dY
+ /Ot <U3 T By, 0va((UZ+BL)(U)=%B) :))0>HN dt’.

Recalling (2.4), it is easy to rewrite dy a as follows

1 =

Combining this with (A.3) yields vz ||dyal| 2~ < 6. On the other hand, similar to
(3.45) and (3.46), we have

) 2 _ —1 t -3 M
[0 £B 22 o = 105 AL AOLZT| oy Sv72 |\ =3 K27]
L2[2
and
1 1 B LA-1ANt ot _ 3zt =
||U/ =FB,= [roomy = HaaYAL AO—O‘Z/ _HLOOHN Sv HKZ/ _HLNLz.
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It follows that

L Sv (L la =1l gee ) |0y (U F Byl o gy
- ~
] s
X M / L>°L2
L2L2
-5 1 1 M ¥ 7t
+ v 0|0l L2 ||Ug :FBOHLOOHN _MKZ HKZ/ :HLooL2'
L2L2
(4.48)

Integrating by parts, and using (A.3), it is easy to see that

L+ Iy S 6v)|0y (U % BY) |32 v + 002 UG F Byl oo v |0y (U3 F BY) | rom-
(4.49)

Substituting (4.48) and (4.49) into (4.47), and using the hypotheses (4.10) and
(4.11), we have

1Ts F Bo) (D)7 + vl|0y (Us F Bo)llzzm~ < 20U F Bo)(0)l[~ + CV‘é‘(‘Seg,)
4.50

for some constant C' independent of v. Combining (4.46) and (4.50), one deduces
proposition 4.3 under the hypotheses € <« v6+% and hence of theorem 4.1. O
Appendix A. Estimates for the coefficients a and b

To begin with, we give a lemma to discuss the relation between the new coordinate
system (2.2) and the original (z,y). Please refer to [21] and [8] for the proof.

LEMMA A.l. Let s >2,8' >s5>0,f € H*R), and ge H¥(R) be such that
llgll 7o < 9. Then, there holds

Cow ()M If o (I + 9)llgre < fllgge < Cor (O 1f © (1 + 9)ll - (A1)

where the implicit constant obey Cs ¢(§) — 1 as 6 — 0.

From the properties of the heat equation and lemma A.1, we can deduce the
energy estimates of the coefficients a and b.

LEMMA A.2. Let s > 0. Assume that U(y) satisfies

1U(y) = yllars+2 <0 < 1, (A.2)
then there holds
la = Ulzens + bl e +v2 bl 2pe 9, (A.3)
and
10l L2 o1 + |00D]| Logge—1 < G2 (A.4)
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Proof. Note that %U,l > 0 solves

3@@0 — I/aé+20 = O, aéUh:o = 8§IU
Therefore, integrating by parts, we have

_ _ _ 1d -
1/H8§U||%2Hs = - /R@y)Sc')t (0,U —1) (0,)* (0,U — 1) dy = —=—|0,U — 1| 3.,

and
7 s 7 s 7 1d 7
V|00 |72 e = —/R<ay> 00U (0,)* 0, Udy = —§&||a;+1U|\%,s7 1>1.
Consequently,
Lo, o -1 U 2oy < SIU — 1|12
519y [z e + V10, Ullzopre < 5 177
and
1 - - 1
e A o O il R Y
Combining these two estimates with (2.3), (2.9) and lemma A.1, we find that

1 = 1 —
la = zeems +v2 bl p2pe S N10yU = Ui o +v2 105U L2pre SIU" = 1= <6,
Bl s S N05U Nz S NU" s < 6, 10pall 2o

< Cv(llellpzas—r + bl L2 ga[|0vall oo )

< Cv(llellipzms—r + bl L2 lla — Ll Lo m+)
< v (1030 orges + 1020 2 pro1110,0 = 1l =)
<OV (U g + U = U goa [U = 1)
S ovt,
and
00l 2 a1 < Cv (||dl| L2 prs—1 + ||l poc pre-1110y bll L2 pre-1)
< Cv(lldlpzpra—r + [[bll Lo pre=1 (bl L2 1<)
< OV (1080 2 pos + 1020 | e o100 o)
<OV (U o + U o2 1U” = 1))
< vz,
This completes the proof of lemma A.2. O

REMARK A.3. In this paper, we choose s = N + 4. Then (A.2) reduces to (4.1).

https://doi.org/10.1017/prm.2024.6 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.6

42 T. Chen and R. Zi

Appendix B. Commutator estimates

To deal with the nonlinear terms, we need the following lemmas to exchange fre-
quencies. The first one can be regarded as an analogue of Lemma A.1 in [3]. We
give a proof below for the sake of completeness.

LEMMA B.1. The multiplier m satisfies

mt, ko) S (n— €208t &, €). (B.1)

Proof. We only consider the case k # 0.
Case 1: < —1000V_%,Th(t,k:,77) = 1. It suffices to estimate m (¢, k, &).

Case 1.1: —10000~3 < % < 0. Now we have

2\ 130 1435
1+(1000y—§)

Case 1.2:if &£ > 0,§ <t < & +1000v75.

~—
no

—_
_|_

—_
~
ElTA B el
N————

[\v]

Ltk €) < < (n—¢)20+39),

K+ (6 kt)Q)Hg

m (k&) = ( 7

S
I
7N
—_
+
N
T
|
~
~~_
()
~—
=
+
Njw
S

1

Case 1.3 if £ >0,t > £ + 100005,

A2\ 130 £\? 14356 N
mil(tak,g) = <]- + (10001/75) > < <]_ + <77 _ k) ) < <,,7 _ £>2(1+§6).

ol

Case 2: —1000v~5 < I < 0.

Case 2.1: 0 <t < & + 10000~ 3, and m(t, k,n) = (%)H‘%S
e Case 2.1.1: —1000v~3 < % < 0.
]{72 +§2 1+%S
n(t, k) 2\ 5 s ., Vt=o0. B.2
710> () 2
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Therefore,

c 2y 1+36
~ 2 S _
m(t k) _ [ 1+ (F) ,1+(k t)
mt, k&) |, (%)2 1+ (2—1t)°
1+345
LH(E-0)T) £ln)< g
B AN 2D S
= n\2 1+%t§
1+(2) if 1] > |¢
1+(%)° L
3
2 .

e Case 2.1.2: % >0, > % In this case,

) k2 1+%S
m(t, k, &) > (W) .

Therefore,
2 1+%8
i 2 1+ (3t
m(t ki) (1+(”) ) (k )2 < 1+<"—
m(t. k,§) k 14 (2 1) k

§

43

)2> 1+%S

< (n— €)20+39),

where we have used {1 <0 < % < t.

k2+7]2
k24 (1000ky ™5 )2

e

Case 2.2: t > 1 + 10000~ 5, and m(t, k,1n) = ( )it

e Case 2.2.1: —1000v~ 5 < % < 0. In this case,

£2 2 1+36
m(t,k,£>>< S ) ,
k2 4+ (1000kv—3)2
Thus,
N 1436
m(t7k777) < k2 +772 T < <n_§>2(1+%(§)
m(t,k, &) \k?+ &2 ~ '
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e Case 2.2.2: % >0,t> % In this case,
§

1 1+
Th(t,k,f) = (1) )
1+ (100005 )2

Nl

(B.5)

33 §S
m(t, k) 2\ 20 no\\ (1+35)
sra< (D) <+ (3-3) ) sweee

Case 3: ] > 0.

Case 3.1: I <t< i+ 10000~ %, and m(t, k,n) = (Wikt)?)”%g.

e Case 3.1.1: —1000v~ 3 < % < 0. In this case, (B.2) holds. Therefore,

- 1436
m(t k) _ (K R (€ k)P (n— £)20+39)
mt k&) ~ \k2+E2 k2 + (n— kt)? ~ '

e Case 3.1.2: % > 0. Now (B.3) still holds. Thus,

g (t,k’, ) kj2 + € _ kt)Z 1+%S .
Z(t7kag) S (k’2+gnkt)2> 5 <77—§>2(1+z‘5)_

. 7 -1 ~ _ 1 1435
Case 8.2:t > 3 + 10000~ 3, and m(t, k,n) (1+(1000V_%)2) 20,

e Case 3.2.1:—10000 "3 < % < 0. Using (B.4), we have

m(t, k,n)
m(t k&) =

(B.6)

e Case 3.2.2: % > 0, In this case, In this case, (B.5) holds. Consequently, (B.6)

holds as well.
The proof of lemma B.1 is completed.
Recalling the definition of K in (4.2), using (B.1) and the following fact
ey — Kt S (g — )k, € — ktl, for k0.
we get the following corollary immediately.
COROLLARY B.2. The multiplier K satisfies

K(t,k,n) S (n— NTOHED R (¢, k, ).

O

(B.7)

(B.8)

In view of the definitions of M; and M, in (3.7) and (3.8), respectively, using

(B.7) again, one easily derives the commutator estimates for 1/ — My 1,2.

M; >
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LEMMA B.3. For k # 0 there hold

Mi(tak7n) < M’L(takag)

IR BV VAT M (B.9)

Finally, the estimates of 782(:11;;2) is given below.

LEMMA B.4. For k # 0 there holds

at(ml/Q)(tv kv 77) %
\/_ml/Q(t,k,n)K(t’k’n)

55 0, (m2/2)(t, k 1+36 .
S (- VIO (\/_ o /2(2,(:7 g’)f) PR (2 4 (- k)

|k£ kt)|

[N

1Ddam> f((t’ ka f)

n 1+§5<n—£>N+“+%5>+% RS Rk e) (B.10)

Proof. Using (B.7), it is not difficult to verify that

BLUSLDIN g LSl

)? (=€) k2 4 (€ — kt)?

B.11
k2 + (n — kt) k2 + (€ — kt)? g kt)? (B-11)

From the above inequality and (2.29) with n replaced by &, we are let to

[k(n — kt)|
k% + (n — kt)?

Ik £ — k1) . U (k2 4+ 3
_§>< + (& - kt 10003 (% + (€ = k)
R m1/2 (k&) g | Mi(t,k,€)
> =N i r e
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Combining this with (2.28) yields

O (m/2)(t, k,n)
w2t k)
(M /2)(t, k, € 1+§(§;
S =9 \/ T(n1/2(2,(/€,§) | +\/£”2 (K + (€~ k1)%)
VY m D) AU i Ao

(B.12)

Nl

e

Then (B.10) is a consequence of (B.8) and (B.12). We complete the proof of lemma
B.4. 0
Appendix C. Composition inequalities for the operator A in HY

Since A is involved in the definition of A; ', recalling the relation (2.14), it is
inevitable to deal with the composition Bj o A for some multiplier B;. Based on
the commutator estimates of B, we establish the following composition inequality.

LeEMMA C.1. Letl € NT, and B;,1 < i <1 be Fourier multipliers, satisfying

!
|Ba(k,m)| <Y Ciln— )% |Bi(k, §)], (C.1)
i=1
for some constants C; >0 and B; >0,1<i<l. If |a® = 1||pegntstt +
|[b]| oo gra+o+1 < S with 8 =max{f, -, B}, then we have
By < Bl + S CilBAL] (©2)
1 #HN\l_Cl(S 1JAIHN 1—01(51,:2 i i #I||HN - .

Proof. We first write Ay, in terms of A

Ap = A, — (a* — 1)0Ey — bOE.

Then
Afe=ApAT = fr = (a® = )O3y AT 2 — b0y A [, (C.3)
and thus
[ ByAfo£| v

<Bufellan + || By ((@® = D)ogy A7 ) || pn + |Br (005 A7 £2) || o - (C-4)
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2
dn

Thanks to (C.1), using Young’s inequality for convolution, we find that

1B1 (@ = DIy AT f) ||

N

N B, (k,n) / (a2 1) (1 — €)(E — kt)2A; L f (k. €)de

k0

<ye (Z/ ([-9" 11 —g)

i=1 k#0

1
2

% (e, )V B (k, )] (K + (€ — kt)?) A/tl\ﬂd(k,ﬁ)df)Qd??)

l
<Gl Pa2 =1 1Bid fell v, (C.5)

i=1

where we have used the fact A = ApA; ! in the last line above. Similarly, for k # 0,
there holds

€ = kt| < [K(E = k)| < 5 (K + (€= k1))

[N

Thus, we have

1B1 (0058 ) |

(k;ﬁo n

< ijcz»(Z/ (/{(n—@“ﬁlgl(n—é)

i=1 k#0071

(k)Y By (k) /5 b(n — £)(€ — kt)A, L fu(k, €)d

, \?
dn

D=

% I N Ball O (8 + (€ = 0)%) 187 f|(h, §)d§)2dn>

N
.MN

s
Il
-

CullYN 28 13 | BoA fic - (C.6)

Substituting (C.5) and (C.6) into (C.4), and using the restriction on @ and b, we
arrive at

|BuA Sl
l
<UB1 el + 30 G (10N 20 iy + 1Yy ) 1B el

i=1
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l
<UBifellan + vy Ci(lla® = Ulpsemvesss + [bll e prveosa) [|Bidf | v
i=1
l

<UBufellin + 3 Cioll B fel v,
i=1
and hence (C.2) follows. This completes the proof of lemma C.1. O
COROLLARY C.2. Let B be Fourier multiplier satisfying

[B(k, )| < C(n —&)°|B(k,€)],

where C' and 3 are two positive constants. If ||a® — 1||gn+sr2 + bl grsrz < §,
then we have

IBAS£llax < C8|IBfzllan, (C.7)

. o) M
1 < _ A1
|BAAIAfz | prn < 1= Co)e By/ s fz , (C.8)

HN

and

where A and A} are given in (2.10) and (2.33), respectively.

Proof. Recalling the definition of A in (2.10), following the proof of (C.5) and (C.6)
with A;! replaced by (—Az)~!, we get (C.7) immediately. Now we turn to prove
(C.8). In fact, using (2.33) and lemma C.1, we are led to

_ 1 _
IBAA;Af2] g < mHBA%Af#”HN

<=l

+ 1B (b0x AT ML) | v +2]|B (RSAL) HHN ). (©9)

2[|B ((a* = DSALL) || 1

In view of (3.16) and (3.29), similar to (C.5) and (C.6), and using the commutator
estimate (B.9) and lemma C.1, we arrive at

1B ((a* = DSALL) || v + (1B (0O AL AS2) | g1

M,

By 2L
M,

<Clltn- ™ (@@ =1) +5) Afs

o) M,
< - E——
S1-06 B\/ le¢

HN

HL}7
HN
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Moreover, it follows from (C.7), (3.29), and lemma C.1 that

cs M,
< —— B\ -7+
1-C5 M1f¢
HN HN

HB(ASAJ;) <cs||B —%ﬁ/\f#

|

Substituting the above two inequalities into (C.9) yields (C.8). The proof is
completed. O
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