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ABSTRACT

The Frobenius number F(a) of a lattice point a in R? with positive coprime coordinates,
is the largest integer which can mot be expressed as a non-negative integer linear
combination of the coordinates of a. Marklof in [The asymptotic distribution of
Frobenius numbers, Invent. Math. 181 (2010), 179-207] proved the existence of the limit
distribution of the Frobenius numbers, when a is taken to be random in an enlarging
domain in R?. We will show that if the domain has piecewise smooth boundary, the
error term for the convergence of the distribution function is at most a polynomial in
the enlarging factor.

1. Introduction

1.1 Some results before 1980
Let 74 = {a = (a1,...aq) € Z%: gcd(ay,...,ay) = 1} be the set of primitive lattice points,

and Zg2 be the subset of Z? with coordinates a; > 2. For any a € ZiQ, there exists a largest
natural number F'(a) that is not representable as a linear non-negative integer combination of

the coordinates of a. The number F'(a) is called the Frobenius number of the vector a, i.e.
F(a) =maxN\{k-a: k= (ky,...kq) € Z% k; > 0}.

The Frobenius number problem is also known as ‘the Coin Exchange Problem’. It has
been studied extensively in the past 50 years using various techniques, such as combinatorics,
probabilistic methods, geometry of numbers, and more recently homogeneous dynamics. The
book [Ram05] contains a good amount of information on the study of the Frobenius numbers.
It is known that F'(a) = ajas — a1 — ag for d = 2, and no explicit formula is known when d > 3.
Several upper bounds of the Frobenius numbers were obtained by the 1980s. With a € 2‘;2 and
a; < ag < --- < aq, the estimates include the work by Erdés and Graham [EGT72]

F(a) < 2a4-1 [Cﬂ — ag, (1.1)
and the work by Selmer [Sel77]
F(a) < 2a4 [Cﬂ — a1 (1.2)
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EFFECTIVE LIMIT DISTRIBUTION OF THE FROBENIUS NUMBERS

1.2 The average behavior of the Frobenius numbers

There are also results on the limit distribution of Frobenius numbers from different perspectives.
In dimension d = 3 using continued fractions, Bourgain and Sinai [BS07] showed that for
ensembles Qy = {a € Z%, : a; < N}, the limit distribution of F(a)/N 3/2 exists. Marklof
in [Marl0] generalized their result to higher dimensions. Before stating his results, let us first
recall the notion of the covering radius. A lattice L in R%~! is a discrete additive subgroup of
R4! with finite covolume det (L), which equals the volume of the fundamental domain of the
L actlon on R4"!. The covering radius Qg of the standard simplex Ag_; = {x € R* : 2; > 0,
Z "~ ; < 1} with respect to the lattice L ¢ R4 is by definition

Qo(L) =inf {t e RY : tAy_1 + L =R} (1.3)

Lattices of covolume 1 are called unimodular. Let Gy = SLg_1(R), I'o = SL4—1(Z); then
Qo = Go/T can be identified with the space of unimodular lattices in R4~! (gI'g <+ gZ%1). Let
us fix a right invariant Riemannian metric on Gq, giving rise to a metric and a left Gg-invariant
probability measure fip on €2g. Let us recall the following theorem.

THEOREM 1.1 [Marl0, Theorem 1]. Let d > 3 and Er = {L € Qo : Qo(L) < R}. Then:

(i) for any bounded set D C R with boundary of Lebesgue measure zero, and any R > 0

. 1 Sd _ F(a) _ vol(D) _ ‘
A Td#{a €72 NTD: (@ ag V@D < R} = <@ fio(ER); (1.4)

(ii) Qo is a continuous function on Qo;
(iii) fo(ER) is continuous in R, i.e. ig({L € Qo : Qo(L) = R}) =0 for any R > 0.

1.3 Some explanation of Marklof’s work

We now briefly explain the existence of the limit distribution based on our private correspondence
with Marklof. This is what we are going to follow in this paper which is more suitable for
the purpose of ‘effectivization’, and is slightly different from [Mar10]. The method is based on
homogeneous dynamics, which is also combined with the geometry of numbers. Here are the
main ideas: Aliev and Gruber showed in [AGO7] that for any a € Z>2, one associates a d — 1
dimensional unimodular lattice Ly € Qg (see Theorem 2.6) with

(af )J;C%%/(dl? Qo(La)- (1.5)

This is essentially due to a geometric interpretation of the Frobenius numbers found by
Kannan [Kan92]. For this reason it will be more convenient for us to work with F'(a) + Z?Zl a;
instead of F'(a). It is easy to see that the result in (1.4) is not affected if F(a) is replaced by
F(a)+ 2?21 a;. Notice that for every bounded connected non-empty open subset D C {x € R?:

O0<zg<l; 0<z;<zq (i=1,...,d—1)} with boundary of Lebesgue measure zero,
=4, T%vol(D
7D (74 ~ TYOUD) (1.6)
¢(d)

As we will see in §4, the set of lattices {Lq : @ € TD N 2d} appearing in (1.5) becomes
equidistributed in ¢ as T — oo, i.e. for any bounded continuous function ¢ on g, we have

VOI(D) _
Tlggoﬁ > d<z> ) o, ¢ (1.7)
ac€TDNZ
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As Ep ={L € Qo : Qo(L) < R} has boundary of measure zero, with a standard approximation
argument Theorem 1.1 can be deduced by applying x g, to (1.7) in the place of ¢.

Theorem 1.1 also implies that for large enough R, and large enough T (depending on
the choice of R), the probability that a random lattice point @ € TD N Z? satisfies F(a) <
R(ay ---aq)'/%Y is greater than 99%. This gives a somewhat better estimate compared
with (1.1) and (1.2), for most @ € TD N Z*.

1.4 Statement of the results
The aim of this paper is to estimate the decay of the function V(R) = 1 — jip(Er) and the error
term of (1.4).

THEOREM 1.2. There exists a constant C' > 0 dependent only on d, such that for any R > 0 we
have U(R) < CR™(4-1),

Theorem 1.2 improves the exponent compared with [AHH11, Theorem 1]. After this paper
was completed, Marklof, in an unpublished work, proved that there exists a constant cg > 0, so
that U(R) > cqR~(@~1. Therefore our bound is actually sharp. An asymptotic formula for ¥(R)
has recently been obtained by Strémbergsson in [Str12].

DEFINITION 1.3. Let M be a connected smooth manifold. We say that a subset of M has thin
boundary if the boundary is contained in a union of finitely many connected smooth submanifolds
of M, and each of them has dimension < dim M.

THEOREM 1.4. There exists k > 0 dependent only on the dimension d satisfying the following
property. For any R > 0, and any non-empty connected open subset D C {x € R?:0 < x4 < 1;
0<x <mq (i=1,...,d—1)} which has thin boundary as a subset of the manifold R?, there
exists a constant Crp > 0 such that for every T > 1

1 ~ F ¢
d#{aeTDmZgQ: (@) +2 iy ai <R}_

vol(D)
T (ay - --ag)t/(d=1) =

¢(d)

When d = 3 Ustinov [Ust10] has proved the existence of the limit distribution in Theorem 1.1
(with the average taken over only two of the three variables) and the polynomial convergence
to the limit distribution. He has also obtained an explicit formula for the limit density function
(see also [Str12, pp. 2-3] for a discussion).

Crop
Tr

fo(ER)| <

1.5 Organization of the paper

In §2 we will use the geometry of numbers to prove Theorem 1.2. We will also give an explicit
description for the L, appearing in formula (1.5). Sections 3 and 4 are devoted to proving
effective equidistribution of the expanding horospheres, and a Farey sequence on a specified closed
horosphere, respectively, under the translation of a one-sided diagonal flow. We will give an error
term estimate of (1.7) for non-negative compactly supported C' test functions (Theorem 4.13).
Using a standard approximation argument, we will prove Theorem 1.4 in §5 by showing that
Er ={L € Qo : Qo(L) < R} has thin boundary as a subset of €y. We will borrow many ideas
from [Marl0, §4] to formulate a series of equidistribution results which lead to Theorem 4.13.

1.6 Notational convention

Throughout the paper we assume that the dimension d > 3, and always work with column vectors
in Euclidean spaces. We use A < B to represent inequalities 0 < A < ¢B in which the implicit
constant ¢ depends on the underlying Lie groups or Euclidean spaces. In a metric space X,
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Bx (x,r) stands for the open ball of radius r centered at . On a Lie group G, Bg(r) = Bga(e, )
with a specified metric on G; in R", B(r) = Bgrn(0,7) with Euclidean norm. The exponents
1,9, ... 1in §§3 and 4 depend only on the dimension d.

2. Covering radius and the Frobenius numbers

2.1 Preliminaries

We call a subset K of R4 a convex body if K is a compact convex set with non-empty interior.
A convex body is called centrally symmetric if it is symmetric with respect to the origin. For
a centrally symmetric convex body K, its polar K* is also a centrally symmetric convex body
defined by K* = {x ¢ R¥! . x -y < 1,for any y € K}.

We now recall the notion of dual lattice. Let L = AZ% 1 € Qy where A € Gy, and let A*
be the inverse transpose of A. We call the lattice L* = A*Z! the dual lattice of L. One can
readily verify that the definition of L* is independent of the choice A, and moreover the map
L — L* is a diffeomorphism of 2y which preserves fig.

The covering radius Q(K, L) of K C R?~! with respect to a lattice L in R?~! is defined by

Q(K,L) :=inf{t e R : tK 4+ L = R '}
Clearly the function Qg defined in (1.3) satisfies Qo(L) = Q(Ag4_1, L) for any lattice L in R~
(We will abbreviate A;z_; as A in what follows.)

2.2 Minkowski’s successive minima and the covering radius
The covering radius is related to Minkowski’s successive minima. Let K C R%! be a centrally
symmetric convex body, and L a lattice in R, The ith minimum (1 <4 < d — 1) of K with
respect to L is defined by
A\i(K, L) ;= min{t € R" : dim(span (tK N L)) > i}.
Clearly 0 < M\ (K, L) < Ao(K,L)--- < A\g—1(K, L).
LEMMA 2.1 (Minkowski’s second theorem). Let K C R?~! be a centrally symmetric convex body
and L be a lattice in R4, Then
271 _ vol(K)
(d—1)! = det (L)

d—1
[T ik, L) <2
=1

~

LEmMA 2.2 [KL88, Lemma 2.4, Corollary 2.8]. Let K be a convex body and L be a lattice in
R and set K — K = {k; — ky : ki, ky € K}. Then:

(i) Aa-1(K = K, L) < QK, L) < iy M(K — K, L);

(ii) there exists a constant Cy > 0, so that A\gq—1(K — K, L)\1((K — K)*, L*) < Cy.
LEMMA 2.3. The function Qo defined in (1.3) is proper on g, i.e. Ep = {L € Qo : Qo(L) < R}
is a compact subset of Qg for any R > 0.

Proof. By Lemmas 2.1 and (i) of 2.2, \{(A — A, L) is positively bounded below for L € Ep.
Mabhler’s Criterion implies that Eg is relatively compact in Qg. Since Qg is continuous (see (ii)
of Theorem 1.1), ER is compact. O

LEMMA 2.4 [AM09, Lemma 4.1]. For any centrally symmetric convex body K in R%~!, there
exists a constant C'x > 0 so that for any r > 0,

fio({L € Qo : M(K,L) <r}) < CxrdL.
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2.3 Proof of Theorem 1.2

Proof. By Lemma 2.2, for any R > 0,

{LeQ:Qo(L)>R}C {LGQO A1 (A —A L) > di}

d—1)C,
C {L €0 : M((A =AY LY < (R)d}
Since the map L — L* preserves [ig, by Lemma 2.4
U(R) = jio({L € Qo : Qo(L) > R}) <4 R~4~1). O

2.4 An interpretation of a result of Kannan and Aliev—Gruber
For T > 0, € R*! and y € R%! with each coordinate y; # 0, we define

D(T):<T—1/(d(—)1)1d_1 g) n(w)z(li‘tl (;) m(y):<m’éy) (1)>

—1/(d-1)

where
m'(y) = (y1- Ya-1) diag(y1, .-, Ya—1)-
It is clear that D(T'), n(x), and m(y) all belong to SLy(R).

DEFINITION 2.5. For every a € Z® with ag # 0, we associate a vector @ € R4~! by

¢

~ [(J ad—1

a=|—,..., .
ad ad

For any a € 2‘;2 let M, be the lattice

d—1
M, = {b WASEE Zaibi = 0 (mod ad)}.
i=1

Since a is primitive, M, has determinant ag. Aliev and Gruber, based on the work of Kannan
[Kan92], have shown in [AGO7] that the Frobenius number F(a) satisfies

Fla)+ Y% a;
(a1 - - ag) /(@D

This enables us to present an explicit description of the lattice Lg in formula (1.5).

= Qo(m'(@)(ay /" My)). (2.1)

THEOREM 2.6. For any a € ZiQ the Frobenius number F(a) satisfies

F(a)+ X0, a
(al .. ad)l/(d_l)

= Qo(m(a)D(ad)n(a)Zd N edl), (2.2)

where eq = (0,...,0,1)!, and we identify RN ej with R%~1 in the obvious way. In other words,
Lo = m(@)D(ag)n(@)Z N ey

Proof. Note that for any y = (y1,...,yq)' € R? with y - @ = 0, we have

n(a)y = (y17 <oy Yd—1, O)t

Therefore M, = (n(a)Z?) N e;. The conclusion follows immediately from (2.1). O
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3. Translations of horospheres and effective equidistribution

3.1 Subgroups of SL4(R) and their Haar measures
Let us fix the notation for the Lie groups which will be frequently used in what follows:

G =SLy(R), T =SLy(Z), Go=SLs1(R).

We will identify G with the image of the embedding A — (4 ¢). We denote by F' = {D(s) : s > 0}
the subgroup of G, and set F* = {D(s) : s > 1}. For the subgroups of G

H={n(x): xR}, H ={n(x):xzcR}, Hy= {(‘61 2) :det (A)e = 1} :

their Lie algebras are invariant subspaces of the adjoint action of F' on g = Lie (G).
We identity the Lie algebra g with the space of d x d traceless matrices, and define an inner
product on g by setting
(X,7)=tr(X'Y), X,Yeg.

This gives rise to a right invariant Riemannian metric on G, and hence a metric dg on any closed
subgroup S of G. We have an orthogonal decomposition of g into linear subspaces

g = Lie(H) + Lie (H ™) + Lie(Go) + Lie(F').
We fix an orthonormal basis of g coming from a basis of those subspaces
X={X;:i=1,2,...,d> —1}. (3.1)

We define for every s > 0 a map ¢s : G — G by

65(9) = D(s)gD(s™"). (3.2)
The restriction of ¢s(s > 1) on H' = HoH~ is thus contracting in the sense that, for any r > 0,

¢s(Br(r)) S Brr(r).
The group H is called the expanding horospherical subgroup with respect to F'* as

H={g€G:D(s1gD(s) = 1g,as s = +00}.

Let Q = G/T with the metric dg coming from G. Every H-orbit in 2 is called an expanding
horosphere (with respect to F'™). We specify a closed horosphere

Y ={hl':he H} = {n(x):x c T4} CQ.

By p and v we denote the left Haar measures on G and H respectively, with the induced measures
on  and Y satisfying 1(2) =1 and v(Y') = 1 (which means v and o correspond to the Lebesgue
measures on R~! and T?~! respectively). We choose a left Haar measure v/ on H’ so that p is
locally the product of v and v/. This means, in view of [Kna02, Theorem 8.32], for any f € L}(G):

£(g) dps = /H ) d 0 dv(h). (3.3)

H'H
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3.2 Decay of matrix coefficients and its consequences

A rich literature on the theory of ‘the decay of the matrix coefficients’ has evolved since the work
of Harish-Chandra, including the works by Cowling [Cow79], Howe [How82], Moore [Moo87],
Katok and Spatzier [KS94], and Oh [Oh02], to just mention a few. Let p be a (strongly continuous)
unitary representation of G on a Hilbert space H. We say that a vector v € H is Lipschitz if (the
metric d below refers to the fixed metric on G)

: lp(g)v — vl
Lip(v :—sup{:g#e < 00.
“ d(e-9)
Based on previous works on the decay of the matrix coefficients, Kleinbock and Margulis proved
a quantitative decay of matrix coefficients for Lipschitz vectors. For our purpose we only need the
following theorem which follows from [KM96, Theorem A.4], combined with Kazhdan’s property
(T) for the groups G = SL,(R) (n > 3).

THEOREM 3.1. There exists a1 > 0 so that for any unitary representation (p,H) of G without
G-invariant vectors, any Lipschitz vectors v,w € H and every s > 1, we have that

[{p(D(s))v, w)| < s~ (Lip(v) + [[v]}) (Lip(w) + [[w]).

Remark 3.2. Following [KM96, Theorem A.4] and the work of Oh [Oh02] one can give an explicit
exponent o in Theorem 3.1. It should in principle give an explicit exponent x in Theorem 1.4
following the results in §§ 3 and 4. However, we shall not do this, to keep the computation simpler
in this article.

DEFINITION 3.3. We say that a real-valued function ¢ on a metric space X (with metric ‘dist’)
is Lipschitz if
¥ (x) = P(y)]

9Lip = S“p{ dist(z, y)

:x,yeX,a?;éy}<oo.

The space of Lipschitz functions on X is denoted by Lip(X).

Remark 3.4. If X is a Riemannian manifold with distance coming from the Riemannian metric
and 1 a real-valued smooth function on X, then |[¢||rip = sup{||diz|| : € X}, where di), is the
tangent map of ¢ at x, and its norm comes from the Riemannian metric on X.

We specify a metric on H x € by setting d((h1, 21), (he, 22)) := dg(hi1, h2) +da(z1, 22), where
hi,he € H and z1, z2 € ). In what follows, the metrics on the product spaces are all defined in
the same way. We now fix a subset

U={n(z):xc(-2,2)%1}cH

Consider the action of G on H x Q) by g.(h, z) = (h, gz) and the associated unitary representation
of G on L?(H x ). In this case any Lipschitz function on H x Q which is supported on
U x Q is a Lipschitz vector in L?(H x ), and moreover Lip(¢)) <y ||¢||Lip- Notice that
Ho = {¢: o(h,z) = f(h), for some f € L?(H)} is the linear subspace of the G-stable vectors in
L?(H x ). Considering the representation of G on Hg, we obtain the following corollary.

COROLLARY 3.5. Let P : L?(H x Q) — Ho be the orthogonal projection. Then for any s > 1
and functions ¢, € Lip(H x Q) N L?(H x Q) which are supported on U x §), we have that

[(D(s)e, ¥) = (Po, PY)| <u (llpll L2 + lollnip) (1l L2 + [ [luip) s~ (3-4)
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3.3 Effective equidistribution and F*-translations

DEFINITION 3.6. Let M be a smooth manifold on which G acts by diffeomorphisms. We define
for every X € g a vector field on M by

OX(f)(m) = lim f(exp(tX );ﬂ) — f(m)

for all f € C*°(M),m € M.

The corresponding tangent vector 0,, X at m € M is by definition
O X (f) =0X(f)(m) forall f e C®(M).

We are going to present a quantitative equidistribution result of the F*-translations of the
H-orbit {(h,hx): h € H} (where z € Q) in H x Q. The method in our approach is by no means
new. The proof here is a modification of the proofs for the equidistribution of the FT-translations
of {hx:h € H} in Q (cf. [KM96, KM12]). The technique is sometimes known as ‘equidistribution
via mixing’, which originated in Margulis’ thesis. In contrast to [KM96, KM12], the additional
variable on the horosperical subgroup H deserves special care when we do the ‘thickening’. First
we recall a well-known result.

LEMMA 3.7. For any 0 < r < 1, there exists a non-negative function § € C*°(R™) supported in
B(r), such that 0(0) = 1, [, 0 =1, [|0]l12 < 12, ||0]|e < ™™ and ||0)]|Lip < 7L

We remark that the lemma will be used in what follows to thicken the functions, which are
defined on submanifolds, in the transversal directions so as to get new functions defined on larger
spaces which also satisfy certain norm bounds. The condition #(0) = 1 in the lemma will be used
specifically in the proof of Theorem 4.5.

THEOREM 3.8. Let f € C*°(H), 0 < r < 1 be such that By (r)supp(f) C U, and let x € Q
be such that m, : G — Q,7,(g) = gz is injective on Bg(r)supp(f). Then for any T > 1 and
p € C*(H x Q) with supp(p) C U x €2, we have that (the oy below is as in Theorem 3.1)

' | s@etn D) v~ [ petnz) v ance)

HxQ
2 _
< lelluip -7 1o+~ fllerllllen T (3.5)
The C' norms here for smooth functions on various manifolds are taken to be || f|loo + || f||Lip-

Remark 3.9. We assume here that ||¢||c1 < 00, as there is nothing to prove otherwise. The same
assumption applies to Theorems 3.11, 4.5, Proposition 4.6, Corollary 4.9 and Proposition 4.13.

Proof. Replacing ¢ by ¢(h, z) — [ ¢(h, z) dii(z) if necessary, we may assume [, ¢(h, z) dii(z) =0

for every h € H. We choose non-negative functions 6/ € C*°(H'), §; € C*°(H) supported in

By (r) and By (r) respectively by Lemma 3.7. We define a function ¢ on H x G by setting
¢(h1h2, h/hg) = 0’(h’)61(h1)f(h2) for all hl, hg € H, 4 S Hl,

and setting 1(h, g) = 0 outside the open subset H x H'H of H x G. Since [, 0" = [, 01 =1,
[Kna02, Theorem 8.32] and formula (3.3) implies

/ f(h)o(h, D(T)ha) dv(h) = / (h1, B ha)p(ha, D(T)how) dv(hy) dv/ (W) du(hs).
H HxH'xH
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Let us define a function v, on H x Q by setting v(h,gx) = ¥(h,g) for (h,g) € H X
(Bg(r)supp(f)), and vz(h,z) = 0 outside the open subset H x Bg(r)supp(f)z C H x .
The definition makes sense because of the injectivity assumption. It is easy to check that
Yy € C°(H x Q), and supp(¢,) C U x Q. As the maps ¢ defined in (3.2) are contractions
on H’, one has that

] [ F0e(h D)) () — (D))

= ‘/ ¥(h1, W he)(p(he, D(T)hax) — @(h1, D(T)h' haox)) dv(hy) dv'(B') dv(hs)
HxH'xH

< ellvip -7~ ¥l
= llellip -7l fllzr (3.6)

On the other hand

—d2 _J2
IWallLip < 116"(R)01 (A1) f(h2)llor < 7~ [ fllers  allz < r /)| £ 2.

Let P : L?(H x Q) — Hg be the orthogonal projection as in Corollary 3.5. Then

P(e) = [ (hz)daz) =0
by our assumption. It follows from (3.4) that

_J2 _ —d? —
(D(T)da, o) <™ | fller (lelluip + el )T~ < 7™ Tl flenlollon T~

The theorem follows immediately. O

Remark 3.10. It is the estimate (3.6) that makes us use the Lipschitz norm in (3.5), instead of
the ‘Sobolev norm’ which is very common in the recent literature.

The following theorem concerns the equidistribution of F*-translations of the Lebesgue
measure on {(x,n(z)l') : x € 1971} where I = (0,1). The result without the additional variable
on I% ! is the classical equidistribution of large closed horospheres. The reason that we also
consider a variable on 1?71 here is that the matrix m(z), which is related to Frobenius numbers
via Theorem 2.6, is defined for « € I9~!. This will be relevant in Proposition 4.6.

THEOREM 3.11. There exists a constant ay > 0 so that for any ¢ € C°(I%1 x Q) and T > 1,

oo, D@D de ~ [ ol@,2) dedn() < 6T (3.7)
rd-1 I4=1xQ
Here dx is the Lebesgue measure, and
0
19llor = li@llzoe +max g |l 5—¢) 10X (9)]L= .
i || oo

where 0/0x; are the standard Euclidean vector fields for the 19! factor, and the X € X are
vector fields for the Q) factor. (See (3.1) and Definition 3.6.)
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Proof. To outline the idea of the proof, we will approximate xji-1, ¢ by smooth functions on
R RI~1x Q) respectively. This enables us to apply Theorem 3.8 and get an error term estimate.

Let’s fix a partition {F; : 1 <i < N} of I*"! with the interior of each E; being an open cube,
and choose ry > 0 so that for each i we have that By (ro){n(x) : € E;} C U, and the restriction
of m: G — Q, 7(g) =gT to {gn(x) : g € Bg(ro),x € E;} is injective. For every 0 < r < ry and
1 <i < N, we fix a function p; € C>°(R%™1) supported in E;,

0<pi<xg, vol({x€E :p(x)#1})<r, |pllecr <r t
We fix also a function p € C>°(R%"1) supported in 197! with
0<p<xpr, vol({z € 17V ip(@) # 13) < r'2 pllen <7772,
Letting ¢(x, 2) = p(x)¢(x, 2) € CP°(R¥! x Q), we then have

< ||| o2,

/Rd_l XE; (x)p(x, D(T)n(z)I') de — / pz(:c)é(x, D(T)n(x)T) dx

Rd-1

< ||| poert/2.

/ (i (@) (@, 2) — pa() (e, =) d df(2)
RI-1xQ)

As pi(x) and ¢(z, z) satisfy the assumptions of Theorem 3.8, we have that

/ pi(x)d(x, D(T)n()T) dw—/ pi(x)d(x, 2) dz dji(2)
Rd-1

Rd=1xQ

- L
< |llip - 7+~ E P T
< N Blluip - 7+ @llnoer/? + 77 =32 gl ca =00

Setting r = roT~2%2 for some appropriate as > 0, we get (ro depends only on the dimension)

< ||¢||CIT_OQ. O

o(x, D(T)n(x)T) de — / o(x, z) dedp(z)

Ji=1xQ

Jd—1

4. Translations of a Farey sequence and effective equidistribution

4.1 Description of the F'-translations of a Farey sequence

The Farey fractions on the torus T¢~! are those points whose coordinates are rational numbers.
We already know that the expanding horosphere Y = {hI' : h € H} becomes equidistributed
under F'"-translations. We are going to study the equidistribution property of Farey fractions
on Y in this section. We denote by K the subgroup

K_{Axb:_ (gl ’f):AeGO,beRd—l}gG.

Let A ={D(s)kI': s > 1,k € K}. This is an embedded submanifold of Q by [Marl0, Lemma 2].
For any element A\ € A, there exist unique s > 1 and z € KT'/I" such that A = D(s)z. Let

Do={xecR¥: 0<ag<1; Vi<d, 0<uz<zq}.

Marklof in [Mar10] proved that under F*-translation, the Farey fractions {n(a)I : a € TDyNZ%}
on the closed horosphere {n(z)I' : € T?"'} become equidistributed on A. We will prove an
effective version of this result in Theorem 4.5. The following lemma, which describes the behavior
of F*-translations of the Farey fractions, is also hinted at in [Mar10].
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LEMMA 4.1. For any T > 1, the lattice points in TDg N 74 are in one-to-one correspondence
with the intersection of {D(T)n(x)T : x € 19!} with the submanifold A. More precisely,

t
{a - (“1, o “‘H) :a € TDy mid} = {x eI : D(T)n(x)l € A}.

Proof. (‘C’) In view of Theorem 2.6, for every a € TDy N Z%, one has that
D(ag)n(a)l’ € KT.

It follows that D(T)n(a)l’ € A.
(‘D) For every x € 19! with D(T)n(z)I" € A, there exists 7' > 1 such that

D(T/T")n(z)T € KTT.

For any lattice in KT'/T", the last coordinates of its lattice points form the set Z. This means

that T
F(xl, ey T d—1, 1)t S id.
Hence x = a for some a € TDy N Z4. O

4.2 Transversal injectivitity radius of A C Q
To study effective equidistribution of the Farey sequence, we need to introduce the following.

DEFINITION 4.2. Let 7 : G —  be the natural projection given by m(g) = gI'. For g € G and
x € ), we set

9loo i= max {lay| : g = (ai))}, |2l = inf {|gloc : 7(g) = 2}.
Let C C Q be a Borel subset; we define
IC| := max (1,sup{|z|e : * € C}).
Remark 4.3. Tt follows from the definition that for every g € G, A € Gp,z € Q and b € R4 1

(1) |gz[oo < |gloc|ao;

(i) [(A X b)[|oo < |ATg|oo; (as (A x B)T = (A x b')T for some ||b'|| < |A|oo);
(iii) |C| < oo for every relatively compact subset C C €.
LEMMA 4.4. Let 7 be the map R¥™! x F+ x KT'/T' — Q defined by #(x, D(s), z) = n(x)D(s)z,
and C be a relatively compact subset of KT /T'. Then the restriction of & on B(1/(4d|C|)) x F* xC
is injective.

Proof. Let r = 1/(2d|C|). It is enough to show that if n(x)D(T)k1Z% = koZ¢ for some = € B(r),
T>1, ki, koI’ € C, then & = 0,7 = 1. To prove this, we choose k1, kg so that k1|, |k2|co < 2|C|,
and let k1 = A x b. The last coordinates of the lattice points in ksZ¢ form the set Z, so does the
Z-span of the entries in the last row of n(x)D(T)ky, i.e.

TV Zxa)+ -+ Zx-ag)+Z(T Vg . b+T) =17,

where the a; are the columns of A. By the choice of r we have |z -a;| < 1,sox=0,T=1. O
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4.3 The main equidistribution result

Let dk be the left Haar measure on K such that dk = dugdb, where db is the Lebesgue measure
on R, and let dk be the induced probability measure on KT'/T. According to Siegel’s volume
formula (cf. [Sie45, Mar10]) and [Kna02, Theorem 8.32], for any f € L'(G)

1 ds
@) = [ D)) de() i i (8.1

This naturally defines a Borel measure on A : d\ = s~ (@1 dsdk. We also consider for every
smooth function ¢ on I~ x A the C''-norm given by

0
ox;

-1
Iollcr =l + > || 5—¢
=1

+> 10X (#)|r~, X € XN (Lie(F) + Lie (Go) + Lie (H)).
L x

THEOREM 4.5. There exists a constant ag > 0 satisfying the following property. Let C be any
relatively compact, open subset of KT'/T', and C' be a compact subset of C. For every ¢ €
C>®(I9" x A) with supp(p) C I9™! x F*C’, and T > 1 we have

~ ~ 1 o
7 X e@prm@n - g [ e < cfllor
Td=1xA

d
a€TDoNZ4 <)

Proof. Step (i). Thicken an approximation of ¢ to a function ¢ € C> (19! x Q).

Let 0 < r < 19 = 1/(4d|C|). In the proof of this Theorem, we temporarily set By(r) :=
{n(x) : & € B(r)}. We choose § € C>®(R%~!) supported in B(r) according to Lemma 3.7; and
B e C®(F) so that 0 < § < 1,supp(8) € {D(s) : s > €/}, B=1o0n {D(s) : s > €'}, and
Bllcr < L. We define a function 1 on the open submanifold 14~ x By (r)FTC of I x Q:

U(z,n(y)D(s)z) = B(D(s)0(y)p(x, D(s)z) foralle e I ye B(r),s>1,z€C.

The function 1 is well-defined by the injectivity result proved in Lemma 4.4 and the fact that
r < rp. By [Marl0, Lemma 2], {D(s) : s > s} KI'/T" is a closed embedded submanifold of 2 for
any so > 0. It follows that By (r) - {D(s) : s = so} - C' is a closed subset of §2; hence the support
of 1 in 191 x By (r)FTC is a closed subset of 171 x Q. Therefore if we extend 1 to a function
on 1971 x Q by setting ¢ = 0 outside the open subest 19! x By(r)FTC C I x Q, we get a
smooth function which we, with abuse of notation, also denote by . Moreover

[llor < (1Bllze18llcr + Bllcrllbllzo)lieler < r=?liglier. (4.2)

Notice that we have

lp(@, A) = ¢(x, A)| de dX < 7| Lo (4.3)
Td—1xA

If T > e"ay, then
e(a@, D(T)n(a)l') = ¥(a, D(T)n(a)l).

On the other hand,
#{a cTDy: T < "aqy < rT%

It follows that

> le(@ D(T)n(@)T) — ¢(@, D(T)n(@)T)| < T | ¢l L= (4.4)
ac€TDyNZd

909

https://doi.org/10.1112/50010437X14007866 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007866

H. L1

Step (ii). Compare the average of ¢ over the Farey sequences and horospheres.
Let T >1,a € TDyN Zd and set r’ = r/Td/ (@=1) where r < ro as before. Let

& ={z e I dist(x,0I" ") >}, My, ={aeTDyNZ: @ c &, D(T)n(@)T € F*C}.
By our construction ¥(a, D(T)n(a)T') # 0 only if D(T)n(a)l’ € F*C; hence
> w@pmp@n = Y [ ow@ D@ dy
acTDyNZe,GEE, aceMr,,

Let us consider the subset 27, := U,erq,., {@+y :y € B(r')} of I971. Our injectivity assumption
implies that the union in Zr, is disjoint. Hence we have that

‘Tld > ¥(a, D(T)n(a)l’) — Y(x, D(T)n(x)T) da
aeTDyNZ4,GEE, Zr

Z/ (@, D(T)n(@ + y)T) dy — Z/ (@ +y, D(T)n(@ + y)T) dy

aEMrp acMr

< Tl / lyll dy < ol T4/, (4.5)

B(r’

On the other hand, we have that {x € &, : Y(x, D(T)n(x)I') # 0} C Z7,. To see this, notice
that for any such @, we have n(x1)D(T)n(z)I' € F*C for some x; € B(r), because our function
1 is supported in I97Y x By(r)F*C. By Lemma 4.1, n(x1)D(T)n(z)I' = D(T)n(a)l for some
a € TDyNZ. As x € E,/, we have that @ € &.. The above discussion implies that

/ (@, D(T)n(@)T) da| < /||| o (4.6)
1d-1_z, .

Because #{a € TDy N 74 :a ¢ Exy < T4 and r <79 <1 (as |C| = 1) we get that

S D@ de ~ 75 Y w(@ D)
a€TDyNZ4
< 7l + (4.5) + (4.6) < rD )| (a T D), (4.7)

Jd—1

Step (iii). Apply the equidistribution result of expanding horospheres.
By (4.2) and Theorem 3.11

<rpllea T (48)

(@, D(T)n(z)T) dz — / (e, ) da dfi(2)

19-1xQ

Jjd—1

Let K be a Borel subset of K which is mapped bijectively onto C by 7. By equation (4.1)

/ (e, 2) de dji(z) = / (. gT) dee du(g)
Id—1xQ I4-1x By (r)-F+-K

1 / ds
=— 0(y)yY(x, D(s)kl') dx dy—— dk
C(d) T-1xRA-1xR< 1 xK ( ) ( ( ) ) s+l

1

- C(d)/zdlew(m’)\) da d. (4.9)
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Setting r = Sro7~° for some suitable constant az > 0 and combining (4.3)-(4.9), we
conclude that for every T' > 1

1

1 ~ ~ o
X e@pmn@n - s [ eenawa|<icfldor. o
a€TDoN7Z4 ¢ A7

4.4 Consequences of Theorem 4.5
Recall from Theorem 2.6 that for any primitive lattice point a € Zig, the lattice L, appearing

in (1.5) which produces the Frobenius number F(a) is given by Lq = m(@)D(aq)n(a)Z% N ey.
Let L, = m(a)D(aq)n(a)l’ € KT'/T. Translating L, by D(T/a), we get

D(T/aq)L,, = m(a)D(T)n(a)T.
Moreover, we have D(T'/aq)L,, € A if and only if @ € TDy N Z?. The following theorem shows
that under this translation, the lattices {L, : @ € TDy N Z%} become equidistributed in A.

PROPOSITION 4.6. There exists a constant «y > 0 with the following property. With C, C' as in
Theorem 4.5, for any ¢ € C®(I%1 x A) with supp(p) C 1?71 x F*C', and any T > 1, we have

2 Y e@m@Dmn@r) -

a€TDoNZ4

1/ (@, \) dz dA| < [C14pllea T,

C(d) Id=1xA

Remark 4.7. The non-effective result can be derived from Theorem 4.5 via the following simple
fact. Let i, u be Borel measures on I%~! x A so that y, converges to u in the weak* topology.
Let 7 : 197! x A — I9! x A be a smooth map given by 7 (x,\) = (x,m(x))\). Then the
push-forward Borel measures 7*(u,,) also weak™ converge to 7*(u).

Proof. Let T be as in Remark 4.7. Since ||¢oT || 1 is not necessarily finite, we need to approximate
@ o T by compactly supported functions to get an error estimate. Recall that &, = {x € 1971 :
dist(z,0I%1) > r}. Let 6 € C'(I9"1) be a function so that xg, < 6 < Xe,,, and [|0fcr < r—L.
The function @(x, \) = 0(x)p(x, m(z)A) satisfies supp(@) C 1971 x FFTC}| where C] is a compact
subset of C; = Ugﬂe&/2 m(x)~1C. Since the entries of each m(x)~! (x € &,.2) are bounded by
2/r in absolute value, it follows from Remark 4.3 that |C;]| < |C|r~ 1.

CrLAM. There exists n = n(d) > 0, such that ||@||c1 < 7 "||0]|c1]|¢llcr -

Proof of the claim. We take (x, A) € &, /5 X A and consider the differential d7 of T at this point.
We use 9/0z; as the usual Euclidean tangent vector at & € 1?71, and let X denote a tangent
vector at A € A (see Definition 3.6 and Theorem 4.5). It is easy to check that

0 0 1
T\ oz) = 0w T @=1Dms E, 1<i<d-1
T<833i> ox; + (d — 1)1;0771(9:))\ i

AT(OnX) = Oy Ad(m(a)) (X).

where E; = diag(—1,...,d—2,...,—1,0) with d — 2 in the (¢,7)th entry. Hence the norm of d7
satisfies [|d7 || < r~" for some n = n(d) at every (z,)) € & /5 x A. O
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Note that p(a,m(a)D(T)n(a)T) = ¢(a, D(T)n(a)T) if a € &.. We thus have
1

X e@m@pmn@n) - o [ ez

T T C(d) /Id1><A

< ‘j}d > aﬁ(a,D(T)n(a)F)—C(ld)/ld_IXAgé(az,/\) dccd)\‘

acTDyNZ4

% > (¢(a,m(a)D(T)n(a)l’) — ¢(a, D(T)n(a)r))‘
a€TDoNZA Geld—1\E,

_|_

+ 'C(ld)/fA (@, ) da dX — c(ld)/fd_lm 5w, )) do d/\‘. (4.10)

Notice that the Haar measure dk on KT'/T is left-invariant, so
/ o(x, A) dx d\ = / O(x)p(x, A) dz dX.
Id—1xA Id=1xA

Applying Theorem 4.5 to the function ¢ and using the claim above, we conclude that
(4.10) < [C'r™ @l T~ + rllell o +rllellzee < [C147 =l n T2 + @l oo
We complete the proof by setting r = T~ for suitable ay > 0. O

Recall that the space (g is naturally embedded into KT'/T". The map from KT'/T to Qg given
by ¢ : kZ% — kZ%N ej is smooth. (As before we identify R?N ej with R4~! in the obvious way.)
We will use for every z € KT'/T' the notations «(2) and z N e; interchangeably. Consider the
product Riemannian manifold of Dy (Euclidean metric) and Qg

Mop, = {(x,y,2) : (z,y) € Do,z € Qo}. (4.11)

The product Borel measure on Mop, is written as dp,(x,y, z) = dx dy djio(z).

Notational Convention 4.8. To simplify the notation, whenever dp, is used to abbreviate dp, (z,
y,z) we always assume implicitly that Mp, is parametrized as in (4.11).

We set for every smooth function f on My,

+ Haf

d—1
Ifler = = + 3 5

0
prel

+ ) 10X (f)llz~, X € X N Lie(Go).
<X

Loe L

COROLLARY 4.9. Let C be a relatively compact, open subset of gy, and C' be a compact subset
of C. Then for any 1 € C*®°(Mp,) with supp(¢) C {(x,y,2z) € Mp, : z € C'}, and for every
T > 1 we have (the ay below is as in Proposition 4.6)

‘;d >, w(;m(a)D(ad)n(a)Fﬂeé)— < [C1Y ]| a T~

a€TDyNZ4

T/J(% Y, Z)d'DO

1
¢(d) Jmp,

Proof. Let Q be the smooth map from 191 x A to Mp, defined by

Qx,D(y)'2) = (ya,y,7' Ney), (m,y) €1’z e KTT.
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Let ¢ = 1) 0 Q be a smooth function on 147! x A. We are going to show that ||1;||Cl < 0o. Note
that for every A € Go,b € R4~1

(Ax b)D(s) = D(s)(A x (s Dp)).

Thus at every w = (x, D(y)~'2’) € 1971 x A, the directional derivatives (see Definition 3.6) satisfy

that 0, Z (1) = Og(w)Z(¢) for every Z € Lie(Go), and 9,,Y (¥) = 0 for every YV € Lie(H ™). Let
X =diag(1l/(d—1),...,1/(d —1),—1) € Lie(F'). We have

d—1 9 9
dQ(0yX) = Y + Y=
( ) ; o0x; oy

It follows easily that |4 o1 < ||¢]|c1. Moreover,

/.. dexdn- | Wiy, y, 2 Ned)y™ da dy dk (=)
Td=1xA Id-1xIxKT/T

:/ w<w7yuz) dDo-
MDO

On the other hand, Mahler’s criterion implies that the set C; = {z € KT'/T : z N ej € C}is
a relatively compact, open subset of KT'/T', and C; = {z € KT'/T': zN ej € C'} is compact.
Moreover |C1| < |C| (Remark 4.3). Since supp(¢y)) C I?~! x F+C}, by Proposition 4.6

lTld > ¢<;,m(a)D(ad)n(a)Fﬂej> _ C(ld) (2,7, 2) dp,
ac€TDyNZe Mop,
LY d@m@bmn@r) - — / B, \) dacd/\‘
T ac€TDyNZI ¢(d) Jya-1xa
< [C1H || T~ O

Remark 4.10. The equidistribution result in Corollary 4.9 enables us to derive (1.7). Indeed, for
any ¢ € C(€) let ¢o be the function on Mp, defined by ¢o(x,y, 2) := xp(x,y)¢(2). (Recall
that Lq = m(a)D(aq)n(a@)l' Ne;.) Then

1 vol(D 1 a 1
Td Z ¢(La) — C((d)) /Qo¢d/~00: Td Z ¢O<T,La> _C(d)/MD ¢odp,. (4.12)

acTDNZ4 acTDyNZ4

Suppose D C Dy has boundary of Lebesgue measure zero. We can apply Corollary 4.9 and a
weak* convergence argument to show that the above expression tends to zero as T — oo. This
completes the proof of (1.7).

4.5 Approximation of indicator functions by smooth functions
Our discussion suggests that to study the error of (4.12) we have to deal with the error term
in the equidistribution result of Corollary 4.9 when indicator functions are involved. Technically
we consider sets with thin boundary. Let us recall a well-known result.

LEMMA 4.11. Let D be a bounded open subset of R% with thin boundary, and m be the Lebesgue
measure. Then for every 0 < r < 1 there exist smooth functions f1, fo so that 0 < f1 < xp < fo,

1fi = xDll1(m) <p 75 and | filler <77t (i = 1,2).
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Remark 4.12. The key fact which guarantees the approximation in Lemma 4.11 is that, for every
0 <7 <1, we have m({z € R? : d(x,0D) < r}) <p r, where d is the Euclidean distance. In view
of [SV05, Lemma 1], the statement of Lemma 4.11 remains valid when (RY, m) is replaced by

(€2, ).

PROPOSITION 4.13. There exists a constant «s > 0 with the following property. With C,C’ as in
Corollary 4.9, for any non-empty open subset D C Dy which has thin boundary as a subset of
R?, any non-negative function ¢ € C* () with supp(¢) C C" and any T > 1, we have that

1 vol(D
RO IRFUSEE- ) AT

Here [|¢]lcr := [0l + X xe(xnLie(o)) 19X (@)l oc-

Proof. For every function f on Dy and function % on €y, we denote by f ® 1 the function on
Mp, defined by (f @ ¥)(x,y,2) = f(x,y)¥(2). Since D has thin boundary in R, for every
0 <r <1 we take f1, fo as in Lemma 4.11 and consider their restrictions to Dy. By Corollary 4.9
and Lemma 4.11, for i = 1,2

=Y <fi®¢><;,La)—C(1®/MD (fi © ) do,

a€TDyNZ4

<p [C|¥|¢lla T~ (4.13)

< ¢l || en T~ . (4.14)

Again by Lemma 4.11, we have that |[(f1 ® ¢) — (f2 ® @)llL1(rmp,) <D 7[[¢]Lo. Notice that
[100 < xp® ¢ < fo® ¢ as ¢ is non-negative. It follows easily that estimate (4.13) holds. O

5. The Proof of Theorem 1.4

Proof. Let Qg be the covering radius function as before. For any fixed R > 0 we show that
{L € Q9 : Qo(L) < R} has thin boundary as a subset of Qg. That is, the set Egr = {L € Qo :
Qo(L) = R} is contained in a union of finitely many bounded connected submanifolds of g of
dimensions < dim(€2p). In fact the statement is ‘almost’ established in [Marl0, Lemma 7], and
we only need to provide some further explanation. In view of Remark 4.12, Theorem 1.4 can be
deduced with essentially the same argument as in Proposition 4.13.

Let X1,...,X4 be the faces of the standard simplex Agz_;. We fix a Borel I'g-fundamental
domain Fj in G so that every compact subset in {2y corresponds to a relatively compact subset
in Fo, and set Lp = {A € Fy: Qo(AZ4 ') = R}. By [Marl0, Lemma 7],

Lr C U {A € Fy : there exists ¢ € R¥™! so that An; N (RS 4+¢) #0 (i=1,...,d)}.

n1,...,nd€Zd*1

As Lg is a relatively compact subset in Gy (Lemma 2.3), there exists ¢ > 0 so that Bga-1(c)
contains a fundamental domain of AZ~! for every A € Lp. Hence Ly is a subset of

U {A € Fy : there exists ||| < ¢ so that An, N (RY; +() #0 (i=1,...,d)}. (5.1)

n1,...,nd€Zd*1

Since Lp is relatively compact, we have that ||An;|| >g ||n;|| whenever A € Lr. As the set
R3¢ + Bpa-1(c) is bounded, it follows that in (5.1) Lg is contained in a finite union. To complete
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the proof of the theorem, it suffices to show that for every fixed d integral vectors ni,...,
ng € Z% 1 the set

{A € Fy : there exists [|]| < ¢ so that An; N (RY; + () #@ (i=1,...,d)} (5.2)

is contained in a union of finitely many bounded connected submanifolds of GGg, and that each of
them has dimension < dim Gg. Indeed, as the map m : Go — 2o given by m(g) = gI'0 (9 € Go)
is a local diffeomorphism, we can further conclude that {L € Qg : Qo(L) < R} has thin boundary
as a subset of €)g.

It was shown in the proof of [Marl0, Lemma 7] that

(5.2) C {A = (aij) € Gp: tr(LA) = R}, (5.3)

where L is the (n — 1) x (n — 1) matrix whose ith column is n; — ng. Because L is relatively
compact, there is a constant Cr > 0, so that (5.3) can be refined as

(5.2) NLr C {A = (aij) € Gy : \aij\ < CR,tI‘(LA) = R} (5.4)

The set {A = (as5) € Go : |aij| < Cr,tr(LA) = R} is a semi-algebraic set, and standard results
in real algebraic geometry (see for example [BCR98, (2.9)]) imply that it can be written as a
union of finitely many bounded connected submanifold of Gy of dimensions < dim Gy. O
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