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Abstract

Pseudo cross-variograms appear naturally in the context of multivariate Brown–Resnick
processes, and are a useful tool for analysis and prediction of multivariate random
fields. We give a necessary and sufficient criterion for a matrix-valued function to be
a pseudo cross-variogram, and further provide a Schoenberg-type result connecting
pseudo cross-variograms and multivariate correlation functions. By means of these char-
acterizations, we provide extensions of the popular univariate space–time covariance
model of Gneiting to the multivariate case.

Keywords: Multivariate geostatistics; conditionally negative definite; positive definite;
space–time covariance functions; Gneiting functions

2020 Mathematics Subject Classification: Primary 86A32
Secondary 60G10

1. Introduction

With increasing availability of multivariate data and considerable improvements in compu-
tational feasibility, multivariate random fields have become a significant part of geostatistical
modelling in recent years.

These random fields are usually assumed to be either second-order stationary or intrinsically
stationary. An m-variate random field

{Z(x) = (Z1(x), . . . , Zm(x))�, x ∈R
d}

is called second-order stationary if it has a constant mean and if its auto- and cross-covariances

Cov(Zi(x + h), Zj(x)), x, h ∈R
d, i, j = 1, . . . ,m,

exist and are functions of the lag h only. It is called intrinsically stationary if the increment
process {Z(x + h) − Z(x), x ∈R

d} is second-order stationary for all h ∈R
d. In this case, the

function γ̃ : Rd →R
m×m,

γ̃ij(h) = 1

2
Cov(Zi(x + h) − Zi(x), Zj(x + h) − Zj(x)), x, h ∈R

d, i, j = 1, . . . ,m,

is well-defined and is called a cross-variogram [19]. If we additionally assume that Zi(x + h) −
Zj(x) is square integrable and that Var(Zi(x + h) − Zj(x)) does not depend on x for all x, h ∈R

d,
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1220 C. DÖRR AND M. SCHLATHER

i, j = 1, . . . ,m, then we can also define the so-called pseudo cross-variogram γ : Rd →R
m×m

[20] via

γij(h) = 1

2
Var(Zi(x + h) − Zj(x)), x, h ∈R

d, i, j = 1, . . . ,m.

Obviously, the diagonal entries of pseudo cross-variograms and cross-variograms coincide and
contain univariate variograms γii(h) = 1

2 Var(Zi(x + h) − Zi(x)), i = 1, . . . ,m [15, 16].
Both cross- and pseudo cross-variograms are commonly used in geostatistics to capture the

degree of spatial dependence [5]. There is some controversy as to which one to use, since
both have their benefits and drawbacks. The cross-variogram, on the one hand, is well-defined
under weaker assumptions, but requires measurements of the quantities of interest at the same
locations for estimation in practical applications [5]. Moreover, it only reproduces the symmet-
ric part of a cross-covariance function of a stationary random field; see e.g. [30]. The pseudo
cross-variogram, on the other hand, can capture asymmetry, and provides optimal co-kriging
predictors without imposing any symmetry assumption on the cross-dependence structure
[6, 29], but is difficult to interpret in practice due to considering differences of generally
different physical quantities; cf. [6] and their account of it.

From a theoretical perspective, pseudo cross-variograms are interesting objects, since they
are not only found in multivariate geostatistics but also appear naturally in extreme value
theory in the context of multivariate Brown–Resnick processes [8, 21]. However, pseudo cross-
variograms, in contrast to cross-variograms, have not yet been sufficiently well understood.
So far, elementary properties [7] are known, such as their relation to cross-variograms and
cross-covariance functions [20, 22], their applicability to co-kriging [6, 20, 29], and limiting
behaviour [21, 22], but a concise necessary and sufficient criterion for a matrix-valued function
to be a pseudo cross-variogram is missing. This lack of an equivalent characterization makes
it immensely difficult to show the validity of a function as a pseudo cross-variogram (cf. e.g.
[13, p. 239]), unless it can be led back to an explicit construction of a random field as in
[5] or [21].

Equivalent characterizations are well known for univariate variograms (see e.g. [11], [15]),
and involve the notion of conditional negative definiteness. These characteristics are intimately
connected to a result which can be mainly attributed to Schoenberg [2, 28], implying that a
function γ : Rd →R is a univariate variogram if and only if exp (−tγ ) is a correlation function
for all t> 0 [11]. Such a characterization of γ in the multivariate case, however, seems to be
untreated in the geostatistical literature. For cross-variograms, there is a result for the ‘if’ part
[14, Theorem 10]. The ‘only if’ part is false in general; see e.g. [27, Remark 2]. See also [7].

The aim of this article is to fill these gaps. The key ingredient is to apply a stronger notion
of conditional negative definiteness for matrix-valued functions than the predominant one in
geostatistical literature. We discuss this notion in Section 2, and provide a first characterization
of pseudo cross-variograms in these terms. This characterization leads to a Schoenberg-type
result in terms of pseudo cross-variograms in Section 3, thus making a case for proponents
of pseudo cross-variograms, at least from a theoretical standpoint. In Section 4 we apply this
characterization and illustrate its power by extending versions of the very popular space–time
covariance model of Gneiting [10] to the multivariate case.

Our presentation here is carried out in terms of pseudo cross-variograms in their original sta-
tionary form as introduced above. It is important to note that, with the exception of Corollary 2,
all results presented here, which involve pseudo cross-variograms or conditionally negative
definite matrix-valued functions as defined below, also hold for their respective non-stationary
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Characterizing pseudo cross-variograms 1221

versions or kernel-based forms by straightforward adaptations. A non-stationary version of
Corollary 2 is also available. The proofs follow the same lines.

2. Conditional negative definiteness for matrix-valued functions

Real-valued conditionally negative definite functions are essential to characterizing univari-
ate variograms. A function γ : Rd →R is a univariate variogram if and only if γ (0) = 0 and γ
is conditionally negative definite, that is, γ is symmetric and for all n ≥ 2, x1, . . . , xn ∈R

d,
a1, . . . , an ∈R such that

∑n
k=1 ak = 0, the inequality

∑n
i=1

∑n
j=1 aiγ (xi − xj)aj ≤ 0 holds

[15]. An extended notion of conditional negative definiteness for matrix-valued functions is
part of a characterization of cross-variograms. A function γ̃ : Rd →R

m×m is a cross-variogram
if and only if γ̃ (0) = 0, γ̃ (h) = γ̃ (−h) = γ̃ (h)� and

n∑
i=1

n∑
j=1

a�
i γ̃ (xi − xj)aj ≤ 0 (1)

for n ≥ 2, x1, . . . , xn ∈R
d, a1, . . . , an ∈R

m such that
∑n

k=1 ak = 0 [14]. A function satisfying
condition (1) is called an almost negative definite matrix-valued function in [31, p. 40].

A pseudo cross-variogram γ has similar, but only necessary properties; see [7]. It holds that
γii(0) = 0, and γij(h) = γji(−h), i, j = 1, . . . ,m. Additionally, a pseudo cross-variogram is an
almost negative definite matrix-valued function as well, but inequality (1), loosely speaking,
cannot enforce non-negativity on the secondary diagonals. Therefore we consider the following
stronger notion of conditional negative definiteness; see [9].

Definition 1. A function γ : Rd →R
m×m is called conditionally negative definite if

γij(h) = γji(−h), i, j = 1, . . . ,m, (2a)

n∑
i=1

n∑
j=1

a�
i γ (xi − xj)aj ≤ 0, (2b)

for all n ∈N, x1, . . . , xn ∈R
d, a1, . . . , an ∈R

m such that

1�
m

n∑
k=1

ak = 0

with 1m := (1, . . . , 1)� ∈R
m.

Obviously, the set of conditionally negative definite matrix-valued functions is a convex
cone which is closed under integration and pointwise limits, if existing. In the univariate case,
the concepts of conditionally and almost negative definite functions coincide, reproducing the
traditional notion of real-valued conditionally negative definite functions. The main difference
between them is the broader spectrum of vectors for which inequality (2b) has to hold, in that
the sum of all components has to be zero instead of each component of the sum itself. This
modification in particular includes sets of linearly independent vectors in the pool of admissible
test vector families, resulting in more restrictive conditions on the secondary diagonals. Indeed,
choosing n = 2, x1 = h ∈R

d, x2 = 0, and a1 = ei, a2 = −ej in Definition 1 with {e1, . . . , em}
denoting the canonical basis in R

m, we have γij(h) ≥ 0 for a conditionally negative definite
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1222 C. DÖRR AND M. SCHLATHER

function γ : Rd →R
m×m with γii(0) = 0, i, j = 1, . . . ,m, fitting the non-negativity of a pseudo

cross-variogram. In fact, the latter condition on the main diagonal and the conditional negative
definiteness property are sufficient to characterize pseudo cross-variograms.

Theorem 1. Let γ : Rd →R
m×m. Then there exists a centred Gaussian random field Z on R

d

with pseudo cross-variogram γ if and only if γii(0) = 0, i = 1, . . . ,m, and γ is conditionally
negative definite.

Proof. The proof is analogous to the univariate one in [15]. Let Z be an m-variate ran-
dom field with pseudo cross-variogram γ . Obviously, γii(0) = 0 and γij(h) = γji(−h) for all
h ∈R

d, i, j = 1, . . . ,m. Define an m-variate random field Z̃ via Z̃i(x) = Zi(x) − Z1(0), x ∈R
d,

i = 1, . . . ,m. Then Z and Z̃ have the same pseudo cross-variogram, and

Cov(Z̃i(x), Z̃j(y)) = γi1(x) + γj1(y) − γij(x − y)

(see also [22, equation (6)]), that is,

Cov(Z̃(x), Z̃(y)) = γ 1(x)1�
m + 1mγ �

1 (y) − γ (x − y), x, y ∈R
d,

with γ 1(x) := (γ11(x), . . . , γm1(x))�. For 1�
m
∑m

k=1 ak = 0, we thus have

0 ≤ Var

(
n∑

i=1

a�
i Z̃(xi)

)

=
n∑

i=1

n∑
j=1

a�
i

(
γ 1(xi)1�

m + 1mγ �
1 (xj) − γ (xi − xj)

)
aj

= −
n∑

i=1

n∑
j=1

a�
i γ (xi − xj)aj.

Now let γ be conditionally negative definite and γii(0) = 0, i = 1, . . . ,m. Let a1, . . . , an ∈
R

m, x1, . . . , xn ∈R
d be arbitrary, x0 = 0 ∈R

d and

a0 =
(

−1�
m

n∑
k=1

ak, 0, . . . , 0

)
∈R

m.

Then

0 ≤ −
n∑

i=0

n∑
j=0

a�
i γ (xi − xj)aj

= −
n∑

i=1

n∑
j=1

a�
i γ (xi − xj)aj −

n∑
i=1

a�
i γ (xi − x0)a0 −

n∑
j=1

a�
0 γ (x0 − xj)aj

− a�
0 γ (x0 − x0)a0.
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Since γ11(0) = 0, and a�
0 γ (x0 − xj)aj = a�

j γ (xj)a0 due to property (2a), we get that

0 ≤ −
n∑

i=0

n∑
j=0

a�
i γ (xi − xj)aj

=
n∑

i=1

n∑
j=1

a�
i

(
γ 1(xi)1�

m + 1mγ �
1 (xj) − γ (xi − xj)

)
aj,

that is,
(x, y) �→ γ 1(x)1�

m + 1mγ �
1 (y) − γ (x − y)

is a matrix-valued positive definite kernel. Let

{Z(x) = (Z1(x), . . . , Zm(x))�, x ∈R
d}

be a corresponding centred Gaussian random field. We have to show that Var(Zi(x + h) − Zj(x))
is independent of x for all x, h ∈R

d, i, j = 1, . . . ,m. We even show that x �→ Zi(x + h) − Zj(x)
is weakly stationary for i, j = 1, . . . ,m:

Cov(Zi(x + h) − Zj(x), Zi(y + h) − Zj(y))

= γi1(x + h) + γi1(y + h) − γii(x − y) + γj1(x) + γj1(y) − γjj(x − y)

− γj1(x) − γi1(y + h) + γji(x − y − h) − γi1(x + h) − γj1(y) + γij(x + h − y)

= −γii(x − y) − γjj(x − y) + γji(x − y − h) + γij(x − y + h). �

Theorem 1 answers the questions raised in [7, p. 422] and also settles a question in [13,
p. 239] in a more general framework with regard to the intersection of the sets of pseudo and
cross-variograms. It turns out that this intersection is trivial in the following sense.

Corollary 1. Let

P = {γ : Rd →R
m×m | γ pseudo cross-variogram},

C = {γ̃ : Rd →R
m×m | γ̃ cross-variogram}.

Then we have
P ∩ C = {1m1�

mγ | γ : Rd →R variogram}. (3)

Proof. Let γ ∈P ∩ C. Without loss of generality, assume m = 2. Since γ ∈P ∩ C, for n = 2,
x1 = h, x2 = 0, a1, a2 ∈R

2 with 1�
2
∑2

k=1 ak = 0, using the symmetry of γ and γ (0) = 0 we
have

0 ≥
2∑

i=1

2∑
j=1

a�
i γ (xi − xj)aj

= 2a11a21γ11(h) + 2a12a22γ22(h) + 2(a11a22 + a12a21)γ12(h).

Choosing a1 = (−1, 0)�, a2 = (1 − k, k)�, k ≥ 2, and applying the Cauchy–Schwarz inequal-
ity due to γ ∈ C gives

0 ≤ γ11(h) ≤ −k

1 − k
γ12(h) ≤ 1

1 − 1/k

√
γ11(h)

√
γ22(h). (4)
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1224 C. DÖRR AND M. SCHLATHER

By symmetry, we also have

0 ≤ γ22(h) ≤ −k

1 − k
γ12(h) ≤ 1

1 − 1/k

√
γ11(h)

√
γ22(h). (5)

Assume first that, without loss of generality, γ11(h) = 0. Then γ12(h) = 0 and γ22(h) = 0 due
to inequalities (4) and (5). Suppose now that γ11(h), γ22(h) 
= 0. Letting k → ∞ in inequalities
(4) and (5) yields γ11(h) = γ22(h). Inserting this into inequality (5) gives

γ22(h) ≤ 1

1 − 1/k
γ12(h) ≤ 1

1 − 1/k
γ22(h)

and consequently the result for k → ∞. �
Remark 1. Let Z be a random field on R

d with cross-variogram γ̃ ∈P ∩ C. Then the pseudo
and cross-variogram of Z do not necessarily coincide; in fact, the pseudo cross-variogram
might not even exist. For instance, let Y be a random field on R

d with cross-variogram γ̃ , and
take Zi(x) := Yi(x) + Ui, for i.i.d. random variables Ui, i = 1, . . . ,m, without existing vari-
ance. However, if Z is a random field with existing pseudo cross-variogram of the form (3),
then we have 2γij(0) = Var(Zi(x) − Zj(x)) = 0 for all x ∈R

d, i, j = 1, . . . ,m. Consequently,
the difference between Zi(x) and Zj(x) is almost surely constant for all x ∈R

d, i, j = 1, . . . ,m,
implying that cross- and pseudo cross-variogram of Z coincide in that case.

Corollary 1 can also be proved by means of a result in [21]. In fact, Theorem 1 enables us to
reproduce their result, which was originally derived in a stochastic manner, by a direct proof.

Corollary 2. Let γ : Rd →R
m×m be a pseudo cross-variogram. Then γ fulfils

(√
γii(h) −

√
γij(h)

)2 ≤ γij(0), h ∈R
d, i, j = 1, . . . ,m.

Proof. Without loss of generality, assume m = 2. We present a proof for i = 1, j = 2
and γ11(h), γ12(h)> 0. Then, for n = 2, x1 = h, x2 = 0, a1, a2 ∈R

2 with 1�
2
∑2

k=1 ak = 0,
we have

0 ≥ a11a21γ11(h) + a12a22γ22(h)

+ a11a22γ12(h) + a12a21γ21(h) + (a11a12 + a21a22)γ12(0). (6)

Assuming a12 = 0, a22 > 0 and a11 + a22 = −a21 > 0, inequality (6) simplifies to

γ12(0) ≥ −a11

a22
γ11(h) + a11

a11 + a22
γ12(h)

= −xγ11(h) + x

1 + x
γ12(h) (7)

for x := a11/a22. Maximization of the function

x �→ −xγ11(h) + x

1 + x
γ12(h), x>−1,

leads to

x∗ =
√
γ12(h)

γ11(h)
− 1.
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Inserting x∗ into (7) gives

γ12(0) ≥ −
(√

γ12(h)

γ11(h)
− 1

)
γ11(h) +

⎛
⎝

√
γ12(h)
γ11(h) − 1

1 +
√
γ12(h)
γ11(h) − 1

⎞
⎠ γ12(h)

= (√
γ11(h) −√

γ12(h)
)2. �

3. A Schoenberg-type characterization

The stochastically motivated proof of Theorem 1 contains an important relation between
matrix-valued positive definite kernels and conditionally negative definite functions we have
not yet emphasized. Due to its significance, we formulate it in a separate lemma. As readily
seen, the assumption on the main diagonal stemming from our consideration of pseudo cross-
variograms can be dropped, resulting in the matrix-valued version of Lemma 3.2.1 in [2].

Lemma 1. Let γ : Rd →R
m×m be a matrix-valued function with γij(h) = γji(−h), i, j =

1, . . . ,m. Define

Ck(x, y) := γk(x)1�
m + 1mγ �

k (y) − γ (x − y) − γkk(0)1m1�
m

with γk(h) = (γ1k(h), . . . , γmk(h))�, k ∈ {1, . . . ,m}. Then Ck is a positive definite matrix-
valued kernel for k ∈ {1, . . . ,m} if and only if γ is conditionally negative definite. If γkk(0) ≥ 0
for k = 1, . . . ,m, then

C̃k(x, y) := γk(x)1�
m + 1mγ �

k (y) − γ (x − y)

is a positive definite matrix-valued kernel for k ∈ {1, . . . ,m} if and only if γ is conditionally
negative definite.

The kernel construction in Lemma 1 leads to a matrix-valued version of Schoenberg’s
theorem [2].

Theorem 2. A function γ : Rd →R
m×m is conditionally negative definite if and only if

exp∗ (−tγ ), with exp∗ (−tγ (h))ij := exp (−tγij(h)), is positive definite for all t> 0.

Remark 2. Theorem 2, in the form presented here, has recently been formulated in [9] in terms
of conditionally positive definite matrix-valued functions with complex entries. Nonetheless,
we present an alternative proof of the ‘only if’ part, which relies on the kernel construction in
Lemma 1 and follows the lines of the proof of Theorem 3.2.2 in [2].

Proof of Theorem 2. Assume that γ is conditionally negative definite. Then

(x, y) �→ γ 1(x)1�
m + 1mγ �

1 (y) − γ (x − y) − γ11(0)1m1�
m

is a positive definite kernel due to Lemma 1. Since positive definite matrix-valued kernels
are closed with regard to sums, Hadamard products, and pointwise limits (see e.g. [27]), the
kernel

(x, y) �→ exp∗(tγ 1(x)1�
m + t1mγ �

1 (y) − tγ (x − y) − tγ11(0)1m1�
m
)

= exp (−tγ11(0)) exp∗(tγ 1(x)1�
m + t1mγ �

1 (y) − tγ (x − y)
)

https://doi.org/10.1017/jpr.2022.133 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.133


1226 C. DÖRR AND M. SCHLATHER

is again positive definite for all t> 0. The same holds true for the kernel

(x, y) �→ exp∗(−tγ 1(x)1�
m − t1mγ �

1 (y)
)
,

since

exp
(−tγ 1(x)1�

m − t1mγ �
1 (y)

)
ij = exp (−tγi1(x)) exp (−tγj1(y)), i, j = 1, . . . ,m,

with the product separable structure implying positive definiteness. Again using the stability
of positive definite kernels under Hadamard products, the first part of the assertion follows.

Assume now that exp∗ (−tγ ) is a positive definite function for all t> 0. Then

exp (−tγij(h)) = exp (−tγji(−h)),

and thus (
1 − e−tγij

t

)
i,j=1,...,m

= 1m1�
m − exp∗ (−tγ )

t

is a conditionally negative definite function. The assertion follows for t → 0. �

Combining Theorems 1 and 2, and recalling that the classes of matrix-valued posi-
tive definite functions and covariance functions for multivariate random fields coincide, we
immediately get the following characterization of pseudo cross-variograms.

Corollary 3. A function γ : Rd →R
m×m is a pseudo cross-variogram if and only if exp∗ (−tγ )

is a matrix-valued correlation function for all t> 0.

Corollary 3 establishes a direct link between matrix-valued correlation functions and pseudo
cross-variograms. Together with Corollary 1, it shows that the cross-variograms for which
Theorem 10 in [14] holds are necessarily of the form (3), and it explains the findings in the
first part of Remark 2 in [27].

Remark 3. The correspondence of the proofs of the matrix-valued and real-valued versions of
Schoenberg’s theorem (Theorem 2 here and Theorem 3.2.2 in [2]) is no coincidence. Since
[2] does not impose any assumption on the underlying domain X of the negative definite func-
tion there, we could also choose X =R

d × {1, . . . ,m}, which translates into Theorem 2. The
same holds true for Lemma 1. With this ‘dimension expansion view’, it is no surprise that
the pseudo cross-variogram turns out to be the natural multivariate analogue of the variogram
from a theoretical standpoint. Due to our interest in pseudo cross-variograms, we chose a
stochastically/pseudo cross-variogram driven derivation of Lemma 1 and Theorem 2.

As demonstrated in Theorem 3.2.3 in [2], Schoenberg’s theorem can be further general-
ized for conditionally negative definite functions with non-negative components in terms of
componentwise Laplace transforms. Here we present the corresponding matrix-valued version
explicitly for clarity, and combine it with our previous results concerning pseudo cross-
variograms. With regard to Remark 3, and since we have already presented the matrix-valued
proof of Theorem 2, we omit the proof here.

Theorem 3. Let μ be a probability measure on [0,∞) such that

0<
∫ ∞

0
s dμ(s)<∞.
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Let L denote its Laplace transform, that is,

Lμ(x) =
∫ ∞

0
exp (−sx) dμ(s), x ∈ [0,∞).

Then γ : Rd → [0,∞)m×m is conditionally negative definite if and only if (Lμ(tγij))i,j=1,...,m
is positive definite for all t> 0. In particular, γ is a pseudo cross-variogram if and only if
(Lμ(tγij))i,j=1,...,m is an m-variate correlation function for all t> 0.

Corollary 4. Let γ : Rd → [0,∞)m×m be a matrix-valued function. If γ is a pseudo cross-
variogram, then for all λ> 0, the function C : Rd →R

m×m with

C(h) = (
(1 + tγij(h))−λ

)
i,j=1,...,m, h ∈R

d, (8)

is a correlation function of an m-variate random field for all t> 0. Conversely, if a λ> 0 exists
such that Cii(0) = 1, i = 1, . . . ,m, and such that C is positive definite for all t> 0, then γ is a
pseudo cross-variogram.

Proof. Choose

μ(ds) = 1

�(λ)
exp (−s)sλ−11(0,∞)(s) ds

in Theorem 3. �

Similarly to Theorem 3, we can translate the ‘univariate’ result that Bernstein functions
operate on real-valued conditionally negative definite functions [2] to the matrix-valued case,
which can thus be used to derive novel pseudo cross-variograms from known ones. Again, we
omit the proof for the reasons given above.

Proposition 1. Let γ : Rd → [0,∞)m×m be conditionally negative definite. Let g : [0,∞) →
[0,∞) denote the continuous extension of a Bernstein function. Then g ◦ γ with ((g ◦
γ )(h))ij := (g ◦ γij)(h), i, j = 1, . . . ,m, is conditionally negative definite. In particular, if
g(0) = 0 and γ is a pseudo cross-variogram, then g ◦ γ is again a pseudo cross-variogram.

4. Multivariate versions of Gneiting’s space–time model

Schoenberg’s result is often an integral part of proving the validity of univariate covariance
models. Here we use its matrix-valued counterparts derived in the previous section to naturally
extend covariance models of Gneiting type to the multivariate case.

Gneiting’s original space–time model is a univariate covariance function on R
d ×R defined

via

G(h, u) = 1

ψ(|u|2)d/2
ϕ

( ‖h‖2

ψ(|u|2)

)
, (h, u) ∈R

d ×R, (9)

where ψ : 0,∞) → (0,∞) is the continuous extension of a Bernstein function, and
ϕ : [0,∞) → [0,∞) is the continuous extension of a bounded completely monotone function
[10]. For convenience, we simply speak of bounded completely monotone functions hence-
forth. Model (9) is very popular in practice due to its versatility and ability to model space–time
interactions; see [24] for a list of several applications. Its special structure has attracted and
still attracts interest from a theoretical perspective as well, resulting in several extensions and
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refinements of the original model (9); see e.g. [17], [18], [23], [25], [32]. Only recently, spe-
cific simulation methods have been proposed [1] for the so-called extended Gneiting class, a
special case of [32, Theorem 2.1],

G(h, u) = 1

(1 + γ (u))d/2
ϕ

( ‖h‖2

1 + γ (u)

)
, (h, u) ∈R

d ×R
l,

with γ denoting a continuous variogram. One of these methods is based on an explicit con-
struction of a random field, where the continuity assumption on γ is not needed [1], and which
can be directly transferred to the multivariate case via pseudo cross-variograms.

Theorem 4. Let R be a non-negative random variable with distributionμ, � ∼ N(0, 1d×d) with
1d×d ∈R

d×d denoting the identity matrix, U ∼ U(0, 1),�∼ U(0, 2π ), and let W be a centred,
m-variate Gaussian random field on R

l with pseudo cross-variogram γ , all independent. Then
the m-variate random field Z on R

d ×R
l defined via

Zi(x, t) =√−2 log (U) cos

(√
2R〈�, x〉 + ‖�‖√

2
Wi(t) +�

)
, (x, t) ∈R

d ×R
l, i = 1, . . . ,m,

has the extended Gneiting-type covariance function

Gij(h, u) = 1

(1 + γij(u))d/2
ϕ

( ‖h‖2

1 + γij(u)

)
, (h, u) ∈R

d ×R
l, i, j = 1, . . . ,m, (10)

where ϕ denotes a bounded completely monotone function.

Proof. The proof follows the lines of the proof of Theorem 3 in [1]. In the multivariate case,
the cross-covariance function reads

Cov(Zi(x, t), Zj(y, s)) =E cos

(√
2R〈�, x − y〉 + ‖�‖√

2
(Wi(t) − Wj(s))

)
,

(x, t), (y, s) ∈R
d ×R

l, i, j = 1, . . . ,m. Due to the assumptions, Wi(t) − Wj(s) is a Gaussian
random variable with mean zero and variance 2γij(t − s). Proceeding further as in [1] gives the
result. �

Theorem 4 provides a multivariate extension of the extended Gneiting class, and lays the
foundations for a simulation algorithm for an approximately Gaussian random field with the
respective cross-covariance function; see [1]. The existence of a Gaussian random field with
a preset pseudo cross-variogram γ and the possibility of sampling from it are ensured by
Theorem 1 and Lemma 1, respectively.

Due to our results in previous sections, Theorem 4 can easily be generalized further,
replacing d/2 in the denominator in equation (10) with a general parameter r ≥ d/2.

Corollary 5. Let γ : Rl →R
m×m be a pseudo cross-variogram. Then the function G : Rd ×

R
l →R

m×m with

Gij(h, u) = 1

(1 + γij(u))r
ϕ

( ‖h‖2

1 + γij(u)

)
, (h, u) ∈R

d ×R
l, i, j = 1, . . . ,m, (11)

is positive definite for r ≥ d/2 and a bounded completely monotone function ϕ.
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Proof. We proved the assertion for r = d/2 in Theorem 4. Now let λ> 0 and r = λ+ d/2.
Then the matrix-valued function (11) is the componentwise product of positive definite
functions of the form (8) and (10), and consequently positive definite itself. �

Even further refinements of Corollary 5 are possible. We can replace 1m1�
m + γ in (11)

with general conditionally negative definite matrix-valued functions, but for a subclass of
completely monotone functions, the so-called generalized Stieltjes functions of order λ. This
leads to a multivariate version of a result in [17]. A bounded generalized Stieltjes function
S : (0,∞) → [0,∞) of order λ> 0 has a representation

S(x) = a +
∫ ∞

0

1

(x + v)λ
dμ(v), x> 0,

where a ≥ 0 and the so-called Stieltjes measure μ is a positive measure on (0,∞), such that∫
(0,∞) v−λ dμ(v)<∞ [17]. As for completely monotone functions, in the following we do

not distinguish between a generalized Stieltjes function and its continuous extension. Several
examples of generalized Stieltjes functions can be found in [3] and [17].

Theorem 5. Let Sij, i, j = 1, . . . ,m, be generalized Stieltjes functions of order λ> 0. Let the
associated Stieltjes measures have densities ϕij such that (ϕij(v))i,j=1,...,m is a symmetric
positive semidefinite matrix for all v> 0. Let

g : Rd → [0,∞)m×m, f : Rl → (0,∞)m×m

be conditionally negative definite functions. Then the function G : Rd ×R
l →R

m×m with

Gij(h, u) = 1

fij(u)r
Sij

(
gij(h)

fij(u)

)
, (h, u) ∈R

d ×R
l, i, j = 1, . . . ,m,

is an m-variate covariance function for r ≥ λ.

Proof. We follow the proof in [17]. It holds that

Gij(h, u) = a

fij(u)r
+ 1

fij(u)r−λ

∫ ∞

0

1

(gij(h) + vfij(u))λ
ϕij(v) dv.

The function x �→ 1/xα is completely monotone for α ≥ 0 and thus the Laplace transform of a
measure on [0,∞) [26, Theorem 1.4]. Therefore (1/f r

ij)i,j=1,...,m and (1/f r−λ
ij )i,j=1,...,m are posi-

tive definite functions due to Theorem 2 as mixtures of positive definite functions. Furthermore,
we have

1

(gij(h) + vfij(u))λ
= 1

�(λ)

∫ ∞

0
e−sgij(h)e−svfij(u)sλ−1 ds.

The functions
(
e−sgij(h)

)
i,j=1,...,m and

(
e−svfij(u)

)
i,j=1,...,m are again positive definite due to

Theorem 2 for all s, v> 0, and so is their componentwise product. Since positive definite
functions are closed under integration,(

1

(gij(h) + vfij(u))λ

)
i,j=1,...,m
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is positive definite for all v> 0. Therefore the function(
1

(gij(h) + vfij(u))λ
ϕij(v)

)
i,j=1,...,m

is also positive definite for all v> 0. Combining and applying the above arguments shows our
claim. �

Theorem 5 provides a very flexible model. In a space–time framework, it allows for
different cross-covariance structures in both space and time, and it does not require assump-
tions such as continuity of the conditionally negative definite functions involved, or isotropy,
which distinguishes it from the multivariate Gneiting-type models presented in [4] and [12],
respectively.
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