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Abstract

In this paper, we investigate the regularity properties and determine the almost sure mul-
tifractal spectrum of a class of random functions constructed as sums of pulses with random
dilations and translations. In addition, the continuity moduli of the sample paths of these
stochastic processes are investigated.
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0. Introduction

Multifractal analysis aims at describing those functions or measures whose pointwise
regularity varies rapidly from one point to another. Such behaviors are commonly encoun-
tered in various mathematical fields, from harmonic and Fourier analysis ([41]) to stochastic
processes and dynamical systems [4, 5, 6, 31, 33, 34]. Multifractality is actually a typical
property in many function spaces [9, 14, 15, 32]. Multifractal behaviours are also identi-
fied on real-data signals coming from turbulence, image analysis, geophysics for instance
[1, 24, 25]. To quantify such an erratic behavior for a function f ∈ L∞

loc(R), it is classically
called for the notion of pointwise Hölder exponent defined in the following way.

Definition 0·1. Let f ∈ L∞
loc(R), x0 ∈R and α ≥ 0. A function f belongs to Cα(x0) when there

exist a polynomial Px0 of degree less than �α� and Kα ∈R
∗+ such that

∃r ∈R
∗+, ∀x ∈ B(x0, r), |f (x) − Px0 (x − x0)| ≤ Kα|x − x0|α .

The pointwise Hölder exponent of f at a point x0 is defined by

hf (x0) = sup{α ≥ 0 : f ∈ Cα(x0)}.
In order to describe globally the pointwise behavior of a given function of a process, let

us introduce the following iso-Hölder sets.

Definition 0·2. Let f ∈ L∞
loc(R) and h ≥ 0. The iso-Hölder set Ef (h) is

Ef (h) = {x ∈R : hf (x) = h}.
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The functions studied later in this paper have fractal, everywhere dense, iso-Hölder sets.
It is therefore relevant to call for the Hausdorff dimension, denoted by dimH , to distinguish
them, leading to the notion of multifractal spectrum.

Definition 0·3. The multifractal spectrum of f ∈ L∞
loc(R) on a Borel set A ⊂R is the mapping

defined by

DA
f :

{
R+ −→ R+ ∪ {−∞}
h �−→ dimH(Eh ∩ A).

By convention, dimH(∅) = −∞. The multifractal spectrum of a function or a stochas-
tic process f provides one with a global information on the geometric distribution of the
singularities of f .

In this paper, we aim at computing the multifractal spectrum of a class of stochastic
processes consisting in sums of dilated-translated versions of a function (referred to as a
“pulse”) that can have an arbitrary form. The translation and dilation parameters are random
in our context. The present article hence follows a longstanding research line consisting
in studying the regularity properties of (irregular) stochastic processes that can be built by
an additive construction, including for instance additive Lévy processes, random sums and
wavelet series, random tesselations, see [26, 27, 31, 33, 38] amongst many references.

Our model is particularly connected to other models previously introduced and studied by
many authors.

For instance, in [39] Lovejoy and Mandelbrot modeled rain fields by a 2-dimensional sum
of random pulses constructed as follows. Consider a random Poisson measure N on E =
R

∗+ ×R
∗+ ×R

d, as well as a “father pulse” ψ : Rd →R, α ∈ ]0, 2[ and η ∈ ]0, 1]. Lovejoy
and Mandelbrot built and studied the process M : Rd →R defined by

M(x) =
∫

(λ,w,τ )∈E
λ−αψ

(
w

1
η (x − τ )

)
N(dλ, dw, dτ ) =

∑
(λ,w,τ )∈S

λ−αψλ,w,τ (x), (0·1)

where S is the set of random points induced by the Poisson measure and ψλ,w,τ (x) :=
ψ(w(x − τ )).

In [17], Cioczeck–Georges and Mandelbrot showed that negatively correlated fractional
Brownian motions (0<H < 1/2) can be obtained as a limit (in the sense of distributions) of
a sequence of processes defined as in (0·1) with ψ a well-chosen jump function, α ∈ ]0, 2[
and η= 1. Later, in [18], the same authors proved that any fractional Brownian motion with
Hurst index H ∈ (0, 1) \ {1/2} is a limit of a sequence of processes {Mn(x), x ≥ 0}n∈N defined
as in (0·1) with ψ a conical or semi-conical function. Other versions with general pulses ψ
have been investigated in [40], see Figure 1.

In [19], Demichel studied a model in which only the position coefficients (Xn)n≥1 are
random: the corresponding model is written

G(x) =
+∞∑
n=1

anψ(λ−1
n (x − Xn)), x ∈R, (0·2)

where (an)n∈N∗ and (λn)n∈N∗ are two deterministic positive sequences such that
∑

n∈N∗
an =

+∞ and (λn)n∈N∗ is decreasing to 0, and Xn ∼ U([0, 1]) is an i.i.d. sequence of ran-
dom variables. The same example is developed in [20, 21] where Demichel, Falconer and
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Fig. 1. Two sample paths obtained with different pulses and parameters.

Tricot impose that an = n−α with 0<α < 1, λn = n−1, and ψ : R→R is an even, positive
continuous function, decreasing on [0, 1], equal to 0 on [1, +∞[ satisfying ψ(0) = 1.

Calling �G the graph of the process G and dimB �G its box-dimension, they showed that
as soon as there exists an interval I on which ψ ∈ CH(R) (the space of global Hölder real
functions of exponent H) and is C1-diffeomorphic on some interval, then almost surely

2 − α ≤ dimH(�G) ≤ dimB(�G) ≤ 2 − min{α, h}. (0·3)

See also [3] for the box dimension of �G, or [43, 45] for a more systematic study of graph
dimensions. When α < h, almost surely dimH(�G) = dimB(�G) = 2 − α. In [10], Ben Abid
gave alternative conditions for the convergence of such processes G, also determining the
uniform regularity of G, i.e. to which global Hölder space CH(R) G may belong to, almost
surely.

Our purpose is to study another, somehow richer, model of sums of random pulses.

1. A model with additional randomness

The stochastic processes F considered in this article are natural extensions of the previ-
ous models, and fit in the general study of pointwise regularity properties of rough sample
paths of stochastic processes. As in the aforementioned works, we obtain results regarding
their existence and regularity properties. We go further by providing a complete multifractal
analysis of F and by investigating various moduli of continuity.

Fix a probability space (�, F , P) on which all random variables and stochastic processes
are defined.
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Fig. 2. Sample path of F computed with 1000 dilated and translated pulses.

Let (Cn)n∈N∗ be a point Poisson process whose intensity is the Lebesgue measure on R+,
and let S be another point Poisson process, independent with (Cn)n∈N∗ , whose intensity is the
Lebesgue measure on R

∗+ × [0, 1]. We write S = (Bn, Xn)n∈N∗ where the sequence (Bn)n∈N∗
is increasing. By construction, the three sequences of random variables (Cn), (Bn) and (Xn)
are mutually independent.

Definition 1·1. Let ψ : R→R be a Lipschitz function with support equal to [−1, 1], α ∈
(0, 1) and η ∈ (0, 1). The (random) sum of pulses F is defined by

F(x) =
+∞∑
n=1

C−α
n ψn(x), where ψn(x) := ψ(B

1
η
n (x − Xn)) (1·1)

The parameter α will be interpreted as a regularity coefficient, and η as a lacunarity coef-
ficient. Observe that the support of ψn is the ball B(Xn, B−1/η

n ) (B(t, s) stands for the ball
with centre t, radius s).

The stochastic process F possesses interesting properties on the interval [0, 1] only, since
Xn ∈ [0, 1]. However, this is not a restriction at all, since F can easily be extended to R as
follows.

For every integer m, consider Fm, an independent copy of F but shifted by m. Then,

F̃ :=
∑
m∈Z

Fm

enjoys the same pointwise regularity properties as F. It is interesting to see that this
new process F̃ has now stationary increments, and enlarges the (quite small) class of
stochastic processes with stationary increments whose multifractal analysis is completely
understood, see Figure 2.

In [33], using for ψ a smooth wavelet generating an orthonormal basis, Jaffard studied
the lacunary random wavelet series

W(x) =
∑
j∈N

∑
k∈Z

Cj,k2−jαψj,k(x), x ∈R,

https://doi.org/10.1017/S0305004123000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000324


Multifractal analysis of sums of random pulses 573

Fig. 3. Multifractal spectrum in the case α = 0.9 and η= 0.4.

where for all (j, k) ∈N×Z, ψj,k(x) =ψ(2jx − k) and the wavelet coefficients Cj,k are inde-
pendent random variables wavelets whose law is a Bernoulli measure with parameter 2−jη

(hence, depending on j only). The main difference between the lacunary wavelet series and
our model (motivating our work) is that not only dilations (Bn)n∈N∗ but also the translations
(Xn)n∈N∗ are random in our case. Hence our interest in F (and in F̃) comes from the fact
that it is not based on a dyadic grid, hence providing one with a homogeneous model more
natural from a probabilistic point of view, the process F̃ having stationary increments. The
main results of this paper concern the global and pointwise regularity properties of F, which
are proved to be similar to those of W.

We start by the multifractal properties of F, see Figure 3.

THEOREM 1·1. Let F be as in Definition 1·1, with α, η ∈ (0, 1). With probability one, one
has

D[0,1]
F (H) =

{ H
α

if H ∈ [αη, α],
−∞ else.

The other results concern the almost-sure global regularity of F and its moduli of
continuity. Let us recall the notions of modulus of continuity.

Definition 1·2. A non-zero increasing mapping θ : R+ →R is a modulus of continuity when
it satisfies:

(i) θ(0) = 0;

(ii) there exists K > 0 such that for every h ≥ 0, θ(2h) ≤ Kθ(h).
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Function spaces are naturally associated with moduli of continuity.

Definition 1·3. A function f ∈ L∞
loc(R) has θ : R+ →R as uniform modulus of continuity

when there exists K > 0 such that

∀h ∈R+, wf (h) := sup
|x−y|≤h

|f (x) − f (y)| ≤ Kθ(h).

A function f ∈ L∞
loc(R) has θ : R+ →R as local modulus of continuity at x0 ∈R when

there exist ηx0 > 0 and Kx0 > 0 such that

∀x such that |x − x0| ≤ ηx0 , |f (x) − f (x0)| ≤ Kx0θ(|x − x0|). (1·2)

A function f ∈ L∞
loc(R) has θ : R+ →R as almost-everywhere modulus of continuity when

θ is a local modulus of continuity for f at Lebesgue almost every x0 ∈R.

When α ∈ (0, 1) and θ(h) = θα(h) := |h|α , the functions having θα as uniform modulus of
continuity is exactly the set Cα(R) of α-Hölder functions (to deal with exponents α ≥ 1, the
definition of wf (h) must be modified and use finite differences of higher order).

Our result theorem regarding continuity moduli is the following.

THEOREM 1·2. Let F be as in Definition 1·1, with α, η ∈ (0, 1). With probability 1:

(i) the mapping h �→ |h|αη| log2 (h)|2+α is a uniform modulus of continuity of F;

(ii) the mapping h �→ |h|α| log2 (h)|2+α is an almost everywhere modulus of
continuity of F;

(iii) at Lebesgue almost every x0 ∈ [0, 1], the local modulus of continuity of F at x0 is
larger than h �→ |h|α| log2 (h)|2α .

Remark 1. Items (ii) and (iii) above provide us with a tight window for the optimal almost
everywhere modulus of continuity θF of F, i.e.

|h|α| log2(h)|2α ≤ θF(h) ≤ |h|α| log2 (h)|2+α .

The investigation of a sharper estimate for this modulus of continuity is certainly of interest.
For instance, S. Jaffard was able to obtain a precise characterisation in the case of lacunary
wavelet series, see [33, Theorem 2·2].

Remark 2. The result can certainly be extended to dimension d> 1 with parameters α > 1,
provided that ψ ∈ C�α�+1(Rd). This would add technicalities not developed here.

The paper is organised as follows. Preliminary results are given in Sections 2 and 3. A
key point will be to estimate for j ∈N, the maximal number of integers n ∈N

∗ satisfying

2j ≤ B
1
η
n < 2j+1, such that the support of ψn contains a given point x ∈ [0, 1] (a bound uni-

form in x ∈ [0, 1] is obtained). More specifically, we will focus on the so-called “isolated”
pulses ψn, i.e. those pulses whose support intersect only a few number of supports of other
pulses with comparable support size. These random covering questions are dealt with in
Section 3. This is key to obtain lower and upper estimates for the pointwise Hölder expo-
nents of F at all points and to get Theorem 1·1. More precisely, in Section 4, Theorem 1·2
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(i) is proved, and a uniform lower bound for all the pointwise Hölder exponents of F is
obtained. In Sections 5 and Section 6, we relate the approximation rate of a point x ∈ [0, 1]
by some family of random balls to the pointwise regularity of F. This allows us to derive
the almost sure multifractal spectrum of F in Section 7. In Section 8, we explain how to
get the almost everywhere modulus of continuity for F (Theorem 1·2 (ii) and (iii)). Finally,
Section 9 proposes some research perspectives.

2. Preliminary results

Preliminary results are exposed, some of which can be found in standard books [12, 13].
For j ∈N, define

A0 =
{

n ∈N
∗ : 0 ≤ B

1
η
n ≤ 1

}
,

Aj =
{

n ∈N
∗ : 2j−1 < B

1
η
n ≤ 2j

}
when j> 0, (2·1)

Nj = Card(Aj).

From its definition, each Nj is a Poisson random variable with parameter 2ηj − 2η(j−1).

LEMMA 2·1. Almost surely, for every j large enough,

2ηj(1−εj) ≤ Nj ≤ 2ηj(1+εj) with εj = log2(j)

ηj
. (2·2)

Observe that the last equation can also be written

1

j
2ηj ≤ Nj ≤ j2ηj.

Proof. Introduce the counting random function (Mt)t∈R∗+ of the point process (Bn)N∗ as
Mt = sup{n ∈N

∗ : Bn ≤ t} = ∑
n∈N∗ 1Bn≤t.

For all 0 ≤ s< t, Mt − Ms is a Poisson variable with parameter (t − s). Noting that
Nj = M2ηj − M2η(j−1) , the random variable Nj has a Poisson distribution of parameter a2η(j−1),
where a = 2η − 1. By the Bienaymé–Tchebychev inequality, since E[Nj] = a2η(j−1),
one has

P

(
|Nj − a2η(j−1)| ≥ j2

η
2 (j−1)

)
≤ a2η(j−1)

j22η(j−1)
≤ a

j2
. (2·3)

By the Borel–Cantelli lemma, a.s. for j large enough, |Nj − a2η(j−1)| ≤ j2
η
2 (j−1). In particular,

for every α > 0 and j large enough, j−α2jη ≤ Nj ≤ jα2jη. This implies (2·2).

From (2·3), for every α > 0, there exists K > 0 such that for every j large,

P

(
Nj /∈

[
2ηj(1−αεj), 2ηj(1+αεj)

])
≤ K

j2
. (2·4)

Observe that (2·4) indeed holds for every j with a suitable choice for K. This will be used
later. Bounds for the random variables Bn and Cn are deduced from the previous results.
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LEMMA 2·2. Almost surely, for all j ∈N large enough and n ∈ Aj,

1

j
2ηj = 2ηj(1−εj) ≤ Cn ≤ 2ηj(1+εj) = j2ηj. (2·5)

Proof. It is standard (from the law of large numbers for instance) that almost surely, for
every n ∈N

∗ large enough

n

2
≤ Cn ≤ 2n. (2·6)

Let J ∈N be large enough so that (2·2) holds for j ≥ J. Call A = ∑J
j′=0 Nj′ .

Let j ≥ J + 1, and n ∈ Aj. By definition, one has
∑j−1

j′=0 Nj′ ≤ n ≤ ∑j
j′=0 Nj′ .

We apply by (2·3) with α = 1/2. On one side,

j−1∑
j′=0

Nj′ ≥ Nj−1 ≥ 2η(j−1)(1−αεj−1) ≥ K12ηj(1−αεj) ≥ 2ηj(1−εj).

On the other side, since jεj is increasing with j, when j becomes large one has

j∑
j′=0

Nj′ ≤ A +
j∑

j′=J+1

2ηj′(1+αεj′ ) ≤ A + 2αηjεj

j∑
j′=J+1

2ηj′ ≤ K22ηj(1+αεj),

since A is finite. The last term is less than 2ηj(1+εj), so combining this with (2·6) gives (2·5).

Finally, for all j ∈N and n ∈ Aj, additional information on the number of pulses ψn for
n ∈ Aj (see (1·1)) whose support contains a given x ∈ [0, 1] is needed. So, for x ∈ [0, 1], r> 0
and n ∈N

∗, set

Tn(x, r) =
⎧⎨
⎩1 if B

(
Xn, B

− 1
η

n

)⋂
B(x, r) �= ∅,

0 otherwise.
(2·7)

Next Lemma describes the number of overlaps between the balls B

(
Xn, B

− 1
η

n

)
for n ∈ Aj.

It is an improvement of some properties proved in [19].

LEMMA 2·3. Almost surely, there exists K > 0 such that for every x ∈ [0, 1], for every
J, j ∈N

∗, ∑
n∈Aj

Tn(x, 2−ηJ) ≤ Kj2 max
(

1, 2η(j−J)
)

. (2·8)

Proof. We first work on the dyadic grid. Let j ∈N and jη = �ηj�. Observe that [0, 1] =⋃2jη−1
k=0 Ijη ,k, where Ijη ,k = [k2−jη , (k + 1)2−jη ]. For k ∈ {0, 1, ..., 2jη − 1}, and set

Lj,k = Card
{

n ∈ Aj : Xn ∈ Ijη ,k ± 2−jη+1
}

, (2·9)

where the notation Ijη ,k ± 2−jη+1 stands for the union of the interval Ijη ,k with its two neigh-
bors Ijη ,k−1 and Ijη ,k+1. Let us estimate pj = P(∃k ∈ {0, 1, ..., 2jη − 1} : Lj,k > j2). Using the
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total probability rule,

pj = P

(
∃k ∈ {0, 1, ..., 2jη − 1}, Lj,k > j2|Nj ∈

[
2ηj(1−εj), 2ηj(1+εj)

])
× P

(
Nj ∈

[
2ηj(1−εj), 2ηj(1+εj)

])
+ P

(∃k ∈ {
0, 1, ..., 2jη − 1

}
, Lj,k

> j2|Nj /∈
[
2ηj(1−εj), 2ηj(1+εj)

])
× P

(
Nj /∈

[
2ηj(1−εj), 2ηj(1+εj)

])
.

Applying (2·4), there exists K > 0 such that for every j large,

pj ≤
∑

N∈{�2ηj(1−εj)�,...,�2ηj(1+εj)�}
pj,NP(Nj = N) + K

j2
, (2·10)

where for every integer N, pj,N = P(∃k ∈ {0, 1, ..., 2jη − 1} : Lj,k > j2|Nj = N). Obviously, pj,N

is increasing with N, hence pj ≤ pj,�2ηj(1+εj)� + K
j2

.

Conditioned on Nj = n0 := �2ηj(1+εj)�, the law of each Lj,k is binomial B(n0, p) with
parameters n0 and p = P(Xn ∈ Ijη ,k ± 2−jη+1).

Recall the argument by Demichel and Tricot used in [28, Lemma 2·1]: for Y ∼ B(n0, p),
then for every m ≥ 1,

P(Y >m) ≤ (n0p)m

m! .

In particular, in our case, since p ≤ 3 · 2−jη ≤ 6 · 2−ηj, one has

P(Lj,k > j2|Nj = n0) ≤ (n0p)j2

(j2)! ≤ (6 · 2ηj(1+εj)−ηj)j2

(j2)! = (6 · j)j2

(j2)! .

Hence,

pj,�2ηj(1+εj)� ≤
2jη−1∑
k=0

(6 · j)j2

(j2)! ≤ 2jη (6 · j)j2

(j2)! .

Recalling (2·10), one concludes that pj ≤ 2jη (6 · j)j2/(j2)! + K/j2 which is the general term
of a convergent series.

Borel–Cantelli lemma gives that almost surely, for all j ∈N large enough and for every
k ∈ {0, 1, .., 2jη − 1}, Lj,k ≤ j2. So, almost surely, there exists K > 0 such that for every j ≥ 1,
for every k ∈ {0, 1, .., 2jη − 1}, Lj,k ≤ Kj2.

To conclude now, fix a real number x ∈ [0, 1] and a positive integer J ≥ 1. Two cases are
distinguished:

(i) when j ≤ J: calling again jη = �jη�, the point x belongs to a unique interval Ijη ,kx

(for some unique integer kx). When n ∈ Aj, observe that Tn(x, 2−ηJ) = 1 if and only

if |Xn − x| ≤ 2−ηJ + B−1/η
n ≤ 2−ηJ + 2−j. This may occur only when Xn ∈ Ijη ,kx ±

(2−ηJ + 2−j) ⊂ Ijη ,kx ± 2 · 2−jη , since j ≤ J.
From the consideration above, there are at most Kj2 points Xn, n ∈ Aj, such that
Tn(x, 2−ηJ) = 1, hence (2·8);
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(ii) when j> J: as above, when n ∈ Aj, Tn(x, 2−ηJ) = 1 may occur only if |Xn − x| ≤
2−ηJ + B−1/η

n ≤ 2−ηJ + 2−j ≤ 2−jη+1. The interval [x − 2−jη+1, x + 2−jη+1] is cov-
ered by at most �2η(j−J)+3� intervals Ijη ,k, and each of these intervals contain at most
Kj2 points Xn. So, Tn(x, 2−ηJ) = 1 for at most Kj22η(j−J)+32 integers n ∈ Aj. Hence
the result (2·8).

Observe that the degenerate case J = +∞ also holds in this case, i.e. almost surely, there
exists K > 0 such that for every x ∈ [0, 1], for every j ∈N

∗, one has∑
n∈Aj

Tn(x) =
∑
n∈Aj

Tn(x, 0) ≤ Kj2. (2·11)

3. Distribution of isolated pulses

There may be several pulses ψn with n ∈ Aj whose support intersect each other, creating
unfortunate irregularity compensation phenomena and making the estimation of local incre-
ments of the process F difficult. In order to circumvent this issue, the knowledge on the
distribution of the ψn’s shall be improved.

For this, fix γ ∈ (1, 1/η) and ρ ∈N so large that

ρ >
3 + 3α

1 − αη
. (3·1)

This condition will be key in Section 6 to get estimate (6·3).
Let us introduce for any j ∈N the sets

Ãj =
⋃�γ j�

j′=�(1−ρηεj)j� Aj′ and Ñj = Card(̃Aj) (3·2)

Ij = {n ∈ Aj : ∀m ∈ Ãj, n �= m, B

(
Xn, B

− 1
η

n

)
∩ B

(
Xm, B

− 1
η

m

)
=∅} (3·3)

The elements of Ij are integers n ∈ Aj such that the support of ψn does not intersect any
support of ψm for m ∈ Ãj with m �= n, see Figure 4.

Definition 3·1. A point Xn with n ∈ Ij is called an isolated point.

The distribution of the isolated points {Xn}n∈Ij is further investigated. Indeed, as said
above, such information is key to obtain upper and lower bounds for the Hölder exponent of
F at any point x (see Sections 5 and 6). To describe the distribution of {Xn}n∈Ij , consider the
two limsup sets

Gδ = lim sup
j→+∞

⋃
n∈Aj

B(Xn, B−δ
n ) (3·4)

G′
δ = lim sup

j→+∞

⋃
n∈Ij

B
(

Xn, B
−δ(1−̃εj)
n

)
, where ε̃j = log2(16j log2 j)/(ηj). (3·5)

Remark 3. Note that as soon as δ > δ′, Gδ ⊂ G
δ
′ and G′

δ ⊂ G′
δ
′ .
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Fig. 4. Representation of pulses supports around an integer n ∈ Ij.

In the next sections, it is proved that Gδ contains points whose pointwise Hölder exponent
of F is lower-bounded by α/δ and G′

δ points whose pointwise Hölder exponent of F is upper-
bounded by α/δ. The idea is that on the support of an isolated pulse, the process F has large
local oscillations, thus forming points around which F possesses a low regularity.

It is a classical result (see [5, 33]) that almost surely,

[0, 1] = lim sup
j→+∞

⋃
n∈Aj

B
(

Xn, B
−(1−̃εj)
n

)
. (3·6)

Hence, almost surely, every x ∈ [0, 1] is infinitely many times at distance less than B
−(1−̃εj)
n

from a point Xn. A more subtle covering theorem is needed, using only isolated points
(Xn)n∈Ij (instead of (Xn)n∈Aj).

THEOREM 3·1. With probability one, G′
1 = [0, 1].

Proof. For j ∈N, define the following set

Dj =
{[

8k2−�ηj�, (8k + 1)2−�ηj�] : k ∈N and 0 ≤ 8k< 2�ηj� − 1
}

.

Obviously, Card(Dj) ∼ 2�ηj�/8.
For all V ∈ Dj (necessarily, V ⊂ [0, 1]), consider the following event:

Aj(V) =
⎧⎨
⎩∃ n ∈ Aj such that Xn ∈ V and B(Xn, 2B−γ

n )
⋂ ⋃

m∈Ãj

{Xm} = {Xn}
⎫⎬
⎭ . (3·7)

LEMMA 3·2. If Aj(V) is realised, then a point Xn given by (3·7) is isolated in the sense
of Definition 3·1.

Proof. When Aj(V) is realised, the point Xn is such that for every m ∈ Ãj, m �= n, Xm /∈
B(Xn, 2B−γ

n ).
Further, recall that 2(j−1)η < Bn ≤ 2jη, and that B−1/η

n < B−γ
n by our choice for

γ∈ (1, 1/η). In addition, observe that when m ∈ Ãj for j sufficiently large,

https://doi.org/10.1017/S0305004123000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000324


580 GUILLAUME SAËS AND STÉPHANE SEURET

B−1/η
m ≤ 2−(1−ρηεj)j+1 ≤ 2 × 2ρηεjj2−j ≤ 4B

ρεj− 1
η

n ≤ B−γ
n ,

again due to our choice for γ .
What precedes proves that B(Xm, B−1/η

m ) ∩ B(Xn, B−1/η
n ) = ∅, hence Xn is isolated.

Our aim is now to prove that these events Aj(V) are realised very frequently.
The restrictions of the point Poisson process {(Xn, Bn}n∈N on V × [1, +∞], or equiva-

lently of

{(
Xn, B

− 1
η

n

)}
n∈N

on V × [0, 1], on the dyadic intervals V ∈ Dj, are independent.

Moreover, the intervals in Dj being pairwise distant from at least 21−ηj, and since 5B−γ
n <

B−1
n ≤ 21−ηj (when n is large enough), two balls B(Xn, 2B−γ

n ) with Xn ∈ V and B(Xm, 2B−γ
m )

with Xm ∈ V ′ �= V (with n, m ∈ Aj) do not intersect. As a conclusion, the events Aj(V) for
V ∈ Dj are independent.

We introduce the set of (random) intervals

Qj = {V ∈ Dj : Aj(V) is true }.

Let V ∈ Dj with V ⊂ [0, 1], and consider the random variable Tj(V) = 1Aj(V). From the
above considerations, the random variables (Tj(V))V∈Dj are i.i.d. random Bernoulli vari-
ables with common parameter pj(γ ) = P(Aj(V) is true). Since Card(Qj) = ∑

V∈Dj
Tj(V),∑

V∈Dj
Tj(V) ∼B(Card(Dj), pj(γ )), a binomial law with parameters Card(Dj) and pj(γ ).

The parameter is denoted pj(γ ) because, the law of the random variables Xn and Bn being
given, it depends only on γ and j. To go further, we call for the following lemma that is
proved in [5, lemma 28] (see also [8]).

LEMMA 3·3. There exists a continuous function k : (1, +∞) → ]0, 1[ such that for any
j ∈N

∗, pj(γ ) ≥ k(γ )> 0.
Let (jp)p∈N∗ be the increasing sequence of integers defined iteratively by j1 = 1 + �ρηε1�

and jp+1 = �2(1/η+ 1)jp + 1�. By construction, Ãjp ∩ Ãjp+1 =∅.

Two intervals V , V ′ ∈ Dj are successive when writing V = [8k2−�ηj�, (8k + 1)2−�ηj�],
then either V ′ = [8(k + 1)2−�ηj�, (8(k + 1) + 1)2−�ηj�] or V ′ = [8(k − 1)2−�ηj�, (8(k − 1) +
1)2−�ηj�]. Next lemma shows that amongst any set of jp log jp successive intervals in Dj, at
least one of them, say V , satisfies Aj(V).

LEMMA 3·4. For all p ∈N, define the events Ep by

Ep = {for all (V1, ..., V�jp log jp�) successive intervals of Djp

∃k ∈ {1, ..., �jp log jp�} such that Ajp(Vk) is true}.

Then P(lim sup
p→+∞

Ep) = 1.

Proof. It is easily checked that the {Ep}p∈N are mutually independent by our choice for
(jp)p≥1. There is a constant K > 0 such that
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P(Ec
p) ≤

Card(Djn )∑
i=1

�jn log jn�∏
k=1

P(Ajn(Vk) is false)

≤ K2ηjp(1 − pj(γ ))jp log jp

≤ K2ηjp(1 − k(γ ))jp log jp .

By construction, jp >> p and 0< 1 − k(γ )< 1. This implies that for p large enough, there
exists K′ > 0 such that P(Ec

p) ≤ K′e−p, and so P(Ep) ≥ 1 − K′e−p.
In particular,

∑
p∈N

P(Ep) = +∞, and Borel–Cantelli’s lemma yields the result.

Let p be such that Ep is realised (this happens for an infinite number of p’s).
Let V ∈ Djp such that Aj(V) holds true. Hence V contains an isolated point, by

Lemma 3·2.
From the Ep’s and Lemma 3·4, it follows that amongst any �jp log jp� consecutive intervals

in Djp there is at least one interval that contains an isolated point. Consequently,⋃
n∈Ijp

B(Xn, 8jp log jp2−ηjp)

forms a covering of [0, 1]. Since this occurs for an infinite number of integers jp, and
recalling (3·5) and the definition of ε̃j, we conclude that almost surely,

[0, 1] = lim sup
j→+∞

⋃
n∈Ij

B(Xn, 8j log j2−ηj) ⊂ lim sup
j→+∞

⋃
n∈Ij

B
(

Xn, B
−(1−̃εj)
n

)
= G′

1,

since Bn ≥ 2(jp−1)/η when n ∈ Ijp . Hence the result.

4. Uniform regularity

In this section, the uniform Hölder regularity of F is investigated.
Recall that α ∈ ]0, 1[ and ψ is Lipschitz.
An important tool for the following proofs is the wavelet transform. It is known since

Jaffard’s works that wavelets provide a convenient method to analyse pointwise regularity
of functions.

Definition 4·1. Let φ : R→R be a compactly supported, non-zero function, with a vanish-

ing integral:
∫
R

φ(u)du = 0.

The continuous wavelet transform associated with φ of a function f ∈ L2(R) is defined for
every couple (s, t) ∈R

∗+ ×R by

Wf (s, t) = 1√
s

∫
R

f (x)φs,t(x)dx where φs,t(x) = φ

(
x − t

s

)
. (4·1)

Recall here the theorem of Jaffard [31] and Jaffard–Meyer [36] relating the decay rate of
continuous wavelets and uniform regularity for a function f .

THEOREM 4·1. Let H ∈R
∗+, f ∈ L∞

loc(R), and ψ be sufficiently regular (if α ∈ ]0, 1[ then
ψ is a Lipschitz function, otherwise ψ ∈ C�α�+1(R)). Then, the mapping x �→ |x|H| log |x||β
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is a uniform modulus of continuity for f if and only if there exists a constant K > 0
such that

∀(s, t) ∈R
∗+ ×R, |Wf (s, t)| ≤ KsH+ 1

2 | log |s||β .

Next proposition deals with the uniform regularity of F.

PROPOSITION 4·2. Let α ∈R
∗+\N, η ∈R

∗+, αη < 1 and ψ be sufficiently regular as in
Theorem 4·1. Almost surely, there exists K > 0 such that for any (s, t) ∈ [0, 1]∗ ×R

|WF(s, t)| ≤ Ksαη+
1
2 | log2 (s)|2+α .

Therefore, Theorem 1·2(i) holds true.

Proof. Let (s, t) ∈R
∗+ ×R. Note that the wavelet transform WF of F can be

expanded in

WF(s, t) = 1√
s

∫
R

F(x)φs,t(x)dx =
+∞∑
n=1

C−α
n dn(s, t)

with

dn(s, t) = 1√
s

∫
R

ψn(x)φs,t(x)dx. (4·2)

A quick computation allows to bound by above |dn| (see [19, Proposition 2·2·1]).

LEMMA 4·3. There exists K > 0 such that

∀(s, t) ∈ [0, 1] ×R, |dn(s, t)| ≤ Ks
1
2 min

{
sB

1
η
n , s−1B

− 1
η

n

}
Tn(t, s). (4·3)

Fix t ∈R and 0< s< 1. there exists a unique J ∈N such that 2−η(J+1) ≤ s< 2−ηJ .

When j ≤ ηJ and n ∈ Aj, one has min

{
sB

1
η
n , s−1B

− 1
η

n

}
= sB

1
η
n ≤ s2j. Also, by Lemma 2·3

and the definition (2·7) of Tn(x, r),
∑

n∈Aj
Tn(t, 2−ηJ) ≤ Kj2. So, by Lemma 4·3 and (2·5),

there exists a constant K1 > 0 (whose value can change from line to line, but does not depend
on s, t, j or J) such that

�ηJ�∑
j=0

∑
n∈Aj

C−α
n |dn(s, t)| ≤ K1s

1
2

�ηJ�∑
j=0

2−αη(1−εj)js2j
∑
n∈Aj

Tn(t, s)

≤ K1s
1
2

�ηJ�∑
j=0

2−αη(1−εj)js2j
∑
n∈Aj

Tn(t, 2−ηJ)

≤ K1s
3
2

�ηJ�∑
j=0

j2+α2(1−αη)j ≤ K′s
3
2 (ηJ)2+α2(1−αη)ηJ

≤ K1sαη+
1
2 | log2 (s)|2+α .
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When ηJ + 1 ≤ j ≤ J, if n ∈ Aj then min

{
sB

1
η
n , s−1B

− 1
η

n

}
= s−1B

− 1
η

n ≤ 2s−12−j and

Lemma 2·3 still gives
∑

n∈Aj
Tn(t, 2−ηJ) ≤ Kj2. Hence, there exists K2 > 0 such that

J∑
j=�ηJ�+1

∑
n∈Aj

C−α
n |dn(s, t)| ≤ K2s

1
2

J∑
j=ηJ+1

2−αη(1−εj)js−12−j
∑
n∈Aj

Tn(t, 2−ηJ)

≤ K2s− 1
2

J∑
j=ηJ+1

j2+α2−(1+αη)j ≤ K2s− 1
2 J2+α2−(1+αη)ηJ

≤ K2sαη+
1
2 | log2 (s)|2+α .

Finally, when j ≥ J, min

{
sB

1
η
n , s−1B

− 1
η

n

}
≤ s−12−j and Lemma 2·3 yields this time∑

n∈Aj
Tn(t, 2−ηJ) ≤ Kj22η(j−J). Hence, there exists K3 > 0 such that

+∞∑
j=J

∑
n∈Aj

C−α
n |dn(s, t)| ≤ K3s

1
2

+∞∑
j=J

2−αη(1−εj)js−12−j
∑
n∈Aj

Tn(t, 2−ηJ)

≤ K3s− 1
2

+∞∑
j=J

j2+α2−(1+αη)j2η(j−J) ≤ K3s− 1
2 J2+α2−(1+αη)J

≤ K3sαη+
1
2 | log2 (s)|2+α .

The combination of the previous inequalities yields that for some constant K > 0,

|WF(s, t)| ≤ Ksαη+
1
2 | log2(s)|2+α .

Theorem 4·1 allows to conclude the proof of Proposition 4·2.

5. Lower-bound for the Hölder exponent of F via the study of Gδ
When δ ∈ [1, 1/η], next proposition yields a lower bound for the pointwise Hölder

exponent of F at x0 when x0 /∈ Gδ .

PROPOSITION 5·1. Almost surely, for every δ ∈ (1, 1/η), for every x0 /∈ Gδ , there exists
Kx0 > 0 such that for any x close to x0,

|F(x) − F(x0)| ≤ Kx0 | log2 |x − x0| |2+α|x − x0| αδ .

Therefore, hF(x0) ≥ α/δ.
Proof. Let x0 /∈ Gδ . Let r> 0 be so small that r + 2−2 < 2−2δη (such an r exists since

δη < 1). Then, for x with |x − x0| ≤ r, there exists a unique j0 ∈N such that

2−η(j0+1) ≤ |x − x0|< 2−ηj0

and call j1 the largest positive integer so that |x − x0| + 2−j1 ≤ 2−δηj1 . The integer j1 exists
by the condition on r, and since 2−ηδj1 tends to 0 when j1 → +∞.
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Observe that when j0 becomes large (i.e. when x → x0), |j1 − j0/δ| → 0. So it is assumed
that j0 is so large that j0/δ ≤ j1 ≤ j0/δ + 2, so that 2−j0η ∼ 2−j1δη ∼ |x − x0|. Observe also
that this explains the fact that δ must be less or equal than 1/η.

By definition of Gδ , since x0 /∈ Gδ , there exists at most a finite number, say Nx0 , of balls

{B(Xnk , B−δ
nk

)}1≤k≤Nx0
that contain x0. Write j̃0 for the smallest integer j such that

⋃Nx0
k=1{nk} ⊂⋃̃j0

j=1 Aj. So it may be assumed that x is so close to x0 that for every j ≥ j1/2δ, jεj ≥ j̃0 + 1

and for every n ∈ Aj with j ≥ j1, |x0 − Xn|> B−δ
n .

Recalling that the support of ψn is the ball B
(

Xn, B−1/η
n

)
and that δ ≤ 1/η, this implies

that x0 belongs to the support of at most N pulses ψn with n ∈ Aj and j< j1, and does not
belong to any support of ψn, for n ∈ Aj and j ≥ j1.

Also, when j ≤ j1 and n ∈ Aj, by definition of j1, one has |x − x0| + B−1/η
n ≤ B−δ

n . Hence

x ∈ B
(

Xn, B−1/η
n

)
would imply that x0 ∈ B(Xn, B−δ

n ), which is possible for only N balls.

Consequently, x and x0 both belong to at most N supports of pulses ψn with n ∈ Aj and j ≤ j1.
Let us write |F(x) − F(x0)| ≤ S1 + S2 + S3 with Fj(x) = ∑

n∈Aj
C−α

n ψn(x) and

S1 =
∣∣∣∣∣∣
j1−1∑
j=0

Fj(x) − Fj(x0)

∣∣∣∣∣∣ , S2 =
+∞∑
j=j1

|Fj(x0)| and S3 =
+∞∑
j=j1

|Fj(x)|.

We first give an upper-bound for S1. By the remarks above, S1 contains at most Nx0 non-zero
terms of the form C−α

ni
(ψni(x) −ψni(x0)) (for integers n1, . . ., nNx0

), and for each of them,
since ψ is Lipschitz with some constant K > 0, one has

C−α
ni

∣∣∣∣ψ
(

B
1
η
ni

(
x − Xni

)) −ψ

(
B

1
η
ni

(
x0 − Xni

))∣∣∣∣ ≤ C−α
ni

B
1
η
niK|x − x0|.

By (2·1), (2·5) and the definition of j̃0, if ni ∈ Aj, then one has for some other constant K > 0
that

C−α
ni

B
1
η
ni ≤ K2−αηj(1−εj)2j ≤ K̃jα0 2̃j0(1−αη) ≤ Kjα1 2εj1 j1 = Kjα+1/η

1 .

Using that j1 ∼ δj0 ∼ (δ/η), and | log2 |x − x0||, this finally gives for some constant Kx0

depending on x0

S1 ≤ KNx0 |x − x0|jα+1/η
1 ≤ Kx0 |x − x0| · | log2 |x − x0| |α+1/η

≤ |x − x0|α| log2 |x − x0| |2+α . (5·1)

Observe that the last inequality holds when j1 tends to +∞, and is quite crude.

By construction, ψn(x0) = 0 for every n ∈ Aj with j ≥ j1, so S2 = 0.

Finally, for S3, one writes that |ψn(x)| ≤ ||ψ ||∞, and then

S3 =
+∞∑
j=j1

|Fj(x)| ≤ K||ψ ||∞
+∞∑
j=j1

∑
n∈Aj

C−α
n 1ψn(x)�=0 (5·2)

≤ K||ψ ||∞
+∞∑
j=j1

jα2−αηj
∑
n∈Aj

Tn(x, 0)
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≤ K||ψ ||∞
( +∞∑

j=j1

jα2−αηjj2
)

≤ Kj2+α
1 2−αηj1 ≤ Kj2+α

0 2−j0
αη
δ

≤ K| log2 |x − x0| |2+α |x − y| αδ . (5·3)

The result follows from (5·1) and (5·3).

6. Upper-bound for the Hölder exponent of F via the sets G′
δ

We now find an upper bound for the pointwise Hölder exponent of F at every x0 ∈ G′
δ ,

using a wavelet method. Let us recall the theorem of Jaffard [31] relating continuous wavelet
transforms and pointwise regularity.

THEOREM 6·1. Let f ∈ L∞
loc(R), x0 ∈R and H > 0. If f ∈ CH(x0), then there exists K > 0

and a neighborhood U of (0+, x0) such that

∀(s, t) ∈ U , |Wf (s, t)| ≤ Ks
1
2 (s + |x0 − t|)H .

This theorem is key to prove next proposition.

PROPOSITION 6·2. Almost surely, for all δ ∈ [
1, 1/η

]
and x0 ∈ G′

δ , hF(x0) ≤ α/δ.
Proof. First, without loss of generality, assume in addition that the function φ used

to compute the wavelet transform belongs to C1(R), is exactly supported by the interval
[−1, 1], and that ∫ 1

−1
φ(u)ψ(u)du �= 0. (6·1)

The existence of such a φ is a trivial exercise.

Fix x0 ∈ G′
δ . There exist two increasing sequences of integers (nk)k∈N and (jk)k∈N such

that nk ∈ Ijk and x0 ∈ B
(

Xnk , B
−δ(1−̃εjk )
nk

)
, where ε̃j,k was defined in (2·2).

Let k ∈N
∗ with nk ∈ Ijk . The values of continuous wavelet transforms WF

(
B

− 1
η

nk , Xnk

)
,

are now estimated. Setting Jk = �(1 − ρηεjk )jk� and J̃k = �γ jk�, one writes WF(B
− 1
η

nk , Xnk ) =
S1 + S2 + S3 with

S1 =
Jk−1∑
j=0

∑
n∈Aj

C−α
n dn

(
B

− 1
η

nk , Xnk

)
, S2 =

J̃k∑
j=Jk

∑
n∈Aj

C−α
n dn

(
B

− 1
η

nk , Xnk

)

and S3 =
+∞∑

j=̃Jk+1

∑
n∈Aj

C−α
n dn

(
B

− 1
η

nk , Xnk

)
.

Let us first find a lower bound for S2. Recalling the definition (3·3) of Ijk , nk is the unique

integer in Ãjk such that x0 ∈ B

(
X̃nk , B

− 1
η

ñk

)
. Hence, recalling (4·2), dn(B

− 1
η

nk , Xnk ) = 0 when
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n �= nk (since the support of ψn and φnk do not intersect) and

S2 = C−α
nk

dnk

(
B

− 1
η

nk , Xnk

)
.

An integration by part and a change of variables give

dnk

(
B

− 1
η

nk , Xnk

)
= B−1/(2η)

nk

∫ 1

−1
ψ(u)φ(u)du.

Condition (6·1) implies that for some fixed constant K2 > 0 (depending on ψ and φ only),
for every integer k,

|S2| ≥ K2C−α
nk

B
− 1

2η
nk ≥ K2B

− 1
2η

nk 2−αη(1+εjk )jk ≥ K2B
− 1

2η−α(1+εjk )
nk , (6·2)

where (3·3) and (2·5) have been used.
Next, let us estimate S1. By (4·3), (2·5) and (2·1), one has

|S1| ≤
Jk−1∑
j=0

∑
n∈Aj

C−α
n

∣∣∣∣dn

(
B

− 1
η

nk , Xnk

)∣∣∣∣

≤
Jk−1∑
j=0

∑
n∈Aj

C−α
n B

− 1
2η

nk min

{
B

− 1
η

nk B
1
η
n , B

1
η
nk B

− 1
η

n

}
Tn

(
Xnk , B

− 1
η

nk

)

≤
Jk−1∑
j=0

2−αηj(1−εj)B
− 1

2η
nk min

{
B

− 1
η

nk 2j, B
1
η
nk 2−j−1

} ∑
n∈Aj

Tn(Xnk , 2−jk ).

When j< (1 − ηεjk )jk, B
− 1
η

nk ≤ 2−j−1, so the minimum above is less than 2B
− 1
η

nk 2j. In addition,
by (2·2) one has

∑
n∈Aj

Tn(Xnk , 2−jk ) ≤ Kj2 (this holds as long as j ≤ jk/η). Hence by (2·8),
for some constant K1 > 0 (that may change from one inequality to the next one),

|S1| ≤ K1

Jk−1∑
j=0

j2+α2−αηjB
− 1

2η
nk B

− 1
η

nk 2j ≤ K1B
− 3

2η
nk

Jk−1∑
j=0

j2+α2(1−αη)j

≤ K1B
− 3

2η
nk j2+α

k 2(1−αη)(1−ρηεjk )jk .

Since jk = 2ηεjk jk and nk ∈ Ijk , 2jk ≤ B
1
η
nk , so

|S1| ≤ K1B
− 3

2η
nk B

(3+α)εjk
nk B

( 1
η
−α)(1−ρηεjk )

nk ≤ K1B
− 1

2η−α−(ρ−3−α−αηρ)εjk
nk .

Our choice (3·1) for ρ ensures that ρ − 3 − α − αηρ > 2α, hence

|S1| ≤ K1B
− 1

2η−α(1+2εjk )
nk . (6·3)
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Finally, for S3, one writes by (4·3), (2·5) and (2·1), and the same lines of computations as
above, that for some K3 > 0,

|S3| ≤
+∞∑

j=̃Jk+1

∑
n∈Aj

C−α
n

∣∣∣∣dn

(
B

− 1
η

nk , Xnk

)∣∣∣∣

≤ K3

+∞∑
j=̃Jk+1

2−αηj(1−εj)B
− 1

2η
nk min

{
B

− 1
η

nk 2j, B
1
η
nk 2−(j+1)

} ∑
n∈Aj

Tn(Xnk , 2−jk ).

When j ≥ J̃k = �γ jk�, the above minimum is reached at B
1
η
nk 2−j−1 (this actually holds as soon

as j ≥ jk).
Then, still by and (2·2), the sum

∑
n∈Aj

Tn(Xnk , 2−jk ) is bounded above by Kj2 when j ≤
jk/η, and by Kj22η(j−jk/η) when j> jk/η. Hence by (2·8), for some constant K3 that may
change from line to line but does not depend on k or any of the moving parameters,

|S3| ≤ K3

�jk/η�∑
j=̃Jk+1

j2+α2−αηjB
− 1

2η
nk B

1
η
nk 2−j

+ K3

+∞∑
j=�jk/η�+1

j2+α2−αηjB
− 1

2η
nk B

1
η
nk 2−j2η(j−jk/η)

≤ K3B
1

2η
nk

⎛
⎝ �jk/η�∑

j=̃Jk+1

j2+α2−(1+αη)j + 2−jk
+∞∑

j=�jk/η�+1

j2+α2(η−1−αη)j

⎞
⎠ . (6·4)

The first sum above is bounded above by

�jk/η�∑
j=̃Jk+1

j2+α2−(1+αη)j ≤ K3j2+α
k 2−(1+αη)γ jk

and the second one by

2−jk
+∞∑

j=�jk/η�+1

j2+α2(η−1−αη)j ≤ K32−jk j2+α
k 2(η−1−αη)jk/η = K3j2+α

k 2− jk
η

(1+αη).

Since B
1
η
nk ∼ 2jk and jk = 2jkηεjk ∼ B

εjk
nk and γ < 1/η, we get that

|S3| ≤ K3j2+α
k 2−(1+αη)γ jk + K3j2+α

k 2− jk
η

(1+αη)

≤ K3B
(2+α)εjk − (1+αη)γ

η
nk .

Observe that since γ > 1 and εjk → 0, (1 + αη)γ /η− (2 + α)εjk > 1/2η+ α(1 + 2εjk ). So,

|S3| ≤ K3B
− 1

2η−α(1+2εjk )
nk , (6·5)

https://doi.org/10.1017/S0305004123000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000324


588 GUILLAUME SAËS AND STÉPHANE SEURET

this last inequality being very generous (S3 is much smaller than the term on the right–hand
side).

Combining (6·2), (6·3) and (6·5), and the fact that B
−εjk
nk → 0 when k tends to infinity, one

concludes that for every sufficiently large integers k,

|WF

(
B

− 1
η

nk , Xnk

)
| ≥ KB

− 1
2η−α(1+εjk )

nk . (6·6)

Assuming that f ∈ C α
δ
+ε(x0), we would have by Theorem 6·1 that for some K′ > 0,∣∣∣∣WF

(
B

− 1
η

nk , Xnk

)∣∣∣∣ ≤ K′B
− 1

2η
nk

(
B

− 1
η

nk + |x0 − Xnk |
) α
δ
+ε

≤ K′B
− 1

2η
nk

(
B

− 1
η

nk + B
−δ(1−̃εjk )
nk

) α
δ
+ε

≤ K′B
− 1

2η
nk B

−δ(1−̃εjk )( α
δ
+ε)

nk

since |x0 − Xnk | ≤ B
−δ(1−̃εjk )
nk . This contradicts (6·6) since the sequences (εj) and (̃εj)

converge to 0 as j → +∞. Consequently, f /∈ C α
δ
+ε(x0) for every ε > 0, hence the result.

To conclude this part, we would like to emphasise that this analysis is quite sharp since
the bounds obtained for S1, S2 and S3 are very tight (and the choice for ρ is key). Only the
fine study of isolated points made it possible to obtain this result.

Also, observe that the proof does not work any more when δ > 1/η, since in the last series

of inequalities |WF

(
B

− 1
η

nk , Xnk

)
|, the term B

− 1
η

nk + B
−δ(1−̃εjk )
nk can not be bounded by above

by B
−δ(1−̃εjk )
nk .

7. Multifractal spectrum of F

Recall that the study of the regularity of F is restricted to the interval [0, 1]. We start by
the range of possible exponents for F.

LEMMA 7·1. Almost surely, for every x ∈ [0, 1], αη≤ hF(x) ≤ α.

Proof. First, Proposition 4·2 yields that almost surely, for every x ∈ [0, 1], hF(x) ≥ αη.

Then, Theorem 3·1 gives [0, 1] = G′
1, and Proposition 6·2 ensures that every x ∈ G′

1

satisfies hF(x) ≤ α.

We are now able to describe the iso-Hödler sets EF(H) (defined in (0·2)) in terms of the Gδ
and G′

δ sets. Indeed, gathering the results proved in the previous sections (Propositions 5·1
and 6·2, and the monotonicity of the sets (Gδ)δ≥1 noted in Remark 3), one also sees that
almost surely:

(i) for all H ∈ [αη, α),

G′
α/H \

⋃
δ> α

H

Gδ ⊂ EF(H). (7·1)
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Indeed, when x ∈ G′α
H

, hF(x) ≤ α/(α/H) = H and when δ > α/H and x /∈ Gδ , hF(x) ≥ α/δ;
(ii) for all H ∈ [αη, α],

EF(H) ⊂
⋂
δ< α

H

Gδ . (7·2)

In order to obtain the multifractal spectrum of F, a preliminary step consists in estimating
the Hausdorff dimension and measures of the sets Gδ and G′

δ .
For h> 0, Hh, Hh

ξ stand respectively for the h-Hausdorff measure in R and the
α-Hausdorff pre-measure computed with coverings of sets of diameter less than ξ > 0.

PROPOSITION 7·2. With probability one, for every δ ∈ [1, 1/η], one has dimH Gδ ≤ 1/δ
and H1/δ(G′

δ) = +∞.

Proof. The upper bound dimH Gδ ≤ 1/δ follows by using as coverings of Gδ the family
{B(Xn, B−δ

n )}j≥J,n∈Aj , for J ≥ 1. For ε > 0,

H1/δ+ε
2−ηJ (Gδ) ≤

∑
j≥J

∑
n∈Aj

|B−δ
n |1/δ+ε.

By (2·2), and using that Bn ≤ 2jη when n ∈ Aj, one gets

H1/δ+ε
2−ηJ (Gδ) ≤

∑
j≥J

2ηj(1+εj)2−jη(1+εδ),

which is the rest of a convergent series. Hence H1/δ+ε(Gδ) = 0 and dimH Gδ ≤ 1/δ + ε.

The fact that H1/δ(G′
δ) = +∞ (giving the lower bound dimH G′

δ ≥ 1/δ) is more delicate.
The following mass transference principle [11, 22] is useful.

THEOREM 7·3. Let (xn)n∈N∗ be a real sequence in [0, 1]d (d ≥ 1) and (λn)n∈N∗ a
decreasing sequence of positive real numbers. For all δ ≥ 1, set

Lδ = lim sup
n→+∞

B(xn, λδn) =
⋂
N≥1

⋃
n≥N

B(xn, λδn).

If the d-dimensional Lebesgue measure L(L1) of L1 equals 1, then for all δ > 1, H d
δ (Lδ) =

+∞ and dimH(Lδ) ≥ d/δ.

Theorem 3·1 gives that G′
1 = [0, 1], almost surely. In particular, L(G′

1) = 1. Applying the

previous theorem to the (random) sequences xn = Xn and λn = B
−(1−̃εj)
n when n ∈ Aj yields

the claim of Proposition 7·2.
We are now in position to conclude the proof of Theorem 1·1.

Proof. First, by Lemma 7·1, only H ∈ [αη, α] need to be considered.

Then, (7·2) yields that almost surely, D[0,1]
F (H) = dimH (EF(H) ∩ [0, 1]) ≤ dimH Gδ , for

every δ > α/H. Proposition 7·2 yields dimH Gδ ≤ 1/δ, hence D[0,1]
F (H) ≤ H/α.

Finally, Proposition 7·2 gives simultaneously that HH/α(G′
α/H) = +∞ and

HH/α(Gδ) = 0 for every δ < α/H. So, HH/α(G′
α/H \ ⋃

δ> α
H

Gδ) = +∞, and by (7·1),
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HH/α(EF(H)) = +∞. This gives dimH EF(H) ≥ H/α, and by the remarks above
D[0,1]

F (H) = H/α.
When H = α, the same argument gives that L(EF(α) ∩ [0, 1]) = 1, i.e. EF(α) is of full

Lebesgue measure in [0, 1].

8. Almost-everywhere modulus of continuity

Le us explain how to obtain from what precedes the almost-everywhere modulus of
continuity for F, almost surely.

By a Theorem of Jaffard-Meyer ([36, Proposition 1·2]), the following (almost) equiva-
lence holds true.

THEOREM 8·1. Let f ∈ L∞
loc(R), x0 ∈R and H > 0.

If the function f has a local modulus of continuity θ at x0, then for some constant C> 0

∀(s, t) ∈ U , |Wf (s, t)| ≤ Ks
1
2 (θ(s) + θ(|x0 − t|)). (8·1)

Conversely, if f ∈ Cε(R) for some ε > 0, and if (8·1) holds, then there exist constants
η, C> 0 and a polynomial P such that setting j0 = �| log2 |x − x0|�, one has

∀x such that |x − x0| ≤ η, |f (x) − P(x − x0)| ≤ C inf
j≥j0

((j − j0)θ(|x − x0|) + 2−jε). (8·2)

Observe that if θ(h) = |h|β | log |h||γ with ε < β < 1, then the infimum at the right hand
side of (8·2) is (roughly) reached at j = j0β/ε, and (8·2) reduces to

|f (x) − P(x − x0)| ≤ C|x − x0|β | log |x − x0||γ .

Coming back to Proposition 6·2, let x0 ∈ G′
1. At the end of the proof, recall the lower

bound (6·6) for the wavelet coefficient |WF

(
B

− 1
η

nk , Xnk

)
| ≥ KB

− 1
2η−α(1+εjk )

nk .

Remembering that Bnk ∼ 2ηjk , the formulas for εjk and the fact that ε̃jk , and |x0 − Xnk | ≤
B

−(1−̃εjk )
nk , one successively has (for large integers k)

B
−εjk
nk ∼ | log jk|−1 ≥ C| log |x0 − Xnk ||,

B
−̃εjk
nk ∼ | log jk|−1 ≥ C| log |x0 − Xnk ||,
B−1

nk
≥ C|x0 − Xnk || log |x0 − Xnk ||,

for some constant C> 0 that depends on η only. Hence,

|WF

(
B

− 1
η

nk , Xnk

)
| ≥ KB

− 1
2η−α(1+εjk )

nk ≥ KB
− 1

2η
nk B−α

nk
| log |x0 − Xnk ||α

≥ KCB
− 1

2η
nk |x0 − Xnk |α| log |x0 − Xnk ||2α

≥ KC

2
B

− 1
2η

nk

(
θ(|x0 − Xnk |) + θ

(
B

− 1
η

nk

))
,

where θ(h) = |h|α| log |h||2α and where we used that B
− 1
η

nk << |x0 − Xnk |.
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This shows that almost surely, for every x ∈ G′
1, the modulus of continuity is larger than

|h|α| log |h||2α .

Let us now introduce the set

G̃1 = lim sup
j→+∞

⋃
n∈Aj

B(Xn, B
−(1+3εj)
n ).

Recalling (2·2), almost surely,∑
n∈Aj

|B
(

Xn, B
−(1+2εj)
n

)
| ≤ 2ηj(1+εj)2−ηj(1+3εj) = j−2.

Consequently, G̃1 has zero Lebesgue measure.
Then, a slight adaptation of the proof of Proposition 5·1 shows that almost surely, for

every x0 /∈ G̃1, there exists Kx0 > 0 such that for any x close to x0,

|F(x) − F(x0)| ≤ Kx0 |x − x0|α| log2 |x − x0||2+α .

The modification consists in replacing δ by 1 + 3εj, and adapting accordingly the computa-
tions.

The conclusion follows by considering the set G = G′
1 \ G̃1. Indeed, since G′

1 and G̃1

respectively have full and zero Lebesgue measure, G has full Lebesgue measure. And the
two arguments above show that almost surely, for every x0 ∈ G, the modulus of continuity
θx0 of F at x0 satisfies

|h|α| log |h||2α ≤ θx0 (h) ≤ |h|α| log2 |h||2+α ,

hence items (ii) and (iii) of Theorem 1·2.

9. Perpectives

The case where α > 1 is a possible extension of our paper.
It is also a natural question for applications to ask whether the sample paths of F satisfy a

multifractal formalism.
It would be interesting to determine whether F possess chirps or oscillating singularities,

i.e. locally behaves like

|x − x0|α| log |x − x0||β

around some points x0. Chirps are a key notion in many domains - for instance, the existence
of gravitational waves has been experimentally proved thanks to wavelet based-algorithms
able to detect chirps (that are the signature of coalescent binary black holes) in signals
extracted from the LIGO and VIRGO interferometers.

Finally, it is worth investigating the case where the series defining F does not converge
uniformly, this may occur for some choices of the parameters α and η (recall that in the
present paper, the uniform convergence follows from the sparse distribution of the pulses).
In this situation, the relevant quantities to analyse are the p-exponents of F as defined in
[35]: a function f belongs to Tp

α(x0) (which generalises the spaces Cα(x0)) when there exist
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a polynomial Px0 and a constant C> 0 such that

for every sufficiently small h> 0,

(
1

hd

∫
B(x0,h)

|f (x) − Px0(x−x0)|pdx

)1/p

≤ C|h|α .

Then the p-exponent is hp
f (x0) = sup{α ≥ 0 : f ∈ Tp

α(x0)}, and the multifractal analysis of the
p-exponents of F is a challenging issue.
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