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Abstract

There are 11 closed 4-manifolds which admit geometries of compact type (S4, CP2 or S2 x S2) and
two other closely related bundle spaces (S2xS2 and the total space of the nontrivial RP2-bundle
over S2). We show that the homotopy type of such a manifold is determined up to an ambiguity
of order at most 4 by its quadratic 2-type, and this in turn is (in most cases) determined by the
Euler characteristic, fundamental group and Stiefel-Whitney classes. In (at least) seven of the 13
cases, a PL 4-manifold with the same invariants as a geometric manifold or bundle space must be
homeomorphic to it.
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Keywords and phrases: 4-manifold, geometry, £-invariant, quadratic 2-type, Stiefel-Whitney
class.

0. Introduction

In this paper we shall attempt to characterize up to homotopy equivalence or
homeomorphism the closed 4-manifolds which admit geometries of compact
type (and two other closely related bundle spaces), in terms of the Euler char-
acteristic, fundamental group and Stiefel-Whitney classes. The corresponding
question for the geometries of noncompact type was considered in two earlier pa-
pers [9] and [10]. The solvable aspherical cases correspond to the 4-dimensional
infrasolvmanifolds, and these may be characterized up to homeomorphism by
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the conditions x — 0 and nx has a nilpotent normal subgroup of Hirsch length
at least 3 [9]. In the other aspherical cases the possible fundamental groups
are not yet well understood, but all contain nonabelian free subgroups, and the
5-dimensional s-cobordism theorem is not known over such groups. The three
geometries with models homeomorphic to S2 x R2 or S3 x R were studied in
greater detail in [10].

There are three geometries with compact models, namely S4,CP2 and S2 x S2.
The first two of these are easily dealt with, as there is only one other geometric
manifold, namely RPA, and for each of the two projective spaces there is one
other (non-smoothable) manifold of the same homotopy type. With the geometry
S2 x S2 we shall consider also the bundle space S2 x S2. There are eight S2 x S2-
manifolds, seven of which are total spaces of bundles with base and fibre each
S2 or RP2, and there are two other such bundle spaces covered by 52x52.

The universal covering space M of a closed 4-manifold M is homeomorphic
to S2 x S2 if and only if n = nx{M) is finite, X(M)\TT\ = 4 and w2{M) = 0.
(The condition w2(M) = 0 may be restated entirely in terms of M, but at
somewhat greater length). If these conditions hold and n is cyclic then M is
homotopy equivalent to an S2 x 52-manifold, except perhaps when n = Z/2Z
and M is nonorientable, in which case there are at most two other homotopy
types. However we have not been able to characterize completely the possible it-
invariants when n = (Z/2Z)2. Moreover, there is a further ambiguity of order at
most 4 in determining the homotopy type. If x (M) \n \ = 4 and w2(M) ^ 0 then
n = 1 or M is nonorientable and it = Z/2Z; in the latter case M = 52x52, there
are at most two possible actions of n on Z2, for each of which the ^-invariant
lies in a trivial group, and there is a further ambiguity of order at most 2.

The number of homeomorphism classes within each homotopy type is at most
two if n = Z/2Z and w2(M) = 0, at most four if it — Z/TL and w2(M) ^ 0
or n = Z/4Z, and at most eight if n = (Z/2Z)2. We do not know whether
there are enough exotic self homotopy equivalences to account for all the normal
invariants with trivial surgery obstruction. However a PL 4-manifold with the
same homotopy type as a geometric manifold or S2 x S2 is homeomorphic to it,
in (at least) nine of the 13 cases. (In seven of these cases the homotopy type is
determined by the Euler characteristic, fundamental group and Stiefel-Whitney
classes).
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1. The geometries S4 and CP2

The unique element of 0(5) = Isom(54) of order 2 which acts freely on S4

is - / . Therefore S4 and RP4 are the only S4-manifolds. The manifold S4 is
determined up to homeomorphism by the conditions x(S4) = 2 and TTI(S4) = 1
[4].

The manifold RP4 is determined up to homotopy equivalence by the condi-
tions x(Rp4) = 1 and 7Ti(RPA) = Z/2Z [13]. It follows easily from Theorems
13.A.1 and 13.B.5 of [16] thatthe surgery obstruction map c : [RP4, G/TOP] ->•
Z/2Z is onto and that the structure set Sj^iRP4) has two elements. (See the
discussion of nonorientable manifolds with fundamental group Z/2Z in Section
6 below for more details). As every self homotopy equivalence of RP4 is homo-
topic to the identity [13] there is one fake RP4. The fake RP4 is not smoothable
[14].

There are no nontrivial fixed point free actions on CP2, as any self map of
CP2 has non-zero Lefshetz number, and so it is the only C/)2-manifold. It
is determined up to homotopy equivalence by the conditions x(CP2) — 3 and
n = 1. In this case the surgery obstruction is determined by signatures and maps
[CP2, G/TOP] onto Z. The structure set ST0P(CP2) again has two elements,
and as every self homotopy equivalence of CP2 is homotopic to the identity
there is one fake CP2. The fake CP2 is also known as the Chern manifold Ch
or *CP2, and is not smoothable [4].

2. The geometry S2 x S2

The manifold S2 x S2 is determined up to homeomorphism by the conditions
X(S2 x S2) = 4, 7T!(52 x S2) = 1 and w2(S

2 x S2) = 0 [4]. Hence if M
is an S2 x S2-manifold its fundamental group n is finite, x(M)|7r| = 4 and
w2(M) = 0.

The isometry group of S2 x S2 is the semidirect product (0(3) x 0(3)) x (Z/2Z),
and is generated by the elements r, where x(x, y) = (y, x), and (A, B), where
A, B G 0(3). The involution r acts on 0(3) x 0(3) by r(A, B)x = (B, A)
for A, B e 0(3). In particular, (r(A, B)f = id if and only if AB = I, and
so such an involution fixes (x, Ax), for any x e S2. Thus there are no free
Z/2Z-actions in which the factors are switched. The element (A, B) generates a
free Z/2Z-action if and only if A2 — B2 — I and at least one of A, B acts freely,
that is if A or B = —I. After conjugation with r if necessary we may assume
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that B = — / , and so there are four conjugacy classes in Isom(S2 x S2) of free
Z/2Z-actions. (The conjugacy classes may be distinguished by the multiplicity
(0, 1,2 or 3) of 1 as an eigenvalue of A). In each case the projection onto the
second factor gives rise to a fibre bundle projection from the orbit space to RP2,
with fibre S2.

If the involutions (A, B) and (C, D) generate a free (Z/2Z)2-action then
{AC, BD) is also a free involution. By the above paragraph, one element of
each of these ordered pairs must be —/. It follows easily that (after conjugation
with r if necessary), the (Z/2Z)2-actioris are generated by pairs (A, —I) and
(—1,1), where A2 — I. Since A and —A give rise to the same subgroup,
there are two free (Z/2Z)2-actions. The orbit spaces are the total spaces of
RP2-bundles over RP2.

If (r(A, B))4 — id then (BA, AB) is a fixed point free involution and so
BA = AB = -I. Since (A, I)r(A, -A~l)(A, / ) " ' = r ( / , - / ) every free
Z/4Z-action is conjugate to the one generated by z(I, —I). The orbit space
does not fibre over a surface. (See below).

In the next section we shall see that these eight geometric manifolds may be
distinguished by their fundamental group and Stiefel-Whitney classes.

3. Bundle spaces

There are two 52-bundles over S2, since TT^SOQ)) = Z/2Z. The total
space S2 x S2 of the nontrivial 52-bundle over S2 is determined up to homotopy
equivalence by the conditions x(52x52) = 4 , ^!(52xS2) = 1, iu2(52x52) ^ 0
and CT(S2XS2) = 0. However there is one fake 52x52 . The bundle space is
homeomorphic to the connected sum CP2$ — CP2, while the fake version is
homeomorphic to Ch# — CP2 and is not smoothable [4].

Since the Kirby-Siebenmann obstruction of a closed 4-manifold is natural
with respect to covering maps and dies on passage to 2-fold coverings, the
nonsmoothable manifold Chft — CP2 admits no nontrivial free involution, and
so does not properly cover any other 4-manifold. The following lemma implies
that S2 x S2 admits no orientation preserving free involution, and hence no free
action of Z/4Z or (Z/2Z)2.

LEMMA 1. Let M be a closed 4-manifold with fundamental group n — Z/2Z
and universal covering space M. Then

(i) w2(M) = 0 if and only ifw2(M) = u2 for some u € H\M; Z/2Z); and
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(ii) if M is orientable and x(M) — 2 then w2(M) — 0 and so M = S2 x S2.

PROOF. The Cartan-Leray cohomology spectral sequence (with coeffi-
cients Z/2Z) for the projection p : M -> M gives an exact sequence

0 -* H2(7t; Z/2Z) -* H2(M; Z/2Z) -* H2(M; Z/2Z)

in which the right hand map is induced by p and has image in the subgroup
fixed under the action of it. Hence w2{M) — p*w2(M) is 0 if and only if
w2(M) is in the image of H2(JI; Z/2Z). Since n = Z/2Z this is so if and only
if w2(M) = u2 for some u e Hl(M; Z/2Z).

Suppose now that M is orientable and x(M) — 2. Then H2{n\ Z) =
H2(M; Z) = Z/2Z. The integral analogue of the above exact sequence implies
that the natural map from H2{jz; Z) to H2(M; Z) is an isomorphism and so
p*(H2(M; Z)) = 0. Since M is an orientable 4-manifold, w2{M) is the reduc-
tion of an integral class W2, by Lemma 6 of [3]. Hence w2(M) is the reduction
of p*W2 and so is 0. Therefore M = S2 x S2.

Since RP2 = Mb U D is the union of a Mobius band Mb and a disc D, an F-
bundle over RP2 is determined by a bundle over Mb which restricts to a trivial
bundle over 3Mb, that is by a conjugacy class of elements of order dividing
2 in 7r0(Homeo(F)), together with the class of a gluing map over 3Mb = 3D
modulo those which extend across D or Mb, that is an element of a quotient of
7r!(Homeo(F)). Hence there are four 52-bundles over RP2.

The orbit space M = (S2 x S2)/(A, -I) is orientable if and only if det(A) =
— 1. If A has a fixed point P e S2 then the image of {P} x S2 in M is an
embedded projective plane which represents a non-zero class in H2(M; Z/2Z).
If A — I or is a reflection across a plane, the fixed point set has dimension > 0
and so this projective plane has self intersection 0. As the fibre S2 intersects
this projective plane in one point and has self intersection 0 it follows that the
second Wu class v2(M) — w2{M) + w\{M)2 is 0 and so w2(M) = Wi(M)2 in
these two cases. If A is a rotation about an axis then the projective plane has self
intersection 1. Finally,if/l = —/ then the image of the diagonal {(x, x)\x e S2}
is a projective plane in M with self intersection 1 [5]. Thus in these two cases
v2{M) ^ 0. Therefore, by part (i) of the lemma, w2(M) is the square of the
non-zero element of Hl(M; Z/2Z) if A = —I and is 0 if A is a rotation. Thus
these bundle spaces may be distinguished by their Stiefel-Whitney classes, and
every 52-bundle over RP2 is geometric.
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The group E(RP2) of self homotopy equivalences of RP2 is connected and
the natural map from S O (3) to E (R P1) induces an isomorphism on iti, (cf. [8]).
Hence there are two /?/^-bundles over S2, up to fibre homotopy equivalence.
The total space of the nontrivial /?P2-bundle over S2 is the quotient of S2xS2

by the bundle involution which is the antipodal map on each fibre.
There are two /?/^-bundles over RP2. (The total spaces of each of the

latter bundles have fundamental group (Z/2Z)2, since wt : n -*• Z/2Z =
7ti(RP2) restricts nontrivially to the fibre, and so is a splitting homomorphism
for the homomorphism induced by the inclusion of the fibre). They may be
distinguished by their orientation double covers, and each is geometric.

4. The action of n on n2

The two inclusions of S2 as factors of S2 x S2 determine the standard basis
for ;r2(S2 x S2). Let

be the matrix of the intersection form • on TT2(S
2 X S2), with respect to this

basis. The group Aut(±«) of automorphisms of 7T2(S
2 X S2) which preserve this

intersection form up to sign is the dihedral group of order eight, and is generated
by the diagonal matrices and / or

* • ( - . ; ) •

The subgroup of strict isometries has order four, and is generated by — / and / .
(Note that the isometry J is induced by the involution T).

Let / be a self-homeomorphism of S2 x S2 and let /» be the induced auto-
morphism of 7T2(S

2 x S2). The Lefshetz number of / is 2 + trace(/») if /
is orientation preserving and trace(/,,) if / is orientation reversing. As any
self homotopy equivalence which induces the identity on 7T2 has non-zero Lef-
shetz number, the natural representation of a group n of fixed point free self
homeomorphisms of S2 x S2 into Aut(±») is faithful.

Suppose first that / is a free involution, so f2 = I. If / is orientation
preserving then trace(/*) = —2, so /* = —/. If / is orientation reversing, then
trace(/*) = 0, so
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Note that if / ' = r / r then /„' — —/», so after conjugation by r if necessary we
may assume that /* = J K.

If / generates a free Z/4Z-action the induced automorphism must be ±K.
Note that if / ' = r / r then /„' = —/*, so after conjugation by r if necessary we
may assume that ft = K.

Since the orbit space of a fixed point free action of (Z/2Z)2 on S2 x S2 has
Euler characteristic 1, it is nonorientable, and so the action is generated by
two commuting involutions, one of which is orientation preserving and one of
which is not. Since the orientation preserving involution must act via — / and
the orientation reversing involutions must act via ±J K the action of (Z/2Z)2 is
essentially unique.

The standard inclusions of S2 = CPl into the summands of

CP2$-CP2 = S2xS2

determine a basis for 7r2(S
2xS2) = Z2. Let J = (Q _°j) be the matrix of the

intersection form • on 7t2(S
2 x S2) with respect to this basis. The group Aut(±i)

of automorphisms of ;r2(S2xS2) which preserve this intersection form up to
sign is the dihedral group of order eight, and is also generated by the diagonal
matrices and J = (°Q)- The subgroup of strict isometries has order four, and
consists of the diagonal matrices. A nontrivial group of fixed point free self
homeomorphisms of S2 x S2 must have order 2, since S2 x S2 admits no fixed
point free orientation preserving involution. If / is an orientation reversing free
involution of S2 x S2 then /* = ±J. The automorphism induced by the fibrewise
antipodal map is —J, as this map clearly changes the sign of the homotopy class
of the fibre, which has self intersection 0. Is J also realizable by an orientation
reversing involution?

5. The homotopy type

We shall assume henceforth that M is a closed connected 4-manifold with
finite fundamental group n and that x(M)\n\ = 4. Moreover we may choose
a basis for n2(M) = Z2 so that the corresponding basis of the intersection
form on TT2(M) is / or J, as in Section 4. The quadratic 2-type of M is the
quadruple [n, TT2(M), K(M), S(M)], where K(M) e H\n\ TT2(M)) is the first
A>invariant of M and S(M) is the intersection form on n2(M) = H2{M\ Z).
Two such quadruples [n, n , K, S] and [n', IT, K', 5'] are equivalent if there is
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an isomorphism a : n —> n' and an isometry /} : (U, S) -> (IT, S') which is
a-equivariant (that is, such that /3(gm) = a(g)f3(m) for all g € TX and m e U)
and p*K — a*tc' in H3(n, a* IT). If M is orientable and TX is cyclic then the
equivalence class of the quadratic 2-type determines the homotopy type [6]. In
particular, if TX = 1 the manifold M is homotopy equivalent to S2 x S2, S2 x S2

or CPHCP2. (See Addendum.)
The argument of [6] has been reformulated and extended in Theorem II.7.12

of [1]. If M is non-orientable we may adapt Baues' argument by using the
orientation TX -module Z and the Wi-twisted transfer tr : F(^2) ®n Z —>• T{TX2),

denned by tr(x <g> 1) — T,gewwl(g)x.g, instead of the augmentation module Z
and the ordinary transfer. In all cases T(Z2) = T(Z) © T(Z) © (Z O Z) = Z3,
as an abelian group.

LEMMA 2. Let M be a closed 4-manifold with fundamental group n = Z/2Z
and universal covering space S2 x S2. Then the first k-invariant of M is a
non-zero element of H3'{n•; TX2(M)).

PROOF. Let Pi{M) be the second stage of the Postnikov tower for M, and let
CM — ghifhi be the factorization of the classifying map cM : M ->• K{n, 1) =
Z?/300 through fu : M -»- P2(M) and gM : P2(Af) - • K(n, 1). The first
^-invariant is the primary obstruction to the existence of a cross-section to cM

and is the only obstruction to the existence of such a cross-section for gM.
The only non-zero differentials in the Cartan-Leray cohomology spectral

sequence (with coefficients Z/2Z) for the projection p : M —*• M are at the
£3* level. By the results of Section 4, n acts trivially on H2(M; Z/2Z), since
M = S2 x S2. Therefore E f = £2

22 = (Z/2Z)2 and E5
3° = Ef = Z/2Z. Hence

EH + °> s o £ S m a P s o n t o H\M; Z/2Z) = Z/2Z and

d\2 : Z / 1 ^ ; //2(M; Z/2Z)) - • H4(n; Z/2Z)

must be onto. But in this region the spectral sequence is identical with the
corresponding spectral sequence for P2(M). It follows that the image of
H4(n; Z/2Z) = Z/2Z in H4(P2(M); Z/2Z) is 0, and so gM does not admit
a cross-section. Thus K(M) ^ 0.

If n — Z/2Z and M is orientable then n acts via — / on Z2 and the ^-invariant
is a non-zero element of //3(Z/2Z; n2(M)) = (Z/2Z)2. The isometry which
transposes the standard generators of Z2 is it -linear, and so there are just two
equivalence classes of quadratic 2-types to consider. The ^-invariant which is
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invariant under transposition is realised by (S2 x S2)/(—I, —I), while the other
^-invariant is realized by the orientable bundle space with w2 = 0 [6]. Thus M
must be homotopy equivalent to one of these spaces.

If jr = Z/2Z, M is nonorientable and w2{M) = 0 then H3(n\ TZ2(M)) —
Z/2Z and there is only one quadratic 2-type to consider. The product space
S2 x RP2 is characterized by the additional conditions that w2{M) = u>i(M)2

and that there is an element u e H2(M; Z) which generates an infinite cyclic
direct summand and is such that u U u = 0 [8]. The nontrivial nonorientable
S2-bundle over RP2 has w2(M) - 0. As ker tr = (Z/2Z)2 there are at most
two other homotopy types of 4-dimensional Poincare" complexes within this
quadratic 2-type. (There are in fact four such homotopy types, one of which is
not realizable by a closed 4-manifold [11]).

If n = Z/2Z and w2(M) ^ 0 then there are two possible actions of n
on Z2; we do not know whether both can be realized, but in either case,
H3(nx\ n2{M)) = 0. (Note that in this case the argument of Lemma 2 breaks
down because E2^ = 0). The nontrivial RP2-bundle over S2 is characterized by
the additional condition that there is an element u G H2(M; Z) which generates
an infinite cyclic direct summand and such that uUu — 0 [8]. As ker tr = Z/2Z
there is at most one other homotopy type with the same quadratic 2-type as this
bundle space.

If n ^ Z/4Z then H3{n\ n2(M)) = ker(/ + / , + f2 + / , 3 ) / ( / - / , ) =
Z2/(/ — A^Z2 = Z/2Z. The ^-invariant is non-zero, since it restricts to the
^-invariant of the orientation double cover. In this case tr is injective and so M
is homotopy equivalent to (S2 x S2)/r(I, —/).

Suppose now that n = (Z/2Z)2 is the diagonal subgroup of Aut(±») <
GL(2, Z), and let a be the automorphism induced by conjugation by J. The
standard generators of n2(M) — Z2 generate complementary 7r-submodules, so
that TT2(M) is the direct sum Z©a*Z of two infinite cyclic modules. The isometry
P = J which transposes the factors is a-equivariant, and it and V = {±/} act
nontrivially on each summand. If p is the kernel of the action of n on Z then
a(p) is the kernel of the action on a*Z, and p Ha(p) = 1. As the projection
of n = p © V onto V is compatible with the action, H*(V; Z) is a direct
summand of H*(n\ Z). This implies in particular that the differentials in the
LHS spectral sequence HP(V; Hq{p; Z)) =>• Hp+q{n; Z) which end on the row
q = 0 are all 0. Hence / / V i ; Z) = Hl(V; Z/2Z) © H3(V; Z) = (Z/2Z)2.
Similarly / / V , ; a * Z ) = (Z/2Z)2, and so H3(7tu n2(M)) = (Z/2Z)4. The
it-invariant must restrict to the A:-invariant of each double cover, which must be
non-zero, by Lemma 2. As H3(p; Z) = H3(a(p); a*l) = 0 and H3(p; a*Z) =
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/ /3(a(p); Z) = Z/2Z, there are at most four possible k-invariants. Moreover,
the automorphism a and the isometry fi = J act on the ̂ -invariant by transposing
the factors. As there are either zero or two such ^-invariants which are invariant
under this transposition, there are either two or three equivalence classes of
quadratic 2-types to be considered. In this case ker tr = (Z/2Z)2, and so there
are at most 12 homotopy types of such manifolds.

6. Surgery

In the present context, every homotopy equivalence is simple since Wh(7r) =
0 for all groups n of order < 4 [7].

Suppose first that n = Z/2Z. Then// '(M; Z/2Z) = Z/2Zandx(M) = 2, so
H2(M; Z/2Z) = (Z/2Z)2. If M isorientablethen[M, G/TOP] = Z©(Z/2Z)2.
The surgery obstruction groups are L5(Z/2Z,+) = 0 and L4(Z/2Z,+) =
Z2, where the surgery obstructions are determined by the signature and the
signature of the double cover, by Theorem 13.A.I of [16]. If M is non-
orientable then [M, G/TOP] = (Z/2Z)3, and the surgery obstruction of a
4-dimensional normal map g : M ->• G/TOP is the Kervaire-Arf invariant
c(g) € L4(Z/2Z, - ) = Z/2Z, while L5(Z/2Z, - ) = 0, by Theorem 13.A.1
of [16]. Now c(g) = w(M)g*K[M] = (w2(M) U g*k2 + g*Sq2k2)[M] =
((w2(M) + v2(M)) U g*k2)[M] = (wi(M)2 U g*k2)[M], by Theorem 13.B.5
of [16]. As W\{M) is not the reduction of a class in Hl(M; Z/4Z) its square
Wi (M)2 is non-zero; as every element of H2{M; Z/2Z) is equal to g*k2 for some
such g the map c : [M, G/TOP] -> Z/2Z is onto. Hence it follows from the
surgery exact sequence that 5TOP(M) = (Z/2Z)2 whenever it = Z/2Z.

TheZ/2Z-Hurewiczhomomorphismfrom7T2(M) to H2(M; Z/2Z) = (Z/2Z)2

has cokernel H2(n; Z/2Z) = Z/2Z. Therefore there is a map P : S2 -> M such
that^[52] # Oin //2(M; Z/2Z). If, moreover, w2(M) = 0 then P*w2(M) = 0,
since ft factors through M. Let fp — (idM, fir)Sr])s where r\ is the Hopf map
and s : M -> M v S4 is the pinch map obtained by shrinking the boundary of
a 4-disc in M. Then /^ is a self homotopy equivalence of M and its normal
invariant in [M, G/TOP] is nontrivial, by the argument of Theorem 16.5 of
[16]. (See also Section 5 of [2]). Hence there are at most two homeomorphism
classes within the homotopy type of M if it = Z/2Z and w2(M) = 0.

When TZ = Z/4Z or (Z/2Z)2 the manifold M is nonorientable, since x(M) =
1. If n = Z/4Z then [M, G/TOP] = (Z/2Z)2 and the surgery obstruction
groups L4(Z/4Z, - ) and L5(Z/4Z, - ) are both 0, by Theorem 3.4.5 of [17].
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Hence STOP(M) = (Z/2Z)2. If it = (Z/2Z)2 then [M, G/TOP] = (Z/2Z)4 and
the surgery obstruction groups are L5((Z/2Z)2, - ) = 0 and L4((Z/2Z)2, - ) =
Z/2Z, by Theorem 3.5.1 of [17]. The homomorphism wx{M) : (Z/2Z)2 - •
Z/2Z induces an isomorphism from L4((Z/2Z)2, —) onto L4(Z/2Z, —) and so
the surgery obstruction is again given by the Kervaire-Arf invariant. We now
find that 5TOP(M) = (Z/2Z)3. The argument above for the existence of exotic self
homotopy equivalences does not apply as the Z/2Z-Hurewicz homomorphism
is 0 in these cases.

The image of [M, G/PL]in[Af, G/TOP] is a subgroup ofindex 2 (see Section
15 of [15]). It follows that if M is the total space of an S2-bundle over RP2 then
any homotopy equivalence / : N ->• M where N is also PL is homotopic to a
homeomorphism. (For then STOP(M) has order 4, and the nontrivial element of
the image of 5PL(M) is represented by an exotic self homotopy equivalence of
M. The case M = S2 x RP2 was treated in [12]). This is also true if M - S4,
RP4, CP2, S2 x S2 or S2xS2. Is it true for the nontrivial RP2-bundle over S2

and the remaining three S2 x S2-manifolds?

Addendum

The manifold CPHCP1 and CP2$Ch also have n = 1, x = 4 and w2 # 0.
However, it is not hard to see that they do not admit any free involutions.
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