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Variance components of fitness under stabilizing selection
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Summary

Variance components of fitness under the stabilizing selection scheme of Wright (1935) for metric
characters are calculated, extending his original analysis to the case with any number of alleles and
multiple characters assuming additivity of gene effects. They are calculated in terms of the
moments of the effects of alleles at individual loci for the metric characters. From these formulas,
the variance components of fitness are evaluated at the mutation-selection equilibria predicted by the
'Gaussian' approximation (Lande, 1976), which is applicable if the per locus mutation rate is high,
and the 'House of Cards' approximation (Turelli, 1984), which is applicable if the per locus
mutation rate is low. It is found that the additive variance of fitness is small compared to non-
additive variance in the 'Gaussian' case, whereas the additive variance is larger than non-additive
variance in the 'House of Cards' case if the number of loci per character and the number of
characters affected by each locus are not too large. With the assumption that a significant portion
of fitness is due to this type of stabilizing selection, it is suggested that the real parameters are in
the range where the 'House of Cards' approximation is applicable, since available data on
variance components of fitness components in Drosophila show that the additive variance is far
larger than the non-additive variance. It is noted that the present method does not discriminate the
two approximations if the average values of the metric characters deviate from the optimum
values. Other limitations of the present method are also discussed.

rates are not too high (Turelli, 1984, 1986). These two
1. Introduction approximations give different predictions as to the
Natural populations have considerable genetic vari- dependence of genetic variance on mutation and
ation with respect to most metric characters. One of selection parameters and the number of loci. For
the mechanisms proposed to account for the main- example, once the gametic mutation rate is fixed for the
tenance of their variation is the balance between quantitative character, the 'Gaussian' approxima-
stabilizing selection and mutation (Latter, 1960). tion predicts that the equilibrium variance is pro-
Stabilizing selection acts against deviants from an portional to the square root of the number of
optimal value and mutation supplies new deviants, contributing loci and to the average magnitude of
thus creating the equilibrium state. Among the mutation, while the ' House of Cards' approximation
varieties of models, one which is simple and appeals to predicts that it is independent of both the number of
our biological intuition is the one originally proposed loci and the magnitude of mutation (Turelli, 1984).
by Kimura (1965), and extended by Lande (1976) and However, it is difficult to find methods which will
Fleming (1979). It assumes that gene effects are distinguish between these and other models,
additive for the quantitative character, that reduction One possible method is to utilize genetic covariances
of the fitness is proportional to the square of the of relatives to make inferences about the magnitudes
phenotype deviation from the optimum (Wright, of additive, dominance and epistatic components of
1935) and that the effects of segregating alleles are variance (Cockerham, 1963, 1980). Although the
normally distributed. metric character is additive in the present context,

Since the model equation cannot be solved exactly, fitness, when considered as a metric character, does
two types of approximation, ' Gaussian' and ' House have non-additive components. Although estimates of
of Cards', have been proposed. The former is variance components of fitness are not available at
applicable when per locus mutation rates are high, present, there have been several experimental studies
while the latter is applicable when per locus mutation which carried out this genetic variance decomposition
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in fitness components, viability and fecundity, in
Drosophila (Mukai et al. 1974; Mukai & Nagano,
1983; Tachida et al. 1983; Kusakabe & Mukai, 1984;
Rose & Charlesworth, 1981), and those studies have
almost invariably shown that dominance and epistatic
variances are small in comparison with the additive
variance.

In the present paper we calculate additive,
dominance and epistatic variances of fitness in terms
of the moments of the original metric characters at
individual loci in Wright's stabilizing selection model.
Wright (1935) calculated the variances due to a single
metric character in terms of effects and frequencies of
genes assuming two alleles at each locus, but for our
purposes a general setting which allows any number
of alleles at each locus and any number of metric
characters with pleiotropy is necessary. Although
Lande (1976), Fleming (1979) and Turelli (1984)
assumed the normal function, exp( — cY2), where Y is
the deviation from the optimum of the metric
character, instead of the quadratic function, 1—cY2,
to express stabilizing selection, the results are almost
the same at equilibrium because the equilibrium
phenotypic variance is small compared to (1/c), and
in this case the normal function is well approximated
by the square function.

2. Model, effects and components of variance

Let X = (x1,x2, ...,xr)
T be the vector of phenotypic

values of r metric characters of an individual affected
by n loci in such a way that gene effects and
environmental effects are all additive,

(1)

M, a and e are the vectors of the means, additive
effects of genes and the environmental effects,
respectively. The subscripts 1 and 2 distinguish the
effects due to the maternally and paternally derived
genes. Some loci may not contribute to every metric
character, in which case the a's take zero values. The
environmental effects are assumed to be multivariate
normally distributed, N(0, Ve) and independent of the
genotypic values, M+'^l"_1(an + ai2). We assume
linkage equilibrium and no inbreeding, so that all a
vectors are mutually independent. With these assump-
tions, the variance-covariance matrix, Vx, of X is

where mk, Aik and eik are the fcth elements of the
vectors M—d, A, = aa + a{2 and e, respectively.
Although the general form of the fitness function is

W{Y)= \-($

where W is a symmetric positive definite matrix (see
Lande, 1980 for the normal version of this type of
fitness function), there is an orthogonal trans-
formation T of Y which transforms this expression
into the form of (2) without violation of any
assumptions already made or any consequent loss of
generality. If we view this as an approximation to the
normal function used by Lande (1976) and Turelli
(1984) in the single character case, c's correspond to
their (2W2)"1.

In the following, we use subscripts /,7'and h to index
loci and k and / to index characters. The summations
are from 1 to n for the former and from 1 to r for the
latter.

Next we decompose the fitness value into effects
and their variances using conditional expectations. To
distinguish fitness and components of fitness from the
primary metric characters, we use Greek letters to
denote the former. The genotypic value, T, for the
fitness of genotype / is

r=E[W(Y)\I]=l-Z ck{{mk + S Aikf + E[el)},
k i

where E[ ] and E[ | /] denote expectations without
conditioning and conditioned on the genotype /,
respectively. The mean fitness, /i, for the population
is

=l-j; ct(tn VAk+ Vek), (3)

where VAk and Vek are the fcth diagonals of the
variance-covariance matrices VA and Ve, respectively.
The environmental component, e, of fitness for
genotype / is

Atk)

with a variance of

x («, + S Atl) E[ek e,] + E\e\ ef\ - Vek VJ.

where Vai is the variance-covariance matrix of the
genie effects at the rth locus. The total genetic
variance-covariance matrix for the metric trait is

We consider a fitness function W{ Y) based on F =
X—d, where 6 is the vector of the optimum values,
such that

= 1 - £ cky\= 1 - £ ctL+ £ (2)

This leads to an environmental variance of fitness in
the population of

Au])} (4)
i

where Vekl is the kith element of Ve. The last term in
the parentheses may be viewed as genotype by
environment interaction variance (Wright, 1935).
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The additive fitness effect, a,, of the rth gene is
defined as

at = E[W{Y)\i]-n = - S ck{al- Vaik + 2mkalk)
k

where Vaik is the kth diagonal element of Val. The
variance of a( is

M = 2 2 ckCl{E\a\kaft-Vaik Vail
k I

+ 4mkE[aik aft

The total additive variance, cr\, for fitness is the sum
of these terms over 2n genes,

Ar I

+ 4mk E[aik aft + 4mk mt E[aik au]}. (5)
The dominance and additive-by-additive effects and

variances are due to interaction of distinct pairs of
genes and can be handled in the same way. Let ai} be
the interaction effect for genes i and j . Since

E[W{Y)\i,j\ = 1 -2 4 K + 2S Vank+ Vek

+ ( 4 - Vaik) + ( 4 - Vaik) + 2a(k ajk
+ 2mk(a{k + ajk)],

then

with variance

For each pair of loci there are four of these variances,
each with the same value, so that the total additive-by-
additive variance is

(6)

There is one dominance variance for each locus, which
leads to a total dominance variance of

(7)

Since a\A is the sum of 2«(n—1) terms over all
characters and cr% is the sum of n similar terms over all
characters, <rAA becomes large compared to <r2

D as n
increases, as was noted by Wright (1935) for the case
of a single character with two alleles per locus.

Interaction effects for three and more genes can be
shown to be zero, or alternatively, one can show that
the total variance in fitness is composed of

The higher-order interaction variances do not appear
because the fitness function W(Y) is quadratic. If the
fitness function has higher-order terms, corresponding
higher interaction variances of fitness will be non-
zero.

With appropriate data on fitness or some of its
components, the genetic variance components of

fitness can be estimated utilizing covariances of
relatives (Cockerham, 1963, 1980).

3. Equilibrium structures for the 'Gaussian' and the
'House of cards' approximation

To evaluate the genetic variance components of fitness,
and their equilibrium values, we need the moments for
genotypic value of the metric characters at each locus.
These moments are calculated from the equilibrium
functions obtained by the ' Gaussian' and the ' House
of Cards' distribution approximations (Lande, 1980;
Turelli, 1984, 1985). For both approximations,
the equilibrium means, mk, and the third moments,
E[a^kau], are zero if the effects of mutation are
symmetric as originally assumed, but the two approxi-
mate distributions are distinguished by their kurtosis.
Let <D,t be the measure of kurtosis for the Ath charac-
ter at the rth locus defined as

For the Gaussian model this is one. For the House of
Cards model, an analytical form is not available for
the general r-character case, but for the single-
character case, corresponding to the case of no
pleiotropy, from (3-15) of Turelli (1984) an approxi-
mation is obtained as

<*><* = ckVm{k/3u((l+2 ckVek), (8)

where w, is the mutation rate at the rth locus and Vmik

is the variance of the effect of a mutation on the kth
character at that locus. Where the House of Cards
model is applicable, Vmtk >̂ Vaik ~ w((l +2ck Vek)/ck

and O( is large compared to one. For the case of two
characters, a reviewer pointed out that, from equation
(2.5) in the appendix of Turelli (1985), the kurtosis
(<J>(1) of the first character is expressed as

Ofl = (2fl+ I K Vmil/3ut(\ +2Cl Vel)

where # = (c2 Vmi2/c1 Vmil)* > 0, if the effects of both
mutation and environment on the two characters are
uncorrelated. Thus the kurtosis becomes even larger
compared to the single-character case with the same
parameters. Although the general formula for <S>(k is
unknown, a large kurtosis can be expected to be a
general feature for the House of Cards approximation.

Utilizing the measure of kurtosis and the other
equilibrium conditions, the genetic variance com-
ponents of fitness at equilibrium are

- l)f Vaatk Vail

t<i

where nm (< 1) is the correlation coefficient of a\k and
a\. From these expressions, we see that the magnitude

4-2
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of crA relative to <r2
D decreases as the number of

characters increases unless all 77's are one.
For the Gaussian approximation (<S = 1), o2

A is not
greater than ar2

D. In the evaluation of a2
AA, note that

there are probably a lot of zeros among VAi's if we
consider all the loci contributing to fitness through
metric characters. To assess the magnitude of <r2

AA in
comparison with <r2

A and <T2
D, let us consider an

idealized situation where the loci and quantitative
characters contributing to fitness are divided into
subsets, each subset of loci controlling one of the
subsets of characters. In other words, these subsets of
loci have no pleiotropic connexions or fitness inter-
actions with each other. There may be many such
subsets. Because of the assumption of linkage
equilibrium, the variance components of fitness
measurable are sums of the variance components for
respective subsets of loci and the relative magnitude of
the total crAA to the total <r2

A or <r% is the ratio of the
sums over these subsets and in this sense an average
over them. Thus, we consider one of these subsets and
use the same notations n and r to denote the numbers
of loci and characters of this limited subset of loci,
respectively. If Vaflc = Valc and nm = nkl for all loci

ctrrkl Vak Val ckct Vak Val = a*,

For the House of Cards approximation, on the other
hand, when there are equal variances, covariances and
kurtosis for all loci,

< = 2n 2 S ck c, nkl {(3*t - 1) x (3<D, -1)}* VAk Val,
k I

and the relative magnitude of the additive variance to
other components therefore depends on kurtosis. If
the additional assumption is made that all characters
are symmetric, so that ck = c, Vak = Va, nkl = n(k + I)
and <J>fc = O, then the variance components of fitness
are

crA = 2«(3<D-1)[1 + ( r - \)n]rc2 V\
<r2

D=4nc2r2V2
a

crAA=8n(n-l)c2r2V2
a.

Thus, <r2
A is larger than <rAA if

For example, in the single-character case (r — 1), if
u =10 - 5 , Ve=l, c = 0-026, Km = 0-05, which are
within the plausible range according to Turelli (1984),
O = 41 from the approximate formula (8) in com-
parison to the exact value of 47 obtained by numerical
methods. In any case, <P is large and <rA is larger than
<rAA for n < 31. The number of loci under which aA is
larger than <rAA will decrease as the number, r, of

characters with pleiotropy increases unless the
correlation coefficient, n, is one.

In summary, in the parameter range where the
'Gaussian' approximation applies, the additive
variance is equal to or smaller than the dominance
variance, and both are much smaller than the additive-
by-additive variance. In contrast, in the parameter
range where the 'House of Cards' approximation
applies, the additive variance is much larger than the
dominance variance and larger than the additive-by-
additive variance, unless the number of loci and the
number of pleiotropic characters becomes too large.

4. Discussion

In order to make inferences about the maintenance
mechanism from experimental results of fitness
components such as viability and fecundity, not fitness
itself, we must make two assumptions. The first one is
that a significant part of the fitness component is due
to the type of stabilizing selection acting on metric
characters described in the present paper. In a
mutation accumulation experiment, Mukai (1969)
showed that the decrease of average viability of the
lines had a significant quadratic component with
respect to the number of generations of accumulation,
although later experiments with shorter accumulation
periods did not show this trend (Mukai et al. 1972;
Ohnishi, 1977). Secondly, it is well established that the
average viability of homozygous lines is lower than
that of heterozygous lines (see Dobzhzansky, 1970). In
the present model, if the inbreeding coefficient, F, is
not zero, then (3) becomes

Kl (9)

Thus we expect inbreeding depression, as noted by
Lande & Schemske (1985). Finally, genotype-
environment interaction expected from (4) has
been reported in viability (Dobzhansky & Levene,
1955; Tachida & Mukai, 1985). Although these
characteristics are also explained by other models,
they are compatible with the present model.

The second assumption is that fitness components
for those loci controlling these metric characters are
proportional to their total fitness. This is a somewhat
controversial issue. Simmons, Preston & Engels
(1980) and Yamazaki & Hirose (1984) reported that
the correlation coefficient between the total fitness and
the viability is not significantly different from zero,
whereas Mackay (1986) reported otherwise in
homozygous lines. If the correlation is not substantial,
the mean of the metric character may be different
from the optimum. We will return to this point
later.

In a series of experiments conducted by Mukai's
group, the additive and dominance variances of
viability at the chromosomal level, denoted by Ma2

A

and Ma2
D, were estimated using Drosophila mel-
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anogaster captured from several natural populations
(Mukai et al. 1974; Tachida et al. 1983; Mukai &
Nagano, 1983; Kusakabe & Mukai, 1984). These two
variances are related to the variance components of
the present model in the following way:

<T\ = or

= <r
A
2+<T2 /2

(10)

From table 1 of Mukai (1985), which summarizes the
results of these experiments with other unpublished
results, we see that Ma\ is always greater than M<r2

D

(ten times greater except for one population). This
i m p l i e s <r2

A ^> cr2
D,crAA.

Rose & Charlesworth (1981) estimated the additive
and dominance variances of fecundity and longevity
of Drosophila melanogaster using sib analysis. Since
longevity is clearly not proportional to fitness, we will
discuss their results on fecundity. Their additive and
dominance variances, R(r2

A and R<T2
D, are related to the

variance components as follows:

(11)

where R is the recombination rate between a pair of
loci, and the overbar in the first equation is used to
indicate an average over all pairs of loci. Since
(1 — 2R)2 is less than or equal to one, their result shows
t h a t Rcr2

A ^> Rcr2
D, w h i c h a g a i n i m p l i e s <rA >̂ <r2

D,cr2
AA.

From the previous section, the parameter range
where the ' Gaussian' approximation applies predicts
aA "̂  CAA f°r fitness, whereas that where the ' House of
Cards' approximation applies predicts various
relationships depending on the relative magnitude of
the number of loci to kurtosis. The two experiments
mentioned above indicate that the 'Gaussian'
approximation is not applicable if the two assumptions
made at the beginning of this section hold. They are
compatible with the ' House of Cards' approximation
if the numbers of loci and pleiotropic characters are
not too large compared to the kurtosis of the
distribution of the genetic value of the metric
characters at each locus. Here the number of loci
means the number of loci of a subset of all loci
contributing to fitness, explained in the previous
section. Of course, all loci may be interrelated and it
may not be possible to divide them into unrelated
subsets. However, we expect many elements of Vai's
are zero and therefore the number of loci of each
effectively unrelated subset is relatively small com-
pared to the total number of loci contributing to
fitness. The number of loci in this sense is not well
known at present. Some experiments show that total
genomic mutation rates for metric characters are of
the order of 001 in maize and mouse (Russel, Sprague
& Penny, 1963; Hoi-Sen, 1972). If we assume that the
per locus mutation rate is less than 10"4, the number
of loci becomes greater than 100, in which case the
'House of Cards' approximation may also have larger

additive-by-additive variance and is incompatible
with these experiments. However, there are some
uncertainties in interpreting these data for high
mutation rates (see the discussion on pp. 175-178 of
Turelli, 1984).

In the present analysis we assumed linkage
equilibrium among loci. Since a slight linkage dis-
equilibrium is known to occur in these models (Lande,
1976), it is necessary to evaluate the effect of it on our
conclusion. This can be done for the 'Gaussian'
approximation for one character using the covariances
between genie effects calculated by Lande (1976). The
effect is found to be negligible unless linkage among
loci is very tight. Because the calculation is very
technical, it is given in the Appendix. We may expect
that this is also true for the 'House of Cards'
approximation.

If the means of metric characters are different from
the optima, inflation of the additive variance through
the fourth term on the right-hand side of Equation (5)
occurs. This may happen if the mean is at another
equilibrium (the existence and stability of these other
equilibria were shown for the two-allele model by
Barton, 1986), or if the mean effect of mutation is
different from zero (Lande, 1980). Generally speaking,
if the magnitude of the square of the deviation is of
the order of the genetic variance due to one locus, the
additional term is of the same order as the first term
in (5) in the Gaussian case and the conclusion does
not change. However, if the deviation is large, the
additive variance for fitness may be larger than the
additive-by-additive variance also in the Gaussian
case. Then the comparison of the additive and
additive-by-additive genetic variances does not have
the power to discriminate between these two
approximations.

One of the major limitations of this study is that we
used data on one of the components of fitness rather
than the total fitness for which the present theory was
developed, because data on total fitness are not
available. Thus, our conclusion with regard to the
appropriateness of the two approximations depends
critically on the assumption that the fitness component
measured is proportional to total fitness. This is very
difficult to test because of the polygenic nature of the
genes contributing to fitness.

Appendix

Effects of linkage disequilibrium on the estimation of
variance components when the Gaussian
approximation is appropriate

Here we demonstrate that linkage disequilibrium does
not affect the conclusion significantly in the' Gaussian'
approximation unless linkage among loci is very tight.
Our strategy is to show that the covariances of
relatives used in the experiments are not affected much
by linkage disequilibrium. We consider Mukai's
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experiments. In his experiments, Ma\ and Ma\ are
estimated by the variance {v&x[W(X)]} and the
covariance {co\[W(X), W(Y)]} between two indi-
viduals, A'and Y, who share one second chromosome
using the following formulas:

(Al)
, W(Y))

M<r% = var [ W{X)\ - 2 cov [ W[X), W{ Y)].

Under linkage equilibrium, these variances and
covariances are expressed in terms of the additive,
dominance and additive-by-additive variances and we
obtain relationship (10). Here we calculate var [ ^ ] ,
taking linkage disequilibrium into account under the
' Gaussian' approximation, and show that it does not
differ much from that under linkage equilibrium. The
same is true for co\[W(X), W(Y)].

For simplicity we consider one characer and also
ignore the effect of the environment. Since the mean of
the character is zero in the ' Gaussian' approximation,
the fitness function is

(A 2)

In order to make the distinction clear, we use e[ ] to
denote an expectation under linkage disequilibrium.
The underlying distribution is a multivariate normal.
Then, after straightforward though tedious calcu-
lations, we obtain

var[W(Y)] = c\2 £ {eK]-(e[a2J)2} + 4 £ e[a2j2

^ ] e[an an] + 4(e[an an])
2}

+ e[a2
n]e[analcl]

+ 2e[ailan]e[ailakl]}

+ e[ailan]e[aklall]}). (A3)

Note that the first three terms are the additive,
dominance and additive-by-additive variances,
respectively, calculated using the one-locus marginal
distribution [see (5), (6) and (7) of the text]. The
remaining terms are due to linkage disequilibrium.
There are n(n— 1), n(n— \)(n — 2) or n(n— 1)(« — 2)
(« —3) terms for the summation with two, three or
four £s .

To evaluate these, we calculate moments of a's using
the multivariate normal distribution obtained by
Lande (1976). For simplicity, we assume that all loci
are equivalent. Then, from (21 a) and (21 b) of Lande

(1976), the correlation coefficient, p, of two a's at
different loci is

and A = {$
(A 4)

where R and Vg are the recombination rate between
two loci and the genetic variance of the quantitative
character, respectively, and other parameters are the
same as in the text. For the ' Gaussian' approximation
to be appropriate, one of the necessary conditions
listed in Lande (1976) is

(Vj<AU/n

where U = £ ut is the gametic mutation rate [see (24)
of Lande, 1976]. Thus

\p\4U/(nR). (A 5)

Using the correlation coefficient, p, and Va = e[a(
2j,

the second-last term in (A 3) is

vvw
ZJZJZJZJ '

e[an a}1 akl an] = 3c2 n(n - 1) x (n - 2)

x («-3) p2VI « 3c2«(n -1 ) (U/Rf V\ (A 6)

The magnitude of U is thought to be of the order
10"2 (see Turelli, 1984) and the additive genetic
variance is 8c2n(«— \)V\. Therefore, unless the
gametic mutation rate is much greater than the
recombination rate, the contribution of this term to
var[ff(y)] is negligible compared to that of the
additive-by-additive genetic variance of fitness. All
other terms due to linkage disequilibrium are shown
to be negligible in a similar way.

We thank Drs R. Lande, M. Turelli, B. S. Weir, T. Wright,
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