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Abstract
In this paper, we consider the problem of sustainable harvesting. We explain how the manager maximizes his/her
profit according to the quantity of natural resource available in a harvesting area and under the constraint of
penalties and fines when the quota is exceeded. We characterize the optimal values and some optimal strategies
using a verification result. We then show by numerical examples that this optimal strategy is better than naive ones.
Moreover, we define a level of fines which insures the double objective of the sustainable harvesting: a remaining
quantity of available natural resource to insure its sustainability and an acceptable income for the manager.

1. Introduction

Natural resources management is the balance between harvesting and its ecological implications. It
is important to harvest in such a way that a species is sustainable and not becoming endangered or
going extinct. For instance, according to the Food and Agriculture Organization of the United Nations,
three quarters of the world’s fish stocks are fully exploited or over-exploited and the proportion of
those stocks that are too intensively exploited is growing. These statistics prove the fact that natural
resources need to be managed with an effective and carefully defined objective in order to prevent over-
harvesting and to allow the depleted stock to replenish. As a consequence, scarce resource management
increasingly involves restoration and conservation objectives, along with the more conventional eco-
logical and economic objectives that are identification of desirable levels of the natural resource and
profitability from harvesting. Recent examples are the restoration plans discussed and/or adopted by
the European Commission for several collapsed stocks in the E.U. waters, or the international com-
mitment by the countries present at the 2002 Johannesburg Summit on Sustainable Development to
return fisheries to levels allowing their maximum sustainable yield by 2015. For example, the objec-
tive of the precautionary approach promoted by the International Council for the Exploitation of the
Sea region is to maintain spawning stock above a limit reference point Blim, while keeping fishing
mortality below a limit Flim. A criticism of this approach is that it adopts a viewpoint which is too
ichthyocentric, as it focuses on the conservation of fish populations and stocks only. Social and eco-
nomic considerations are not included and the question of an acceptable income for the manager is not
considered.

The key idea of this paper is to maximize harvest in a sustainable manner, since we want the greatest
catch to supply the demand for the natural resource, but we do not want to deplete the population to keep
diversity of resources and allow it to be harvested in the future. The concept of sustainable harvesting
refers to methods designed not to over-exploit the resources, leads to the definition of measures and rules
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including fines delivered by authorities to avoid over-harvesting. The theoretical problem is, therefore,
to determine a cost rule for fines in order to allow the conservation of the natural resources that are
exploited by humans according to a sustainable perspective. In this respect, the amount of fines and/or
prohibition on harvesting are to ensure that the natural resource population does not fall below a certain
threshold that guarantees its natural renewal. But it must also allow the manager to make profits to
prevent him/her going bankrupt.

Efficiency in managing the exploitation of manager resources has been widely analyzed in resource
literature. In general terms, these studies use deterministic models that consider that an efficient pol-
icy consists of maintaining the exploitation levels of the harvesting ground at steady-state values.
Clarke and Reed [3,15] introduced price and growth uncertainty in a forest harvest model, model-
ing the price process as geometric Brownian motion and assuming stock growth to be age or size
dependent. Recently, some papers consider the case when the growth of the a fish stock is stochas-
tic, for example Danielsson [5], Weitzman [20] and Nostbakken [12], and others consider the price
is stochastic, for example Murillas and Chamorro [11] and Nostbakken [12]. In these cases, opti-
mal control theory has proven to be a suitable technique to design optimal harvesting strategies
(see, e.g., [4,8,16]).

The purpose of this study is to analyze how uncertainty in stock growth and price, prohibition to
harvest if the quantity of natural resource available is smaller than a level and tax influence the optimal
harvest of the natural resource. In our modeling, managers are controlled at fixed dates, while harvesting
is continuous depending on the quantity of natural resource available in the harvesting region (the natural
resource population evolves according to a logistic stochastic differential equation). They are prohibited
to harvest if the quantity of natural resource is lower than a level when there is a control, and they must
pay a fine in case of exceeding their harvesting quota at the maturity of the problem. They are therefore
seeking to maximize their profit, that is, the quantity of natural resource to harvest given the condition
of prohibition and the fine to be paid if their quota is exceeded.

Unlike the other articles dealing with this issue (see, e.g., [13]), the selling price of natural resource
is not constant; it seems reasonable to assume that the price depends on the quantity of natural resources
remaining in the harvesting region. Consequently, it is endogenous to the problem of sustainable
harvesting. That can be justified because the evolution of the price according to scarcity is a basic rule
in economics. Given that, we will show how the resolution of this problem allows, on the one hand, to
explain the behavior of the manager according to the amount of the fines, and, on the other hand, to fix
a rule of price for the fines to guarantee a sustainable harvesting.

The remainder of this article is structured as follows. Section 2 presents the problem formulation:
the function of the expected profit for manager and its two value functions. Section 3 characterizes the
value functions by a verification result involving Hamilton Jacobi Bellman (HJB in short) equations.
Section 4 provides numerical results and interpretations which allow us to understand how the manager
adapts his/her strategy w.r.t. the fines. This allows to fix a level of fines to insure the sustainability of
the resource. Concluding remarks are offered in Section 5.

2. Problem formulation

2.1. The model

Let (Ω, F , P) be a complete probability space. We assume that this space is equipped with two one-
dimensional standard Brownian motions 𝐵 and 𝑊 . We denote by F := (F𝑡 )0≤𝑡≤𝑇 the right continuous
complete filtration generated by these two Brownian motions, where 𝑇 is a positive constant which
corresponds to the maturity of the problem. We assume that the correlation between the two Brownian
motions is given by 〈𝐵,𝑊〉𝑡 = 𝜌 𝑡.

In the sequel, we consider a manager who can harvest in a harvesting area, and we denote by 𝑋𝑡 the
quantity of natural resource available in this area at time 𝑡. In the past, several articles, see for example
Schaefer [18] or Pella and Tomlinson [14], proposed to use a logistic model to represent the natural
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resource growth if there is no harvest, this model is given by

𝑑𝑋𝑡 = 𝜂𝑋𝑡 (𝜆 − 𝑋𝑡 )𝑑𝑡,

where 𝜂 and 𝜆 are positive constants, 𝜂𝜆 corresponds to the intrinsic rate of population growth and 1/𝜆 is
the carrying capacity of the environment. The model is interesting since it is well known that, for natural
resource stocks, the growth rate is inversely related to the stock level because of natural constraints, and
that is well represented with the logistic growth model (see, e.g., in [4]). However, since the evolution
of the natural resource depends on perturbations due to environmental and other factors, we add a term
which models these perturbations by using a Brownian motion, which is called the classical logistic
stochastic differential equation (see, e.g., [17]) and given by

𝑑𝑋𝑡 = 𝜂𝑋𝑡 (𝜆 − 𝑋𝑡 )𝑑𝑡 + 𝛾𝑋𝑡𝑑𝐵𝑡 ,

where 𝜂, 𝜆, and 𝛾 are three positive constants. It is well known that the previous SDE admits a unique
strong solution that does not reach either zero or infinity in finite time. Furthermore, it has a closed-form
formula (see, e.g., [19]). The product 𝜂𝜆 corresponds to the intrinsic rate of population growth and 1/𝜆
is the carrying capacity of the environment. This model is, for example, used in Nostbakken [12] or
Kvamsdal et al. [10]. We assume that the manager can harvest this resource and we denote by 𝛼𝑡 the
harvest rate at time 𝑡. For a given strategy 𝛼 = (𝛼𝑡 )0≤𝑡≤𝑇 , 𝑋𝛼𝑡 denotes the associated quantity of natural
resource available at time 𝑡, thus this one follows the stochastic differential equation

𝑑𝑋𝛼𝑡 = 𝜂𝑋𝛼𝑡 (𝜆 − 𝑋𝛼𝑡 )𝑑𝑡 + 𝛾𝑋𝛼𝑡 𝑑𝐵𝑡 − 𝛼𝑡𝑑𝑡.

The manager sells the harvest on the market at time 𝑡 for the price 𝑃𝑡 by unit, where the price 𝑃 evolves
according to the following stochastic differential equation

𝑑𝑃𝑡 = 𝑃𝑡 (𝜇(𝑋𝛼𝑡 )𝑑𝑡 + 𝜎𝑑𝑊𝑡 ),

where 𝜎 is a positive constant and 𝜇 is a map from R+ to R+ which corresponds to the drift of the
price. We can see in the literature that some authors choose to model the price by a geometric brownian
motion (see, e.g., [11] or [12]), that means the map 𝜇 is a constant in our case. We propose to add a
dependence of 𝜇 w.r.t. the quantity of the resource since we can remark, in fish or wood markets for
instance, that if the quantity of the resource is low then the price is expensive. In Kvansdal et al. [10],
the authors assume that the price is mean-reverting and depends on the harvest rate. More precisely, a
higher harvest makes the price lower. Here, we model a scarce resource management where the price
depends more on the available quantity of resource than on the harvest.

(H𝜇) 𝜇 : R+ → R+ is a nonincreasing and Lipschitz continuous: there exists a positive constant 𝐿
such that

|𝜇(𝑥) − 𝜇(𝑥 ′) | ≤ 𝐿 |𝑥 − 𝑥 ′ |,

for all 𝑥, 𝑥 ′ ∈ R+.
In Assumption (H𝜇), the monotonicity condition means the greater is the quantity of natural resource

available the lower is the price of the natural resource.
We consider a positive increasing sequence (𝑇𝑖)1≤𝑖≤𝑁 where each 𝑇𝑖 represents the time at which the

regulatory body checks the quantity of natural resource available 𝑋𝛼 with𝑇𝑁 = 𝑇 . We assume that𝑇𝑖 is a
constant for any 𝑖 ∈ {1, . . . , 𝑁}. If 𝑋𝛼𝑇𝑖 > Γ, then the manager can continue to harvest, if 𝑋𝛼𝑇𝑖 ≤ Γ, then the
manager can no more harvest until the next checking time. If so, the first time the manager is permitted
to resume harvesting can be represented mathematically as follows: 𝜏𝛼𝑖 := inf{𝑇𝑘 , 𝑘 ≥ 𝑖 : 𝑋𝛼𝑇𝑘 > Γ}.

We define the set A of admissible controls as the set of strategies 𝛼 which are an F-adapted process
defined in [0, 𝑎̄], 𝑋𝛼 is nonnegative and 𝛼 is null on [𝑇𝑖 , 𝜏𝛼𝑖 ) for any 1 ≤ 𝑖 ≤ 𝑁 . The harvest rate is
upper bounded by the constant 𝑎. This last assumption is natural since the manager has some technical
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constraint and he/she cannot harvest more than a given quantity, which depends for example, on the
fishing boat or the truck’s dump body volume when harvesting trees.

The standard assumption that an agent seeks to maximize the expected present value of net revenues
from the harvesting on the interval [0, 𝑇] to the dynamic constraints is made. Thus, the objective of the
manager is given by

𝑉0(𝑥, 𝑝) := sup
𝛼∈A
E

[∫ 𝑇

0
𝑒−𝛽𝑡 (𝑃𝑡𝛼𝑡 − 𝐶 (𝛼𝑡 ))𝑑𝑡 − 𝑒−𝛽𝑇 𝑓 ((Γ − 𝑋𝛼𝑇 )+, 𝑃𝛼𝑇 )

]
, (2.1)

and finding an optimal strategy 𝛼∗ ∈ A such that

𝑉0(𝑥, 𝑝) = E
[∫ 𝑇

0
𝑒−𝛽𝑡 (𝑃𝑡𝛼∗

𝑡 − 𝐶 (𝛼∗
𝑡 ))𝑑𝑡 − 𝑒−𝛽𝑇 𝑓 ((Γ − 𝑋𝛼

∗
𝑇 )+, 𝑃𝛼∗

𝑇 )
]
,

where 𝛽 is a positive constant corresponding on the discount rate, (·)+ denotes the positive part, 𝐶 is a
positive increasing convex function representing the cost of harvesting, and 𝑓 is a map from R+ ×R+ to
R+ which corresponds to a tax that the manager must pay if at time 𝑇 the quantity of natural resource
available 𝑋𝛼𝑇 is lower than the level Γ. This tax depends on the quantity of natural resource available and
also on the natural resource price at time 𝑇 . Indeed, if the tax does not depend on the natural resource
price, then the manager would be willing to pay it if the natural resource price is high since the earnings
by selling the harvest will hedge the tax. On the contrary, if the natural resource price is low, then these
earnings do not hedge the tax, and the manager would not accept to pay.

(H 𝑓 ) 𝑓 : R+ ×R+ → R+ is a nondecreasing and Lipschitz function w.r.t. both of its arguments: there
exists a positive constant 𝐿 such that

| 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥 ′, 𝑦′) | ≤ 𝐿(|𝑥 − 𝑥 ′ | + |𝑦 − 𝑦′ |),

for all (𝑥, 𝑦), (𝑥 ′, 𝑦′) ∈ R+ × R+, and 𝑓 (0, 𝑦) = 0 for any 𝑦 ∈ R+.

2.1.1. An example of explicit solution
We describe in this paragraph a case where an explicit solution to (2.1) can be computed.

Take 𝑓 ≡ 0, 𝛾 ≡ 0, and 𝐶 (𝑎) = −𝑎2/2 for 𝑎 ∈ [0, 𝑎̄]. Suppose that 𝑋𝑎 and 𝑃 are given by

𝑋𝛼𝑡 = 𝑥 +
∫ 𝑡

0
𝜂𝑋𝛼𝑠 (𝜆 − 𝑋𝛼𝑠 )𝑑𝑠 −

∫ 𝑡

0
𝛼𝑠𝑑𝑠

𝑃𝑡 = 𝑝 +
∫ 𝑡

0
𝑃𝑠

(
𝜇𝑑𝑠 + 𝜎𝑑𝐵𝑠)

for 𝑡 ∈ [0, 𝑇], where 𝜇 and 𝜂 are constants and 𝜆 and 𝜎 are positive constants. We recall that the process
𝐵 is a standard one-dimensional Brownian motion. The value function is then given by

𝑉0(𝑥, 𝑝) = sup
𝛼∈A
E

[∫ 𝑇

0
𝑒−𝛽𝑡

(
𝑃𝑡𝛼𝑡 −

𝛼2
𝑡

2

)
𝑑𝑡

]
.

Proposition 2.1. Suppose that

𝜂𝜆2

4
> 𝑎̄ (2.2)

𝑥 ∈ (𝑥−, 𝑥+) (2.3)
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and

𝑥−+ 𝑥+−𝑥−
𝑥−𝑥+
𝑥−𝑥− 𝑒

−𝜂 (𝑥+−𝑥−)𝑇 − 1
≥ Γ (2.4)

where

𝑥± =
1
2

(
𝜆 ±

√
𝜆2 − 4

𝑎̄

𝜂

)
.

Then, an optimal strategy is given by

𝛼∗
𝑡 = 𝑃𝑡 ∧ 𝑎̄, 𝑡 ∈ [0, 𝑇],

and we have

𝑉0(𝑥, 𝑝) = E
[∫ 𝑇

0
𝑒−𝛽𝑡

(
𝑃𝑡 (𝑃𝑡 ∧ 𝑎̄) − (𝑃𝑡 ∧ 𝑎̄)2

2

)
𝑑𝑡

]
=

∫ 𝑇

0
𝑒−𝛽𝑡

(
𝑝2

2
𝑒 (2𝜇+𝜎

2)𝑡𝐹

(
log(𝑎̄𝑝) − (𝜇 + 3𝜎2

2 )𝑡
𝜎
√
𝑡

)
+𝑝𝑎𝑒𝜇𝑡𝐹

(
log( 𝑝𝑎̄ ) + (𝜇 + 𝜎2

2 )𝑡
𝜎
√
𝑡

)
− 𝑎̄2

2
𝐹

(
log( 𝑝𝑎̄ ) + (𝜇 − 𝜎2

2 )𝑡
𝜎
√
𝑡

))
𝑑𝑡,

where 𝐹 is the cumulative distribution function of N(0, 1).

Proof. We proceed in four steps.
Step 1. We first notice that the value function can be rewritten as

𝑉0(𝑥, 𝑝) = sup
𝛼∈Ā
E

[
𝑁−1∑
𝑖=0

∫ 𝑇𝑖+1

𝑇𝑖

𝑒−𝛽𝑡
(
𝑃𝑡𝛼𝑡 −

𝛼2
𝑡

2

)
1𝑋 𝛼𝑇𝑖 ≥Γ𝑑𝑡

]
,

where Ā is the set of strategies 𝛼 which are F-adapted processes defined in [0, 𝑎̄] such that 𝑋𝛼 is
nonnegative.

Step 2. Denote by 𝑋 𝑎̄ the solution to the SDE

𝑋 𝑎̄𝑡 = 𝑥 +
∫ 𝑡

0
𝜂𝑋 𝑎̄𝑠 (𝜆 − 𝑋 𝑎̄𝑠 )𝑑𝑠 −

∫ 𝑡

0
𝑎̄𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

Then 𝑋 𝑎̄ is uniquely defined as a solution to a locally Lipschitz ordinary differential equation and by
using the classical results about Riccati equation, we get

𝑋 𝑎̄𝑡 = 𝑥−+ 𝑥+−𝑥−
1 − 𝑥−𝑥+

𝑥−𝑥− 𝑒
−𝜂 (𝑥+−𝑥−)𝑡 , 𝑡 ∈ [0, 𝑇] .

From (2.3), we get that 𝑋 𝑎̄ is nondecreasing. Then, from (2.4), we get

𝑋 𝑎̄𝑡 ≥ Γ > 0 (2.5)

for all 𝑡 ∈ [0, 𝑇].
Step 3. We next have

𝑋𝛼𝑡 ≥ 𝑋 𝑎̄𝑡 , 𝑡 ∈ [0, 𝑇] .
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for any adapted process 𝛼 valued in [0, 𝑎̄]. Indeed, denote by 𝛿𝑋 the process 𝑋𝛼 − 𝑋 𝑎̄. This process is
solution to

𝛿𝑋𝑡 =
∫ 𝑡

0
𝛿𝑋𝑠Δ𝑠𝑑𝑠 +

∫ 𝑡

0
(𝑎̄ − 𝛼𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇],

with Δ𝑡 = 𝜂(𝜆 − 𝑋𝛼𝑡 − 𝑋 𝑎̄𝑡 ). Therefore, we get

𝛿𝑋𝑡 = 𝑒
∫ 𝑡
0 Δ𝑠𝑑𝑠 +

∫ 𝑡

0
𝑒−

∫ 𝑡
0 Δ𝑠𝑑𝑠 (𝑎̄ − 𝛼𝑠)𝑑𝑠 ≥ 0

for all 𝑡 ∈ [0, 𝑇].
Step 4. We deduce from (2.5), Step 2 and Step 3 that

𝑋𝛼𝑡 ≥ 𝑋 𝑎̄𝑡 ≥ Γ > 0

for any 𝑡 ∈ [0, 𝑇] and any adapted process 𝛼 valued in [0, 𝑎̄]. Therefore, Ā is the set of adapted
processes 𝛼 valued in [0, 𝑎̄] and we have

𝑉0(𝑥, 𝑝) = sup
𝛼∈Ā
E

[∫ 𝑇

0
𝑒−𝛽𝑡

(
𝑃𝑡𝛼𝑡 −

𝛼2
𝑡

2

)
𝑑𝑡

]
.

Maximizing the term inside the integral we get from the first-order condition

𝛼∗
𝑡 = 𝑃𝑡 ∧ 𝑎̄, 𝑡 ∈ [0, 𝑇],

and we have

𝑉0(𝑥, 𝑝) = E
[∫ 𝑇

0
𝑒−𝛽𝑡

(
𝑃𝑡 (𝑃𝑡 ∧ 𝑎̄) − (𝑃𝑡 ∧ 𝑎̄)2

2

)
𝑑𝑡

]
.

Following a computation similar to that of the Call and Put prices in the Black & Scholes model, we have

E[𝑃𝑡 (𝑃𝑡 ∧ 𝑎̄)] = 𝑝2𝑒 (2𝜇+𝜎
2)𝑡𝐹

(
log( 𝑎̄𝑝 ) − (𝜇 + 3𝜎2

2 )𝑡
𝜎
√
𝑡

)
+ 𝑝𝑎̄𝑒𝜇𝑡𝐹

(
log( 𝑝𝑎̄ ) + (𝜇 + 𝜎2

2 )𝑡
𝜎
√
𝑡

)
and

E[(𝑃𝑡 ∧ 𝑎̄)2] = 𝑝2𝑒 (2𝜇+𝜎
2)𝑡𝐹

(
log( 𝑎̄𝑝 ) − (𝜇 + 3𝜎2

2 )𝑡
𝜎
√
𝑡

)
+ 𝑎̄2𝐹

(
log( 𝑝𝑎̄ ) + (𝜇 − 𝜎2

2 )𝑡
𝜎
√
𝑡

)
,

which allows to get the final expression for 𝑉0(𝑥, 𝑝). �

In the previous example, we are able to derive a computable representation of the value function and
give the associated optimal strategy. This model remains relevant as it takes into account the harvesting
effort via the quadratic term 𝛼2

𝑡 . Moreover, the explicit computation of the optimal strategy can be done
since the conditions on the parameters ensure the constraint related to Γ. We notice that this optimal
strategy is nondecreasing in the price resource 𝑃𝑡 and the maximal effort 𝑎̄. This behavior is quite
natural as for a higher price, the manager should harvest more to increase the gain.
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Unfortunately, we cannot always compute explicit solutions for our optimization problem due to the
complexity of the state space. We therefore provide in the sequel a PDE characterization of the value
function.

2.2. The value function

In order to provide an analytic characterization of the value function 𝑉0 defined by (2.1), we need to
extend the definition of this control problem to general initial conditions.

Unfortunately, the considered controlled system is not Markovian. Indeed, the control process 𝛼 is
subject to the constraint that is fixed only at each time 𝑇𝑘 but holds over [𝑇𝑘 , 𝑇𝑘+1). Thus, we need to
keep in mind the constraint and we therefore consider two cases (we can harvest or we can not) and two
value functions. This approach is inspired by Bruder and Pham [1] who consider a delayed controlled
system. They enlarge the controlled system to make it Markovian. Similarly, we enlarge our system by
adding a parameter which indicates whether the agent is allowed to harvest or not on the considered
period [𝑇𝑘 , 𝑇𝑘+1). However, we notice that our resulting partial differential equation (in short PDE) is
different from theirs since we get a coupled system whereas they get a recursive one.

For any 𝑡 ∈ [0, 𝑇], 𝑥 ≥ 0 and 𝑖 ∈ {0, 1}, we denote A𝑡 ,𝑖 (𝑥) the set

A𝑡 ,𝑖 (𝑥) := {𝛼 = (𝛼𝑠)𝑡≤𝑠≤𝑇 , 𝛼𝑠 is F𝑠-measurable and valued in [0, 𝑎̄],
𝛼𝑠 = 0 on [𝑡, 𝜏𝛼𝑞 (𝑡) ) if 𝑖 = 0,

𝛼𝑠 = 0 on [𝑇𝑘 , 𝜏𝛼𝑘 ) for any 𝑞(𝑡) + 1 ≤ 𝑘 ≤ 𝑁},

where 𝑞(𝑡) := sup{ 𝑗 , 𝑇𝑗 ≤ 𝑡}.
Let Z := R+ × (0, +∞) × {0, 1}. For 𝑧 = (𝑥, 𝑝, 𝑖) ∈ Z and 𝛼 ∈ A𝑡 ,𝑖 (𝑥), we denote by 𝑍 𝑡 ,𝑧,𝛼 :=

(𝑋 𝑡 ,𝑥,𝛼, 𝑃𝑡 ,𝑧,𝛼, 𝐼 𝑡 ,𝑧,𝛼) the triple of processes defined by

𝑋 𝑡 ,𝑥,𝛼𝑠 = 𝑥 +
∫ 𝑠

𝑡

𝜂𝑋 𝑡 ,𝑥,𝛼𝑢 (𝜆 − 𝑋 𝑡 ,𝑥,𝛼𝑢 )𝑑𝑢 +
∫ 𝑠

𝑡

𝛾𝑋 𝑡 ,𝑥,𝛼𝑢 𝑑𝐵𝑢 −
∫ 𝑠

𝑡

𝛼𝑢𝑑𝑢,

𝑃𝑡 ,𝑧,𝛼𝑠 = 𝑝 +
∫ 𝑠

𝑡

𝜇(𝑋 𝑡 ,𝑥,𝛼𝑢 )𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑢 +
∫ 𝑠

𝑡

𝜎𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑊𝑢 ,

𝐼 𝑡 ,𝑧,𝛼𝑠 = 𝑖�𝑡≤𝑠<𝑇𝑞 (𝑡 )+1 +
𝑁−1∑

𝑘=𝑞 (𝑡)+1

�𝑋 𝑡,𝑥,𝛼𝑇𝑘
>Γ�𝑇𝑘 ≤𝑠<𝑇𝑘+1 .

For any 𝑡 ∈ [0, 𝑇] and 𝑧 ∈ Z, we consider the value function 𝑣 defined by

𝑣(𝑡, 𝑧) := sup
𝛼∈A𝑡,𝑖 (𝑥)

E

[∫ 𝑇

𝑡

𝑒−𝛽 (𝑠−𝑡) (𝑃𝑡 ,𝑧,𝛼𝑠 𝛼𝑠 − 𝐶 (𝛼𝑠))𝑑𝑠 − 𝑒−𝛽 (𝑇 −𝑡) 𝑓
((Γ − 𝑋 𝑡 ,𝑥,𝛼𝑇 )+, 𝑃𝑡 , 𝑝,𝛼𝑇 )

]
.

We also consider the two value functions 𝑣0 and 𝑣1 defined on [0, 𝑇] × R+ × (0, +∞) by

𝑣(𝑡, 𝑧) = 𝑣0(𝑡, 𝑥, 𝑝)�𝑖=0 + 𝑣1(𝑡, 𝑥, 𝑝)�𝑖=1.

The value function 𝑣0 corresponds to the case where at time 𝑡 the manager can not harvest until the
next checking time, while the value function 𝑣1 corresponds to the case where at time 𝑡 the manager can
harvest.
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3. HJB characterization

We use the HJB equation to characterize the value functions 𝑣0 and 𝑣1. The HJB equations related to
the value functions 𝑣0 and 𝑣1 are for any 𝑥 ∈ R+ and 𝑝 ∈ (0, +∞)⎧⎪⎪⎨⎪⎪⎩

−𝜕𝑡𝑣0(𝑡, 𝑥, 𝑝) − L0𝑣0(𝑡, 𝑥, 𝑝) = 0, 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤ 𝑗≤𝑁
𝑣0(𝑇−

𝑗 , 𝑥, 𝑝) = 𝑣0(𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑣1(𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ, 𝑗 ∈ {1, . . . , 𝑁 − 1}
𝑣0(𝑇−

𝑁 , 𝑥, 𝑝) = − 𝑓 ((Γ − 𝑥)+, 𝑝)
(3.1)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜕𝑡𝑣1(𝑡, 𝑥, 𝑝) − sup

0≤𝑎≤𝑎̄
{L𝑎𝑣1(𝑡, 𝑥, 𝑝) + 𝑝𝑎 − 𝐶 (𝑎)} = 0, 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤ 𝑗≤𝑁

𝑣1(𝑇−
𝑗 , 𝑥, 𝑝) = 𝑣0(𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑣1(𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ, 𝑗 ∈ {1, . . . , 𝑁 − 1}

𝑣1(𝑇−
𝑁 , 𝑥, 𝑝) = − 𝑓 ((Γ − 𝑥)+, 𝑝),

(3.2)

where L𝑎 is the operator associated to the diffusions

L𝑎𝜑 = −𝛽𝜑 + 𝜂𝑥(𝜆 − 𝑥)𝜕𝑥𝜑 + |𝛾𝑥 |2
2

𝜕2
𝑥𝜑 + 𝜇(𝑥)𝑝𝜕𝑝𝜑 + |𝜎𝑝 |2

2
𝜕2
𝑝𝜑 + 𝜌𝜎𝛾𝑝𝑥𝜕2

𝑝𝑥𝜑 − 𝑎𝜕𝑥𝜑.

Let 𝐶0 be the set of continuous functions and 𝐶1,2 be the set of functions that are differentiable with
continuous derivative in their first argument and twice differentiable with continuous second derivatives
in their second argument. We have the following verification result.

Theorem 3.1. Let 𝑤0 and 𝑤1 be two functions in 𝐶1,2 ([𝑇𝑗 , 𝑇𝑗+1) × R+ × (0, +∞)) ∩ 𝐶0([𝑇𝑗 , 𝑇𝑗+1] ×
R+ × (0, +∞)) for any 𝑗 ∈ {0, . . . , 𝑁 − 1}, with 𝑇0 = 0, and satisfying a quadratic growth condition,
that is, there exists a positive constant 𝐶 such that

|𝑤0 (𝑡, 𝑥, 𝑝) | + |𝑤1 (𝑡, 𝑥, 𝑝) | ≤ 𝐶 (1 + |𝑥 |2 + |𝑝 |2), ∀ (𝑡, 𝑥, 𝑝) ∈ [0, 𝑇] × R+×(0, +∞).

(i) Suppose that for any 𝑥 ∈ R+ and 𝑝 ∈ (0, +∞), we have⎧⎪⎪⎨⎪⎪⎩
−𝜕𝑡𝑤0 (𝑡, 𝑥, 𝑝) − L0𝑤0 (𝑡, 𝑥, 𝑝) ≥ 0, 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤ 𝑗≤𝑁
𝑤0(𝑇−

𝑗 , 𝑥, 𝑝) ≥ 𝑤0 (𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑤1 (𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ, 𝑗 ∈ {1, . . . 𝑁 − 1}
𝑤0(𝑇−, 𝑥, 𝑝) ≥ − 𝑓 ((Γ − 𝑥)+, 𝑝)

(3.3)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜕𝑡𝑤1(𝑡, 𝑥, 𝑝) − sup

0≤𝑎≤𝑎̄
{L𝑎𝑤1(𝑡, 𝑥, 𝑝) + 𝑝𝑎 − 𝐶 (𝑎)} ≥ 0, 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤𝑖≤𝑁

𝑤1(𝑇−
𝑗 , 𝑥, 𝑝) ≥ 𝑤0 (𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑤1(𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ, 𝑗 ∈ {1, . . . 𝑁 − 1}

𝑤1(𝑇−, 𝑥, 𝑝) ≥ − 𝑓 ((Γ − 𝑥)+, 𝑝).
(3.4)

Then, the function 𝑤 defined by 𝑤(𝑡, 𝑧) := 𝑤0(𝑡, 𝑥, 𝑝)�𝑖=0 + 𝑤1(𝑡, 𝑥, 𝑝)�𝑖=1 satisfies 𝑤(𝑡, 𝑧) ≥ 𝑣(𝑡, 𝑧)
on [0, 𝑇] × Z.

(ii) Suppose further that for any 𝑧 ∈ Z, there exists a measurable function 𝛼̂(𝑡, 𝑧) valued in [0, 𝑎̄] such
that if 𝑖 = 0, we have

−𝜕𝑡𝑤(𝑡, 𝑧) − L0𝑤(𝑡, 𝑧) = 0

and if 𝑖 = 1, we have

𝜕𝑡𝑤(𝑡, 𝑧) + sup
𝑎∈[0,𝑎̄]

[L𝑎𝑤(𝑡, 𝑧) + 𝑝𝑎 − 𝐶 (𝑎)]

= 𝜕𝑡𝑤(𝑡, 𝑧) + L 𝛼̂(𝑡 ,𝑧)𝑤(𝑡, 𝑧) + 𝑝𝛼̂(𝑡, 𝑧) − 𝐶 (𝛼̂(𝑡, 𝑧)) = 0

Probability in the Engineering and Informational Sciences 681

https://doi.org/10.1017/S0269964822000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000043


with

𝑤(𝑇−
𝑗 , 𝑧) = 𝑤(𝑇𝑗 , 𝑥, 𝑝, 0)�𝑥≤Γ + 𝑤(𝑇𝑗 , 𝑥, 𝑝, 1)�𝑥>Γ, ( 𝑗 , 𝑧) ∈ {1, . . . , 𝑁 − 1} × Z

and

𝑤(𝑇−, 𝑧) = − 𝑓 ((Γ − 𝑥)+, 𝑝)

the stochastic differential equations

𝑋 𝑡 ,𝑥, 𝛼̂𝑠 = 𝑥 +
∫ 𝑠

𝑡

𝜂𝑋 𝑡 ,𝑥, 𝛼̂𝑢 (𝜆 − 𝑋 𝑡 ,𝑥, 𝛼̂𝑢 )𝑑𝑢 +
∫ 𝑠

𝑡

𝛾𝑋 𝑡 ,𝑥, 𝛼̂𝑢 𝑑𝐵𝑢 −
∫ 𝑠

𝑡

𝛼̂𝑢𝑑𝑢

𝑃𝑡 ,𝑧, 𝛼̂𝑠 = 𝑝 +
∫ 𝑠

𝑡

𝜇(𝑋 𝑡 ,𝑥, 𝛼̂𝑢 )𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝑑𝑢 +
∫ 𝑠

𝑡

𝜎𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝑑𝑊𝑢

𝐼 𝑡 ,𝑧, 𝛼̂𝑠 = 𝑖�𝑡≤𝑠<𝑇𝑞 (𝑡 )+1 +
𝑁−1∑

𝑘=𝑞 (𝑡)+1

�𝑋 𝑡,𝑥, 𝛼̂𝑇𝑘
>Γ�𝑇𝑘 ≤𝑠<𝑇𝑘+1

admit a unique solution, denoted by 𝑍̂ 𝑡 ,𝑧𝑠 given an initial condition 𝑍𝑡 = 𝑧, and the process
{𝛼̂(𝑠, 𝑍̂ 𝑡 ,𝑧𝑠 ), 𝑡 ≤ 𝑠 ≤ 𝑇} lives in A𝑡 ,𝑖 (𝑥). Then,

𝑤 = 𝑣 on [0, 𝑇] × Z

and 𝛼̂ is an optimal Markovian control.

Proof. In the proof, to simplify the notation, we introduce 𝐾 𝑡 ,𝑘,𝛼𝑠 := (𝑋 𝑡 ,𝑥,𝛼𝑠 , 𝑃𝑡 ,𝑧,𝛼𝑠 ) and 𝑘 := (𝑥, 𝑝) for
any 𝑧 ∈ Z and 𝛼 ∈ A𝑡 ,𝑖 (𝑥).

(i) We prove by induction that 𝑤 ≥ 𝑣 on [𝑇𝑗 , 𝑇𝑗+1] for any 𝑗 ∈ {0, . . . , 𝑁 − 1}.
We first consider the case 𝑗 = 𝑁 −1 and 𝑖 = 0, that means the manager can not harvest on [𝑇𝑁−1, 𝑇𝑁 ],

thus 𝑣(𝑡, 𝑧) = E[−𝑒−𝛽 (𝑇 −𝑡) 𝑓 ((Γ − 𝑋 𝑡 ,𝑥,0𝑇 )+, 𝑃𝑡 , 𝑝,0𝑇 )].
Since 𝑤0 is 𝐶1,2 ([𝑇𝑁−1, 𝑇𝑁 ) × R+ × (0, +∞)) ∩ 𝐶0([𝑇𝑁−1, 𝑇𝑁 ] × R+ × (0, +∞)), we have for any

(𝑡, 𝑥, 𝑝) ∈ [𝑇𝑁−1, 𝑇𝑁 ) × R+ × (0, +∞), 𝛼 ∈ A𝑡 ,0(𝑥), 𝑠 ∈ [𝑡, 𝑇𝑁 ), and any stopping time 𝜏 valued in
[𝑡, 𝑇], by Itô’s formula

𝑒−𝛽 (𝑠∧𝜏)𝑤0 (𝑠 ∧ 𝜏, 𝐾 𝑡 ,𝑘,𝛼𝑠∧𝜏 )

= 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘) +
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L0𝑤0 (𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢

+
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑥𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝛾𝑋 𝑡 ,𝑥,𝛼𝑢 𝑑𝐵𝑢 + 𝜕𝑝𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝜎𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑊𝑢).

We choose 𝜏 = 𝜏𝑛 := inf{𝑠 ≥ 𝑡 :
∫ 𝑠
𝑡
(|𝜕𝑥𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝑋 𝑡 ,𝑥,𝛼𝑢 |2 + |𝜕𝑝𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝑃𝑡 ,𝑧,𝛼𝑢 |2)𝑑𝑢 ≥ 𝑛} ∧ 𝑇

and we remark (𝜏𝑛)𝑛≥1 is an increasing sequence going to𝑇 when 𝑛 goes to∞. By taking the expectation,
we get

E[𝑒−𝛽 (𝑠∧𝜏𝑛)𝑤0(𝑠 ∧ 𝜏𝑛, 𝐾
𝑡 ,𝑘,𝛼
𝑠∧𝜏𝑛 )]

= 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘) + E
[∫ 𝑠∧𝜏𝑛

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤0 (𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L0𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢
]
.

Since 𝑤0 satisfies (3.3), we have

E[𝑒−𝛽 (𝑠∧𝜏𝑛)𝑤0(𝑠 ∧ 𝜏𝑛, 𝐾
𝑡 ,𝑘,𝛼
𝑠∧𝜏𝑛 )] ≤ 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘).
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By the quadratic growth condition on 𝑤0 and the integrability condition on 𝐾 𝑡 ,𝑘,𝛼, we may apply the
dominated convergence theorem and send 𝑛 to infinity

E[𝑒−𝛽𝑠𝑤0(𝑠, 𝐾 𝑡 ,𝑘,𝛼𝑠 )] ≤ 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘).

By sending 𝑠 to 𝑇𝑁 , we obtain by the dominated convergence theorem

E[𝑒−𝛽𝑇𝑁𝑤0(𝑇−
𝑁 , 𝐾

𝑡 ,𝑘,𝛼
𝑇 −
𝑁

)] ≤ 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘),

which implies

𝑒−𝛽𝑡𝑣(𝑡, 𝑧) = E[−𝑒−𝛽𝑇𝑁 𝑓 ((Γ − 𝑋 𝑡 ,𝑥,0𝑇𝑁
)+, 𝑃𝑡 , 𝑝,0𝑇𝑁

)] ≤ 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘).

We now consider the case 𝑗 = 𝑁 − 1 and 𝑖 = 1. Since 𝑤1 is 𝐶1,2 ([𝑇𝑁−1, 𝑇𝑁 ) × R+ × (0, +∞)) ∩
𝐶0([𝑇𝑁−1, 𝑇𝑁 ] × R+ × (0, +∞)), we have for any (𝑡, 𝑥, 𝑝) ∈ [𝑇𝑁−1, 𝑇𝑁 ) × R+ × (0, +∞), 𝛼 ∈ A𝑡 ,1(𝑥),
𝑠 ∈ [𝑡, 𝑇𝑁 ), and any stopping time 𝜏 valued in [𝑡, 𝑇], by Itô’s formula

𝑒−𝛽 (𝑠∧𝜏)𝑤1 (𝑠 ∧ 𝜏, 𝐾 𝑡 ,𝑘,𝛼𝑠∧𝜏 )

= 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) +
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L𝛼𝑢𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢

+
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑥𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝛾𝑋 𝑡 ,𝑥,𝛼𝑢 𝑑𝐵𝑢 + 𝜕𝑝𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝜎𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑊𝑢).

We choose 𝜏 = 𝜏𝑛 := inf{𝑠 ≥ 𝑡 :
∫ 𝑠
𝑡
(|𝜕𝑥𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝑋 𝑡 ,𝑥,𝛼𝑢 |2 + |𝜕𝑝𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝑃𝑡 ,𝑧,𝛼𝑢 |2)𝑑𝑢 ≥ 𝑛} ∧ 𝑇

and we remark (𝜏𝑛)𝑛≥1 is an increasing sequence going to 𝑇 when 𝑛 goes to infinity. This stopping time
ensures that the coefficients appearing in the stochastic integrals are bounded so they are martingales.
By taking the expectation, we get

E[𝑒−𝛽 (𝑠∧𝜏𝑛)𝑤1(𝑠 ∧ 𝜏𝑛, 𝐾
𝑡 ,𝑘,𝛼
𝑠∧𝜏𝑛 )]

= 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) + E
[∫ 𝑠∧𝜏𝑛

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L𝛼𝑢𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢
]
.

By using (3.4), we get

E[𝑒−𝛽 (𝑠∧𝜏𝑛)𝑤1(𝑠 ∧ 𝜏𝑛, 𝐾
𝑡 ,𝑘,𝛼
𝑠∧𝜏𝑛 )] ≤ 𝑒−𝛽𝑡𝑤1 (𝑡, 𝑘) − E

[∫ 𝑠∧𝜏𝑛

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
.

By sending 𝑛 to infinity, we obtain by the dominated convergence theorem

E[𝑒−𝛽𝑠𝑤1(𝑠, 𝐾 𝑡 ,𝑘,𝛼𝑠 )] ≤ 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) − E
[∫ 𝑠

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
.

By sending 𝑠 to 𝑇−
𝑁 , we obtain by the dominated convergence theorem

E[𝑒−𝛽𝑇𝑁𝑤1(𝑇−
𝑁 , 𝐾

𝑡 ,𝑘,𝛼
𝑇 −
𝑁

)] ≤ 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) − E
[∫ 𝑇𝑁

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
.

Which implies for any 𝛼 ∈ A𝑡 ,1(𝑥)

E

[∫ 𝑇𝑁

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢 − 𝑒−𝛽𝑇𝑁 𝑓 ((Γ − 𝑋 𝑡 ,𝑥,𝛼𝑇𝑁
)+, 𝑃𝑡 , 𝑝,𝛼𝑇𝑁

)
]
≤ 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘).

Thus, 𝑣(𝑡, 𝑧) ≤ 𝑤(𝑡, 𝑧) for any [𝑇𝑁−1, 𝑇𝑁 ] × Z.
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We now suppose the result holds on [𝑇𝑗 , 𝑇𝑗+1] for one 𝑗 ∈ {1, . . . , 𝑁 − 1}. We first consider the case
𝑖 = 0. Since 𝑤0 is 𝐶1,2 ([𝑇𝑗−1, 𝑇𝑗 ) × R+ × (0, +∞)) ∩ 𝐶0([𝑇𝑗−1, 𝑇𝑗 ] × R+ × (0, +∞)), we have for any
(𝑡, 𝑥, 𝑝) ∈ [𝑇𝑗−1, 𝑇𝑗 ) ×R+ × (0, +∞), 𝛼 ∈ A𝑡 ,0(𝑥), 𝑠 ∈ [𝑡, 𝑇𝑗 ), and any stopping time 𝜏 valued in [𝑡, 𝑇𝑗 ],
by Itô’s formula

𝑒−𝛽𝑠∧𝜏𝑤0 (𝑠 ∧ 𝜏, 𝐾 𝑡 ,𝑘,𝛼𝑠∧𝜏 )

= 𝑒−𝛽𝑡𝑤0(𝑡, 𝑧) +
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L0𝑤0 (𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢

+
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑥𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝛾𝑋 𝑡 ,𝑥,𝛼𝑢 𝑑𝐵𝑢 + 𝜕𝑝𝑤0(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝜎𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑊𝑢).

By using the same technics that previously we get

E[𝑒−𝛽𝑇𝑗𝑤0(𝑇−
𝑗 , 𝐾

𝑡 ,𝑘,𝛼
𝑇 −
𝑗

)] ≤ 𝑒−𝛽𝑡𝑤0(𝑡, 𝑘).

By using the condition at time 𝑇−
𝑗 for 𝑤0, we get

𝑒−𝛽𝑡𝑤0(𝑡, 𝑘) ≥ E[𝑒−𝛽𝑇𝑗 (𝑤0 (𝑇𝑗 , 𝐾 𝑡 ,𝑘,𝛼𝑇𝑗
)�𝑋 𝑡,𝑥,𝛼𝑇𝑗

≤Γ + 𝑤1(𝑇𝑗 , 𝐾 𝑡 ,𝑘,𝛼𝑇𝑗
)�𝑋 𝑡,𝑥,𝛼𝑇𝑗

>Γ)]
≥ E[𝑒−𝛽𝑇𝑗𝑤(𝑇𝑗 , 𝑍 𝑡 ,𝑧,𝛼𝑇𝑗

)]
≥ E[𝑒−𝛽𝑇𝑗 𝑣(𝑇𝑗 , 𝑍 𝑡 ,𝑧,𝛼𝑇𝑗

)] = 𝑒−𝛽𝑡𝑣(𝑡, 𝑧).

We now consider the case 𝑖 = 1. Since𝑤1 is𝐶1,2 ([𝑇𝑗−1, 𝑇𝑗 )×R+×(0, +∞))∩𝐶0([𝑇𝑗−1, 𝑇𝑗 ]×R+×(0, +∞)),
we have for any (𝑡, 𝑥, 𝑝) ∈ [𝑇𝑗−1, 𝑇𝑗 ) × R+ × (0, +∞), 𝛼 ∈ A𝑡 ,1(𝑥), 𝑠 ∈ [𝑡, 𝑇𝑗 ), and any stopping time 𝜏
valued in [𝑡, 𝑇𝑗 ], by Itô’s formula

𝑒−𝛽𝑠∧𝜏𝑤1 (𝑠 ∧ 𝜏, 𝐾 𝑡 ,𝑘,𝛼𝑠∧𝜏 )

= 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) +
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ) + L𝛼𝑢𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 ))𝑑𝑢

+
∫ 𝑠∧𝜏

𝑡

𝑒−𝛽𝑢 (𝜕𝑥𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝛾𝑋 𝑡 ,𝑥,𝛼𝑢 𝑑𝐵𝑢 + 𝜕𝑝𝑤1(𝑢, 𝐾 𝑡 ,𝑘,𝛼𝑢 )𝜎𝑃𝑡 ,𝑧,𝛼𝑢 𝑑𝑊𝑢).

By using the previous arguments, we obtain

E[𝑒−𝛽𝑇𝑗𝑤1(𝑇−
𝑗 , 𝐾

𝑡 ,𝑘,𝛼
𝑇 −
𝑗

)] ≤ 𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) − E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
.

By using the condition at time 𝑇−
𝑗 for 𝑤1, we get

𝑒−𝛽𝑡𝑤1(𝑡, 𝑘) ≥ E[𝑒−𝛽𝑇𝑗 (𝑤0 (𝑇𝑗 , 𝐾 𝑡 ,𝑘,𝛼𝑇𝑗
)�𝑋 𝑡,𝑥,𝛼𝑇𝑗

≤Γ + 𝑤1 (𝑇𝑗 , 𝐾 𝑡 ,𝑘,𝛼𝑇𝑗
)�𝑋 𝑡,𝑥,𝛼𝑇𝑗

>Γ)]

+ E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]

≥ E[𝑒−𝛽𝑇𝑗𝑤(𝑇𝑗 , 𝑍 𝑡 ,𝑧,𝛼𝑇𝑗
)] + E

[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]

≥ E[𝑒−𝛽𝑇𝑗 𝑣(𝑇𝑗 , 𝑍 𝑡 ,𝑧,𝛼𝑇𝑗
)] + E

[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
.
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Then for any 𝛼̄ ∈ A𝑇𝑗 ,𝐼
𝑡,𝑖
𝑇𝑗

(𝑋 𝑡 ,𝑥,𝛼𝑇𝑗
), we get

𝑒−𝛽𝑡𝑤1 (𝑡, 𝑘) ≥ E
[∫ 𝑇

𝑇𝑗

𝑒−𝛽𝑠 (𝑃
𝑇𝑗 ,𝑍

𝑡,𝑧,𝛼
𝑇𝑗

, 𝛼̄

𝑠 𝛼̄𝑠 − 𝐶 (𝛼̄𝑠))𝑑𝑠 − 𝑒−𝛽𝑇 𝑓 ((Γ − 𝑋
𝑇𝑗 ,𝑋

𝑡,𝑥,𝛼
𝑇𝑗

, 𝛼̄

𝑇 )+, 𝑃
𝑇𝑗 ,𝑃

𝑡,𝑝,𝛼
𝑇𝑗

, 𝛼̄

𝑇 )
]

+ E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢
]
,

which implies for any 𝛼 ∈ A𝑡 ,𝑖 (𝑥) we get

𝑤1 (𝑡, 𝑘) ≥ E
[∫ 𝑇

𝑡

𝑒−𝛽 (𝑢−𝑡) (𝑃𝑡 ,𝑧,𝛼𝑢 𝛼𝑢 − 𝐶 (𝛼𝑢))𝑑𝑢 − 𝑒−𝛽 (𝑇−𝑡) 𝑓 ((Γ − 𝑋 𝑡 ,𝑥,𝛼𝑇 )+, 𝑃𝑡 , 𝑝,𝛼𝑇 )
]
.

Thus, 𝑤1(𝑡, 𝑥, 𝑝) ≥ 𝑣(𝑡, 𝑧).
(ii) We prove by induction that 𝑤 = 𝑣 on [𝑇𝑗 , 𝑇𝑗+1] for any 𝑗 ∈ {0, . . . , 𝑁 − 1}.
We first consider the case 𝑗 = 𝑁 − 1 and 𝑖 = 0. We apply Itô’s formula to 𝑒−𝛽𝑢𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) between

𝑡 ∈ [𝑇𝑁−1, 𝑇𝑁 ) and 𝑠 ∈ [𝑡, 𝑇) (after a localization for removing the stochastic integral term in the
expectation)

E[𝑒−𝛽𝑇𝑁𝑤(𝑇−
𝑁 , 𝑍̂

𝑡 ,𝑧
𝑇 −
𝑁
)] = 𝑒−𝛽𝑡𝑤(𝑡, 𝑧) + E

[∫ 𝑇𝑁

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) + L0𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ))𝑑𝑢
]
.

Thus, we get

𝑤(𝑡, 𝑧) = E[−𝑒−𝛽 (𝑇𝑁−𝑡) 𝑓 ((Γ − 𝑋 𝑡 ,𝑥,0𝑇 )+, 𝑃𝑡 , 𝑝,0𝑇 )] = 𝑣(𝑡, 𝑧).

We now consider the case 𝑗 = 𝑁 − 1 and 𝑖 = 1. We apply Itô’s formula to 𝑒−𝛽𝑢𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) between
𝑡 ∈ [𝑇𝑁−1, 𝑇𝑁 ) and 𝑇𝑁 (after a localization for removing the stochastic integral term in the expectation)

E[𝑒−𝛽 (𝑇𝑁−𝑡)𝑤(𝑇−
𝑁 , 𝑍̂

𝑡 ,𝑧
𝑇 −
𝑁
)] = 𝑤(𝑡, 𝑧) + E

[∫ 𝑇𝑁

𝑡

𝑒−𝛽 (𝑢−𝑡) (𝜕𝑡𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) + L 𝛼̂(𝑢,𝑍̂ 𝑡,𝑧𝑢 )𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ))𝑑𝑢
]
.

Which implies

𝑤(𝑡, 𝑧) = E
[∫ 𝑇𝑁

𝑡

𝑒−𝛽 (𝑢−𝑡) (𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) − 𝐶 (𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 )))𝑑𝑢 − 𝑒−𝛽 (𝑇−𝑡) 𝑓 ((Γ − 𝑋 𝑡 ,𝑥, 𝛼̂𝑇 )+, 𝑃𝑡 , 𝑝, 𝛼̂𝑇 )
]

= 𝐽 (𝑡, 𝑧, 𝛼̂).

Thus, 𝑤(𝑡, 𝑧) = 𝐽 (𝑡, 𝑧, 𝛼̂) = 𝑣(𝑡, 𝑧) on [𝑇𝑁−1, 𝑇𝑁 ] × R+ × (0, +∞) with 𝑖 = 1.
We now suppose the result holds on [𝑇𝑗 , 𝑇𝑗+1] for one 𝑗 ∈ {1, . . . , 𝑁 − 1}. We first consider the case

𝑖 = 0. Since 𝑤 is 𝐶1,2 ([𝑇𝑗−1, 𝑇𝑗 ) × R+ × (0, +∞)) ∩ 𝐶0([𝑇𝑗−1, 𝑇𝑗 ] × R+ × (0, +∞)), we have for any
(𝑡, 𝑥, 𝑝) ∈ [𝑇𝑗−1, 𝑇𝑗 ) × R+ × (0, +∞) by using the previous technics

E[𝑒−𝛽 (𝑇𝑗−𝑡)𝑤(𝑇−
𝑗 , 𝑍̂

𝑡 ,𝑧
𝑇 −
𝑗
)] = 𝑤(𝑡, 𝑧).

By using the condition at time 𝑇−
𝑗 for 𝑤, we get

𝑒−𝛽𝑡𝑤(𝑡, 𝑧) = E[𝑒−𝛽𝑇𝑗 (𝑤(𝑇𝑗 , 𝑋 𝑡 ,𝑥, 𝛼̂𝑇𝑗
, 𝑃𝑡 ,𝑧, 𝛼̂𝑇𝑗

, 0)�𝑋 𝑡,𝑥𝑇𝑗 ≤Γ + 𝑤(𝑇𝑗 , 𝑋 𝑡 ,𝑥, 𝛼̂𝑇𝑗
, 𝑃𝑡 ,𝑧, 𝛼̂𝑇𝑗

, 1)�𝑋 𝑡,𝑥𝑇𝑗 >Γ)]
= E[𝑒−𝛽𝑇𝑗𝑤(𝑇𝑗 , 𝑍̂ 𝑡 ,𝑧𝑇𝑗 )]
= E[𝑒−𝛽𝑇𝑗 𝑣(𝑇𝑗 , 𝑍̂ 𝑡 ,𝑧𝑇𝑗 )] = 𝑒−𝛽𝑡𝑣(𝑡, 𝑧).
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We now consider the case 𝑖 = 1. Since𝑤 is𝐶1,2 ([𝑇𝑗−1, 𝑇𝑗 )×R+×(0, +∞))∩𝐶0 ([𝑇𝑗−1, 𝑇𝑗 ]×R+×(0, +∞)),
we have for any (𝑡, 𝑥, 𝑝) ∈ [𝑇𝑗−1, 𝑇𝑗 ) × R+ × (0, +∞), 𝛼 ∈ A𝑡 ,1(𝑥), by Itô’s formula

E[𝑒−𝛽𝑇𝑗𝑤(𝑇𝑗 , 𝑍̂ 𝑡 ,𝑧𝑇𝑗 )] = 𝑒−𝛽𝑡𝑤(𝑡, 𝑧) + E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝜕𝑡𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) + L 𝛼̂(𝑢,𝑍̂ 𝑡,𝑧𝑢 )𝑤(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ))𝑑𝑢
]

= 𝑒−𝛽𝑡𝑤(𝑡, 𝑧) − E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) − 𝐶 (𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 )))𝑑𝑢
]
.

By using the condition at time 𝑇−
𝑗 for 𝑤, we get

𝑒−𝛽𝑡𝑤(𝑡, 𝑧) = E
[∫ 𝑇

𝑇𝑗

𝑒−𝛽𝑢 (𝑃
𝑇𝑗 ,𝑍̂

𝑡,𝑧
𝑇𝑗
, 𝛼̂

𝑢 𝛼̂(𝑢, 𝑍̂
𝑇𝑗 ,𝑍̂

𝑡,𝑧
𝑇𝑗

𝑢 ) − 𝐶 (𝛼̂(𝑢, 𝑍̂
𝑇𝑗 ,𝑍̂

𝑡,𝑧
𝑇𝑗

𝑢 )))𝑑𝑢
]

− E[𝑒−𝛽𝑇 𝑓 ((Γ − 𝑋
𝑇𝑗 ,𝑋

𝑡,𝑥, 𝛼̂
𝑇𝑗

, 𝛼̂

𝑇 )+, 𝑃
𝑇𝑗 ,𝑃

𝑡,𝑝, 𝛼̂
𝑇𝑗

, 𝛼̂

𝑇 )]

+ E
[∫ 𝑇𝑗

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) − 𝐶 (𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 )))𝑑𝑢
]

= E

[∫ 𝑇

𝑡

𝑒−𝛽𝑢 (𝑃𝑡 ,𝑧, 𝛼̂𝑢 𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 ) − 𝐶 (𝛼̂(𝑢, 𝑍̂ 𝑡 ,𝑧𝑢 )))𝑑𝑢 − 𝑒−𝛽𝑇 𝑓 ((Γ − 𝑋 𝑡 ,𝑥, 𝛼̂𝑇 )+, 𝑃𝑡 , 𝑝, 𝛼̂𝑇 )
]
.

�

4. Numerical results

4.1. The discrete problem

In this section, we introduce the numerical tools that we use to solve numerically the HJB equations
linked to 𝑣0 and 𝑣1 and associated to the stochastic control problem. We use a finite difference scheme
mixed with an iterative procedure which leads to the resolution of a Controlled Markov Chain problem.
This class of problems is intensely studied by Kushner and Dupuis [9]. The convergence of the solution
of the numerical scheme toward the solution of the HJB equation, when the time-space step goes to zero,
can be shown using the standard local consistency argument, that is, the first and the second moments of
the approximating Markov chain converge to those of the continuous process (𝑋, 𝑃). We refer to [2,6,7]
for numerical schemes involving a Controlled Markov Chain control problem.

We begin by localizing the problem on the bounded domain [0, 𝑇] × [0, 𝑥max] × [𝑝min, 𝑝max], where
𝑥max, 𝑝min, and 𝑝max are nonnegative constants. Then, we assume the following Neumann boundary
conditions on the localized boundary

𝜕𝑣

𝜕𝑥
(𝑡, 0, 𝑝) = 𝜕𝑣

𝜕𝑥
(𝑡, 𝑥max, 𝑝) = 0,

𝜕𝑣

𝜕𝑝
(𝑡, 𝑥, 𝑝min) = 𝜕𝑣

𝜕𝑝
(𝑡, 𝑥, 𝑝max) = 0.

Let 𝛿, ℎ, and 𝑘 be the discretization steps along the directions 𝑡, 𝑥, and 𝑝 respectively. For (𝑡, 𝑥, 𝑝) in
the time-space grid

G𝛿,ℎ,𝑘 := {𝑡𝑖 = (𝑖 − 1)𝛿, 𝑖 = 1, . . . , 𝑛𝑡 } × {𝑥 𝑗 = ( 𝑗 − 1)ℎ, 𝑗 = 1, . . . , 𝑛𝑥}
× {𝑝𝑙 = 𝑝min + (𝑙 − 1)𝑘, 𝑙 = 1, . . . , 𝑛𝑝},

where 𝑛𝑡 = 𝑇/𝛿 + 1, 𝑛𝑥 = 𝑥max/ℎ + 1 and 𝑛𝑝 = (𝑝max − 𝑝min)/𝑘 + 1.

M. Gaïgi et al.686

https://doi.org/10.1017/S0269964822000043 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000043


Table 1. The approximating Markov chain.

Markov chain state Transition probability

𝑧1 = (𝑡, 𝑥 + ℎ, 𝑝) 𝜋1 (𝑥, 𝑝, 𝑎) =
(
(𝜂𝑥 (𝑥,𝑎))+ 𝛿

ℎ + 𝛾2𝑥2 𝛿
2ℎ2 − 𝜌𝜎𝛾𝑥𝑝𝛿

2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧2 = (𝑡, 𝑥 − ℎ, 𝑝) 𝜋2 (𝑥, 𝑝, 𝑎) =
(
(𝜂𝑥 (𝑥,𝑎))− 𝛿

ℎ + 𝛾2𝑥2 𝛿
2ℎ2 − 𝜌𝜎𝛾𝑥𝑝𝛿

2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧3 = (𝑡, 𝑥, 𝑝 + 𝑘) 𝜋3 (𝑥, 𝑝, 𝑎) =
(
𝜇 (𝑥) 𝑝𝛿
𝑘 + 𝜎2 𝑝2 𝛿

2𝑘2 − 𝜌𝜎𝛾𝑥𝑝𝛿
2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧4 = (𝑡, 𝑥, 𝑝 − 𝑘) 𝜋4 (𝑥, 𝑝, 𝑎) =
(
𝜎2 𝑝2 𝛿

2𝑘2 − 𝜌𝜎𝛾𝑥𝑝𝛿
2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧5 = (𝑡, 𝑥 + ℎ, 𝑝 + 𝑘) 𝜋5 (𝑥, 𝑝, 𝑎) =
(
𝜌𝜎𝛾𝑥𝑝𝛿

2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧6 = (𝑡, 𝑥 − ℎ, 𝑝 − 𝑘) 𝜋6 (𝑥, 𝑝, 𝑎) =
(
𝜌𝜎𝛾𝑥𝑝𝛿

2ℎ𝑘

)
/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

𝑧7 = (𝑡 + 𝛿, 𝑥, 𝑝) 𝜋7 (𝑥, 𝑝, 𝑎) = 1/𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

We consider approximations of the following form

𝜕𝑣

𝜕𝑡
(𝑡, 𝑥, 𝑝) ∼ 𝑣(𝑡 + 𝛿, 𝑥, 𝑝) − 𝑣(𝑡, 𝑥, 𝑝)

𝛿
,

𝜕𝑣

𝜕𝑥
(𝑡, 𝑥, 𝑝) ∼ ±𝑣(𝑡, 𝑥 ± ℎ, 𝑝) − 𝑣(𝑡, 𝑥, 𝑝)

ℎ
,

𝜕𝑣

𝜕𝑝
(𝑡, 𝑥, 𝑝) ∼ ±𝑣(𝑡, 𝑥, 𝑝 + 𝑘) − 𝑣(𝑡, 𝑥, 𝑝)

𝑘
,

𝜕2𝑣

𝜕𝑥2 (𝑡, 𝑥, 𝑝) ∼
𝑣(𝑡, 𝑥 + ℎ, 𝑝) + 𝑣(𝑡, 𝑥 − ℎ, 𝑝) − 2𝑣(𝑡, 𝑥, 𝑝)

ℎ2 ,

𝜕2𝑣

𝜕𝑝2 (𝑡, 𝑥, 𝑝) ∼
𝑣(𝑡, 𝑥, 𝑝 + 𝑘) + 𝑣(𝑡, 𝑥, 𝑝 − 𝑘) − 2𝑣(𝑡, 𝑥, 𝑝)

𝑘2 ,

𝜕2𝑣

𝜕𝑥𝜕𝑦
(𝑡, 𝑥, 𝑝) ∼ 2𝑣(𝑡, 𝑥, 𝑝) + 𝑣(𝑡, 𝑥 + ℎ, 𝑝 + 𝑘) + 𝑣(𝑡, 𝑥 − ℎ, 𝑝 − 𝑘)

2ℎ𝑘

− 𝑣(𝑡, 𝑥 + ℎ, 𝑝) + 𝑣(𝑡, 𝑥, 𝑝 + 𝑘) + 𝑣(𝑡, 𝑥 − ℎ, 𝑝) + 𝑣(𝑡, 𝑥, 𝑝 − 𝑘)
2ℎ𝑘

.

Let us introduce the following quantities which are used to approximate the value functions 𝑣0 and 𝑣1

𝜂𝑥 (𝑥, 𝑎) := 𝜂𝑥(𝜆 − 𝑥) − 𝑎,

𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎) := 1 + |𝜂𝑥 (𝑥, 𝑎) |𝛿
ℎ

+ 𝜇(𝑥)𝑝𝛿
𝑘

+ 𝛾2𝑥2𝛿

ℎ2 + 𝜎2𝑝2𝛿

𝑘2 − 𝜌𝜎𝛾𝑥𝑝𝛿

ℎ𝑘
,

Δ𝑡 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎) :=
𝛿

𝑄 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎) .

In Table 1, we define the Markov chain states and the associated transition probabilities that we obtain
when we apply the finite difference approach.

Thus, using the above notations and discretizing the space of controls as follows

{0, . . . , 𝑎̄} := {𝑎 = (𝑚 − 1)𝑎̄/(𝑛𝑎 − 1), 𝑚 = 1, . . . , 𝑛𝑎},
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where 𝑛𝑎 ∈ N∗, we approximate the HJB equations associated to the functions 𝑣0 and 𝑣1 for any
(𝑥, 𝑝) ∈ [0, 𝑥max] × [𝑝min, 𝑝max] by the following iterative scheme by starting with 𝑣 𝛿,00 ≡ 0 and 𝑣 𝛿,01 ≡ 0

𝑣 𝛿,𝑛+1
0 (𝑡, 𝑥, 𝑝) = 1

1 + 𝛽Δ𝑡 𝛿,ℎ,𝑘 (𝑥, 𝑝, 0)
7∑
𝑖=1

𝜋𝑖 (𝑥, 𝑝, 0)𝑣 𝛿,𝑛0 (𝑧𝑖),

for 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤ 𝑗≤𝑁 ,

𝑣 𝛿,𝑛+1
0 (𝑇𝑗 − 𝛿, 𝑥, 𝑝) = 𝑣 𝛿,𝑛0 (𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑣 𝛿,𝑛1 (𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ,

for 𝑗 ∈ {1, . . . , 𝑁 − 1},
𝑣 𝛿,𝑛+1

0 (𝑇𝑁 − 𝛿, 𝑥, 𝑝) = − 𝑓 ((Γ − 𝑥)+, 𝑝)

and

𝑣 𝛿,𝑛+1
1 (𝑡, 𝑥, 𝑝) = max

{0,...,𝑎̄}

{∑7
𝑖=1 𝜋𝑖 (𝑥, 𝑝, 𝑎)𝑣 𝛿,𝑛1 (𝑧𝑖) + (𝑝𝑎 − 𝐶 (𝑎))Δ𝑡 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

1 + 𝛽Δ𝑡 𝛿,ℎ,𝑘 (𝑥, 𝑝, 𝑎)

}
,

for 𝑡 ∈ [0, 𝑇] − {𝑇𝑗 }1≤ 𝑗≤𝑁 ,

𝑣 𝛿,𝑛+1
1 (𝑇𝑗 − 𝛿, 𝑥, 𝑝) = 𝑣 𝛿,𝑛0 (𝑇𝑗 , 𝑥, 𝑝)�𝑥≤Γ + 𝑣 𝛿,𝑛1 (𝑇𝑗 , 𝑥, 𝑝)�𝑥>Γ,

for 𝑗 ∈ {1, . . . , 𝑁 − 1},
𝑣 𝛿,𝑛+1

1 (𝑇𝑁 − 𝛿, 𝑥, 𝑝) = − 𝑓 ((Γ − 𝑥)+, 𝑝).

For any (𝑥, 𝑝) ∈ [0, 𝑥max] × [𝑝min, 𝑝max], the above iterative scheme combined with the boundary
conditions is explicit and fully implementable on the enlarged grid

G+
𝛿,ℎ,𝑘 := {𝑡𝑖 = (𝑖 − 1)𝛿, 𝑖 = 1, . . . , 𝑛𝑡 } × {𝑥 𝑗 = ( 𝑗 − 1)ℎ, 𝑗 = 0, . . . , 𝑛𝑥 + 1}

× {𝑝𝑙 = 𝑝min + (𝑙 − 1)𝑘, 𝑙 = 0, . . . , 𝑛𝑝 + 1}

with a given stopping criterion 𝜀, that means the iterative scheme is stopped when the relative error is
less than 𝜀.

Remark 4.1. Since the first and the second moments of the Markov chain defined in Table 1 converge
to those of the continuous process (𝑋, 𝑃) as the time and space steps go to zero. Hence, the convergence
of our scheme may be obtained using the same analysis developed in [9].

4.2. Numerical interpretations

The numerical computation are done using the following set of data.

• Dynamics values

◦ 𝜂 = 0.7, 𝜆 = 0.5, 𝛾 = 0.2, 𝜇 = 0.1, 𝜎 = 0.1, 𝜌 = 0.01.
◦ 𝑇 = 1, 𝛽 = 0.1.
◦ Drift function: 𝜇(𝑥) = 𝜇 + 0.5 × exp(−0.2𝑥).
◦ Penalty function : 𝑓 (𝑥, 𝑝) = 𝜅𝑝𝑥 with 𝜅 = 5.
◦ Cost function : 𝐶 (𝑥) = 𝑥2.
◦ Regulation parameters : 𝑁 = 10 (number of checks), Γ = 0.2308.

• Grid values

◦ Localization: 𝑥max = 1, 𝑝min = 0.1, 𝑝max = 1.1, 𝑎̄ = 0.5.
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◦ Discretization: 𝑛𝑥 = 40, 𝑛𝑝 = 40, 𝑛𝑡 = 100, 𝑛𝑎 = 10.
◦ Stopping criterion : 𝜀 = 0.01.

Remark 4.2. The choice of the parameters values is arbitrary since we study a general natural resource
exploitation model. Nevertheless, our numerical algorithm could be easily adapted to any specific model,
for instance fishery or forest management, and parameterized by estimated values from real samples.

We plot the shape of the value functions 𝑣0 and 𝑣1 sliced in the plane (𝑥, 𝑝) for a fixed date 𝑡. We can
see, as expected, 𝑣1 ≥ 𝑣0. In fact, we can see in line three of Figure 1 that the spread 𝑣1 − 𝑣0 is always
positive. Obviously, if the manager can harvest the payoff will be greater. In the first graph of the second
line of Figure 1, where we fix (𝑡, 𝑝), we can see that the two functions are nondecreasing w.r.t. 𝑥 which
is natural due to the fact that greater the size of the natural resource, the more the manager can harvest
and the less he/she is penalized at terminal time 𝑇 . On the other hand, in the second graph of the second
line of Figure 1, where we fix (𝑡, 𝑥) and take 𝑥 > Γ, the two functions are nondecreasing in 𝑝, because
the higher the price, the wealthier the manager becomes when he/she harvests and sells. Conversely, in
the first line of Figure 1, when 𝑥 < Γ, we can see that the value functions 𝑣0 and 𝑣1 are nonincreasing
in 𝑝 which is due to the penalty function 𝑓 that is nondecreasing w.r.t. 𝑝 (i.e., the higher the price, the
more the manager is penalized by the regulator).

We plot the shape of the value functions 𝑣0 and 𝑣1 sliced in the plane (𝑡, 𝑥) for a fixed price 𝑝. In
Figure 2, as expected, 𝑣0 and 𝑣1 are decreasing w.r.t. 𝑡 when 𝑥 is large. In fact, the manager will have
more time to harvest the further he/she is from the terminal date 𝑇 . If 𝑥 is small, the monotony depends
on the parameters 𝜇 and 𝜂. On the one hand, when 𝑥 is small, we can see that 𝑣0 and 𝑣1 are increasing
w.r.t. 𝑡 because the manager knows a priori that he/she is going to pay the tax since the quantity of
natural resource will likely be smaller than Γ at the terminal date 𝑇 . On the other hand, if 𝑡 is small, the
quantity of the natural resource increases with time, but so does the price, implying that the monotony
of the value functions is not obvious. In fact, because 𝜇 is more important than 𝜂, the price in this case
increases faster than the quantity of natural resource, so if the maturity is important, it is not beneficial
for the manager because the tax will be more important.

In Figure 3, we choose a smaller drift for the price. We remark that the monotony of the value
functions 𝑣0 and 𝑣1 is the same as in the previous figure if 𝑥 is large. But now, the value functions 𝑣0
and 𝑣1 are decreasing when 𝑥 is small. This is because, unlike in Figure 2, the drift of the price is small,
so the price increases more slowly than the available quantity of natural resource. Thus, if the maturity
is important, it is advantageous for the manager. In fact, the tax will be less important since the quantity
of natural resources available has had enough time to grow.

We plot the shape of the optimal harvest strategy 𝛼∗(𝑡, 𝑥, 𝑝) sliced in the plane (𝑥, 𝑡) for a fixed
price 𝑝 (Figure 4). We can see two main regions: a harvest region (with different harvest rates) and a
No-harvest region (dark blue). When we are far from maturity 𝑇 , it is not optimal to harvest when 𝑋
is under 𝜆 because under this quantity the resource quantity increases naturally so we want to let this
happen to reach the maturity with 𝑋 greater than Γ and thus avoid the penalization. As we get closer to
𝑇 , it is best to harvest when 𝑋 < 𝜆 with different rates 𝑎, allowing us to reach 𝑇 without being penalized
(i.e., 𝑋𝑇 > Γ) and thus optimizing the profit generated by selling the harvest. The rates are greater as
the natural resource population grows and this is due to the cost function 𝐶 (the cost of harvesting).

In the following, we introduce a profit and loss measure, denoted P&L, defined as follows

P& L(𝛼) =
𝑁−1∑
𝑖=0

∑
𝑡 ∈T𝑖

𝑒𝛽 (𝑇 −𝑡) (𝑃𝛼𝑡 𝛼𝑡 − 𝛼2
𝑡 )𝛿1𝑋𝑇𝑖>Γ − 𝑓 ((Γ − 𝑋𝛼𝑇 )+, 𝑃𝛼𝑇 ),

where T 𝑖 := {𝑇𝑖 , 𝑇𝑖 + 𝛿, . . . , 𝑇𝑖+1} with the convention 𝑇0 = 0. In fact, this measure represents the payoff
of the agent when adopting a given strategy 𝛼. This measure will allow us to compare the effectiveness
of the optimal control 𝛼∗ against a given naive strategy.
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Figure 1. The shape of the value functions 𝑣0 and 𝑣1 for a fixed time 𝑡 (First Line). The shape of the value
functions 𝑣0 and 𝑣1 for fixed (𝑡, 𝑝) and (𝑡, 𝑥) (Second Line). The spread between the value functions 𝑣0
and 𝑣1 for fixed (𝑡, 𝑝) and (𝑡, 𝑥) (Third Line).

After computing the optimal strategy 𝛼∗ and the value function via the iterative procedure, we
simulate the correlated Brownian motions 𝐵 and 𝑊 on the horizon [0, 𝑇] and we adjust the dynamics
of 𝑋 and 𝑃 according to the optimal control computed previously. Figure 5 represents a mean over
3,000 simulated paths of 𝑋 and 𝑃 controlled by the optimal strategy 𝛼∗ and two other naive strategies
𝛼1 and 𝛼2. The first naive strategy 𝛼1 consists in harvesting the maximum 𝑎̄ at all time when we are
authorized till 𝑇 (in red) and the second one 𝛼2 consists in waiting until a certain time 𝑡0 which is
chosen by the manager (in Figure 5 we take 𝑡0 = 0.5) then harvesting the maximum 𝑎̄ when we are
authorized till time 𝑇 (in green). In Figure 5, the starting point is 𝑋0 = 0.7 and 𝑃0 = 0.5 and the
P&Ls of the three strategies are respectively (with 95% confidence level bounds): P& L(𝛼∗) = 0.0873
(±0.0002), P& L(𝛼1) = −0.0182 (±0.0024), and P& L(𝛼2) = 0.0315 (±0.0005). We can see that our
computed strategy is better than the two others. Indeed, with our strategy, the manager begins to harvest
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Figure 2. The shape of the value functions 𝑣0 and 𝑣1 for a fixed price 𝑝.

Figure 3. The shape of the value functions 𝑣0 and 𝑣1 for a fixed price 𝑝 when 𝜇(𝑥) = 0.01 + 0.05 ×
exp(−0.002𝑥).

continuously at a rate 𝑎 smaller than the maximum 𝑎̄, which allows him/her to attain terminal date 𝑇
with a natural resource population above Γ avoiding the penalization that occurs if 𝑋𝑇 < Γ. On the one
hand, adopting the strategy 𝛼1, the manager at time 𝑇 harvests more but he/she is penalized because the
quantity of resource is under Γ at the terminal time 𝑇 . On the other hand, using the strategy 𝛼2, he/she
is not penalized because the quantity of resource at time 𝑇 is above Γ but he/she harvests for a shorter
period of time (starting the harvesting at 𝑡0 = 0.5), hence, resulting in lower revenue.

As in Figure 5, Figure 6 represents a mean over 3,000 simulated paths of 𝑋 and 𝑃 for the optimal
control and the same two other naive strategies. But this time we choose to start with 𝑋0 = 0.3
and 𝑃0 = 0.5. The P&Ls of the three strategies are respectively (with 95% confidence level bounds):
P& L(𝛼∗) = 0.0302 (±0.0008), P& L(𝛼1) = −0.1032 (±0.0027), and P& L(𝛼2) = −0.0331 (±0.0022).
We can see that our strategy is still better than the two others. On the one hand, starting at time 𝑡 = 0
from a position under the threshold 𝜆, the natural resource population tends to increase (mean-reverting
effect), hence, as we can see in Figure 6, our optimal strategy is to wait until 𝑋 reaches a certain level
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Figure 4. The shape of the optimal control for a fixed price 𝑝.

Figure 5. The optimal control 𝛼∗ vs naive controls 𝛼1 and 𝛼2.

over Γ before starting to harvest (around time 𝑡 = 0.2). Doing this allows the manager to avoid the risk
of being under the penalization barrier Γ at time 𝑇 . On the other hand, using the first naive strategy
𝛼1, the natural resource population is quickly under Γ and at time 𝑡 = 0.2, the regulator does not allow
the manager to harvest anymore. Moreover, the manager is penalized as the natural resource population
does not surpass Γ at time 𝑇 . On the contrary, if we wait up to time 𝑡0 = 0.75 before starting to harvest
with the maximum rate 𝑎̄ (the naive strategy 𝛼2), the natural resource population grows (since 𝑋𝑡 < 𝜆)
till time 𝑡0 = 0.75 and then decreases (because the harvesting starts at this date) but will be above Γ at
time 𝑇 . Hence, we are not penalized but still our optimal strategy 𝛼∗ outperforms 𝛼2 in terms of P&Ls.

In Table 2, we choose to compute our optimal strategy and the corresponding simulations for
Γ = 0.4872 > 𝜆 = 0.3. With this configuration, we know that if the natural resource population drops
under Γ, it is likely to stay under Γ. Therefore, the manager is obligated to keep the natural resource
population 𝑋 over Γ at all times in order to avoid the penalization at the maturity 𝑇 . Except for Γ and
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Figure 6. The optimal control 𝛼∗ vs naive controls 𝛼1 and 𝛼2 (𝑋0 = 0.3 and 𝑃0 = 0.5).

Table 2. P&L for different penalty constant 𝜅.

𝜅 = 1 𝜅 = 2 𝜅 = 3

P&L 0.0265(±0.0013) 0.0102(±0.0018) −0.0012(±0.0023)
𝑋𝑇 0.4855(±0.0021) 0.5066(±0.0020) 0.5182(±0.0022)

𝜅 = 4 𝜅 = 5 𝜅 = 6

P&L −0.0111(±0.0029) −0.0215(±0.0034) −0.0251(±0.0038)
𝑋𝑇 0.5232(±0.0022) 0.5238(±0.0023) 0.5308(±0.0023)

𝜆, we use the same values of the parameters defined in the beginning of this numerical part and we
represent in Table 2 the value of the P&L and the natural resource population 𝑋 at time 𝑇 starting with
𝑋0 = 0.7 and 𝑃0 = 0.5. These quantities were computed using a mean over 3,000 trajectories under the
optimal control 𝛼∗ for different values of the penalty constant 𝜅 (with 95% confidence level bounds).
We can see that the P&L is a decreasing function w.r.t. 𝜅 which is natural because the less the manager
is penalized, the more he/she takes risks and the richer he/she is. Although we can remark that for 𝜅 = 1
the natural resource population at time𝑇 is under Γ because the penalization is not severe enough, hence
the manager prefers to be penalized and harvests a little more which makes him/her richer. Therefore,
we assume that for our set of data, to create a fair balance between the biological requirements and the
maximization of the profit induced by harvesting, a suitable choice for the penalty constant is 𝜅 = 2.
This amount of fines insures the double objective of the sustainable harvesting: the natural resource
population does not fall below a certain threshold that guarantees its natural renewal, and the manager
makes profits to prevent him/her from going bankrupt.

5. Conclusion

In this paper, we have investigated the problem of sustainable harvesting of a natural resource. We
built a model where harvesting is continuously depending on the quantity of resource available in the
harvesting region. Manager tries to maximize his/her profit under the constraint of fines when the quota
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is exceeded. We have also introduced the fact that the selling price of natural resource depends on the
quantity (stock) of resource remaining in the harvesting region.

We have shown some interesting results. First, we derived an optimal strategy from a verification
Theorem. We then numerically observed that this optimal strategy provides better gain than naive ones.
Second, we delimit a level of fines which insures the double objective of the sustainable harvesting:
on the one hand, the natural resource population stays above a certain threshold ensuring its natural
renewal; on the other hand, the manager is free to attain a certain level of harvesting allowing acceptable
profits. These results give a better understanding of the manager’s behavior according to the amount of
the fines, and how to define a pricing rule for the fines to guarantee a sustainable harvesting.
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