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A VERSION OF RUNGE'S THEOREM FOR THE HELMHOLTZ
EQUATION WITH APPLICATIONS TO SCATTERING

THEORY*

by R. L. OCHS, JR

(Received 20th July 1987)

1. Introduction

Let D be a bounded, simply connected domain in the plane R2 that is starlike with
respect to the origin and has C 2 a boundary, dD, described by the equation in polar
coordinates

where C2" denotes the space of twice Holder continuously differentiable functions of
index a. In this paper, it is shown that any solution ueC2'"{D) of the Helmholtz
equation

= 0 (1.1)

in D can be approximated in the space Cl(D) by an entire Herglotz wave function

i

v(P, 4>) = \ g{9) exp [ikp cos (0 - </>)] dO, \ = p e'* e R2,
o

with kernel geL2[0,2?r] having support in an interval [0, ?;] with r\ chosen arbitrarily in
0 < f/ < 2n.

The reader will recall that an entire Herglotz wave function v is a solution of the
Helmholtz equation (1.1) in R2 satisfying the boundedness condition

lim- j |w(x)|2dx<oo. (1.2)
r->oo ^ |x |<r

Wave functions satisfying (1.2) were first discussed by Herglotz in a lecture in 1945 [12],
and the results of this lecture were published for the first time in 1952 by Miiller [11]
with considerable amplification. Hartman and Wilcox [10] proved that v is an entire
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Herglotz wave function if and only if v has the integral representation in polar
coordinates (p, <j>)

Hp, 4>)=\ g(9) exp [ikp cos (0 - <£)] dd,
o

where geL2[0,2TT] is uniquely determined and is called the Herglotz kernel for v.
In the final section of this paper, the approximation result mentioned above is used to

present a method for solving the limited aperture problem of inverse acoustic scattering
for scattering by a sound-hard obstacle. The solution scheme to be presented is based
on the orthogonal projection approach of Colton and Monk ([4, 5, 6, 7, 8]). This
technique was used by Ochs [14] to solve, with numerical examples, the limited
aperture problem for scattering by a sound-soft obstacle.

2. The approximation theorem

Before proving that we can approximate in Cl{D) any solution u€C2'\D) of the
Helmholtz equation by an entire Herglotz wave function v, where the kernel of v has
support in [0,r{\, 0<n^2n, we first prove the following theorem on the continuous
dependence of Vu on u. Since a theorem is available [14] stating that every solution
ueC2-"{D) can be uniformly approximated in C(D) by a Herglotz wave function with
kernel having support in [0, t\\, then we will be done.

Theorem 2.1. Let D be a bounded, simply connected, starlike domain where 3D is
described by p = p{4>), 0^<f>^2n. Assume that p is periodic with period 2n and
p e C 2 a ( —oo, oo). Let e>0 be given. Then for all ut and u2 solutions of the Helmholtz
equation in D such that ui,u2eC2a(D), there exists <5>0 such that if

max |
xefi

then

max||VM,(x)-Vu2(x)||^e,

where \\-\\ denotes the ordinary Euclidean norm on vectors in R2.

Proof. According to [16, p. 59], we may define in D harmonic functions Tuf, i = 1,2,
given by

(TUj)(r, 6) = u,{r, 0) + } u{p, 6) - | - Jo(kjp(p-r)) dp.
o P or

We note that if w,: = Tu,-, then
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ufyr, 6) = (Tw,)(r, 9) = w,<r, 9) - f0 wt{p, 9)(d/dp)J0(kJr(r-p)) dp.

By [15, p. 15, Theorem 6], for <5>0 there exists a starlike domain D0=>=>D and
harmonic functions /i,eC2 •"(/)„) such that

tix)-(Tud(x)\£6 (2.1)
xefi

and

\(x)\\£8, i = l,2. (2.2)
X6D

Clearly, if

xeD ~

then there exists a C > 0 such that

max|(TMl)(x)-(TU2)(x)|^C<5, (2.4)
x e D

since T is a bounded operator. Combining inequalities (2.1) and (2.4) we can conclude
via the triangle inequality that

max |/ii(x) — J»2(x)| ̂  (C + 2)<5.
xeD

Using the Heine-Borel Theorem and the continuity of hl and h2 in Do, we can conclude
that there exists a simply connected domain D^ with smooth boundary such that
Dc czD^cz cD0 and

max|/i1(x)-Ji2(x)|g2(C + 2)<5. (2.5)
xeD,

Let GD(x;£) be the Green function for the Dirichlet problem for Laplace's equation in
D^. Then

d D . S n ^ ' 1

So

V/i,(x)-V/i2(x)= f Vx^(\;^)lhl^)-h2(^ds^). (2.6)
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Thus from (2.5) and (2.6), we can conclude that there exists a C > 0 such that

max||V/i1(x)-V/i2(x)||g2C'(C + 2)5. (2.7)

Using the triangle inequality on (2.2) and (2.7) we conclude that

max||V(Tu1)(x)-V(Tu2)(x)||g[2C'(C + 2)<5 + 2]^.
xeD

So, denoting partial differentiation with respect to r and 0 (which are the polar
coordinates of x) by subscripts, there exists K>0 such that

max \(Tul)r(r,9)-(Tu2W,9)\^KS
i = (r,l)efl

and

Let Tu, = wh i= 1,2. Then

max |(TUlMr, 9) -(Tu2)9(r, 0)| ^ K5.

uir, 6) = Wi(r, 9) - J w{p, 9) — Jo(kjr(r-p)) dp
o op

and

So,

K(r, 9) - u2$(r, 0)| S | wle(r, 9) - w2g(r, 6)\ + J \wlg(p, 9) - w2e(p, 9)\-J0{kJr{r-p))
dp

dp

and

K(r, 9) - u2r(r, 0)| g | wlp(r, 0) - w2r(r, 8)\ + \Wi(r, 0) - w2(r, 0)| 1 1 ^

drdp
Jo(kJr(r-p)) dp.

We must now prove that
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T-Jo
op

remain bounded as p-»0+ and p-*r~.

First note that ([2, p. 1])

8 i
and -r-r-J0(ky/r(r-p))

dropdrop

and

for all \z\ small. Now,

(2.8)

(2.9)

= J1(ky/r(r-p))

2y/r(r-p)

kr

2jrW^p)

([1, p. 361]). Thus, by (2.8), (dldp)J^kyJr{r-p)) is uniformly bounded for all pe(0,r).
Also,

+ J1(Ur(r-p))
drdp "

By equation (2.9)

So,

J

and

4r(r-p)

.1 3/c2r(r-p) _ nnA

k2r{2r-p) k2r{2r-p) 3fcV(r-p)(2r-p) , n/ 2

4r(r-p) 8r(r-p) 64r(r-p)

— krp \ — k2rp

+ 0(r2(r-p))

r{r-p)Jr(r-p)J 8r(r-p)
+ 0(p)

which imply that
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32 k2r(2r — p) — h
— r J oV^v/ ' v P)) n ~t T"

or op %r(r — p)

Therefore, there exists C" > 0 such that

max HVM^X)-Vu2(x)|| ^ C"S.

So, given 6 > 0, chosen 8 = e/C", which completes the proof of the theorem.

Now we combine this with

Theorem 2.2. [14]. Let >;e(0, 2TI] be given, and let u be a solution of the Helmholtz
equation in a bounded, simply connected, starlike domain D where dD is described by
p = p(<p), 0^<f)^2n. Assume that p is periodic with period In, pe.C2 '^ —00,00), and
ueC2*(D). Then for every e > 0 there exists an entire Herglotz wave function v with
kernel having support in [0, n~] such that

max |u(x) — u(x)|^£.
xeD

Hence the main result of this section.

Theorem 2.3. Let n e (0,27t] be given and let D and u be as above. Then for every e > 0
there exists an entire Herglotz wave function v with kernel having support in [0, r\] such
that

max|u(x) — y(x)|^a

xeD

and

max||V«(x)-Vi;(x)||ge.

3. Applications to scattering theory

In this section, the utility of Theorem 2.3 is demonstrated by using it is construct a
scheme for solving the inverse scattering problem for a sound-hard obstacle. Let us state
the problem precisely.

Let D be a bounded, simply connected domain in the plane with Holder continuously
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differentiable boundary 3D and let the field incident on D, u\ be given by u'(x) =
exp[i/cxa], where xeR2, k>0 is the wave number, and a is a fixed unit vector giving
the direction of propagation of u'. Denote the field scattered by the obstacle D by u3,
and define the total field u by M = M' + US. Then the direct scattering problem for an
acoustically hard obstacle D is to find a solution ueC2(R2\D)r\C\R2\D) of the
Helmholtz equation

= 0 (3.1)

in R2\D such that

^ = 0 on 3D (3.2)
dv

and us satisfies the Sommerfeld radiation condition

^-iku*) = 0 (3.3)
or )

uniformly in all directions. Here A2 is the two-dimensional Laplacian operator, r = \\\,
and d/dv denotes differentiation in the direction of the outward normal v to 3D. (The
direct scattering problem for a sound-soft obstacle results if condition (3.2) is replaced
by

u = 0 on 3D.

This problem is dealt with in [14].) It is easily shown [3] that us = u — u' has the
asymptotic bhavior

u°(r, 0 ) = ^ F(9; k, a) + 0(r " 3 /2), (3.4)

where (r, 9) is the polar representation of a point x in the plane and F is known as the
far field pattern for the scattered wave u". The inverse problem we consider here is to
determine 3D given F(9;k,aLn) for all 6 such that 0^0^? / , where q is any positive
number less than or equal to 2n, k takes on all values in an interval of the positive real
axis to be prescribed later and an, n=l,...,N, are N distinct unit vectors. We make the
assumption without loss of generality that the far field patterns F(9;k,txn), n = l,...,N,
are given for all 9 in the interval [0, rf] as opposed to a more general interval
[a, a + >/] c [0, In], since a rotation can always be performed.

From Green's formula and the asymptotic behavior of the Hankel function / /{/ ' of the
first kind of order zero, one easily shows that [3]
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J M ( )
dv(y)

(3.5)

where x = re'e, y = pe"t>, v is the unit outward normal to 3D, and KS = U — u' is the unique
solution of a Fredholm integral equation of the second kind [3]. Clearly, the
relationship between dD and the far field pattern F is nonlinear, and F(9;k,<x) is an
analytic function of the argument 6. So the inverse scattering problem for a sound-hard
obstacle is ill-posed, and we reformulate the problem as a nonlinear optimization
problem such that a priori information about the boundary of the obstacle can be used
to stabilize the problem.

So, let geL2[0, rf] be arbitrary and return to the representation (3.5) of the far field
pattern. Then we have

J «(y)j7l'5^d sM' (3-6)

where

v(T, k) = 1 g(9) exp {ikp cos (6 - (/>)] d0
o

is an entire Herglotz wave function with Herglotz kernel having support in [0,?/]. Note
that if v is an interior Neumann eigenfunction of D, then the right hand side of (3.6)
vanishes showing that the Herglotz kernel g is orthogonal to F in L2[0, rf]. This
observation, together with Theorem 2.3, suggests a way of formulating the optimization
problem. Define the minimization problem

H(F)= eU
= l

2 2n

J (3.7)

where

v(p,<p,k): = ]g(6)exp [ifcpcos(9-0)] dfl,
o

p) denotes differentiation along the outward normal to the closed curve p = p(<f>),
and U is a compact set of ordered triples (k2,g,p) over which the minimization is
performed. For example, U = Ic x U^ x l/f. Here / c is a compact set of positive real
numbers containing the (unknown!) first nonzero eigenvalue of the Laplacian for
Neumann boundary conditions in dD:p = p((j>). Ui is a compact set of functions
geL2[0,rf] satisfying jl\g(9)\2dB^M2 and suitably normalized to prevent v(p,(j>;k) from
being trivial (see the appendix), and t/f is a compact set of functions peC^O.271] which
are periodic with period 2n and nonnegative. The latter set incorporates a priori
constraints on trial boundaries, such as
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0<a^p(4>)^b for all 0e[O,27t] (3.8)

and

max \p\4>)\^C, (3.9)

where a, b and C are known positive real numbers. We expect the expression in
brackets in equation (3.7) to attain a minimum when k2 equals the first nonzero
Neumann eigenvalue of D, g is the Herglotz kernel of the Herglotz wave function v
which is an approximation to the first interior Neumann eigenfunction itself, and
p = p((p) is a parametric representation of 3D. The reason that the first nonzero
eigenvalue is considered is that the eigenfunction corresponding to the zero eigenvalue is
a constant and contains no information about 3D. That this eigenfunction is unsuitable
is clear from equation (3.7).

Now, it is clear that a solution exists to problem (3.7) since a continuous functional is
being minimized over a compact set. A boundary parameterization peC^O^Tr]
corresponding to the third element of such a minimizing ordered triplet will be called an
admissible solution of the inverse scattering problem. Theorems are now presented
showing the continuous dependence of the admissible solutions on the far field data and
that if the boundary parameterization of the actual solution of the inverse scattering
problem is within the set of trial boundaries, then n(F,M, N,r)->0 as M->oo. Recall that
N is the number of plane waves incident on the obstacle and M is the upper bound on
the L2-norm of all functions g e l/f. T is defined in the appendix.

Theorem 3.1. Let O(F) be the set of admissible solutions corresponding to the far field
pattern F. Then if Fj-*F in L2[0,rj], pje<J>(Fj), then there exists a convergent subsequence
of{pj}, and every limit point lies in O(F). That is, <&(F) is graph compact.

Theorem 3.2. Suppose dD, represented by p = p((p), is a solution of the inverse
scattering problem with the far field pattern F such that peC2t"[0,27r] n t/f. Assume that
for g a polynomial in e'e in [0, tf\ and Z J = - T | £ / | 2 = 1> T = 0 isee tne appendix), we have that
ge V\for M sufficiently large. Then for every N

lim fi(F,M,N,z) =
M-oo

for T sufficiently large.

The proofs of these theorems are entirely analogous to those for the Dirichlet case [14]
and will not be presented here.

Of course, it would be desirable to have a converse to Theorem 3.2, i.e., if F is a far
field pattern for a bounded, starlike domain D and limM_co/i(F, M,N,T) = 0 for all T

sufficiently large, then the admissible functions pM tend to a limiting function p and
8D:p — p((t)) is a solution of the inverse scattering problem. But such a result is not true.
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Indeed, we cannot even obtain a partial converse, as we could in the Dirichlet case,
asserting that all admissible solutions p* of problem (3.7) lie "outside" the actual
solution dD:p = p(<f>) of the inverse scattering problem in the sense that p*(<f>)^p(<f>) for
all <£e[0,2%\. This is clear from the following example for the full aperture problem

Example. Let F be the far field pattern corresponding to the incoming plane wave
u'(x) = exp[i7cxan], where an=(cos</>n, sin</>n) is an arbitrary unit vector and the

scattering obstacle is the disc |x |<a. Let gl(6) = y/2sin6 and g2(8) = y/2cos6. Then by
separation of variables, the asymptotic behavior of the Hankel functions //J,1', and the
Jacobi-Anger expansion

eircos«= £ in«Jn(r)einB,
tf= —OO

we have that

] m S « * J I ^ (3.10)

(3.11)

2it

0

d-^-{p, 4>; k) = lJlnkU\ (kp) sin <t>, (3.13)
dp

i<p, (3.14)

2« r
v2(p,4>;k): = J g2(#) e x P ['^P c ° s (# — <£)] <i0 = 2y/2niJl(kp) cos <p, (3.15)

o

— (p, 0; k) = 2s/2nkiJ'i (kp) cos <£, (3.16)
^p

and

Isin^. (3.17)
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Let kij, j = l,2,... be all the positive zeros of the Bessel function J\ ordered so that
0<fcn</c1 2<.. . . If M ̂ yfht and x^ 1, then g,eUC

U / = 1,2, and for every integer N we
have that for U appropriately chosen (in particular, k2=(kll/a)2 = [first positive
eigenvalue for the Neumann problem in the disc of radius d]elc), n(F, M, N, t) = 0 for
p = {klm/k11)a for all m = l,2,.... But the situation is more complicated than this. If one
considers the collection of equations (3.10), (3.12), (3.13), and (3.14), one sees readily that
a semicircle of radius a is an admissible solution. 1*he same conclusion can be drawn
from equations (3.11), (3.15), (3.16), and (3.17), except that now the semicircles are
rotated 90 ° with respect to those in the previous sentence.

Note that the example indicates that semicircles are Herglotz domains, that is,
domains having an interior eigenfunction (Neumann or Dirichlet boundary conditions)
which is a Herglotz wave function [9]. In fact, by looking at the nodal curves and
curves along which the normal derivative vanishes of the functions uo = Jo(kr), um =
Jm(kr)sinm9, um = Jm(kr)cosm9 for all m = l,2,..., one can find a generous supply of
Herglotz domains.

Acknowledgement. This work appeared as part of a doctoral dissertation [13] written
at the University of Delaware under the direction of Professor David L. Colton, to
whom the author is greatly indebted.

Appendix. Normalization of Neumann eigenfunctions

Let geL2[0, ^] be arbitrary and extend its domain of definition to [0,27t] by setting
g(Q) = 0 for all 6 in (r\, 2n\. Suppose that the obstacle D contains the disc {x: |x| < a} of
positive radius a, and that

in

v{p, <f>; k)=\ g(8) exp [ikp cos (6 - </>)] dd
o

is in interior Neumann eigenfunction corresponding to the first positive eigenvalue of
the Laplacian in D. Then letting Yj=-<^Sj^iie be the Fourier series representation of
g(ff), we get for p < a,

v(p, 4>; k) = J g(0) exp [ikp cos (6 - 0)] d0
o

= Z gjfeijeexp[ikpcos(0-<p)]d6.
j=-oo 0

Using the Jacobi-Anger expansion

e.>cosfl= £ injn(r)eint>,
n~ — oo
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we see that

J eije exp [ikp cos ( 0 - 0 ] d0 = J <?'7<! £ (i)nJn{kp) ein(e~•> rf0
O 0 n = - o o

= I {i)nJn(kp)e-in<tl\ei}eeinBd0
n= — oo 0

«W, j = 0, ± 1, ± 2,....

Thus

v{p,^;k) = £ 2n(i)'gjJj(kp)etJ+= £ ajJj(kp)eiJ*, p<a,
j=—ao j= - CO

where aj: = 2nigj. Clearly, if t> is to be nontrivial, there exists n o ^0 such that
flo,fl,,fl_1,...,awa_w are not all zero. So, for an integer t^n 0 , we normalize g so that

j=~r
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