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Abstract

For a group G and m ≥ 1, let Gm denote the subgroup generated by the elements gm, where g runs
through G. The subgroups not of the form Gm are the nonpower subgroups of G. We classify the groups
with at most nine nonpower subgroups.
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1. Introduction

For a group G and m ≥ 1, the power subgroup Gm is the subgroup generated by the
elements gm, where g runs through G. A subgroup that is not a power subgroup is a
nonpower subgroup. Let ps(G) and nps(G) denote the number of power and nonpower
subgroups of G. It is immediate that every power subgroup is a characteristic subgroup
of G. But the converse is false, as illustrated by Mn,p defined in Section 3: it has a
unique maximal noncyclic subgroup, which is characteristic but not a power subgroup.

The study of nonpower subgroups was initiated by Szász [7] who proved that G is
cyclic if and only if nps(G) = 0. The terminology ‘nonpower subgroup’ was introduced
by Zhou et al. [9]. They proved that a noncyclic group G is finite if and only if nps(G) is
finite. Furthermore, if G is a finite noncyclic group, it was proved by Zhou and Ping that
nps(G) ≥ 3. Therefore, from now on, we assume that all groups under consideration
are finite.

For the most part, our notation follows Gorenstein [6]. In particular, Φ(G) denotes
the Frattini subgroup of G, and for subgroups H and K, [H, K] is generated by the
commutators [x, y] = x−1y−1xy with x ∈ H and y ∈ K. For a finite p-group G, let Ωi(G)
be the subgroup 〈x ∈ G | xpi

= 1〉 for i ≥ 1. We use [6, Ch. 5] as a reference for standard
results about p-groups.

Anabanti et al. [1, 2] classified the groups G with nps(G) ∈ {3, 4} and showed that,
for all k > 4, there are infinitely many groups G with nps(G) = k.
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The following theorem extends the classification to the groups G with nps(G) ≤ 9.
For completeness, we include the results for nps(G) ≤ 4.

Let Cn denote the cyclic group of order n and let Alt(n) and Sym(n) denote the
alternating and symmetric groups of a set of size n. See Definition 2.5 for descriptions
of the other groups referred to in the following theorem.

THEOREM 1.1. For 0 ≤ k ≤ 9, a group has exactly k nonpower subgroups if and only
if, up to isomorphism, it is one of the following:

k = 0 a cyclic group;
k = 1 no examples;
k = 2 no examples;
k = 3 C2 × C2, Q8 or Gn,3 for n ≥ 1;
k = 4 C3 × C3;
k = 5 C2 × C4 or Gn,5 for n ≥ 1;
k = 6 C5 × C5, C2 × C2 × Cp, Q8 × Cp, where p > 2 is a prime, or Gn,3 × Cq for

n ≥ 1, where q > 3 is a prime;
k = 7 D8, Alt(4), C2 × C8, Q16, M4,2, C3 × C9, M3,3, Gn,7 or Fn,7 for n ≥ 1;
k = 8 C7 × C7 or C3 × C3 × Cp, where p � 3 is a prime;
k = 9 C2 × C16, M5,2, C2 × C2 × Cp2 , Q8 × Cp2 , where p > 2 is a prime, or Gn,3 × Cq2 ,

where q > 3 is a prime.

2. Preliminaries

Recall that the exponent exp(G) of a finite group G is the least positive integer e such
that ge = 1 for all g ∈ G. The number of positive divisors of an integer n is denoted by
τ(n).

LEMMA 2.1. The power subgroups of a finite group G are the subgroups Gd, where d
is a divisor of the exponent of G. Thus, ps(G) ≤ τ(exp(G)).

PROOF. Given m ≥ 1, we prove that Gm = Gn, where n = gcd(m, e) and e is the
exponent of G. To this end, we may write n = am + be and m = dn for some integers a,
b and d. Then, for all g in G, gm = gnd ∈ Gn and gn = gam+be = gma ∈ Gm, from which
we get Gm = Gn. �

LEMMA 2.2 [1, Lemma 3]. If A and B are finite groups such that |A| and |B| are
coprime, then ps(A × B) = ps(A) ps(B) and nps(A × B) = nps(A)s(B) + ps(A) nps(B),
where s(B) is the number of subgroups of B.

COROLLARY 2.3. For any finite abelian group G, we have ps(G) = τ(exp(G)).

PROOF. From Lemma 2.2, it is no loss to assume that G is an abelian p-group. Then,
by Lemma 2.1, it suffices to prove that, for different divisors m and n of exp(G), we
have Gn � Gm. Let exp(G) = pe and e ≥ i > j ≥ 0. Then Gpi

= (Gpj
)pi−j
< Gpj

. �
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LEMMA 2.4 [9, Lemma 2]. Suppose that N and H are subgroups of G such that N � G
and N ⊆ H. If H/N is a nonpower subgroup of G/N, then H is a nonpower subgroup
of G. Therefore, nps(G) ≥ nps(G/N).

DEFINITION 2.5.

(i) For n ≥ 3, 〈a, b | an = b2 = 1, b−1ab = a−1〉 is a presentation for the dihedral
group D2n of order 2n.

(ii) For n ≥ 3, 〈a, b | a2n−1
= b2 = z, z2 = 1, b−1ab = a−1〉 is a presentation for the

generalised quaternion group Q2n of order 2n.
(iii) For n ≥ 4, 〈a, b | a2n−1

= b2 = 1, b−1ab = a−1+2n−2〉 is a presentation for the
semidihedral group S2n of order 2n.

(iv) For n ≥ 4 when p = 2 and n ≥ 3 when p is an odd prime, a presentation for the
quasidihedral group Mn,p of order pn is 〈a, b | apn−1

= bp = 1, b−1ab = a1+pn−2〉.
The group M3,p is the extraspecial group of order p3 and exponent p2.

(v) For an odd prime p, 〈x, y, z | xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z〉 is a
presentation for the extraspecial group M(p) of order p3 and exponent p.

(vi) For k ≥ 1 and n ≥ 2, 〈a, b | a2n
= bk = 1, a−1ba = b−1〉 is a presentation for the

group Gn,k of order 2nk. Note that G1,k = D2k and Gn,2 = C2 × C2n .
(vii) For n ≥ 1 and a prime p ≡ 1 (mod 3), choose i � 1 (mod p) such that

i3 ≡ 1 (mod p). Then 〈a, b | a3n
= bp = 1, a−1ba = bi〉 is a presentation for the

group Fn,p of order 3n p.
(viii) For n ≥ 1, 〈a, b, c | a3n

= b2 = 1, bc = cb, ba = c, ca = bc〉 is a presentation for
the group An = (C2 × C2) � C3n of order 223n. When n = 1, A1 = Alt(4).

(ix) For n ≥ 1 and a prime p,

〈a, b, c | [a, b] = c, ap = bpn
= cp = 1, [a, c] = [b, c] = 1〉

is a presentation for the group B1
n,p of order pn+2. Except for B1

1,2 = D8, it is
nonmetacyclic (see [4, Lemma 2.5]). The quotient mod 〈c〉 is Cp × Cpn and, for
p odd, B1

1,p = M(p).
(x) For n ≥ 1 and a prime p,

〈a, b, c | [a, b] = c, ap = c, bpn
= cp = 1, [a, c] = [b, c] = 1〉

is a presentation for the group B2
n,p of order pn+2. It is metacyclic: 〈a〉 is a

normal cyclic subgroup with cyclic quotient. The quotient mod 〈c〉 is Cp × Cpn ,
B2

1,2 = D8 and, for p odd, B2
1,p = M3,p.

There are some basic facts about a p′-group acting on a p-group in [6]. For the
reader’s convenience, we give these theorems as lemmas.

LEMMA 2.6 [6, Theorem 5.2.3]. If A is a p′-group of automorphisms of the abelian
p-group P, then P = CP(A) × [P, A].

LEMMA 2.7 [6, Theorem 5.3.5]. If A is a p′-group of automorphisms of the p-group
P, then P = CH, where C = CP(A) and H = [P, A]. In particular, if H ⊆ Φ(P), then
A = 1.
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The p-groups with a cyclic maximal subgroup are well known. It is clear that Cpn

and Cp × Cpn are the only abelian groups of this type. For the nonabelian case, we have
the following lemma.

LEMMA 2.8 [6, Theorem 5.4.4]. Let P be a nonabelian p-group of order pn that
contains a cyclic subgroup of index p. Then one of the following holds.

(i) p is odd and P is isomorphic to Mn,p, for n ≥ 3.
(ii) p = 2, n = 3 and P is isomorphic to D8 or Q8.
(iii) p = 2, n > 3 and P is isomorphic to Mn,2, D2n , Q2n or S2n .

The p-groups in Lemma 2.8 are well studied. We collect some basic facts in the
following lemmas.

LEMMA 2.9 [6, Theorem 5.4.3]. For P = Mn,p:

(i) P′ = 〈apn−1〉;
(ii) Φ(P) = Z(P) = 〈ap〉; and
(iii) Ωi(P) = 〈apn−i−1

, b〉 is abelian of type (pi, p), 1 ≤ i ≤ n − 2.

LEMMA 2.10 [6, Theorem 5.4.5]. Let P be a nonabelian 2-group of order 2n in which
|P/P′| = 4. Then P is isomorphic to D2n , Q2n or S2n .

LEMMA 2.11 [6, Theorem 5.5.1]. A nonabelian p-group P of order p3 is extraspecial
and is isomorphic to one of the groups M3,p, M(p), D8 or Q8.

THEOREM 2.12. There is no finite p-group G such that G/N 
 Mn,p, where N is a
central subgroup of G of order p contained in G′.

PROOF. From the presentation of Mn,p in Definition 2.5, we may suppose that G has a
presentation of the form

〈a, b, c | apn−1
= ci, bp = cj, cp = 1, b−1ab = a1+pn−2

ck, ac = ca, bc = cb〉,

where N = 〈c〉, 0 ≤ i, j, k < p and not all i, j, k are zero. Since c ∈ Z(G), it is clear
that ap commutes with b and hence z = apn−2 ∈ Z(G). Therefore, [a, b] = zck ∈ Z(G)
and it follows from elementary properties of commutators that G′ = 〈zck〉, which is a
contradiction. �

From Lemmas 2.2, 2.5 and Theorem 2.3 in [4], we deduce the following lemma.

LEMMA 2.13. For a nonabelian p-group G generated by two elements, let
R = Φ(G′)G3, where G3 = [[G, G], G]. Then:

(i) R is the only maximal subgroup of G′ that is normal in G;
(ii) G is metacyclic if and only if G/R is metacyclic; and
(iii) if the type of G/G′ is (p, pn) and G/R has no cyclic maximal subgroup, then G/R

is isomorphic to B1
n,p or B2

n,p.
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PROOF. (i) and (ii) are the statements of Lemma 2.2 and Theorem 2.3 in [4].
(iii) Let H = G/R. Since H′ = (G/R)′ = G′R/R = G′/R, we have H/H′ 
 G/G′

and H′ ⊆ Z(H). Thus, we may assume that H/H′ = 〈aH′, bH′〉. Then H = 〈a, b〉 and
H′ = 〈c〉, where c = [a, b] and |c| = p. Thus, c ∈ Z(H). Since the type of H/H′ is
(p, pn), we have ap = ci, bpn

= cj for suitable integers i, j. If p � j, then 〈b〉 is a
cyclic maximal subgroup of G/R, contrary to our assumption. Thus, bpn

= 1. If p � i,
replacing c with ci, we have H 
 B2

n,p. If p | i, then H 
 B1
n,p. �

3. A catalogue of nonpower values

The value of nps(G) for the groups that occur in the proof of Theorem 1.1 can
be computed from their presentation or from the Small Groups Database using the
computer algebra system MAGMA [5]. For ease of reference, we include some general
formulas here.

PROPOSITION 3.1. For an integer n and a prime p we have:

(i) for n ≥ 3, nps(D2n ) = 2n − 1;
(ii) for n ≥ 3, nps(Q2n ) = 2n−1 − 1;
(iii) for n ≥ 4, nps(S2n ) = 3 · 2n−2 − 1;
(iv) for n ≥ 3, nps(Mn,p) = p(n − 1) + 1 (when p = 2, assume that n ≥ 4);
(v) nps(M(p)) = p2 + 2p + 2;
(vi) if p > 2, then nps(Gn,pk ) = p(pk − 1)/(p − 1);
(vii) if p ≡ 1 (mod 3), then nps(Fn,p) = p;
(viii) for n ≥ 1, nps(An) = 3n + 4;
(ix) for n ≥ 1, nps(B1

n,p) ≥ 17 except that nps(B1
1,2) = 7;

(x) for n ≥ 1, nps(B2
n,p) ≥ 11 except that nps(B2

1,2) = nps(B2
1,3) = 7.

PROOF. (i), (ii) and (iii) follow from Proposition 11 and Theorems 16 and 17 of [1].
(iv) Suppose G = Mn,p. From Lemma 2.9, Z(G) = Φ(G) = Gp = 〈ap〉 and Ωi(G) =

〈apn−i−1
, b〉. The commutator c = [a, b] = apn−2

has order p, [ai, b] = ci, G′ = 〈c〉 and
(baj)p = cjp(p−1)/2ajp.

Therefore, for 1 ≤ i ≤ n − 1, we have Gpi
= 〈api〉 and so ps(G) = n. The maximal

subgroups of G are the cyclic subgroups 〈a〉 and 〈aib〉, 1 ≤ i < p, and the noncyclic
subgroup 〈ap, b〉. Therefore, the proper noncyclic subgroups of G are the abelian
groups Ωi(G) of type (pi, p), 1 ≤ i ≤ n − 2. Thus, G has n − 1 noncyclic subgroups
each of which, except Ω1(G), has p maximal cyclic subgroups. There are p + 1 cyclic
subgroups in Ω1(G). Therefore, s(G) = (n − 1) + p(n − 2) + (p + 1) + 1 = p(n − 1) +
n + 1 and nps(G) = p(n − 1) + 1.

(v) The exponent of M(p) is p; therefore, it has (p3 − 1)/(p − 1) subgroups of
order p. Every subgroup of order p2 is normal and hence contains the centre (of
order p). Therefore, there are (p3 − p)/(p2 − p) subgroups of order p2. In total there
are p2 + 2p + 2 proper subgroups all of which are nonpower subgroups.
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(vi), (vii) We only prove that nps(Gn,pk ) = p(pk − 1)/(p − 1). Then nps(Fn,p) = p is
obtained similarly.

Recall that Gn,pk = 〈a, b | a2n
= bpk

= 1, a−1ba = b−1〉. Thus, 〈a2〉 ⊆ Z(Gn,pk ). Then
we have Gn,pk/〈a2〉 
 D2pk . Since the number of Sylow 2-subgroups of D2pk is pk, the
number of Sylow 2-subgroups of Gn,pk is also pk. Thus, the Sylow 2-subgroups of
Gn,pk are self-normalising. For 0 ≤ j ≤ k − 1, 〈bpk−j〉 is the unique subgroup of order pj

of Gn,pk . Let Hj be a subgroup of Gn,pk and |Hj| = 2n pj. Then the Sylow 2-subgroups
of Hj are self-normalising. Thus, every subgroup of order 2n pj in Gn,pk contains pj

Sylow 2-subgroups of Gn,pk . Thus, there are exactly pk−j subgroups of order 2n pj in
Gn,pk and they are conjugate to each other in Gn,pk . The number of those subgroups
is p(pk − 1)/(p − 1). Now we prove that the other subgroups of Gn,pk are power
subgroups. Since 〈a2〉 ⊆ Z(Gn,pk ), for 0 ≤ i ≤ n − 1 and 0 ≤ s ≤ k, 〈a2n−i

, bpk−s〉 is the

unique subgroup of order 2i ps in Gn,pk and 〈a2n−i
, bpk−s〉 = G2n−i pk−s

n,pk . This completes the
proof.

(viii) The power subgroups of An are distinct except that A2
n = A1

n. The 2n − 1
subgroups Q, 〈a3i〉 and Q〈a3i〉, where 1 ≤ i < n and Q = 〈b, c〉, are the proper nontrivial
normal subgroups of An. The other subgroups are 〈a〉, 〈a3i

b〉, 〈a3i
c〉, 〈a3i

bc〉 for
0 ≤ i ≤ n. Thus, An has 5(n + 1) subgroups; therefore, nps(An) = 3n + 4.

(ix) There are n proper power subgroups of B1
n,p; their orders are pi for 0 ≤ i < n.

We claim that nps(B1
n,p) is an increasing function of n and p by counting the subgroups.

Since B1
1,p is well known, we only consider the case n ≥ 2. We count subgroups

by considering their exponent. First, notice that Ωn−1(B1
n,p) = 〈a〉 × 〈bp〉 × 〈c〉 
 Cp ×

Cpn−1 × Cp, which implies that all the subgroups of exponent ≤ pn−1 are in Ωn−1(B1
n,p).

Thus, the number of subgroups with exponent ≤ pn−1 is s(Cp × Cpn−1 × Cp), which
is an increasing function of n and p. Next, we consider the subgroups of exponent
pn. Considering the number of elements of order pn, we see that there are p2 cyclic
subgroups of order pn. Let H be a subgroup of order pn+1 with exp(H) = pn. Then
c ∈ H and exp(H/〈c〉) = pn. Since B1

n,p/〈c〉 
 Cp × Cpn , we see that the number of
such subgroups H is p. Therefore, the number of subgroups of exponent pn is
p2 + p + 1. Thus, nps(B1

n,p) is an increasing function of n and p, as claimed. By
direct calculation or from MAGMA [5], we find that nps(B1

2,2) = 20 and nps(B1
1,3) =

nps(M(3)) = 17.
(x) There are n proper power subgroups of B2

n,p; their orders are pi for 0 ≤ i ≤ n − 2
and pn. Similarly, nps(B2

n,p) is an increasing function of n and p. By direct calculation
or from MAGMA [5], we find that nps(B2

2,2) = 12, nps(B2
2,3) = 20 and nps(B2

1,5) =
nps(M3,5) = 11. �

REMARK 3.2. It can be shown that:

(i) for n ≥ 2, nps(B1
n,p) = p2(2n − 1) + p(n + 1) + 2; and

(ii) for n ≥ 2, nps(B2
n,p) = (p + 1)(2 + p(n − 1)).
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LEMMA 3.3. Let G = D2p × C2 × · · · × C2︸����������︷︷����������︸
n

. For n ≥ 1 and a prime p > 2, we have

nps(G) ≥ 3p + 4 and equality holds when n = 1.

PROOF. For all n ≥ 1, the exponent of G is 2p and the only proper nontrivial power
subgroup is G2 of order p. The group D2p × C2 has 3p + 7 subgroups; therefore, G has
at least 3p + 4 nonpower subgroups. �

LEMMA 3.4. Let Xn,p = D2p × C3 × · · · × C3︸����������︷︷����������︸
n

. For n ≥ 1 and a prime p > 3, we have

nps(Xn,p) = (p + 3)s(Cn
3) − 6 ≥ 10, where C3 × · · · × C3︸����������︷︷����������︸

n

is denoted by Cn
3 for short. For

n ≥ 1, nps(Xn,3) ≥ nps(X1,3) = 10.

PROOF. By simple calculation, s(D2p) = p + 3 and ps(D2p) = 3. Let p > 3. Then,
from Lemma 2.2, nps(Xn,p) = nps(D2p)s(Cn

3) + ps(D2p) nps(Cn
3) = nps(D2p)s(Cn

3) +
ps(D2p)(s(Cn

3) − 2) = (p + 3)s(Cn
3) − 6. In particular, nps(X1,5) = 10. For any n ≥ 1,

ps(Xn,3) = 3. Thus, nps(Xn,3) is an increasing function for n. Then a straightforward
calculation shows that nps(X1,3) = 10, and this completes the proof. �

LEMMA 3.5 [8, Theorem 3.3]. For n2 ≥ n1 ≥ 1 and a prime p, the total number of
subgroups of Cpn1 × Cpn2 is

(n2 − n1 + 1)pn1+2 − (n2 − n1 − 1)pn1+1 − (n2 + n1 + 3)p + (n2 + n1 + 1)
(p − 1)2 .

LEMMA 3.6. For n2 ≥ n1 ≥ 1 and a prime p, the value of nps(Cpn1 × Cpn2 ) is

(n2 − n1 + 1)pn1+2 − (n2 − n1 − 1)pn1+1 − (n2 + n1 + 3)p + (n2 + n1 + 1)
(p − 1)2 − (n2 + 1).

PROOF. This follows from Lemma 3.5 and Corollary 2.3. �

EXAMPLE 3.7. We have nps(Cp × Cpn ) = pn + 1 and nps(Cp2 × Cp2 ) = (p + 1)(p + 2).

4. The groups with at most nine nonpower subgroups

In proving Theorem 1.1, we use Theorem 1.3 of [2] and the theorems of [7] and [9],
which we summarise in the following lemma.

LEMMA 4.1. For a finite group G:

(1) G is cyclic if and only if nps(G) = 0;
(2) if G is noncyclic, then nps(G) ≥ 3;
(3) if nps(G) = 3, then G is C2 × C2, Q8 or Gn,3 for n ≥ 1; and
(4) if nps(G) = 4, then G is C3 × C3.
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Let Sylp(G) denote the set of Sylow subgroups of G. Recall that P ∈ Sylp(G) has
|G : NG(P)| conjugates and we have |G : NG(P)| ≡ 1 (mod p). Moreover, NG(P) is
self-normalising; therefore, it also has |G : NG(P)| conjugates.

LEMMA 4.2. Let G be a finite group and let P be a Sylow p-subgroup of G such that
P � NG(P) � G. Then nps(G) ≤ 9 if and only if, for some n ≥ 1 and a prime q > 3:

(1) nps(G) = 6, p = 2 and G 
 Gn,3 × Cq; or
(2) nps(G) = 9, p = 2 and G 
 Gn,3 × Cq2 .

PROOF. Since P � NG(P) � G, both P and NG(P) have at least p + 1 conjugates and
so 2(p + 1) ≤ nps(G) ≤ 9, from which we get p is 2 or 3. If Q ∈ Sylq(G) for some
prime q � p and NG(Q) � G, then 2(p + 1) + q + 1 ≤ nps(G) ≤ 9, which is impossible.
Therefore, for q � p, all Sylow q-subgroups are normal. Thus, G = NP, where N is a
nilpotent normal subgroup such that N ∩ P = 1. Then [NN(P), P] ⊆ N ∩ P = 1 and,
consequently, NG(P) = PCN(P). If |G : NG(P)| > p + 1, then 2(2p + 1) ≤ 9, which is a
contradiction. Thus, |G : NG(P)| = p + 1.

If p = 3, then nps(G) is 8 or 9. Thus, for Q ∈ Syl2(G), we have Q � G and
G = NG(P)Q. If [P, Q] ⊆ Φ(Q), it follows from Lemma 2.7 that [P, Q] = 1. But then
Q ⊆ CG(P) ⊆ NG(P), which is a contradiction. Thus, Q has at least three subgroups
that are not normal in G. Hence, G has at least 11 nonpower subgroups, contrary to
nps(G) ≤ 9. Therefore, for the remainder of the proof, we take p = 2.

If P is not cyclic, it follows from Lemma 4.1 that nps(P) ≥ 3. Then, in addition to the
three conjugates of P and the three conjugates of NG(P), there would be at least three
nonpower subgroups H such that H/N is a nonpower subgroup of G/N 
 P. In this
case, nps(P) = 3, nps(G) = 9 and P is either C2 × C2 or Q8. But nps(G) = 9 implies
that the proper subgroups of P are normal in G, which is a contradiction since P is
generated by its proper subgroups. Therefore, P is cyclic.

Let R ∈ Sylr(N). Then R acts by conjugation on the three conjugates of P. If r > 3,
then R ⊆ NG(P), from which we get R ⊆ NG(P) ∩ N ⊆ CG(P). For Q ∈ Syl3(G), we
have [R, Q] ⊆ R ∩ Q = 1 and so R ⊆ CG(Q). Consequently, G = PQ × A, where A is a
nilpotent group whose order is not divisible by two or three. From Lemma 2.2,

nps(G) = nps(QP)s(A) + ps(QP) nps(A).

It follows from nps(G) ≤ 9 that nps(A) = 0 and so A is cyclic. Furthermore, s(A) ≤ 3;
therefore, A is either trivial or a cyclic group of order r or r2 for some prime r > 3.

The permutation action of G on the conjugates of P defines a homomorphism
G→ Sym(3) with kernel K =

⋂
g∈G NG(P)g. Since |Q : CQ(P)| = 3, we have Φ(Q) ⊆

CQ(P) ⊆ K. Therefore, M = (P ∩ K) × Φ(Q) × A is a normal subgroup of G. The group
P acts on the elementary abelian group Q = Q/Φ(Q) and it follows from Lemma 2.6
that Q = CQ(P) × [P, Q]. Thus, [P, Q] 
 C3 and

G/M 
 Sym(3) × C3 × · · · × C3︸����������︷︷����������︸
n

.
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If n ≥ 1, it follows from Lemmas 3.4 and 2.4 that nps(G) ≥ 10, contrary to assumption.
Thus, Q/Φ(Q) 
 C3; therefore, Q is cyclic. But now Q = [P, Q] × CQ(P); therefore,
CQ(P) = 1 and |Q| = 3.

Let a be a generator of P and let b a generator of Q. Then a−1ba = b−1 and so
QP 
 Gn,3 for some n. The assumption NG(P) � P implies that A � 1. Thus, G is either
Gn,3 × Cr or Gn,3 × Cr2 for some prime r > 3. �

REMARK 4.3. The group G = Sym(3) × C3 satisfies the hypothesis of the lemma (with
p = 2) except that nps(G) = 10.

LEMMA 4.4. Let G be a finite group and let P be a Sylow p-subgroup of G such that
P = NG(P) � G. Then nps(G) ≤ 9 if and only if, for some n ≥ 1, one of the following
holds.

(1) nps(G) = 3, p = 2 and G 
 Gn,3.
(2) nps(G) = 5, p = 2 and G 
 Gn,5.
(3) nps(G) = 7, p = 2 and G 
 Gn,7.
(4) nps(G) = 7, p = 3 and G 
 Fn,7.
(5) nps(G) = 7, p = 3 and G 
 Alt(4).

PROOF. The Sylow subgroup P has m = |G : NG(P)| conjugates. Since m ≡ 1 (mod p)
and NG(P) � G, we have m ≥ p + 1 and the conjugates of P are nonpower subgroups.
The assumption nps(G) ≤ 9 implies that p ∈ {2, 3, 5, 7}.

If p = 2, then m ∈ {3, 5, 7, 9}; if p = 3, then m ∈ {4, 7}; if p = 7, then m = 8.
However, if p = 5, then m = 6 and G is a group of twice odd order. It is an elementary
fact that a group of twice odd order has a subgroup H of index two, which, in this case,
contains P. Then |H : P| = 3, which is impossible. Thus, in all cases m is a power of a
prime q and, for Q ∈ Sylq(G), we have G = PQ and |Q| = m.

The permutation action on Sylp(G) defines a homomorphism G→ Sym(m) whose
kernel K =

⋂
g∈G Pg is a proper subgroup of P.

If NG(Q) � G, then Q has at least q + 1 conjugates; therefore, m + q + 1 ≤ 9. In
this case, either p = 2 and |Q| = 3 or p = 3 and |Q| = 4. Furthermore, we must have
Q = NG(Q). Otherwise, both Q and NG(Q) would have at least q + 1 conjugates. From
the structure of Sym(3) and Sym(4), we have KQ � G and, by the Frattini argument
[6, Theorem 1.3.7], G = KNG(Q) and Q � NG(Q), which is a contradiction. Therefore,
Q � G and [K, Q] ⊆ K ∩ Q = 1 and hence K ⊆ CG(Q).

The order of Q is either q or q2; therefore, Q is abelian.

Case 1: p = 2 and m ∈ {3, 5, 7, 9}. We have G = Q � P, where P is a 2-group and Q is
an abelian group of order m. We treat each value of m separately.

Case 1a: p = 2 and |Q| = 3. In this case, |Q| = 3 and G/K 
 Sym(3). Since |P/K| = 2,
we have Φ(P) ⊆ K and so Φ(P) � G. If P is not cyclic, then G/Φ(P) 
 Sym(3) ×
C2 × · · · × C2 and it follows from Lemmas 2.4 and 3.3 that nps(G) ≥ 13, contrary to
assumption. Thus, P is cyclic. If a generates P and b generates Q, then ba = b−1 and
G 
 Gn,3.
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Case 1b: p = 2 and |Q| = 5. In this case, |Q| = 5 and QK/K is a normal subgroup
of G/K. Therefore, |G/K| is either 10 or 20. If |G/K| = 20, then G/K = 〈x, b | x4 =

b5 = 1, x−1bx = b2〉. This group has 14 subgroups, 4 of which are power subgroups;
therefore, there are 10 nonpower subgroups. From Lemma 2.4, nps(G) ≥ 10, contrary
to our assumption. Thus, |G/K| = 10. If P is not cyclic, then G/Φ(P) 
 D10 × C2 ×
· · · × C2 and, using Lemma 3.3, we arrive at a contradiction, as in Case 1a. Thus, P is
cyclic. If a generates P and b generates Q, then ba = b−1 and so G 
 Gn,5.

Case 1c: p = 2 and |Q| = 7. In this case, |Q| = 7, G/K 
 D14 and P has seven
conjugates. If P is not cyclic, then nps(P) ≥ 3 and it follows from Lemma 2.4 that
nps(G) ≥ 10, contrary to assumption. Thus, P is cyclic and G 
 Gn,7.

Case 1d: p = 2 and |Q| = 9. Since nps(G) ≤ 9, all subgroups are normal except the
Sylow 2-subgroups. In particular, if R is a subgroup of Q of order three, then R � G;
therefore, RP � G. But then P is not maximal. Thus, all maximal subgroups are
normal. This implies that G is nilpotent and this contradiction shows that there are
no examples in this case.

Case 2: p = 3. In this case, G = Q � P, where P is a 3-group and |Q| ∈ {4, 7}.

Case 2a: p = 3 and |Q| = 4. We must have Q 
 C2 × C2, otherwise Q 
 C4 and then
Q ⊆ CG(P), which contradicts the assumption that P = NG(P).

It follows that Q has three subgroups R1, R2 and R3 of order two and P acts
transitively on them. Then R1, R2, R3 and the four conjugates of P are not normal in G,
from which we get nps(G) ≥ 7. Let K be the kernel of the action of P on {R1, R2, R3}.
Then K = CP(Q), |P : K| = 3 and so K � G. Then R1K, R2K and R3K are permuted
by P and, if K � 1, we would have nps(G) ≥ 10. Therefore, K = 1, |P| = 3 and so
G 
 Alt(4).

Case 2b: p = 3 and |Q| = 7. For Q ∈ Syl7(G), we have |Q| = 7 and P is cyclic;
otherwise, nps(P) ≥ 3 and we obtain a contradiction by applying Lemma 2.4 to G/Q.
The image of the homomorphism G→ Sym(7) is the group F1,7 of order 21. We may
write P = 〈a〉 and Q = 〈b〉, where a3n

= 1, b7 = 1 and ba = b2. Thus, G 
 Fn,7.

Case 3: p = 7 and |Q| = 8. All subgroups are normal except the Sylow 7-subgroups. As
in Case 1d, we see that all maximal subgroups of G are normal and so G is nilpotent,
which is a contradiction. �

REMARK 4.5. For n ≥ 2, the groups 〈x, b | x2n
= b5 = 1, x−1bx = b2〉 have exactly 10

nonpower subgroups and their Sylow 2-subgroups are self-normalising.

PROOF OF THEOREM 1.1. From Lemmas 4.2 and 4.4, we may suppose that G is
nilpotent. If P is a noncyclic p-group, then nps(P) ≥ 3. Suppose that H � 1 is a group
whose order is not divisible by p. If nps(P × H) ≤ 9, then, from Lemma 2.2, there are
two possibilities: (i) nps(P) = 3 and H is a cyclic group whose order is a prime or the
square of a prime; (ii) nps(P) = 4 and H is a cyclic group of prime order.
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From Lemma 4.1, if nps(P) = 3, then G is C2 × C2 × Cr, C2 × C2 × Cr2 , Q8 × Cr or
Q8 × Cr2 , where r > 2 is a prime. If nps(P) = 4, then G is C3 × C3 × Cr, where r � 3
is a prime.

Thus, from now on, we may suppose that G is a noncyclic p-group. Then G/Φ(G)
is an elementary abelian group of order pd. The proper subgroups of G/Φ(G) are
nonpower subgroups; therefore, nps(G) ≤ 9 implies that d = 2 and p ∈ {2, 3, 5, 7}.

The group G can be generated by two elements; therefore, G/G′ = Cpm × Cpn for
some m ≤ n. It follows from Example 3.7 and Lemma 2.4 that m = 1. Thus, G/G′ is
one of Cp × Cp for p ∈ {2, 3, 5, 7}, C2 × C2n for n ∈ {2, 3, 4} or C3 × C9. If G is abelian,
this completes the proof. From now on, we assume that G′ � 1.

Suppose that G/G′ 
 C2 × C2. It follows from Lemma 2.10 that G is isomorphic to
D2n , S2n or Q2n . From Proposition 3.1, the only possibilities are D8, Q8 and Q16.

Since G′ � 1, there exists R � G such that |G′/R| = p. We shall determine the
structure of G/R for each choice of G/G′.

Suppose that p is odd and G/G′ 
 Cp × Cp. From Lemma 2.11, G/R is an
extraspecial group of order p3: that is, M3,p or M(p). From Proposition 3.1(iv) and
(v), nps(M3,p) = 2p + 1 and nps(M(p)) = p2 + 2p + 2. Thus, p = 3 and G/R 
 M3,3.
The group M3,3 has a cyclic subgroup of order nine; therefore, it is metacyclic. It
follows from Lemma 2.13 that G is metacyclic and so G has a cyclic normal subgroup
that properly contains G′: that is, G has a cyclic subgroup of index three. Therefore,
by Lemma 2.8, G 
 Mn,3. (This argument is based on the MathSciNet review of [3]
by Marty Isaacs.) But, from Lemma 2.9, if M = Mn,p, then M′ is its unique normal
subgroup of order p and M/M′ 
 Cp × Cpn−2 . Thus, R = 1 and G 
 M3,3.

Suppose that G/G′ 
 C2 × C2n (n = 2, 3, 4) or C3 × C9. If G/R has a cyclic sub-
group of prime index, it follows from Lemma 2.8 that G/R is isomorphic to
Mn+2,2 or M4,3. The assumption that nps(G) ≤ 9 excludes M6,2 and M4,3. Then, from
Theorem 2.12, R = 1 and hence G is isomorphic to M4,2 or M5,2.

We may suppose that the exponent of G/R is 2n or 9. Lemma 2.13 shows that G/R
is either B1

n,p or B2
n,p for p ∈ {2, 3} and n ≥ 2. Proposition 3.1(ix) and (x) shows that

none of these groups satisfy our assumptions. This completes the proof. �
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