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Abstract. Given a Banach operator ideal A, we investigate the approximation
property related to the ideal of A-compact operators, KA-AP. We prove that a Banach
space X has the KA-AP if and only if there exists a λ ≥ 1 such that for every Banach
space Y and every R ∈ KA(Y, X),

R ∈ {SR : S ∈ F(X, X), ‖SR‖KA ≤ λ‖R‖KA}τc
.

For a surjective, maximal and right-accessible Banach operator ideal A, we prove that
a Banach space X has the K(Aadj)dual -AP if the dual space of X has the KA-AP.

2010 Mathematics Subject Classification. 46B28, 46B45, 47L20.

1. Introduction. A Banach space X is said to have the approximation property
(AP) if

K(Y, X) = F(Y, X)
‖·‖

for every Banach space Y , where K and F are the ideals of compact and finite rank
operators, respectively. Lassalle, Turco and Oja [16, 21] introduced a general notion of
the AP. Let [A, ‖ · ‖A] be a Banach operator ideal. A Banach space X is said to have

the A-AP if A(Y, X) = F(Y, X)
‖·‖A

for every Banach space Y .
Carl and Stephani [1] introduced a notion of compactness determined by operator

ideals. A subset K of a Banach space X is said to be relatively A-compact if there exist
a Banach space Z, U ∈ A(Z, X) and a relatively compact subset C of Z such that
K ⊂ U(C). In fact, this notion is an equivalent statement of the original definition of
A-compactness (see [1, Definition 1.1 and Theorem 1.2]). Throughout this paper, we
use “A-compact” instead of “relatively A-compact” in the notion of A-compactness.
A linear map R : Y → X is said to be A-compact if R(BY ) is an A-compact subset of
X (see [1]), where BY is the unit ball of Y . Let KA(Y, X) be the space of all A-compact
operators from Y to X .

Lassalle and Turco [17] introduced a way to measure the size of A-compact sets.
For an A-compact subset K of X , let

mA(K ; X) := inf{‖U‖A : U ∈ A(Z, X), relatively compact C ⊂ BZ, K ⊂ U(C)}

and let ‖R‖KA := mA(R(BY ); X) for R ∈ KA(Y, X). Then, [KA, ‖ · ‖KA ] is a Banach
operator ideal (see [17, Section 2]). From [17, Remarks 1.3 and 1.7], a subset K of X is
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relatively compact if and only if K is K-compact. In this case,

mK(K ; X) = sup
x∈K

‖x‖.

Thus, [KK, ‖ · ‖KK ] = [K, ‖ · ‖].
The main notion of this paper is the KA-AP for Banach spaces, which was

introduced by Lassalle and Turco [17], namely, a Banach space X is said to have
the KA-AP if

KA(Y, X) = F(Y, X)
‖·‖KA

for every Banach space Y . The main purpose of this paper is to characterize the KA-
AP with some weakened statements and investigate in which cases the KA-AP passes
from the dual space of a Banach space to the Banach space itself. One may refer to
[2, 4–7, 10, 12–18, 21, 24, 25] for investigations related with the KA-AP.

2. Characterizations of the KA-approximation property. In [17], the authors
introduced a locally convex topology on the space L(X, Y ) of all bounded operators
from X to Y . Let A be a Banach operator ideal. The topology τsA on L(X, Y ) of strong
uniform convergence on A-compact sets, which is given by the seminorms

qK (T) = mA(T(K); Y ),

where K ranges overall A-compact subsets of X . It was shown in [17, Proposition 3.2]
that a Banach space X has the KA-AP if and only if

idX ∈ F(X)
τsA

,

where idX is the identity map on X and F(X) is the space of all finite rank operators
from X to X .

Delgado and Piñeiro [4] introduced an AP via operator ideals, denoted by (APA),
and studied it using another locally convex topology on the space L(X, Y ) determined
byA-compact sets. The topology τc(A) onL(X, Y ) of uniform convergence onA-compact
sets, which is given by the seminorms

pK (T) = sup
x∈K

‖Tx‖,

where K ranges overall A-compact subsets of X . In particular, the topology of uniform
convergence on compact sets is denoted by τc. They proved that a Banach space X has
the APA if and only if

idX ∈ F(X)
τc(A)

,

if and only if for every Banach space Y ,

KA(Y, X) ⊂ F(Y, X)
‖·‖

.

THEOREM 2.1. Let A be a Banach operator ideal and let λ ≥ 1. The following
statements are equivalent:
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(a) X has the KA-AP.
(b) For every Banach space Y and every injective operator R ∈ KA(Y, X),

R ∈ {SR : S ∈ F(X), ‖SR‖KA ≤ λ‖R‖KA}τc
.

(c) For every Banach space Y and every R ∈ KA(Y, X), and for every δ > 0,

idX ∈ {S ∈ F(X) : ‖SR‖KA ≤ (λ + δ)‖R‖KA}τc(A)
.

(d) For every Banach space Y and every R ∈ KA(Y, X), and for every δ > 0
and every finite-dimensional subspace F of X, there exists an S ∈ F(X) with
‖SR‖ ≤ (λ + δ)‖R‖KA such that ‖Sx − x‖ ≤ δ‖x‖ for every x ∈ F.

(e) For every Banach space Y and every R ∈ KA(Y, X), and for every δ > 0
and every finite-dimensional subspace F of X, there exists an S ∈ F(X) with
‖SR‖ ≤ (λ + δ)‖R‖KA such that Sx = x for every x ∈ F.

In order to prove Theorem 2.1, we show that (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(a). First,
it was shown in [17, Proposition 3.1] that a Banach space X has the KA-AP if and only
if for every Banach space Y and every R ∈ KA(Y, X),

R ∈ {SR : S ∈ F(X)}‖·‖KA ,

which is equivalent to

R ∈ {SR : S ∈ F(X), ‖SR‖KA ≤ ‖R‖KA}‖·‖KA .

Hence, (a)⇒(b) follows. To show that (b)⇒(c), we need the following lemma which
originates from a representation of Grothendieck [11] for the dual space (L(X, Y ), τc)∗

(cf. [19, Proposition 1.e.3]). See [1] for the definition and properties ofA-null sequences.

LEMMA 2.2 ([4]). The dual space (L(X, Y ), τc(A))∗ consists of all functionals of the
form

f (T) =
∞∑

n=1

y∗
n(Txn),

where (xn) is an A-null sequence and (y∗
n) is an absolutely summable sequence in Y∗.

Suppose that A is a balanced, convex and compact subset of X . Let XA be a linear
span of A, which is normed by the Minkowski functional of A. Then, it is well known
that XA is a Banach space and the set A is the unit ball of XA (cf. [23, Lemma 4.11]).
Let jA : XA → X be the inclusion map.

Proof of theorem 2.1(b)⇒(c). Let Y be a Banach space and let R ∈ KA(Y, X).
We may assume that ‖R‖KA = 1. Let δ > 0. We use Lemma 2.2 to apply the separation
theorem. Let

f :=
∞∑

n=1

x∗
n(· xn) ∈ (L(X), τc(A))∗,

where (xn) is an A-null sequence and (x∗
n) is an absolutely summable sequence in X∗.

Note that the set {xn}∞n=1 is A-compact (cf. [17, Proposition 1.4]). We may assume that
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mA({xn}∞n=1; X) = δ/λ. Let A be a balanced and closed convex hull of the set

{xn}∞n=1

⋃
R(BY )

mA({xn}∞n=1

⋃
R(BY ); X)

.

Then, we see that jA ∈ KA(XA, X) and ‖jA‖KA = 1. Consider

g :=
∞∑

n=1

x∗
n(· xn) ∈ (L(XA, X), τc)∗.

Then, by (b)

Ref (idX ) = Reg(jA)

≤ sup{Reg(SjA) : S ∈ F(X), ‖SjA‖KA ≤ λ‖jA‖KA}
= sup{Ref (S) : S ∈ F(X), ‖SjA‖KA ≤ λ‖jA‖KA}.

Now, if S ∈ F(X) and ‖SjA‖KA ≤ λ‖jA‖KA = λ, then

‖SR‖KA = mA(SR(BY ); X)

= mA(SjAR(BY ); X)

= mA({xn}∞n=1 ∪ R(BY ); X)mA(SjA(R(BY )/mA({xn}∞n=1 ∪ R(BY ); X)); X)

≤ (mA({xn}∞n=1; X) + mA(R(BY ); X))‖SjA‖KA

≤ (
δ

λ
+ 1)λ = δ + λ.

Thus,

Ref (idX ) ≤ sup{Ref (S) : S ∈ F(X), ‖SR‖KA ≤ λ + δ}.
This completes the proof. �

Note that every bounded subset of a finite-dimensional subspace of a Banach
space isA-compact for every Banach operator idealA. From this, Theorem 2.1(c)⇒(d)
follows.

Proof of theorem 2.1(d)⇒(e). Let Y be a Banach space and let R ∈ KA(Y, X). Let
δ > 0 and let F be a finite-dimensional subspace of X . Let P : X → F be a projection.
Let γ > 0 be such that γ (1 + ‖P‖) ≤ δ.

By (d) there exists an S ∈ F(X) with ‖SR‖KA ≤ (λ + γ )‖R‖KA so that

‖Sx − x‖ ≤ γ ‖x‖
for every x ∈ F . Let S0 := S + (idX − S)P ∈ F(X). Then,

S0x = Sx + x − Sx = x

for every x ∈ F and

‖S0R‖KA ≤ ‖SR‖KA + ‖(idX − S)P‖‖R‖KA ≤ (λ + γ + γ ‖P‖)‖R‖KA ≤ (λ + δ)‖R‖KA .

�
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Proof of theorem 2.1(e)⇒(a). The prototype of this proof is the proof of [17,
Proposition 3.3]. Let K be an A-compact subset of X and ε > 0. By [17, Proposition
1.8], there exist a T ∈ A ◦ K(�1, X) and a relatively compact subset M of �1 such that
K ⊂ T(M). By [17, Proposition 2.1], A ◦ K(�1, X) is isometrically equal to KA(�1, X).

Using [23, Lemma 4.11], there exists the Banach space XA ⊂ �1 such that A is a
compact subset of �1 and M is a compact subset of XA. Let n0 ∈ � be such that

sup
a∈A

‖Pn0 a − a‖1 ≤ ε

‖T‖KA (λ + ε + 1)
,

where Pn0 : �1 → �1 is the basis projection.
Now, let us consider the finite-dimensional subspace TPn0 jA(XA) of X . Then, by

(e) there exists an S ∈ F(X) with ‖ST‖KA ≤ (λ + ε)‖T‖KA such that

STPn0 jA = TPn0 jA.

We now have

mA((S − idX )(K); X) ≤ ‖(S − idX )TjA‖A
≤ ‖STjA − STPn0 jA‖A + ‖STPn0 jA − TjA‖A
≤ ‖ST‖A‖jA − Pn0 jA‖ + ‖T‖A‖Pn0 jA − jA‖
≤ ‖Pn0 jA − jA‖(‖ST‖A◦K + ‖T‖A◦K)

= sup
a∈A

‖Pn0 a − a‖1(‖ST‖KA + ‖T‖KA ) ≤ ε.

This completes the proof. �
We introduce a topology on KA(Y, X), which is weaker than the topology induced

by the norm ‖ · ‖KA . For a net (Tα) in KA(Y, X) and T ∈ KA(Y, X), we say that Tα

converges to T in the topology τcc(mA) if

lim
α

mA((Tα − T)(K); X) = 0

for every compact subset K of Y .

THEOREM 2.3. For a Banach operator ideal A, a Banach space X has the KA-AP if
(and only if) for every quotient space Z of �1 and every injective operator R ∈ KA(Z, X),

R ∈ F(Z, X)
τcc(mA)

.

Proof. Let K be an A-compact subset of X and let ε > 0. By [1, Theorem 1.1],
there exists an A-null sequence (xn) in X such that

K ⊂
{ ∑

n

αnxn : (αn) ∈ B�1

}
.

According to [1, Lemma 1.2], there exists a sequence (βn) of positive numbers with
βn ≤ 1 and βn −→ 0 such that (zn) := (xn/βn) is an A-null sequence.

Now, we define the maps Dβ : �1 → �1 and Mẑ : �1 → X by Dβ(αn) = (βnαn) and
Mẑ(αn) = ∑

n αnzn, respectively. The injective operator Mẑ : �1/ker(Mẑ) → X is defined
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by Mẑ((αn) + ker(Mẑ)) = Mẑ(αn) and then Mẑ = Mẑq, where q : �1 → �1/ker(Mẑ) is
the quotient operator.

�1
Dβ−→ �1

q−→ �1/ker(Mẑ)
Mẑ−→ X.

We see that Dβ is compact and Mẑ is A-compact. Since the ideal of A-compact
operators is surjective (cf. [17, Proposition 2.1]), Mẑ is A-compact.

Now, by the assumption, there exists an U ∈ F(�1/ker(Mẑ), X) such that

mA((U − Mẑ)(qDβ(B�1 )); X) ≤ ε

2
.

We may assume that U = ∑m
k=1 y∗

k ⊗ xk, where y∗
k ∈ (�1/ker(Mẑ))∗ and xk ∈ X

for each k = 1, . . . , m and
∑m

k=1 ‖xk‖ = 1. Since Mẑ is injective, (�1/ker(Mẑ))∗ =
Mẑ

∗
(X∗)

weak∗

= Mẑ
∗
(X∗)

τc

. The second equality follows from (Z∗, weak∗)∗ = (Z∗, τc)∗

for every Banach space Z (cf. [20, Theorem 2.7.8]). Then, for each k = 1, . . . , m, we
can choose an x∗

k ∈ X∗ such that

sup
y∈qDβ (B�1 )

|y∗
k(y) − Mẑ

∗
(x∗

k)(y)| ≤ ε

2
.

We show that S = ∑m
k=1 x∗

k ⊗ xk ∈ F(X) is the desired operator approximating to idX .
Since, for every (αn) ∈ �1,

(SMẑqDβ − UqDβ )(αn) =
m∑

k=1

(((Mẑ
∗
x∗

k)qDβ − y∗
kqDβ )(αn))xk,

we have

mA((S − idX )(K); X)

≤ mA((S − idX )(MẑqDβ (B�1 )); X)

= mA((SMẑqDβ − UqDβ + UqDβ − MẑqDβ )(B�1 ); X)

= ‖SMẑqDβ − UqDβ + UqDβ − MẑqDβ‖KA

≤
∥∥∥

m∑
k=1

((Mẑ
∗
x∗

k)qDβ − y∗
kqDβ ) ⊗ xk

∥∥∥
KA

+ mA((UqDβ − MẑqDβ )(B�1 ); X)

≤
m∑

k=1

mA((((Mẑ
∗
x∗

k)qDβ − y∗
kqDβ ) ⊗ xk)(B�1 ); X) + ε

2

=
m∑

k=1

‖xk‖ sup
y∈qDβ (B�1 )

|y∗
k(y) − Mẑ

∗
(x∗

k)(y)| + ε

2
≤ ε.

�

3. A duality of the KA-approximation property. One may refer to [3, 22] for
definitions and information of operator ideals. Given a Banach operator ideal [A, ‖ ·
‖A], we denote by [A, ‖ · ‖A]min, [A, ‖ · ‖A]max, [A, ‖ · ‖A]sur, [A, ‖ · ‖A]inj, [A, ‖ · ‖A]adj

and [A, ‖ · ‖A]dual, the minimal kernel, maximal hull, surjective hull, injective hull, adjoint
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ideal and dual ideal, respectively. For operator ideals [A, ‖ · ‖A] and [B, ‖ · ‖B], in this
paper, A = B means that [A, ‖ · ‖A] = [B, ‖ · ‖B], and A ⊂ B means the norm one
inclusion.

A Banach operator ideal [A, ‖ · ‖A] is called right-accessible if for all finite-
dimensional normed space M, Banach space Y , T ∈ L(M, Y ) and ε > 0, there exist
a finite-dimensional subspace N of Y and an S ∈ L(M, N) such that T = INS and
‖S‖A ≤ (1 + ε)‖T‖A, where IN : N → Y is the inclusion map. Note that [A, ‖ · ‖A] is
right-accessible if and only if

Amin = A ◦ F

(see [3, Proposition 25.2(2)]).
It was shown in [17, Proposition 2.1] that

KA = (A ◦ F)sur.

Then, we have the following Lemma.

LEMMA 3.1. Let A be a Banach operator ideal. Then,

(Amin)sur = KAmin

and, if A is right-accessible, then

(Amin)sur = KA.

Now, let us consider the dual space of L(X, Y ) equipped with the topology τsA,
which was investigated in [18]. We note that ϕ ∈ (L(X, Y ), τsA)∗ if and only if there
exist a C > 0 and an A-compact subset of X such that

|ϕ(T)| ≤ CmA(T(K); Y )

for every T ∈ L(X, Y ).

LEMMA 3.2 ([18, Corollary 4.3]). Suppose that A is a maximal, right-accessible
Banach operator ideal. Let X and Y be Banach spaces. If ϕ ∈ (L(X, Y ), τsA)∗, then there
exist S ∈ Amin(�1, X) and R ∈ (Aadj)min(Y, �1) such that

ϕ(T) = tr(RTS)

for every T ∈ L(X, Y ).

In view of the proof of [18, Theorem 4.2], for every T ∈ L(X, Y ), RTS ∈ N (�1, �1),
where N is the ideal of nuclear operators, and since �1 has the metric AP, the trace
functional tr on N (�1, �1) is well defined.

THEOREM 3.3. Suppose that A is a maximal, right-accessible Banach operator ideal
such that (Aadj)dual is surjective. Let X and Y be Banach spaces. If ϕ ∈ (L(X, Y ), τsA)∗,
then there exists a ψ ∈ (L(Y∗, X∗), τs(Aadj)dual )∗ such that

ϕ(T) = ψ(T∗)

for every T ∈ L(X, Y ).
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Proof. This proof is motivated from the proof of [18, Theorem 4.7].
Let ϕ ∈ (L(X, Y ), τsA)∗. Let S ∈ Amin(�1, X) and R ∈ (Aadj)min(Y, �1) be the

operators in Lemma 3.2 such that

ϕ(T) = tr(RTS)

for every T ∈ L(X, Y ).
Now, by [3, Corollary 22.8.1],

R ∈ (((Aadj)dual)dual)min(Y, �1) = (((Aadj)dual)min)dual(Y, �1).

Thus, R∗ ∈ ((Aadj)dual)min(�∞, Y∗). Since

S ∈ A(�1, X) = (((Aadj)dual)adj)dual(�1, X),

S∗ ∈ ((Aadj)dual)adj(X∗, �∞).
By [3, Corollary 21.3], (Aadj)dual is right-accessible. Then, by an application of

[3, Propositions 25.4.1 and 25.4.2],

((Aadj)dual)adj ◦ ((Aadj)dual)min ⊂ N .

Thus, S∗UR∗ ∈ N (�∞, �∞) for every U ∈ L(Y∗, X∗).
Now, we can define a linear functional ψ on L(Y∗, X∗) by

ψ(U) = tr(S∗UR∗).

Let U be an arbitrary element of L(Y∗, X∗). Then,

|ψ(U)| = |tr(S∗UR∗)| ≤ ‖S∗UR∗‖N .

Since, (Aadj)dual is surjective,

S∗UR∗ ∈ (((Aadj)dual)sur)adj ◦ (((Aadj)dual)sur)min(�∞, �∞) ⊂ N (�∞, �∞).

Let B := (((Aadj)dual)sur)adj. By [3, Proposition 25.11] and Lemma 3.1, we have

|ψ(U)| ≤ ‖S∗UR∗‖N
≤ ‖S∗‖B‖UR∗‖(((Aadj)dual)sur)min

= ‖S∗‖B‖UR∗‖(((Aadj)dual)min)sur

= ‖S∗‖B‖UR∗‖K(Aadj)dual

= ‖S∗‖Bm(Aadj)dual (UR∗(B�∞ ); X∗).

Since R∗(B�∞) is (Aadj)dual-compact, ψ ∈ (L(Y∗, X∗), τs(Aadj)dual )∗, and

ϕ(T) = tr(S∗T∗R∗) = ψ(T∗)

for every T ∈ L(X, Y ).
�

From [18, Lemma 4.5], we have the following corollary.
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COROLLARY 3.4. Suppose that A is a maximal and right-accessible Banach operator
ideal such that (Aadj)dual is surjective. If the dual space of a Banach space X has the
K(Aadj)dual -AP, then X has the KA-AP.

COROLLARY 3.5. Suppose thatA is a surjective, maximal and right-accessible Banach
operator ideal. If the dual space of a Banach space X has the KA-AP, then X has the
K(Aadj)dual -AP.

Proof. Let us consider the ideal (Aadj)dual instead of A in Corollary 3.4. Then,
(Aadj)dual is maximal and right-accessible by [3, Corollary 21.3], and

(((Aadj)dual)adj)dual = A.

Since A is surjective, by Corollary 3.4, if the dual space of a Banach space X has the
KA-AP, then X has the K(Aadj)dual -AP. �

In view of [18, Proposition 1.8], we see that KA = KAsur (cf. [1]). Then, Corollary
3.5 can be reformulated as follows.

COROLLARY 3.6. Suppose that A is a maximal and right-accessible Banach operator
ideal. If the dual space of a Banach space X has the KA-AP, then X has the K((Asur)adj)dual -
AP.

The notion of p-compactness was introduced by Sinha and Karn [24], which stems
from Grothendieck’s criterion [11] of compactness. For 1 ≤ p < ∞, a subset K of X is
said to be p-compact if there exists (xn) ∈ �p(X) such that

K ⊂ p-co(xn) :=
{ ∞∑

n=1

αnxn : (αn) ∈ B�p∗

}
,

where 1
p + 1

p∗ = 1 and �p(X) is the Banach space with the norm ‖ · ‖p of all X-valued
absolutely p-summable sequences. A linear map T : Y → X is said to be p-compact if
T(BY ) is a p-compact subset of X . Delgado, Piñeiro, and Serrano [5] defined a norm
on the space Kp(Y, X) of all p-compact operators from Y to X . For T ∈ Kp(Y, X), let

‖T‖Kp := inf
{‖(xn)‖p : (xn) ∈ �p(X) and T(BY ) ⊂ p-co(xn)

}
.

Then, [Kp, ‖ · ‖Kp ] is a Banach operator ideal [6] and KKp = Kp [17].
For 1 ≤ p < ∞, the space �u

p(X), which is a closed subspace of the Banach space
�w

p (X) with the norm ‖ · ‖w
p of all X-valued weakly p-summable sequences, consists of

all sequences (xn) satisfying that

‖(0, . . . , 0, xm, xm+1, . . .)‖w
p −→ 0

as m → ∞ (cf. [3, Section 8.2] and [8, 9]). In [13], the sequence was called the
unconditionally p-summable sequence, and the unconditionally p-compact (u-p-compact)
set and the u-p-compact operator were defined by replacing the space �p(X), in the
definition of p-compactness, by the space �u

p(X). The space of all u-p-compact operators
from Y to X is denoted by Kup(Y, X) and a norm ‖ · ‖Kup on Kup(Y, X) was defined in
[13] by

‖T‖Kup := inf
{‖(xn)‖w

p : (xn) ∈ �u
p(X) and T(BY ) ⊂ p-co(xn)

}
.
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Then, [Kup, ‖ · ‖Kup ] is a Banach operator ideal [13, Theorem 2.1] and Kup = (Lmin
p∗ )sur

[14, Proposition 3.1], where Lp∗ is the ideal of p∗-factorable operators.
A Banach operator ideal [A, ‖ · ‖A] is said to be associated to a tensor norm α if the

canonical map (A(M, N), ‖ · ‖A) → M∗ ⊗α N is an isometry for all finite-dimensional
normed spaces M and N. We denote by /α and \α, respectively, the left-injective
associate and left-projective associate of α (see [3, Sections 20.6 and 20.7]).

For 1 ≤ p < ∞, let gp and dp be the Chevet-Saphar tensor norms (see [23, Section
6.2]). It was shown in [10, Theorem 3.3] that Kp is associated with /dp. Consequently,
Kmax

p is associated with /dp and so is surjective and totally accessible (see [3, Theorem
20.11(2), the symmetric version of Proposition 21.1(2), Proposition 21.3 and Theorem
21.5]).

For 1 < p < ∞, it was shown in [12] that if the dual space X∗ of a Banach space
X has the Kup-AP, then X has the Kp-AP, and if X∗ has the Kp-AP, then X has the
Kup-AP. In [15], it was shown that if X∗ has the Ku1-AP, then X has the K1-AP.

COROLLARY 3.7 ([18, Theorem 4.7]). If the dual space of a Banach space X has the
K1-AP, then X has the Ku1-AP.

Proof. Consider the ideal Kmax
1 in Corollary 3.5. Recall that d1 = g1. Then, the

ideal

((Kmax
1 )adj)dual

is associated with

(/g1)′ = \g′
1 = \g∗

1 = g∞

(see [3, Proposition 20.14]). Since L∞ is associated with g∞, ((Kmax
1 )adj)dual = L∞.

Hence, by Corollary 3.5, if the dual space of a Banach space X has the KKmax
1

-AP,
then X has the KL∞ -AP. The proof follows since KKmax

1
= ((Kmax

1 )min)sur = (Kmin
1 )sur =

KK1 = K1 and KL∞ = Ku1. �
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