SOME RESULTS OF THE \mathcal{K}_A -APPROXIMATION PROPERTY FOR BANACH SPACES

JU MYUNG KIM

Department of Mathematics, Sejong University, Seoul 05006, South Korea e-mail: kjm21@sejong.ac.kr

(Received 26 January 2018; revised 21 July 2018; accepted 24 July 2018 first published online 9 August 2018)

Abstract. Given a Banach operator ideal \mathcal{A} , we investigate the approximation property related to the ideal of \mathcal{A} -compact operators, $\mathcal{K}_{\mathcal{A}}$ -AP. We prove that a Banach space X has the $\mathcal{K}_{\mathcal{A}}$ -AP if and only if there exists a $\lambda \geq 1$ such that for every Banach space Y and every $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$,

 $R \in \overline{\{SR : S \in \mathcal{F}(X, X), \|SR\|_{\mathcal{K}_A} \leq \lambda \|R\|_{\mathcal{K}_A}\}}^{\tau_c}.$

For a surjective, maximal and right-accessible Banach operator ideal \mathcal{A} , we prove that a Banach space X has the $\mathcal{K}_{(\mathcal{A}^{adj})^{dual}}$ -AP if the dual space of X has the $\mathcal{K}_{\mathcal{A}}$ -AP.

2010 Mathematics Subject Classification. 46B28, 46B45, 47L20.

1. Introduction. A Banach space X is said to have the *approximation property* (AP) if

$$\mathcal{K}(Y,X) = \overline{\mathcal{F}(Y,X)}^{\|\cdot\|}$$

for every Banach space Y, where \mathcal{K} and \mathcal{F} are the ideals of compact and finite rank operators, respectively. Lassalle, Turco and Oja [16, 21] introduced a general notion of the AP. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be a Banach operator ideal. A Banach space X is said to have the \mathcal{A} -AP if $\mathcal{A}(Y, X) = \overline{\mathcal{F}(Y, X)}^{\|\cdot\|_{\mathcal{A}}}$ for every Banach space Y.

Carl and Stephani [1] introduced a notion of compactness determined by operator ideals. A subset K of a Banach space X is said to be *relatively* A-compact if there exist a Banach space Z, $U \in A(Z, X)$ and a relatively compact subset C of Z such that $K \subset U(C)$. In fact, this notion is an equivalent statement of the original definition of A-compactness (see [1, Definition 1.1 and Theorem 1.2]). Throughout this paper, we use "A-compact" instead of "relatively A-compact" in the notion of A-compactness. A linear map $R : Y \to X$ is said to be A-compact if $R(B_Y)$ is an A-compact subset of X (see [1]), where B_Y is the unit ball of Y. Let $\mathcal{K}_A(Y, X)$ be the space of all A-compact operators from Y to X.

Lassalle and Turco [17] introduced a way to measure the size of A-compact sets. For an A-compact subset K of X, let

 $m_{\mathcal{A}}(K;X) := \inf\{ \|U\|_{\mathcal{A}} : U \in \mathcal{A}(Z,X), \text{ relatively compact } C \subset B_Z, K \subset U(C) \}$

and let $||R||_{\mathcal{K}_{\mathcal{A}}} := m_{\mathcal{A}}(R(B_Y); X)$ for $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$. Then, $[\mathcal{K}_{\mathcal{A}}, || \cdot ||_{\mathcal{K}_{\mathcal{A}}}]$ is a Banach operator ideal (see [17, Section 2]). From [17, Remarks 1.3 and 1.7], a subset K of X is

relatively compact if and only if K is \mathcal{K} -compact. In this case,

$$m_{\mathcal{K}}(K;X) = \sup_{x \in K} \|x\|.$$

Thus, $[\mathcal{K}_{\mathcal{K}}, \|\cdot\|_{\mathcal{K}_{\mathcal{K}}}] = [\mathcal{K}, \|\cdot\|].$

The main notion of this paper is the \mathcal{K}_A -AP for Banach spaces, which was introduced by Lassalle and Turco [17], namely, a Banach space X is said to have the \mathcal{K}_A -AP if

$$\mathcal{K}_{\mathcal{A}}(Y,X) = \overline{\mathcal{F}(Y,X)}^{\|\cdot\|_{\mathcal{K}_{\mathcal{A}}}}$$

for every Banach space Y. The main purpose of this paper is to characterize the $\mathcal{K}_{\mathcal{A}}$ -AP with some weakened statements and investigate in which cases the $\mathcal{K}_{\mathcal{A}}$ -AP passes from the dual space of a Banach space to the Banach space itself. One may refer to [2, 4–7, 10, 12–18, 21, 24, 25] for investigations related with the $\mathcal{K}_{\mathcal{A}}$ -AP.

2. Characterizations of the $\mathcal{K}_{\mathcal{A}}$ -approximation property. In [17], the authors introduced a locally convex topology on the space $\mathcal{L}(X, Y)$ of all bounded operators from X to Y. Let \mathcal{A} be a Banach operator ideal. The *topology* $\tau_{s\mathcal{A}}$ on $\mathcal{L}(X, Y)$ of strong uniform convergence on \mathcal{A} -compact sets, which is given by the seminorms

$$q_K(T) = m_{\mathcal{A}}(T(K); Y),$$

where K ranges overall A-compact subsets of X. It was shown in [17, Proposition 3.2] that a Banach space X has the \mathcal{K}_A -AP if and only if

$$id_X \in \overline{\mathcal{F}(X)}^{\tau_{s\mathcal{A}}},$$

where id_X is the identity map on X and $\mathcal{F}(X)$ is the space of all finite rank operators from X to X.

Delgado and Piñeiro [4] introduced an AP via operator ideals, denoted by (AP_A) , and studied it using another locally convex topology on the space $\mathcal{L}(X, Y)$ determined by A-compact sets. The topology $\tau_c(A)$ on $\mathcal{L}(X, Y)$ of uniform convergence on A-compact sets, which is given by the seminorms

$$p_K(T) = \sup_{x \in K} \|Tx\|,$$

where K ranges overall A-compact subsets of X. In particular, the topology of uniform convergence on compact sets is denoted by τ_c . They proved that a Banach space X has the AP_A if and only if

$$id_X \in \overline{\mathcal{F}(X)}^{\tau_c(\mathcal{A})},$$

if and only if for every Banach space Y,

$$\mathcal{K}_{\mathcal{A}}(Y,X) \subset \overline{\mathcal{F}(Y,X)}^{\|\cdot\|}.$$

THEOREM 2.1. Let A be a Banach operator ideal and let $\lambda \ge 1$. The following statements are equivalent:

- (a) X has the $\mathcal{K}_{\mathcal{A}}$ -AP.
- (b) For every Banach space Y and every injective operator $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$,

$$R \in \overline{\{SR : S \in \mathcal{F}(X), \|SR\|_{\mathcal{K}_{\mathcal{A}}} \leq \lambda \|R\|_{\mathcal{K}_{\mathcal{A}}}\}}^{\iota_{c}}.$$

(c) For every Banach space Y and every $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$, and for every $\delta > 0$,

$$id_X \in \overline{\{S \in \mathcal{F}(X) : \|SR\|_{\mathcal{K}_{\mathcal{A}}} \le (\lambda + \delta) \|R\|_{\mathcal{K}_{\mathcal{A}}}\}}^{\iota_c(\mathcal{A})}$$

- (d) For every Banach space Y and every $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$, and for every $\delta > 0$ and every finite-dimensional subspace F of X, there exists an $S \in \mathcal{F}(X)$ with $\|SR\| \le (\lambda + \delta) \|R\|_{\mathcal{K}_{A}}$ such that $\|Sx - x\| \le \delta \|x\|$ for every $x \in F$.
- (e) For every Banach space Y and every $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$, and for every $\delta > 0$ and every finite-dimensional subspace F of X, there exists an $S \in \mathcal{F}(X)$ with $\|SR\| \le (\lambda + \delta) \|R\|_{\mathcal{K}_4}$ such that Sx = x for every $x \in F$.

In order to prove Theorem 2.1, we show that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a)$. First, it was shown in [17, Proposition 3.1] that a Banach space X has the \mathcal{K}_A -AP if and only if for every Banach space Y and every $R \in \mathcal{K}_A(Y, X)$,

$$R \in \overline{\{SR : S \in \mathcal{F}(X)\}}^{\|\cdot\|_{\mathcal{K}_{\mathcal{A}}}},$$

which is equivalent to

$$R \in \overline{\{SR : S \in \mathcal{F}(X), \|SR\|_{\mathcal{K}_{\mathcal{A}}} \le \|R\|_{\mathcal{K}_{\mathcal{A}}}\}}^{\|\cdot\|_{\mathcal{K}_{\mathcal{A}}}}$$

Hence, (a) \Rightarrow (b) follows. To show that (b) \Rightarrow (c), we need the following lemma which originates from a representation of Grothendieck [11] for the dual space ($\mathcal{L}(X, Y), \tau_c$)* (cf. [19, Proposition 1.e.3]). See [1] for the definition and properties of \mathcal{A} -null sequences.

LEMMA 2.2 ([4]). The dual space $(\mathcal{L}(X, Y), \tau_c(\mathcal{A}))^*$ consists of all functionals of the form

$$f(T) = \sum_{n=1}^{\infty} y_n^*(Tx_n),$$

where (x_n) is an A-null sequence and (y_n^*) is an absolutely summable sequence in Y^* .

Suppose that A is a balanced, convex and compact subset of X. Let X_A be a linear span of A, which is normed by the Minkowski functional of A. Then, it is well known that X_A is a Banach space and the set A is the unit ball of X_A (cf. [23, Lemma 4.11]). Let $j_A : X_A \to X$ be the inclusion map.

Proof of theorem 2.1(*b*) \Rightarrow (*c*). Let *Y* be a Banach space and let $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$. We may assume that $||R||_{\mathcal{K}_{\mathcal{A}}} = 1$. Let $\delta > 0$. We use Lemma 2.2 to apply the separation theorem. Let

$$f := \sum_{n=1}^{\infty} x_n^*(\cdot x_n) \in (\mathcal{L}(X), \tau_c(\mathcal{A}))^*,$$

where (x_n) is an A-null sequence and (x_n^*) is an absolutely summable sequence in X^* . Note that the set $\{x_n\}_{n=1}^{\infty}$ is A-compact (cf. [17, Proposition 1.4]). We may assume that $m_{\mathcal{A}}(\{x_n\}_{n=1}^{\infty}; X) = \delta/\lambda$. Let A be a balanced and closed convex hull of the set

$$\frac{\{x_n\}_{n=1}^{\infty}\bigcup R(B_Y)}{m_{\mathcal{A}}(\{x_n\}_{n=1}^{\infty}\bigcup R(B_Y);X)}.$$

Then, we see that $j_A \in \mathcal{K}_A(X_A, X)$ and $||j_A||_{\mathcal{K}_A} = 1$. Consider

$$g := \sum_{n=1}^{\infty} x_n^*(\cdot x_n) \in (\mathcal{L}(X_A, X), \tau_c)^*.$$

Then, by (b)

$$\operatorname{Re}f(id_X) = \operatorname{Re}g(j_A)$$

$$\leq \sup\{\operatorname{Re}g(Sj_A) : S \in \mathcal{F}(X), \|Sj_A\|_{\mathcal{K}_A} \leq \lambda \|j_A\|_{\mathcal{K}_A}\}$$

$$= \sup\{\operatorname{Re}f(S) : S \in \mathcal{F}(X), \|Sj_A\|_{\mathcal{K}_A} \leq \lambda \|j_A\|_{\mathcal{K}_A}\}.$$

Now, if $S \in \mathcal{F}(X)$ and $||Sj_A||_{\mathcal{K}_A} \leq \lambda ||j_A||_{\mathcal{K}_A} = \lambda$, then

$$\begin{split} \|SR\|_{\mathcal{K}_{\mathcal{A}}} &= m_{\mathcal{A}}(SR(B_{Y}); X) \\ &= m_{\mathcal{A}}(Sj_{\mathcal{A}}R(B_{Y}); X) \\ &= m_{\mathcal{A}}(\{x_{n}\}_{n=1}^{\infty} \cup R(B_{Y}); X)m_{\mathcal{A}}(Sj_{\mathcal{A}}(R(B_{Y})/m_{\mathcal{A}}(\{x_{n}\}_{n=1}^{\infty} \cup R(B_{Y}); X)); X) \\ &\leq (m_{\mathcal{A}}(\{x_{n}\}_{n=1}^{\infty}; X) + m_{\mathcal{A}}(R(B_{Y}); X))\|Sj_{\mathcal{A}}\|_{\mathcal{K}_{\mathcal{A}}} \\ &\leq (\frac{\delta}{\lambda} + 1)\lambda = \delta + \lambda. \end{split}$$

Thus,

$$\operatorname{Re}f(id_X) \leq \sup\{\operatorname{Re}f(S) : S \in \mathcal{F}(X), \|SR\|_{\mathcal{K}_A} \leq \lambda + \delta\}.$$

This completes the proof.

Note that every bounded subset of a finite-dimensional subspace of a Banach space is \mathcal{A} -compact for every Banach operator ideal \mathcal{A} . From this, Theorem 2.1(c) \Rightarrow (d) follows.

Proof of theorem 2.1(d) \Rightarrow (e). Let Y be a Banach space and let $R \in \mathcal{K}_{\mathcal{A}}(Y, X)$. Let $\delta > 0$ and let F be a finite-dimensional subspace of X. Let $P : X \to F$ be a projection. Let $\gamma > 0$ be such that $\gamma(1 + ||P||) \leq \delta$.

By (d) there exists an $S \in \mathcal{F}(X)$ with $||SR||_{\mathcal{K}_A} \le (\lambda + \gamma) ||R||_{\mathcal{K}_A}$ so that

$$\|Sx - x\| \le \gamma \|x\|$$

for every $x \in F$. Let $S_0 := S + (id_X - S)P \in \mathcal{F}(X)$. Then,

$$S_0 x = S x + x - S x = x$$

for every $x \in F$ and

$$\|S_0R\|_{\mathcal{K}_{\mathcal{A}}} \leq \|SR\|_{\mathcal{K}_{\mathcal{A}}} + \|(id_X - S)P\|\|R\|_{\mathcal{K}_{\mathcal{A}}} \leq (\lambda + \gamma + \gamma \|P\|)\|R\|_{\mathcal{K}_{\mathcal{A}}} \leq (\lambda + \delta)\|R\|_{\mathcal{K}_{\mathcal{A}}}.$$

Proof of theorem 2.1(e) \Rightarrow (a). The prototype of this proof is the proof of [17, Proposition 3.3]. Let K be an A-compact subset of X and $\varepsilon > 0$. By [17, Proposition 1.8], there exist a $T \in \mathcal{A} \circ \mathcal{K}(\ell_1, X)$ and a relatively compact subset M of ℓ_1 such that $K \subset T(M)$. By [17, Proposition 2.1], $\mathcal{A} \circ \mathcal{K}(\ell_1, X)$ is isometrically equal to $\mathcal{K}_{\mathcal{A}}(\ell_1, X)$.

Using [23, Lemma 4.11], there exists the Banach space $X_A \subset \ell_1$ such that A is a compact subset of ℓ_1 and M is a compact subset of X_A . Let $n_0 \in \mathbb{N}$ be such that

$$\sup_{a\in A} \|P_{n_0}a - a\|_1 \leq \frac{\varepsilon}{\|T\|_{\mathcal{K}_{\mathcal{A}}}(\lambda + \varepsilon + 1)},$$

where $P_{n_0}: \ell_1 \to \ell_1$ is the basis projection.

Now, let us consider the finite-dimensional subspace $TP_{n_0}j_A(X_A)$ of X. Then, by (e) there exists an $S \in \mathcal{F}(X)$ with $||ST||_{\mathcal{K}_A} \le (\lambda + \varepsilon)||T||_{\mathcal{K}_A}$ such that

$$STP_{n_0}j_A = TP_{n_0}j_A.$$

We now have

$$m_{\mathcal{A}}((S - id_{X})(K); X) \leq \|(S - id_{X})Tj_{\mathcal{A}}\|_{\mathcal{A}} \\ \leq \|STj_{\mathcal{A}} - STP_{n_{0}}j_{\mathcal{A}}\|_{\mathcal{A}} + \|STP_{n_{0}}j_{\mathcal{A}} - Tj_{\mathcal{A}}\|_{\mathcal{A}} \\ \leq \|ST\|_{\mathcal{A}}\|j_{\mathcal{A}} - P_{n_{0}}j_{\mathcal{A}}\| + \|T\|_{\mathcal{A}}\|P_{n_{0}}j_{\mathcal{A}} - j_{\mathcal{A}}\| \\ \leq \|P_{n_{0}}j_{\mathcal{A}} - j_{\mathcal{A}}\|(\|ST\|_{\mathcal{A}\circ\mathcal{K}} + \|T\|_{\mathcal{A}\circ\mathcal{K}}) \\ = \sup_{a\in\mathcal{A}}\|P_{n_{0}}a - a\|_{1}(\|ST\|_{\mathcal{K}_{\mathcal{A}}} + \|T\|_{\mathcal{K}_{\mathcal{A}}}) \leq \varepsilon.$$

This completes the proof.

We introduce a topology on $\mathcal{K}_{\mathcal{A}}(Y, X)$, which is weaker than the topology induced by the norm $\|\cdot\|_{\mathcal{K}_{\mathcal{A}}}$. For a net (T_{α}) in $\mathcal{K}_{\mathcal{A}}(Y, X)$ and $T \in \mathcal{K}_{\mathcal{A}}(Y, X)$, we say that T_{α} converges to T in *the topology* $\tau_{cc}(m_{\mathcal{A}})$ if

$$\lim_{\alpha} m_{\mathcal{A}}((T_{\alpha} - T)(K); X) = 0$$

for every compact subset K of Y.

THEOREM 2.3. For a Banach operator ideal A, a Banach space X has the \mathcal{K}_A -AP if (and only if) for every quotient space Z of ℓ_1 and every injective operator $R \in \mathcal{K}_A(Z, X)$,

$$R\in\overline{\mathcal{F}(Z,X)}^{\tau_{cc}(m_{\mathcal{A}})}$$

Proof. Let *K* be an *A*-compact subset of *X* and let $\varepsilon > 0$. By [1, Theorem 1.1], there exists an *A*-null sequence (x_n) in *X* such that

$$K \subset \Big\{\sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_1}\Big\}.$$

According to [1, Lemma 1.2], there exists a sequence (β_n) of positive numbers with $\beta_n \leq 1$ and $\beta_n \longrightarrow 0$ such that $(z_n) := (x_n/\beta_n)$ is an \mathcal{A} -null sequence.

Now, we define the maps $D_{\beta} : \ell_1 \to \ell_1$ and $M_{\hat{z}} : \ell_1 \to X$ by $D_{\beta}(\alpha_n) = (\beta_n \alpha_n)$ and $M_{\hat{z}}(\alpha_n) = \sum_n \alpha_n z_n$, respectively. The injective operator $\overline{M_{\hat{z}}} : \ell_1 / \ker(M_{\hat{z}}) \to X$ is defined

JU MYUNG KIM

by $\overline{M_{\hat{z}}}((\alpha_n) + \ker(M_{\hat{z}})) = M_{\hat{z}}(\alpha_n)$ and then $M_{\hat{z}} = \overline{M_{\hat{z}}}q$, where $q : \ell_1 \to \ell_1 / \ker(M_{\hat{z}})$ is the quotient operator.

$$\ell_1 \xrightarrow{D_{\beta}} \ell_1 \xrightarrow{q} \ell_1 / \ker(M_{\hat{z}}) \xrightarrow{\overline{M}_{\hat{z}}} X.$$

We see that D_{β} is compact and $M_{\hat{z}}$ is \mathcal{A} -compact. Since the ideal of \mathcal{A} -compact operators is surjective (cf. [17, Proposition 2.1]), $\overline{M_{\hat{z}}}$ is \mathcal{A} -compact.

Now, by the assumption, there exists an $U \in \mathcal{F}(\ell_1/\ker(M_{\hat{z}}), X)$ such that

$$m_{\mathcal{A}}((U-\overline{M_{\hat{z}}})(qD_{\beta}(B_{\ell_1}));X) \leq \frac{\varepsilon}{2}$$

We may assume that $U = \sum_{k=1}^{m} y_k^* \otimes x_k$, where $y_k^* \in (\ell_1/\ker(M_{\hat{z}}))^*$ and $x_k \in X$ for each k = 1, ..., m and $\sum_{k=1}^{m} ||x_k|| = 1$. Since $\overline{M_{\hat{z}}}$ is injective, $(\ell_1/\ker(M_{\hat{z}}))^* = \overline{M_{\hat{z}}^*(X^*)}^{\mathsf{rc}} = \overline{M_{\hat{z}}^*(X^*)}^{\mathsf{rc}}$. The second equality follows from $(Z^*, weak^*)^* = (Z^*, \tau_c)^*$ for every Banach space Z (cf. [20, Theorem 2.7.8]). Then, for each k = 1, ..., m, we can choose an $x_k^* \in X^*$ such that

$$\sup_{y \in qD_{\beta}(B_{\ell_1})} |y_k^*(y) - \overline{M_{\hat{z}}}^*(x_k^*)(y)| \le \frac{\varepsilon}{2}.$$

We show that $S = \sum_{k=1}^{m} x_k^* \otimes x_k \in \mathcal{F}(X)$ is the desired operator approximating to id_X . Since, for every $(\alpha_n) \in \ell_1$,

$$(S\overline{M_{\hat{z}}}qD_{\beta} - UqD_{\beta})(\alpha_n) = \sum_{k=1}^m (((\overline{M_{\hat{z}}}^*x_k^*)qD_{\beta} - y_k^*qD_{\beta})(\alpha_n))x_k$$

we have

$$\begin{split} m_{\mathcal{A}}((S - id_{X})(K); X) \\ &\leq m_{\mathcal{A}}((S - id_{X})(\overline{M_{\hat{z}}}qD_{\beta}(B_{\ell_{1}})); X) \\ &= m_{\mathcal{A}}((S\overline{M_{\hat{z}}}qD_{\beta} - UqD_{\beta} + UqD_{\beta} - \overline{M_{\hat{z}}}qD_{\beta})(B_{\ell_{1}}); X) \\ &= \|S\overline{M_{\hat{z}}}qD_{\beta} - UqD_{\beta} + UqD_{\beta} - \overline{M_{\hat{z}}}qD_{\beta}\|_{\mathcal{K}_{\mathcal{A}}} \\ &\leq \Big\|\sum_{k=1}^{m}((\overline{M_{\hat{z}}}^{*}x_{k}^{*})qD_{\beta} - y_{k}^{*}qD_{\beta}) \otimes x_{k}\Big\|_{\mathcal{K}_{\mathcal{A}}} + m_{\mathcal{A}}((UqD_{\beta} - \overline{M_{\hat{z}}}qD_{\beta})(B_{\ell_{1}}); X) \\ &\leq \sum_{k=1}^{m} m_{\mathcal{A}}((((\overline{M_{\hat{z}}}^{*}x_{k}^{*})qD_{\beta} - y_{k}^{*}qD_{\beta}) \otimes x_{k})(B_{\ell_{1}}); X) + \frac{\varepsilon}{2} \\ &= \sum_{k=1}^{m} \|x_{k}\| \sup_{y \in qD_{\beta}(B_{\ell_{1}})} |y_{k}^{*}(y) - \overline{M_{\hat{z}}}^{*}(x_{k}^{*})(y)| + \frac{\varepsilon}{2} \leq \varepsilon. \end{split}$$

3. A duality of the $\mathcal{K}_{\mathcal{A}}$ -approximation property. One may refer to [3, 22] for definitions and information of operator ideals. Given a Banach operator ideal $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]$, we denote by $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\min}$, $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\max}$, $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\sup}$, $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\min}$, $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\operatorname{dual}}$, and $[\mathcal{A}, \| \cdot \|_{\mathcal{A}}]^{\operatorname{dual}}$, the minimal kernel, maximal hull, surjective hull, injective hull, adjoint

ideal and *dual ideal*, respectively. For operator ideals $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ and $[\mathcal{B}, \|\cdot\|_{\mathcal{B}}]$, in this paper, $\mathcal{A} = \mathcal{B}$ means that $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}] = [\mathcal{B}, \|\cdot\|_{\mathcal{B}}]$, and $\mathcal{A} \subset \mathcal{B}$ means the norm one inclusion.

A Banach operator ideal $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is called *right-accessible* if for all finitedimensional normed space M, Banach space $Y, T \in \mathcal{L}(M, Y)$ and $\varepsilon > 0$, there exist a finite-dimensional subspace N of Y and an $S \in \mathcal{L}(M, N)$ such that $T = I_N S$ and $\|S\|_{\mathcal{A}} \leq (1 + \varepsilon) \|T\|_{\mathcal{A}}$, where $I_N : N \to Y$ is the inclusion map. Note that $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is right-accessible if and only if

$$\mathcal{A}^{\min} = \mathcal{A} \circ \overline{\mathcal{F}}$$

(see [3, Proposition 25.2(2)]).

It was shown in [17, Proposition 2.1] that

$$\mathcal{K}_{\mathcal{A}} = (\mathcal{A} \circ \overline{\mathcal{F}})^{\mathrm{sur}}.$$

Then, we have the following Lemma.

LEMMA 3.1. Let A be a Banach operator ideal. Then,

$$(\mathcal{A}^{\min})^{\mathrm{sur}} = \mathcal{K}_{\mathcal{A}^{\min}}$$

and, if A is right-accessible, then

$$(\mathcal{A}^{\min})^{\mathrm{sur}} = \mathcal{K}_{\mathcal{A}}.$$

Now, let us consider the dual space of $\mathcal{L}(X, Y)$ equipped with the topology τ_{sA} , which was investigated in [18]. We note that $\varphi \in (\mathcal{L}(X, Y), \tau_{sA})^*$ if and only if there exist a C > 0 and an A-compact subset of X such that

$$|\varphi(T)| \leq Cm_{\mathcal{A}}(T(K); Y)$$

for every $T \in \mathcal{L}(X, Y)$.

LEMMA 3.2 ([18, Corollary 4.3]). Suppose that \mathcal{A} is a maximal, right-accessible Banach operator ideal. Let X and Y be Banach spaces. If $\varphi \in (\mathcal{L}(X, Y), \tau_{s\mathcal{A}})^*$, then there exist $S \in \mathcal{A}^{\min}(\ell_1, X)$ and $R \in (\mathcal{A}^{\operatorname{adj}})^{\min}(Y, \ell_1)$ such that

$$\varphi(T) = tr(RTS)$$

for every $T \in \mathcal{L}(X, Y)$.

In view of the proof of [18, Theorem 4.2], for every $T \in \mathcal{L}(X, Y)$, $RTS \in \mathcal{N}(\ell_1, \ell_1)$, where \mathcal{N} is the ideal of nuclear operators, and since ℓ_1 has the metric AP, the trace functional *tr* on $\mathcal{N}(\ell_1, \ell_1)$ is well defined.

THEOREM 3.3. Suppose that \mathcal{A} is a maximal, right-accessible Banach operator ideal such that $(\mathcal{A}^{adj})^{dual}$ is surjective. Let X and Y be Banach spaces. If $\varphi \in (\mathcal{L}(X, Y), \tau_{s\mathcal{A}})^*$, then there exists a $\psi \in (\mathcal{L}(Y^*, X^*), \tau_{s(\mathcal{A}^{adj})^{dual}})^*$ such that

$$\varphi(T) = \psi(T^*)$$

for every $T \in \mathcal{L}(X, Y)$.

JU MYUNG KIM

Proof. This proof is motivated from the proof of [18, Theorem 4.7].

Let $\varphi \in (\mathcal{L}(X, Y), \tau_{s\mathcal{A}})^*$. Let $S \in \mathcal{A}^{\min}(\ell_1, X)$ and $R \in (\mathcal{A}^{\operatorname{adj}})^{\min}(Y, \ell_1)$ be the operators in Lemma 3.2 such that

$$\varphi(T) = tr(RTS)$$

for every $T \in \mathcal{L}(X, Y)$.

Now, by [3, Corollary 22.8.1],

$$R \in (((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{dual}})^{\mathrm{min}}(Y, \ell_1) = (((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{min}})^{\mathrm{dual}}(Y, \ell_1)$$

Thus, $R^* \in ((\mathcal{A}^{adj})^{dual})^{\min}(\ell_{\infty}, Y^*)$. Since

$$S \in \mathcal{A}(\ell_1, X) = (((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{adj}})^{\mathrm{dual}}(\ell_1, X),$$

 $S^* \in ((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{adj}}(X^*, \ell_\infty).$

By [3, Corollary 21.3], $(\mathcal{A}^{adj})^{dual}$ is right-accessible. Then, by an application of [3, Propositions 25.4.1 and 25.4.2],

$$((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{adj}} \circ ((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{min}} \subset \mathcal{N}.$$

Thus, $S^*UR^* \in \mathcal{N}(\ell_{\infty}, \ell_{\infty})$ for every $U \in \mathcal{L}(Y^*, X^*)$. Now, we can define a linear functional ψ on $\mathcal{L}(Y^*, X^*)$ by

$$\psi(U) = tr(S^* UR^*).$$

Let U be an arbitrary element of $\mathcal{L}(Y^*, X^*)$. Then,

$$|\psi(U)| = |tr(S^*UR^*)| \le ||S^*UR^*||_{\mathcal{N}}.$$

Since, $(\mathcal{A}^{adj})^{dual}$ is surjective,

$$S^*UR^* \in (((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{sur}})^{\mathrm{adj}} \circ (((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{sur}})^{\mathrm{min}}(\ell_{\infty}, \ell_{\infty}) \subset \mathcal{N}(\ell_{\infty}, \ell_{\infty}).$$

Let $\mathcal{B} := (((\mathcal{A}^{adj})^{dual})^{sur})^{adj}$. By [3, Proposition 25.11] and Lemma 3.1, we have

$$egin{aligned} |\psi(U)| &\leq \|S^*UR^*\|_{\mathcal{N}} \ &\leq \|S^*\|_{\mathcal{B}}\|UR^*\|_{(((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{sur}})^{\mathrm{min}}} \ &= \|S^*\|_{\mathcal{B}}\|UR^*\|_{(((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{min}})^{\mathrm{sur}}} \ &= \|S^*\|_{\mathcal{B}}\|UR^*\|_{\mathcal{K}_{(\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}}}} \ &= \|S^*\|_{\mathcal{B}}m_{(\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}}}(UR^*(B_{\ell_{\mathcal{N}}});X^*). \end{aligned}$$

Since $R^*(B_{\ell_{\infty}})$ is $(\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}}$ -compact, $\psi \in (\mathcal{L}(Y^*, X^*), \tau_{s(\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}}})^*$, and

$$\varphi(T) = tr(S^*T^*R^*) = \psi(T^*)$$

for every $T \in \mathcal{L}(X, Y)$.

From [18, Lemma 4.5], we have the following corollary.

COROLLARY 3.4. Suppose that A is a maximal and right-accessible Banach operator ideal such that $(A^{adj})^{dual}$ is surjective. If the dual space of a Banach space X has the $\mathcal{K}_{(A^{adj})^{dual}}$ -AP, then X has the \mathcal{K}_{A} -AP.

COROLLARY 3.5. Suppose that A is a surjective, maximal and right-accessible Banach operator ideal. If the dual space of a Banach space X has the \mathcal{K}_{A} -AP, then X has the $\mathcal{K}_{(\mathcal{A}^{adj})^{dual}}$ -AP.

Proof. Let us consider the ideal $(\mathcal{A}^{adj})^{dual}$ instead of \mathcal{A} in Corollary 3.4. Then, $(\mathcal{A}^{adj})^{dual}$ is maximal and right-accessible by [3, Corollary 21.3], and

$$(((\mathcal{A}^{\mathrm{adj}})^{\mathrm{dual}})^{\mathrm{adj}})^{\mathrm{dual}} = \mathcal{A}.$$

Since \mathcal{A} is surjective, by Corollary 3.4, if the dual space of a Banach space X has the $\mathcal{K}_{\mathcal{A}}$ -AP, then X has the $\mathcal{K}_{(\mathcal{A}^{adj})^{dual}}$ -AP.

In view of [18, Proposition 1.8], we see that $\mathcal{K}_{\mathcal{A}} = \mathcal{K}_{\mathcal{A}^{\text{sur}}}$ (cf. [1]). Then, Corollary 3.5 can be reformulated as follows.

COROLLARY 3.6. Suppose that A is a maximal and right-accessible Banach operator ideal. If the dual space of a Banach space X has the \mathcal{K}_{A} -AP, then X has the $\mathcal{K}_{((A^{sur})^{adj})^{dual}}$ -AP.

The notion of *p*-compactness was introduced by Sinha and Karn [24], which stems from Grothendieck's criterion [11] of compactness. For $1 \le p < \infty$, a subset *K* of *X* is said to be *p*-compact if there exists $(x_n) \in \ell_p(X)$ such that

$$K \subset p \text{-} co(x_n) := \left\{ \sum_{n=1}^{\infty} \alpha_n x_n : (\alpha_n) \in B_{\ell_{p^*}} \right\},\$$

where $\frac{1}{p} + \frac{1}{p^*} = 1$ and $\ell_p(X)$ is the Banach space with the norm $\|\cdot\|_p$ of all *X*-valued absolutely *p*-summable sequences. A linear map $T: Y \to X$ is said to be *p*-compact if $T(B_Y)$ is a *p*-compact subset of *X*. Delgado, Piñeiro, and Serrano [5] defined a norm on the space $\mathcal{K}_p(Y, X)$ of all *p*-compact operators from *Y* to *X*. For $T \in \mathcal{K}_p(Y, X)$, let

$$||T||_{\mathcal{K}_p} := \inf \{ ||(x_n)||_p : (x_n) \in \ell_p(X) \text{ and } T(B_Y) \subset p - co(x_n) \}.$$

Then, $[\mathcal{K}_p, \|\cdot\|_{\mathcal{K}_p}]$ is a Banach operator ideal [6] and $\mathcal{K}_{\mathcal{K}_p} = \mathcal{K}_p$ [17].

For $1 \le p < \infty$, the space $\ell_p^u(X)$, which is a closed subspace of the Banach space $\ell_p^w(X)$ with the norm $\|\cdot\|_p^w$ of all X-valued weakly *p*-summable sequences, consists of all sequences (x_n) satisfying that

$$\|(0,\ldots,0,x_m,x_{m+1},\ldots)\|_p^w \longrightarrow 0$$

as $m \to \infty$ (cf. [3, Section 8.2] and [8,9]). In [13], the sequence was called the *unconditionally p-summable sequence*, and the *unconditionally p-compact* (*u-p*-compact) set and the *u-p*-compact operator were defined by replacing the space $\ell_p(X)$, in the definition of *p*-compactness, by the space $\ell_p^u(X)$. The space of all *u-p*-compact operators from *Y* to *X* is denoted by $\mathcal{K}_{up}(Y, X)$ and a norm $\|\cdot\|_{\mathcal{K}_{up}}$ on $\mathcal{K}_{up}(Y, X)$ was defined in [13] by

$$||T||_{\mathcal{K}_{up}} := \inf \{ ||(x_n)||_p^w : (x_n) \in \ell_p^u(X) \text{ and } T(B_Y) \subset p - co(x_n) \}.$$

JU MYUNG KIM

Then, $[\mathcal{K}_{up}, \| \cdot \|_{\mathcal{K}_{up}}]$ is a Banach operator ideal [13, Theorem 2.1] and $\mathcal{K}_{up} = (\mathcal{L}_{p^*}^{\min})^{\text{sur}}$ [14, Proposition 3.1], where \mathcal{L}_{p^*} is the ideal of p^* -factorable operators.

A Banach operator ideal $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is said to *be associated to* a tensor norm α if the canonical map $(\mathcal{A}(M, N), \|\cdot\|_{\mathcal{A}}) \to M^* \otimes_{\alpha} N$ is an isometry for all finite-dimensional normed spaces M and N. We denote by $/\alpha$ and $\backslash \alpha$, respectively, the *left-injective associate* and *left-projective associate* of α (see [3, Sections 20.6 and 20.7]).

For $1 \le p < \infty$, let g_p and d_p be the *Chevet-Saphar tensor norms* (see [23, Section 6.2]). It was shown in [10, Theorem 3.3] that \mathcal{K}_p is associated with $/d_p$. Consequently, $\mathcal{K}_p^{\text{max}}$ is associated with $/d_p$ and so is surjective and totally accessible (see [3, Theorem 20.11(2), the symmetric version of Proposition 21.1(2), Proposition 21.3 and Theorem 21.5]).

For $1 , it was shown in [12] that if the dual space <math>X^*$ of a Banach space X has the \mathcal{K}_{up} -AP, then X has the \mathcal{K}_p -AP, and if X^* has the \mathcal{K}_p -AP, then X has the \mathcal{K}_{up} -AP. In [15], it was shown that if X^* has the \mathcal{K}_{u1} -AP, then X has the \mathcal{K}_1 -AP.

COROLLARY 3.7 ([18, Theorem 4.7]). If the dual space of a Banach space X has the \mathcal{K}_1 -AP, then X has the \mathcal{K}_{u1} -AP.

Proof. Consider the ideal $\mathcal{K}_1^{\text{max}}$ in Corollary 3.5. Recall that $d_1 = g_1$. Then, the ideal

$$((\mathcal{K}_1^{\max})^{\mathrm{adj}})^{\mathrm{dual}}$$

is associated with

$$(/g_1)' = \backslash g_1' = \backslash g_1^* = g_\infty$$

(see [3, Proposition 20.14]). Since \mathcal{L}_{∞} is associated with g_{∞} , $((\mathcal{K}_{1}^{\max})^{\operatorname{adj}})^{\operatorname{dual}} = \mathcal{L}_{\infty}$. Hence, by Corollary 3.5, if the dual space of a Banach space X has the $\mathcal{K}_{\mathcal{K}_{1}^{\max}}$ -AP, then X has the $\mathcal{K}_{\mathcal{L}_{\infty}}$ -AP. The proof follows since $\mathcal{K}_{\mathcal{K}_{1}^{\max}} = ((\mathcal{K}_{1}^{\max})^{\min})^{\operatorname{sur}} = (\mathcal{K}_{1}^{\min})^{\operatorname{sur}} = \mathcal{K}_{\mathcal{K}_{1}} = \mathcal{K}_{1}$ and $\mathcal{K}_{\mathcal{L}_{\infty}} = \mathcal{K}_{u1}$.

ACKNOWLEDGEMENTS. The author would like to thank S. Lassalle and P. Turco for providing the paper [18] and express his sincere gratitude to the referee for valuable comments. This work was supported by NRF-2018R1D1A1B07043566 funded by the Korean Government.

REFERENCES

1. B. Carl and I. Stephani, On A-compact operators, generalized entropy numbers and entropy ideals, *Math. Nachr.* **199** (1984), 77–95.

2. Y. S. Choi and J. M. Kim, The dual space of $(\mathcal{L}(X, Y), \tau_p)$ and the *p*-approximation property, *J. Funct. Anal.* **259** (2010), 2437–2454.

3. A. Defant and K. Floret, *Tensor norms and operator ideals* (Elsevier, North-Holland, 1993).

4. J. M. Delgado and C. Piñeiro, An approximation property with respect to an operator ideal, *Stud. Math.* **214** (2013), 67–75.

5. J. M. Delgado, C. Piñeiro and E. Serrano, Density of finite rank operators in the Banach space of *p*-compact operators, *J. Math. Anal. Appl.* **370** (2010), 498–505.

6. J. M. Delgado, C. Piñeiro and E. Serrano, Operators whose adjoints are quasi *p*-nuclear, *Stud. Math.* 197 (2010), 291–304.

7. J. M. Delgado, E. Oja, C. Piñeiro and E. Serrano, The p-approximation property in terms of density of finite rank operators, *J. Math. Anal. Appl.* **354** (2009), 159–164.

8. J. H. Fourie and J. Swart, Banach ideals of *p*-compact operators, *Manuscripta Math.* **26** (1979), 349–362.

9. J. H. Fourie and J. Swart, Tensor products and Banach ideals of *p*-compact operators, *Manuscripta Math.* **35** (1981), 343–351.

10. D. Galicer, S. Lassalle, and P. Turco, The ideal of *p*-compact operators: a tensor product approach, *Stud. Math.* 211 (2012), 269–286.

11. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, *Mem. Amer. Math. Soc.* 16 (1955).

12. J. M. Kim, The \mathcal{K}_{up} -approximation property and its duality, J. Aust. Math. Soc. 98 (2015), 364–374.

13. J. M. Kim, Unconditionally *p*-null sequences and unconditionally *p*-compact operators, *Stud. Math.* **224** (2014), 133–142.

14. J. M. Kim, The ideal of unconditionally *p*-compact operators, *Rocky Mt. J. Math.* 47 (2017), 2277–2293.

15. J. M. Kim, Duality between the \mathcal{K}_1 - and the \mathcal{K}_{u1} -approximation properties, *Houst. J. Math.* **43** (2017), 1133–1145.

16. S. Lassalle and P. Turco, On *p*-compact mappings and the *p*-approximation properties, *J. Math. Anal. Appl.* **389** (2012), 1204–1221.

17. S. Lassalle and P. Turco, The Banach ideal of *A*-compact operators and related approximation properties, *J. Funct. Anal.* 265 (2013), 2452–2464.

18. S. Lassalle and P. Turco, On null sequences for Banach operator ideals, trace duality and approximation properties, *Math. Nachr.* 290 (2017), 2308–2321.

19. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces I, sequence spaces* (Springer, Berlin, 1977).

20. R. E. Megginson, An introduction to Banach space theory (Springer, New York, 1998).

21. E. Oja, A remark on the approximation of *p*-compact operators by finite-rank operators, *J. Math. Anal. Appl.* **387** (2012), 949–952.

22. A. Pietsch, Operator ideals (North-Holland, Amsterdam, 1980).

23. R. A. Ryan, Introduction to tensor products of Banach spaces (Springer, Berlin, 2002).

24. D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_p , *Stud. Math.* **150** (2002), 17–33.

25. D. P. Sinha and A. K. Karn, Compact operators which factor through subspaces of ℓ_p , *Math. Nachr.* **281** (2008), 412–423.