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Abstract

A numerical method is proposed for a class of one-dimensional stochastic control prob-
lems with unbounded state space. This method solves an infinite-dimensional linear
program, equivalent to the original formulation based on a stochastic differential equa-
tion, using a finite element approximation. The discretization scheme itself and the
necessary assumptions are discussed, and a convergence argument for the method is
presented. Its performance is illustrated by examples featuring long-term average and
infinite horizon discounted costs, and additional optimization constraints.
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1. Introduction

1.1. Motivation and literature

This paper considers a class of stochastic control problems for a process X whose dynamics
are initially specified by the stochastic differential equation (SDE)

dXt = b(Xt, ut) dt + σ (Xt, ut) dWt, X0 = x0, (1.1)

where W is a Brownian motion process and the process u represents the control influencing the
evolution of X. Both X and u are assumed to be real-valued, and in particular X is allowed to
have an unbounded state space E. Given a cost function c̃, the control u has to be chosen from
a set of admissible controls in such a way that it minimizes either a long-term average or an
infinite horizon discounted cost criterion, defined respectively by

lim sup
t→∞

1

t
E

[ ∫ t

0
c̃(Xs, us) ds

]
and E

[ ∫ ∞

0
e−αsc̃(Xs, us) ds

]
, (1.2)

for some discounting rate α > 0. Additional constraints on the evolution of X and u can be
imposed using criteria which are formulated in a similar fashion. Such control problems
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2 M. G. VIETEN AND R. H. STOCKBRIDGE

are considered in a relaxed sense by using a martingale problem formulation involving the
infinitesimal generator of X, and an equivalent infinite-dimensional linear program for the
expected occupation measure of both the process X and the control u. With a certain set of
assumptions, approximate solutions to this linear program are attained by restricting the state
space to a bounded subset of E, discretizing the infinite-dimensional constraint space of the
linear program using a finite element approach, and introducing discrete approximations of the
expected occupation measure.

Previous work [27, 28] has focused on processes X which are kept within a bounded state
space by either reflection or jump boundaries, or by specific assumptions on the coefficient
functions b and σ . The analysis presented in this paper generalizes the approach to processes
with an unbounded state space, under specific assumptions on the cost function c̃. On top of
that, we present how additional optimization constraints can easily be integrated into the linear
program structure, which is applicable to both the class of problems presented herein and those
problems discussed in [27].

The classical approach to stochastic control problems is given by methods based on the
dynamic programming principle, as presented in [7, 8].

Central to these methods is the solution of the Hamilton–Jacobi–Bellman (HJB) equation,
taking the form of a second-order, non-linear differential equation. The survey article [23]
elaborates on this approach, while also contrasting it with Pontryagin’s maximum principle
and more recent developments in backward stochastic differential equations.

Linear programming approaches have also been instrumental in the analytic treatment of
various stochastic control problems. A first example is given in [21], where an ergodic Markov
chain for an inventory problem under long-term average costs is analyzed. Both [2, 16] inves-
tigate the linear programming approach for solutions of controlled martingale problems using
long-term average and discounted cost criteria for infinite horizon problems, as well as finite
horizon and first exit problems for absolutely continuous control. A multi-dimensional dif-
fusion with singular control is considered in [26], while [25] investigates jump diffusions of
Lévy–Itô type.

Both the dynamic programming principle and the linear programming approach can be
used to establish numerical schemes that solve control problems approximately. An example
of the former is given in [18], where the HJB equation is solved for a discrete Markov chain
approximating the continuous process. Other such approaches rely on employing numerical
techniques for differential equations solving the HJB equation itself. In certain instances, finite
difference approximations are equivalent to discrete Markov chain approximations, as illus-
trated in [4]. Finite element approximations are used in [13, 15]. Another numerical technique
using dynamic programming was analyzed in [1]. A survey of numerical techniques for the
HJB equation and their theoretical foundations was compiled in [9].

A very general setting for numerical schemes based on the linear programming approach
can be found in [22]. Moment-based approaches have been used, e.g. in [11, 19]. A technique
employing the finite element method is described in [14, 24], where the infinite-dimensional
constraints of the linear program are discretized using a set of finite basis functions. This
technique is investigated further in [27], where its convergence for problems with bounded
state spaces is analyzed. Additional attention was brought towards theoretic foundations again
in [28].

For their convergence arguments, [27, 28] rely on the state space E of the considered process
being bounded. This assumption allows the use of standard arguments regarding continuous
functions over compact spaces when analyzing convergence. However, it imposes a strong
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Finite element approximations for stochastic control in unbounded state space 3

restriction on the types of models to which the method is applicable, as many practical prob-
lems typically have an unbounded state space. This article provides a numerical scheme that
places additional restrictions on the cost function rather than on the state space, and therefore
loosens this restriction. Its contribution lies in identifying the correct assumptions on the cost
function that in turn allow the assumption of a bounded state space to be dropped. Furthermore,
it demonstrates the generalization of the method established in [27], defining a new set of finite
element basis functions suited for unbounded state spaces, and providing an extended conver-
gence argument. In addition, we illustrate how additional optimization constraints which are
expressed in the same fashion as the cost criterion can naturally be integrated into the linear
program formulation.

Approximate HJB-based approaches to problems with an unbounded state space can be
found in [20, 29], where wealth and asset allocation problems are investigated. The former
focuses on a finite-time setup and an optimality criterion that incorporates both expected wealth
and risk. The latter considers stock build-up with limited fund availability, on an infinite time
horizon. The optimization constraint of limited fund availability is expressed therein as an addi-
tional criterion on the process and its control, and is incorporated using a Lagrange multiplier
approach.

For bounded state spaces, the finite element approach has shown performance that is com-
petitive with other methods, in particular with HJB approaches. By generalizing this approach
to unbounded state spaces, we provide a viable alternative to established approaches, especially
HJB-based approaches, for a large class of problems. A distinct feature of the proposed method
is that the inclusion of optimization constraints is natural, and requires neither additional
discretization nor large adaptions of the convergence proof.

In order to illustrate the proposed method, this paper is structured as follows. In the remain-
der of this section, we introduce the linear programming approach, present formulations for
additional constraints, and review results pertinent to the subsequent analysis. Section 2 intro-
duces the discretization stages of the method, and the main results. Section 3 gives some
details on the implementation, and illustrates the applicability of the method on three exam-
ples. Section 4 discusses the technical details of the convergence proofs. Section 5 concludes
the article with a discussion of possible future research directions.

1.2. Notation and formalism

We denote the set of non-negative real numbers by R+, and the set of positive real numbers
by R+ − {0}. The complement of a set S is denoted by S∼. For S ⊂R, let C(S) be the set
of continuous functions on S, C2(S) the set of twice continuously differentiable functions on
S, and C2

c (S) be its subset of functions whose support is contained in a compact subset of S.
The set of functions on S which are continuous except for finitely many points, but either left-
or right-continuous at these points, is denoted by Ċ(S). The set of continuous and bounded
functions on S is denoted by Cb(S). The uniform norm of a bounded function f is denoted by
‖f ‖∞. We use B(S) to refer to the Borel σ -algebra on S. P(S) denotes the set of probability
measures, and M(S) the set of finite Borel measures on (S, B(S)). The sign function is denoted
by sgn(x). For a function f on S, [f ]+(x) := max (f (x), 0) denotes its positive part. We use ‘a.e.’
to abbreviate ‘almost everywhere’.

Consider the SDE given by (1.1). We assume that Xt ∈ E, where E is an interval in R (or R
itself), and ut ∈ U = [ul, ur] with −∞ < ul < ur < ∞, for all t ≥ 0. E and U are called the state
space and the control space, respectively. Throughout this paper, we consider the case where
E = (−∞, ∞), although the proposed discretization approach is also applicable to the cases
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4 M. G. VIETEN AND R. H. STOCKBRIDGE

E = [el, ∞) and E = (−∞, er], for −∞ < el < er < ∞. Assume that the coefficient functions
b : E × U 
→R and σ : E × U 
→R+ − {0} both lie in C(E × U). They are called the drift and
diffusion functions, respectively. The infinitesimal generator Ã of a process solving (1.1) is
defined, for f ∈ C2(E), by Ãf (x, u) = b(x, u)f ′(x) + 1

2σ 2(x, u)f ′′(x). Throughout this paper, we

consider the restriction of Ã to C2
c (E). A specification of the dynamics that requires

f (Xt) − f (x0) −
∫ t

0
Ãf (Xs, us) ds (1.3)

to be a martingale for all f ∈ C2
c (E) is equivalent to (1.1) in terms of weak solutions. Hence,

the values of the cost criteria determined by (1.2) remain identical. A relaxed formulation of
(1.3) is better suited to stochastic control.

Definition 1.1. Let X be a stochastic process with state space E, and let � be a stochastic
process taking values in P(U). (X, �) is a relaxed solution to the controlled martingale problem
for Ã if there is a filtration {Ft}t≥0 of B(E) such that X and � are Ft-progressively measurable
and

f (Xt) − f (x0) −
∫ t

0

∫
U

Ãf (Xs, u) �s(du) ds (1.4)

is an {Ft}t≥0-martingale for all f ∈ C2
c (E).

The relaxation is given by the fact that the control is no longer represented by a process u,
but is encoded in the measure-valued process �. The cost criteria for a relaxed solution of the
controlled martingale problem for Ã are given by

lim sup
t→∞

1

t
E

[ ∫ t

0

∫
U

c̃(Xs, u) �s(du) ds

]
and E

[ ∫ ∞

0

∫
U

e−αsc̃(Xs, u) �s(du) ds

]
(1.5)

for the long-term average cost criterion and the infinite horizon discounted cost criterion,
respectively. A stochastic control problem given by (1.4), together with one of the criteria from
(1.5), can be reformulated as an infinite-dimensional linear program. To this end, for α ≥ 0 and
x0 ∈ E, define the function c and two operators A : C2

c (E) 
→ C(E × U) and R : C2
c (E) 
→R by

c(x, u) =
{

c̃(x, u) if α = 0,

c̃(x, u)/α if α > 0,

(Af )(x, u) = Ãf (x, u) − αf (x),

Rf = −αf (x0).

(1.6)

In this setup, α = 0 represents the long-term average, and α > 0 the infinite horizon discounted
cost criterion case.

Definition 1.2. The infinite-dimensional linear program for a stochastic control problem with
unbounded state space is given by

Minimize J ≡
∫

E×U
c dμ subject to

{∫
E×U Af dμ = Rf for all f ∈ C2

c (E),

μ ∈P(E × U).
(1.7)

The measure μ is the so-called expected occupation measure (long-term average case) or
expected discounted occupation measure (infinite horizon discounted case) of X and �. It
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Finite element approximations for stochastic control in unbounded state space 5

encapsulates both the evolution of X and the control u. For the long-term average cost crite-
rion, μ is independent of the starting point x0 of X, while for the infinite horizon discounted
criterion, μ does depend on x0, as is evident from Rf . To keep the notation simple, the possible
dependency of μ (and thereby that of J) on x0 is omitted in the following.

The measure on (E, B(E)) given by μE( · ) = μ( · ×U) is called the state-space marginal of
μ. If P : E × U  (x, u) 
→ x ∈ E is the projection map from E × U onto E, μE is the distribution
of P under μ. The relation of an infinite-dimensional linear program as seen in Definition 1.2
to stochastic control problems is explored in [16]. Therein, a certain class of relaxed controls,
which can be considered as regular conditional probabilities, are of central interest.

Definition 1.3. Let (E × U, B(E × U), μ) be a measure space. A mapping η : B(U) × E 
→
[0, 1] is called a regular conditional probability of μ if:

(i) for each x ∈ E, η(·, x) : B(U) 
→ [0, 1] is a probability measure;

(ii) for each V ∈ B(U), η(V, ·) : E 
→ [0, 1] is a measurable function; and

(iii) for all V ∈ B(U) and all F ∈ B(E), μ(F × V) = ∫
F η(V, x) μE(dx).

Remark 1.1. By [6, Theorem 8.1 and Remark 8.2], the existence of regular conditional prob-
abilities for any considered solution to (1.7) follows from the fact that E is a measurable space
and U is a complete, separable metric space, with the fact that μ(E × U) = 1.

Using the notion of a regular conditional probability, Theorem 1.1 addresses the equivalence
of infinite-dimensional linear programs and controlled martingale problems.

Theorem 1.1. The problem of minimizing one of the cost criteria of (1.5) over the set of all
relaxed solutions (X, �) to the controlled martingale problem for Ã is equivalent to the linear
program stated in Definition 1.2. Moreover, there exists an optimal solution μ∗. Let η∗ be
the regular conditional probability of μ∗ with respect to its state-space marginal μ∗

E. Then,
an optimal relaxed control is given in feedback form by �∗

t = η∗(·, X∗
t ), where (X∗, �∗) is a

relaxed solution to the controlled martingale problem for Ã having occupation measure μ∗.

Proof. See [16, Theorems 6.1 and 6.3] and the erratum in [17] for both the proof and the
underlying technical conditions. �

By this result, it suffices to find optimal solutions to (1.7) in order to solve a stochastic
control problem for a cost criterion of (1.2), with the dynamics specified by (1.1). Moreover,
we can focus our attention on such measures μ(dx, du) that can be factored into η(du, x)μE(dx),
as an optimal solution lies within this set of measures.

Remark 1.2. By considering relaxed solutions, the solution space is large enough to make
convergence arguments in the proof of Theorem 1.1 work. Practically, relaxed controls will
only appear at the transition points (of Lebesgue measure 0) of so-called bang-bang controls,
or for rather pathological combinations of the coefficient function b and the cost function c. In
both cases, there will always be a non-relaxed, ‘strict’ control (which assigns full mass on a
single control value) with equal value of the cost criterion.

Analytic solutions are usually hard to obtain, making approximate treatments of such con-
trol problems necessary. Such numerical approaches have to address three challenges. First, the
unboundedness of the state space has to be taken into account. Second, the infinite-dimensional
constraint space of (1.7), given by C2

c (E), has to be discretized. Finally, the space of measures
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6 M. G. VIETEN AND R. H. STOCKBRIDGE

P(E × U) has to be made computationally tractable. In order to establish a convergent numer-
ical scheme addressing these challenges, several assumptions have to be introduced. To do so,
we need the following two definitions.

Definition 1.4. A function c : R× U 
→R+ will be called increasing in |x| if, first, for any L1 ≥
0, there exist L2, L3 > L1 such that c(x, u) > c(−L2, u) for all x < −L2 and c(x, u) > c(L3, u)
for all x > L3, and, second, for any K > 0 there is an L large enough such that c(x, u) > K for
all x ∈ [−L, L]∼, uniformly in u.

Definition 1.5. A function c : R× U 
→R+ allows for compactification if, for all K > 0, there
exists a continuous function u− : [−K, K] 
→ U satisfying

sup{c(x, u−(x)) | x ∈ [−K, K]} ≤ inf{c(x, u) | x ∈ [−K, K]∼, u ∈ U}.
Remark 1.3. Intuitively, these two rather technical conditions describe that it is inherently
preferable to confine the process X within a compact set. If c is increasing in |x|, it will grow
beyond bound outside of any given compact set. If c allows for compactification, its structure
is such that there exists at least one control u− for which it is advantageous for the process to
remain within [−K, K], as compared to remaining outside it (in [−K, K]∼) under any other
possible control.

Remark 1.4. A broad class of cost functions c which are increasing in |x| also allows for
compactification. For example, an additive structure of the costs, such as (x, u) 
→ x2 + u2,
satisfies this property, as do more complex functions such as (x, u) 
→ x2 + |x|u2. Trivially, a
function with no cost of control such as x 
→ |x| also allows for compactification.

Throughout this paper, we assume the following conditions on (1.7).

Assumption 1.1

(i) The coefficient functions b and σ are continuous.

(ii) The cost function c is continuous and non-negative.

(iii) The cost function c is increasing in |x|.
(iv) The cost function c allows for compactification.

(v) There exists a solution μ to (1.7) such that
∫

E×U c dμ < ∞.

Remark 1.5. Assumption 1.1(v) requires that there exists some measure for which the cost
integral is finite. Should this condition not be satisfied, then every admissible control process
will lead to an infinite cost and every control will be optimal so there is no point to the opti-
mization. In this situation, the problem has most likely been misspecified. Since the diffusion
processes are Gaussian at each time, the expected occupation measures will also be Gaussian,
provided the drift and diffusion coefficients do not send the process to ±∞. As long as c does
not grow too quickly at ±∞, the natural decay of the Gaussian distribution will dominate the
growth of c, resulting in Assumption 1.1(v) being satisfied. Thus, a measurable feedback con-
trol u(x) such that the drift coefficient b strictly pushes towards the origin from some point
outwards while the diffusion coefficient remains bounded will result in an occupation measure
with Gaussian decay. Then c having polynomial growth will lead to a finite cost, satisfying the
condition. Typically, this condition is verified on a case-by-case basis.
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Remark 1.6. Assumptions 1.1(iii) and (iv) guarantee that the problem is computationally
attainable by discrete methods by having an optimal solution that confines the process to a
compact set; cf. Remark 1.3. Any other problem would naturally lie outside the scope of the
proposed method.

Assumption 1.2. For any considered solution μ(dx, du) ≡ η(du, x) μE(dx), the following must
be satisfied:

(i) For a set V ⊂ B(U) which is either a singleton or an interval, x 
→ η(V, x) is continuous
a.e. with respect to Lebesgue measure.

(ii) The functions x 
→ ∫
U b(x, u) η(du, x) and x 
→ ∫

U σ (x, u) η(du, x) lie in Ċ(E).

Assumption 1.3. For any considered solution μ(dx, du) ≡ η(du, x) μE(dx), μE must be abso-
lutely continuous with respect to Lebesgue measure.

Remark 1.7. Assumption 1.2 is necessary for the convergence argument for an approximation
of the regular conditional probability η. As elaborated in [27, Section 2.2] and [28, Section
2.2], a large class of controls satisfies this assumption. In particular, this applies to bang-bang
controls and controls η that satisfy η({v(x)}, x)) = 1 for some continuous function v.

1.3. Additional optimization constraints

The control problem given by (1.1), with one of the criteria from (1.2), can be enhanced
by placing constraints on the process X and the control u. To this end, take two non-negative
functions g1, g2 ∈ C(E × U), and D1, D2 ≥ 0. For the long-term average cost criterion, these
constraints take the form

lim sup
t→∞

1

t
E

[ ∫ t

0
g1(Xs, us) ds

]
≤ D1 and lim sup

t→∞
1

t
E

[ ∫ t

0
g2(Xs, us) ds

]
= D2,

the former representing a linear inequality constraint, and the latter representing a linear equal-
ity constraint. Respectively, for the infinite horizon discounted cost criterion, they take the form

E

[ ∫ ∞

0
e−αsg1(Xs, us) ds

]
≤ D1 and E

[ ∫ ∞

0
e−αsg2(Xs, us) ds

]
= D2.

When expressed in terms of the expected occupation measure μ, they take the form∫
E×U

g1 dμ ≤ D1 and
∫

E×U
g2 dμ = D2 (1.8)

and can easily be integrated into the constraints of (1.7) since they are linear in μ. The subse-
quent analysis is carried out without such additional constraints for the sake of presentation.
However, the derived results still hold when such constraints are present, as they can be treated
equivalently in the convergence proofs.

Remark 1.8. This extension of the problem with additional optimization constraints is not
limited to problems with unbounded state space as described herein. Constraints in the style
of (1.8) can also be introduced to problems with bounded state space, and singular behavior,
which are discussed in [27].
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8 M. G. VIETEN AND R. H. STOCKBRIDGE

1.4. Preliminary results

The analysis presented herein relies on established results on the linear programming
approach to stochastic control, which we present in the following. We also review results on
the weak convergence of measures, and on B-spline basis functions.

Recent research [27, 28] considers stochastic control problems stemming from an SDE
similar to (1.1). This SDE takes the form

dXt = b(Xt, ut) dt + σ (Xt, ut) dWt + h(Xt−) dξt, X0 = x0, (1.9)

which, in contrast to (1.1), allows for singular behavior of X by introducing the term h(Xt−) dξt.
This term takes such forms that X is contained in a bounded state space E = [el, er], with
−∞ < el < er < ∞. Typically, h(Xt−) dξt models either a reflection at one of the boundary
points el and er, or a jump from one of the boundaries into E. Such behavior is characterized
by an infinitesimal generator B, which, for the case of a reflection to the right, takes the form
Bf (x) = f ′(x). For our purposes, it suffices to consider el = −K and er = K, where K ∈N is a
constant chosen in the discretization steps discussed in Section 2. The cost criteria of (1.2) can
be adapted to this situation by introducing a second cost function c̃1 and its scaled version c1,
cf. (1.6), accounting for the cost accrued by the singular behavior. A detailed discussion of such
problems, and a derivation of equivalent linear programs analogous to the setup introduced in
Section 1.2, is provided in [28]. For our purposes, it suffices to consider such problems without
an additional cost function c̃1. The equivalent linear program to (1.9), with one of the criteria
introduced in (1.2), reads as follows. As above, we drop the possible dependence of μ0 and J
on x0 from the notation.

Definition 1.6. The infinite-dimensional linear program for a stochastic control problem with
singular boundary behavior is given by

Minimize J ≡
∫

[−K,K]×U
c dμ0

subject to

⎧⎪⎨
⎪⎩
∫

[−K,K]×U Af dμ0 + ∫
[−K,K] Bf dμ1 = Rf for all f ∈ C2

c ([−K, K]),

μ0 ∈P([−K, K] × U),

μ1 ∈M([−K, K]).

(1.10)

Remark 1.9. In Remark 2.2, we consider a specific case of this problem where the singular
behavior of X is given by reflections at the boundaries of the state space −K and K. In this case,
μ1 has full mass on {−K} and {K}, and

∫
[−K,K] Bf dμ1 = f ′(−K) · μ1({−K}) − f ′(K) · μ1({K}).

In Definition 1.6, the expected occupation measure μ0 can be considered to be the analogue
of the measure μ in (1.7), while the expected occupation measure μ1 models the singular
behavior occurring at the boundaries of E. As introduced in Definition 1.3, regular conditional
probabilities can be used to model relaxed controls, and the statement of Theorem 1.1 on
the equivalence of this linear program with a controlled martingale problem remains true. The
solvability of the linear constraints of (1.10) is discussed in [28], providing the following result.

Theorem 1.2. Let v : E 
→ U be a continuous function, and assume that η0 is a regular
conditional probability such that, for all x ∈ E, η0(v(x), x) = 1. Then, there exists a unique
solution (μ̂0, μ̂1) to the linear constraints of (1.10) such that, for all F ∈ B(E) and V ∈ B(U),
μ̂0(F × V) = ∫

E η0(V, x) dμ̂0,E, where μ̂0,E denotes the state-space marginal of μ̂0.
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Proof. This a consequence of [28, Theorem 2.5]. �

To introduce the notion of weak convergence of measures, let S be a measurable space
equipped with a topology.

Definition 1.7. Consider a sequence of probability measures {μn}n∈N and another probability
measure μ on S. We say that μn converges weakly to μ, denoted μn ⇒ μ, if, for all f ∈ Cb(S),∫

S f (x) μn(dx) → ∫
S f (x) μ(dx) as n → ∞.

An extensive discussion of weak convergence of measures can be found in [3, Volume 2,
Chapter 8]. Central to our purposes is Theorem 1.3, which states sufficient conditions for the
existence of weakly convergent subsequences of sequences of probability measures, based on
the following concept.

Definition 1.8. A sequence of probability measures {μn}n∈N on S is called tight if, for each
ε > 0, there is a compact set Kε in S such that μn(K∼

ε ) < ε for all n ∈N.

Remark 1.10. If S is compact, any sequence of probability measures on S is tight.

Theorem 1.3. Let {μn}n∈N be a sequence of probability measures on S. Then the following are
equivalent:

(i) {μn}n∈N contains a weakly convergent subsequence.

(ii) {μn}n∈N is tight.

Proof. [3, Theorem 8.6.2] considers this statement for the more general case of a sequence
of finite measures, for which the sequence of measures {μn} is required to be uniformly
bounded. This requirement is trivially satisfied when considering a sequence of probability
measures. �

While discretizing the constraints of (1.7) and (1.10), we need to embrace the space C2
c (E)

as a normed space. To this end, for f ∈ C2
c (E), set ‖f ‖D = ‖f ‖∞ + ‖f ′‖∞ + ‖f ′′‖∞ and define

D∞(E) = (C2
c (E), ‖ · ‖D). Of special importance is the collection of spaces D∞((−K, K)) for

K ∈N. Note that for f ∈ D∞((−K, K)), the support of f is always a proper subset of (−K, K).
Furthermore, D∞(E) ⊃ D∞((−K, K)) and D∞(E) = ∪K∈ND∞((−K, K)). Less obvious is the
fact that, for any K ∈N, D∞((−K, K)) is separable. To show this, we rely on cubic B-spline
basis functions. These functions form a basis for the space of all cubic splines on a closed
interval, which in turn show specific convergence properties crucial to our claim. To construct
these basis functions, fix q, K ∈N and consider the set of grid points

E(q,K) =
{

e(q)
r = −K + 2K

2q
· r, r = −3, −2, . . . , 2q + 3

}
.

Definition 1.9. For fixed q, K ∈N, the set of cubic B-spline basis functions on E(q,K) is defined
by {

s(q)
r = (e(q)

r+4 − e(q)
r )

r+4∑
i=r

[
(e(q)

i − x)3
]+

� ′
r(e(q)

i )
, r = −3, −2, . . . , 2q − 1

}
,

where �r(x) =∏r+4
i=r

(
x − e(q)

i

)
for r = −3, −2, . . . , 2q − 1.
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10 M. G. VIETEN AND R. H. STOCKBRIDGE

An analysis of these basis function is given in [5]. Provided that

max
r=−3,...,2q+2

(
e(q)

r+1 − e(q)
r

)→ 0 and
max

r=−3,...,2q+2

(
e(q)

r+1 − e(q)
r

)
min

r=−3,...,2q+2

(
e(q)

r+1 − e(q)
r

) → 1

as q → ∞, [10, Theorem 1] holds and the following statement can be shown.

Proposition 1.1. The set
⋃

q∈N
{
s(q)

r
}2q−1

r=−3 is dense in C2([−K, K]) with respect to ‖ · ‖D.

Using this result, we can approximate f ∈ D∞((−K, K)) arbitrarily closely with respect to
‖ · ‖D by a linear combination of B-spline basis functions. However, these linear combinations
are not guaranteed to have their support in a compact subset of (−K, K). To remedy this, we
need to alter the basis functions.

Definition 1.10. For q ∈N, let h(q) be a piecewise polynomial function in C2
c ((−K, K)) with

the following properties.

(i) h(q)(x) = 0 for x ≤ e(q)
1 .

(ii) h(q)(x) = 1 for e(q)
2 ≤ x ≤ e(q)

2q−2.

(iii) h(q)(x) = 0 for e(q)
2q−1 ≤ x.

For q1, q2 ∈N, consider two sets of grid points E(q1,K) and E(q2,K). The set of altered B-

spline basis functions for q1 and q2 is defined by
{
h(q1) · s(q2)

r
}2q2−1

r=−3 .

Proposition 1.2. The set
⋃

q1∈N
⋃

q2∈N
{
h(q1) · s(q2)

r
}2q2−1

r=−3 is dense in D∞((−K, K)).

Proof. Take f ∈ D∞((−K, K)), and ε > 0. Choose q1 ∈N large enough that supp(f ) ⊂(
e(q1)

2 , e(q1)
2q1−2

)
. Interpolate f on [−K, K] by a linear combination s(q2) of B-spline basis

functions on E(q2,K), with q2 ≥ q1 such that ‖f − s(q2)‖D < ε/(4 · max{1, ‖h(q1)‖D}).
Set s̃ = h(q1) · s(q2), and I1 = [

e(q1)
1 , e(q1)

2q1−1

]
, I2 = [

e(q1)
2 , e(q1)

2q1−2

]
, I3 = [

e(q1)
1 , e(q1)

2

]
for nota-

tional purposes. By construction, s̃ and s(q2) are identical on I2, and thereby M1 := ‖(s̃ −
f )‖D(I2) < ε and ‖(s̃ − f )‖D(I∼1 ) = 0 as s̃ ≡ f ≡ 0 on I∼

1 . Furthermore, ‖s(q2)‖D(I3) < ε/(4 ·
max{1, ‖h(q1)‖D}) as f ≡ 0 on I3. But then,

M2 := ‖(s̃ − f )‖D(I3)

= ∥∥(h(q1) · s(q2))∥∥
D(I3)

= ∥∥(h(q1) · s(q2))∣∣
I3

∥∥∞ + ∥∥(h(q1) · s(q2))′∣∣
I3

∥∥∞ + ∥∥(h(q1) · s(q2))′′∣∣
I3

∥∥∞ < ε

by the construction of h(q1) and s(q2), the properties of the uniform norm, and the rules of
differentiation. The same holds for M3 := ‖(s̃ − f )‖

D
([

e
(q1)

2q1 −2
,e

(q1)

2q1 −1

]). Hence, ‖s̃ − f ‖D∞ =
max{M1, M2, M3} < ε. �

Remark 1.11. By the properties of the norm ‖ · ‖D, convergence in D∞((−K, K)) in par-
ticular means bounded, pointwise convergence in function, first, and second derivative. If.
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for a sequence {gk}k∈N of functions and another function f , gk → f in D∞((−K, K)) as
k → ∞, then

∫
E×U Af dμ = limk→∞

∫
E×U Agk dμ is satisfied for any μ ∈P(E × U), as is

Rf = limk→∞ Rgk.

2. Discretization

This section presents three discretization stages needed for our numerical scheme, and states
the respective results that show its convergence. This is conducted for E = (−∞, ∞). In order
to deal with the cases E = [el, ∞) and E = (−∞, er] for −∞ < el < er < ∞, singular behavior
of X, like reflection and jumps at el or er, has to be introduced, or the coefficient functions b
and σ have to be chosen in such a way that X remains inside these intervals. In these cases, a
hybrid approach of the technique presented in [27] and the technique presented here has to be
employed.

2.1. Addressing the unboundedness of the state space

Looking at the constraints in (1.7), we denote the set of feasible solutions as

M∞ =
{
μ ∈P(E × U) :

∫
E×U

Af dμ = Rf for all f ∈ D∞(E)

}
.

We denote the cost criterion by J : P(E × U)  μ 
→ J(μ) = ∫
E×U c dμ. To make the feasible

solutions computationally tractable, for K ∈N we introduce

Ṁ∞,K =
{
μ ∈P(E × U) :

∫
E×U

Af dμ = Rf for all f ∈ D∞((−K, K))

}
,

M∞,K =
{
μ ∈P([−K, K] × U) :

∫
E×U

Af dμ = Rf for all f ∈ D∞((−K, K))

}
.

Ṁ∞,K has fewer constraints than M∞, as it only considers those constraint functions in
D∞(E) with support within (−K, K). Thus, M∞ ⊂ Ṁ∞,K , while on the other hand, Ṁ∞,K ⊃
M∞,K since the latter set is more restrictive by requiring measures to have mass in [−K, K].
Foremost, however, is that M∞,K features both measures and constraints that ‘live’ in a
bounded set, which are accessible to discrete approaches.

Remark 2.1. The choice of considering measures μ ∈P([−K, K] × U) on the closed inter-
val [−K, K] while considering functions f ∈ D∞((−K, K)) on the open interval (−K, K) is
taken purposefully here, as it will ensure that the result of Proposition 1.2 is applicable in the
convergence proof of Proposition 2.2,

The convergence result of Proposition 2.1 shows how so-called ε-optimal measures in
M∞,K relate to ε-optimal measures in M∞.

Definition 2.1. A measure με ∈ M∞ is said to be ε-optimal for M∞ if J(με) − ε < J(μ) for
all μ ∈ M∞. In identical fashion, ε-optimality is defined for Ṁ∞,K and M∞,K .

Proposition 2.1. For every K > 0, let με
K be an ε-optimal solution for M∞,K. Then, given

δ > 0, there exists a K0(δ) > 0 such that, for all K ≥ K0, με
K is a (2ε + δ)-optimal solution to

M∞.

This result reduces our infinite-dimensional linear program to the task of finding an ε-
optimal measure for M∞,K . It is the main contribution of this article. For its proof in
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12 M. G. VIETEN AND R. H. STOCKBRIDGE

Section 4.1 we consider arguments concerning both Ṁ∞,K and M∞,K . The analysis presented
is an adaption of the proof techniques employed in [27].

Remark 2.2. Let (μ0, μ1) be a solution to the constraints of (1.10), with the singular
behavior of X given by reflections at −K and K; cf. Remark 1.9. For f ∈ D((−K, K)),∫

[−K,K]×U Af dμ0 = Rf as the support of f is a proper subset of [−K, K]. Hence, μ0 ∈ M∞,K .
Furthermore, if x0 = K, Rf = 0 for both the long-term average and infinite horizon discounted
cost criterion.

Remark 2.3. Under Assumption 1.2, by [28, Theorem 2.5], for any solution (μ0, μ1) to the
constraints of (1.10), we have that μ0,E is absolutely continuous with respect to Lebesgue mea-
sure. By Remark 2.2, M∞,K contains solutions μ whose state-space marginal μE is absolutely
continuous with respect to Lebesgue measure.

2.2. Discretizing the constraint space

M∞,K remains an analytic construct, and we have to introduce discretizations to make it
computationally tractable. Both the function space D∞((−K, K)) and the set of measures P([−
K, K] × U) are approximated by discrete forms. To approach the first, for given K and some
q1, q2 ∈N, consider the set of altered B-spline basis functions from Definition 1.10. Its linear
span is denoted by D(q1,q2)((−K, K)). Following Proposition 1.2, ∪q1∈N,q2∈ND(q1,q2)((−K, K))
is dense in D∞((−K, K)). Set

M(q1,q2),K =
{
μ ∈P([−K, K] × U) :

∫
Af dμ = Rf for all f ∈ D(q1,q2)((−K, K))

}
, (2.1)

which features a finite set of constraints given by the finite number of B-spline basis functions
that span D(q1,q2)((−K, K)). Set J∗

(q1,q2),K = inf{J(μ) | μ ∈ M(q1,q2),K}.
Remark 2.4. For our purposes, it suffices to consider a sequence of indices qn ≡ (qn,1, qn,2)
with qn,1 ≤ qn,2 and limn→∞ qn,1 = ∞, and the respective set Mqn,K .

Definition 2.1 carries over to Mqn,K , and the convergence result is follows.

Proposition 2.2. For every n ∈N, let με
n be an ε-optimal solution for Mqn,K. Then, given a

δ > 0, there exists an N0(δ) ∈N such that, for all n ≥ N0, με
n is a (2ε + δ)-optimal solution to

M∞,K.

This result represents another reduction of the initial problem, as the constraints are now
computationally tractable. Its proof is akin to that of Proposition 2.1. Therefore, Section 4.2
merely describes the necessary alterations with respect to Section 4.1.

2.3. Discretizing the expected occupation measure

For fixed q1, q2 ∈N, take an expected occupation measure μ ∈ M(q1,q2),K and decompose
it into its regular conditional probability and its state-space marginal by setting μ(dx, du) =
η(du, x)μE(dx). By assumption, μE(dx) is absolutely continuous with respect to Lebesgue
measure. Hence, we can introduce its density p and write μ(dx, du) = η(du, x)p(x) dx. The
following discretization makes η and p tractable. As c, b, and σ are continuous, and we have
restricted our attention to the compact set [−K, K], for all m ∈N there is a δm > 0 such that,
for all u, v ∈ U with |u − v| ≤ δm,

max

{
|c(x, u) − c(x, v)|, |b(x, u) − b(x, v)|,

∣∣∣∣1

2
σ 2(x, u) − 1

2
σ 2(x, v)

∣∣∣∣
}

≤ 1

2m+1
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holds uniformly in x ∈ [−K, K]. Set km to be the smallest integer such that (ur − ul)/2km ≤ δm.
The parameter km controls the discretization of the control space U, and the specific choice
enables an accurate approximate integration against the relaxed control η0 in the proof of
Proposition 4.3. Define

U(m) =
{

uj = ul + ur − ul

2km
· j, j = 0, . . . , 2km

}
,

E(m) =
{

ej = el + er − el

2m
· j, j = 0, . . . , 2m

}
.

The unions of these sets over all m ∈N are dense in the control space and state space,
respectively. They are used to define discretizations for the measure μ as follows. First, we
approximate the density p of μE. Denote the countable basis of L1(E) given by indicator func-
tions over closed intervals of E by {pn}n∈N. Truncate this basis to p0, . . . , p2m−1, given by the
indicator functions of the intervals of length 1/2m, whose boundary points are given by E(m).
Then, we approximate the density p by

p̂m(x) =
2m−1∑
k=0

γkpk(x), (2.2)

where γk ∈R+, k = 0, . . . , 2m − 1, are weights to be chosen such that
∫

E p̂m(x) dx = 1.

Remark 2.5. Other choices of basis functions p0, . . . , p2m−1 can indeed be considered for
the discretization of p. As we will see in Section 3.2, analytical solutions to specific control
problems may have densities with higher regularity than merely L1(E). In order to keep the
analysis as general as possible, we continue using the basis of L1(E) given by the indicator
functions.

Set Ej = [ej, ej+1) for j = 0, 1, . . . 2m − 2 and E2m−1 = [e2m−1, e2m] to define

η̂m(V, x) =
2m−1∑
j=0

2km∑
i=0

βj,iIEj(x)δ{ui}(V), (2.3)

where βj,i ∈R+, j = 0, . . . , 2m − 1, i = 0, . . . , km, are weights to be chosen such that∑2km

i=0 βj,i = 1 for j = 0, . . . , 2m − 1. We approximate η0 using (2.3), which means that this
relaxed control is approximated by point masses in the U-‘direction’ and piecewise constants
in the E-‘direction’. Then, we set μ̂m(du × dx) = η̂m(du, x)p̂m(x) dx, and introduce the final
reduction of our control problem:

M(q1,q2,m),K = {μ̂m ∈ M(q1,q2),K : μm(dx × du) = η̂m(du, x)p̂m(x) dx)}.
This set features finitely many constraints, inherited from M(q1,q2),K , but also finitely many
unknowns which are the coefficients of η̂m and p̂m. As the constraints are linear, and the
objective function J is linear, we are able to find an optimal solution μ∗

m in M(q1,q2,m),K with
J(μ∗) ≤ J(μ) for all μ ∈ M(q1,q2,m),K by standard (finite-dimensional) linear programming. If
additional optimization constraints in the style of (1.8) are present, we can simply evaluate
them on μ̂m in the same way we evaluate the cost criterion J(μ̂m), by integrating g1, g2, or
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c against J(μ̂m). Doing so, each additional optimization constraint of the original problem
introduces merely a single constraint to M(q1,q2,m),K .

Proposition 2.3. For each m ∈N, assume that μ∗
m ∈ M(q1,q2,m),K and that, for all m ∈N, μ∗

m
is an optimal solution in M(q1,q2,m),K. Then, the sequence of numbers {J(μ∗

m)}m∈N converges
to J∗

(q1,q2),K as m → ∞.

The proof of this result requires a detailed investigation of the approximation properties of
(2.2) and (2.3). It is, with some minor modifications, identical to the proof of [27, Corollary
3.3]. Section 4.3 thus only presents a short sketch of the proof.

2.4. Combining the results

The results of the previous three sections combined lead to our main result.

Theorem 2.1. For any ε > 0, there is a sequence {qn}n∈N as in Remark 2.4, and K0, N0, N1 ∈
N such that, for all K ≥ K0, n ≥ N0, and m ≥ N1, an optimal solution μ∗

m in M(q1,q2,m),K is
ε-optimal in M∞.

Proof. Take ε1, δ1 > 0 satisfying 2ε1 + δ1 < ε and, by Proposition 2.1, select K0 ∈N such
that, for all K ≥ K0, an ε1-optimal solution to M∞,K is a (2ε1 + δ1)-optimal solution to M∞.
For any such K, take ε2, δ2 > 0 satisfying 2ε2 + δ2 < ε1. By Proposition 2.2, there is an N0 ∈N

such that, for all n ≥ N0, an ε2-optimal solution to Mqn,K is (2ε2 + δ2)-optimal for M∞,K . For
any such n, pick N1 ∈N such that, for all m ≥ N1, an optimal solution μ∗

m for M(qn,1,qn,2,m),K is
ε2-optimal for M(qn,1,qn,2),K . By construction, μ∗

m is ε-optimal in M∞. �

3. Examples and implementation

We showcase the applicability of the proposed method on three control problems. We start
with a very simple problem of a controlled Brownian motion process. This is followed by
an Ornstein–Uhlenbeck process with costs of control, which features a more irregular density
of the expected occupation measure. A third example also considers an Ornstein–Uhlenbeck
process, but introduces a control budget constraint. These examples were selected to showcase
the performance of the proposed method for a variety of irregularities typically encountered. As
we are dealing with diffusion processes, the density of the expected occupation measure will
always be continuous, and infinitely differentiable almost everywhere. Single points where the
density is not differentiable occur on ‘switching points’, where the behavior of the control
fundamentally changes, as can be seen in Sections 3.2 and 3.4. Section 3.3 features a non-
symmetric density. A more indicative example, although for a bounded state space, can be
found in [27].

Before we delve into the examples, we give some insights on how the proposed method is
implemented. The main idea of the implementation is to bring the discrete versions of our con-
trol problem into the standard form of a linear program, which can be solved with commonly
available libraries.

3.1. Details of the implementation

An implementation of the method proposed in this article needs to compute the components
of a linear program as required by typical solvers, and then pass them into such a solver for
computation. Some short post-processing of the results reveals the optimal control of our dis-
cretized problem. For the examples shown in this section, MATLAB R© was used. Its linprog
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function expects the following arguments, where x represents a possible solution to the linear
program:

• the cost vector f codifying the objective function, which is evaluated by computing f �x;

• the matrix A(1) and the vector b(1) codifying the equality constraints A(1)x = b(1);

• the matrix A(2) and the vector b(2) codifying possible inequality constraints A(2)x ≤ b(2);

• two vectors lb and ub representing the lower and upper bounds on x, respectively, such
that lb ≤ x ≤ ub holds component-wise.

While other packages might demand a slightly different interface, we consider MATLAB’s
interface general enough to express the ideas of this section in terms of this form of linear
program. To compute A(1) and b(1), we need to take a closer look at the discretized mea-
sure μ̂m. Recalling the forms of p̂m and η̂m as in (2.2) and (2.3), we can derive the following
formula:

μ̂m(F × V) =
∫

F

[
2m−1∑
k=0

(
2m−1∑
j=0

2km∑
i=0

βj,iIEj(x)δ{ui}(V)

)
γkpk(x)

]
dx

=
∫

F

[
2m−1∑
k=0

2m−1∑
j=0

2km∑
i=0

γkβj,i︸ ︷︷ ︸
xk,j,i

IEj(x)δ{ui}(V)pk(x)

]
dx. (3.1)

To form a ‘proper’ row vector, the vector xk,j,i ≡ γkβk,j,i can be re-indexed. For simplicity,
we will retain the ‘triple’ index notation with indices k, j, i in the following. Wherever they
appear, it is understood that multiplication of matrices and vectors with x can be expressed by
the standard dot product, summing over one index. It may appear as if the multiplication of γk

and βj,i would make the problem non-linear. However, it is possible to solve for the vector x
and compute βj,i from it, which is our variable of interest as it encodes the optimal control.

The computation of the cost vector f in (3.1) is done as follows. Observe that

∫
E×U

c dμ̂m =
2m−1∑
k=0

2m−1∑
j=0

2km∑
i=0

γkβj,i︸ ︷︷ ︸
xk,j,i

∫
Ej

c(x, ui)pk(x) dx︸ ︷︷ ︸
fk,j,i

= f �x.

Hence, finding the components of f comes down to integration against Lebesgue measure. As
long as c is a polynomial (as it is in all the examples considered in this article), Gaussian
quadrature can be used to obtain exact results. As the support of pk is disjoint from Ej for most
indices k and j, only a small number of components of f have to be actually computed, and
sparse structures lend themselves to storing f efficiently.

Having considered the computation of f , the computation of A(1) can be run in similar
fashion. Let {fr}2q2−1

r=−3 be the finite basis of D(q1,q2)((−K, K)) as used in (2.1). Then,

∫
E×U

Afr dμ̂m =
2m−1∑
k=0

2m−1∑
j=0

2km∑
i=0

γkβj,i︸ ︷︷ ︸
xk,j,i

∫
Ej

Afr(x, ui)pk(x) dx︸ ︷︷ ︸
A(1)

r,(k,j,i)

.
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Using this formula, all components of A(1) can be computed exactly using numerical integra-
tion, as Afr is piecewise polynomial. The sparsity of A(1) can be accounted for for the same
reasons mentioned with respect to the computation of f . Also, for r = −3, . . . , 2q2 − 1, we
set b(1)

r = Rfr, which is 0 in the case of the long-term average cost criterion, or a simple func-
tion evaluation in the case of the infinite horizon discounted cost criterion. To ensure that μ̂m

is indeed a probability measure, we set A(1)
2q2−1,(k,j,i) = ∫

Ej
pk(x) dx and b(1)

2q2−1 = 1. Additional

rows are appended to A(1) and b(1) if an additional equality constraint is present; cf. (1.8).
Similarly, A(2) and b(2) are defined by the inequality constraint of (1.8), if present. The same
integration techniques can be applied for these constraints. The lower bound lb on x is set to
be zero, ensuring that all coefficients, and, by extension, the considered probability measures
and densities, are non-negative. The upper bound ub is not needed in this context. Putting all
the elements together, we can use a linear programming package to solve

Minimize f �x subject to

⎧⎪⎪⎨
⎪⎪⎩

A(1)x = b(1),

A(2)x ≤ b(2),

0 ≤ x.

The dimensions of A(1), b(1), f , and x depend on the choice of discretization parameters q2, m,
and km, as seen above. Typically, A(1) features several thousand rows. As an additional opti-
mization constraint contributes a single line to A(1) (or A(2)), the added complexity of additional
optimization constraints is relatively small.

We previously defined p̂m, see (2.2), by using indicator functions of the intervals of the
dyadic partition of E. This approximation is also used in the proofs of Section 4. For the
numerical examples, we adapt this approach by splitting several of those intervals to introduce
additional degrees of freedom to the problem. This became necessary due to the observa-
tion that, for some examples, clean numerical solutions could only be obtained when keeping
q2 = m. However, this can lead to the number of constraints outnumbering the degrees of free-
dom due to the structure of the B-spline basis functions and indicator functions. Furthermore,
additional constraints are present, either ensuring that p̂m is a probability density, or ensur-
ing the fulfillment of additional optimization constraints. Splitting the intervals counters this
issue. The theoretical results of Section 4 nevertheless remain valid. Once the linear program
is solved for x, we can use the equation

μ̂m(Ej, {ui}) =
2m−1∑
k=0

∫
Ej

γkβj,ip̂k(x) dx = βj,i · μ̂m(Ej, U),

which can easily be solved for βj,i, to obtain the coefficients of the regular conditional prob-
ability η̂m; again, see (2.3). This ultimately gives us the actual behavior of the control we are
interested in finding.

3.2. Example 1: Controlled Brownian motion process

Consider a drifted Brownian motion process, with the drift entirely defined by the control u,
featuring a constant diffusion coefficient σ . As a cost criterion, we adopt the long-term average
criterion with c̃(x, u) = x2. The resulting SDE and cost criterion J are

dXt = ut dt + σ dWt, X0 = 0; J ≡ lim sup
t→∞

1

t
E

[ ∫ t

0
X2

s ds

]
.
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TABLE 1. Configuration of problem, discretization parameters, and cost criterion values for a controlled
Brownian motion process.

σ K q1 q2 m km J∗ Ĵ
√

2/2 5 12 10 10 10 0.125 0.125 05

FIGURE 1. Density of state-space marginal, controlled Brownian motion process.

We have E = (−∞, ∞), and set U = [−1, 1]. Note that the assumptions of our method, espe-
cially in the light of Remark 1.5, are satisfied, as we are considering a simple drifted Brownian
motion with polynomial costs. Basic principles of optimal control, in particular the linear
influence of the control on both SDE and cost criterion, dictate that the optimal control is
ut = u(Xt) = −sgn(Xt) · IXt �=0, a so-called bang-bang control. It is a ‘strict’ control a.e., mean-
ing that it assigns full mass on single points, as opposed to using the flexibility of a relaxed
control. We can compute that the respective density is p(x) = 1/σ 2 · exp(−|x| · 2/σ 2) by using
the method in the proof of [12, Proposition 3.1]. The configuration of the problem and the
numerical solution are shown in Table 1. For this example, we can compare the exact value of
the cost criterion for the optimal solution J∗ with the numeric approximation Ĵ. Note that even
though the expected optimal control is a bang-bang control, we allow the solver to choose from
210 different control values in order to not implicitly assume the form of the optimal control.
For this configuration, we have |J∗ − Ĵ| ≈ 4.8 · 10−5, while errors on the magnitude of 10−7

can be achieved by increasing q1, q2, and m.
The approximations for p and the average control value x 
→ ∫

U η(u, x) du are displayed in
Figures 1 and 2, respectively. Note that a plot of the average control value is preferable over
plotting a three-dimensional representation of η with 210 · 210 points, for the sake of presenta-
tion. Concerning the state-space density, we can clearly see that it is concentrated around the
origin, as the process is pushed towards it by the control. The average control value indeed
takes the form of the expected bang-bang control, with some numerical artifacts at the bound-
ary of the state space. These boundaries are imposed by the discretization, and do not exist in
the original problem. Given the very small values of the state-space density at the fringes of the
state space, the influence of these artifacts on the optimal value Ĵ can be neglected. However,
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FIGURE 2. Average of optimal relaxed control, controlled Brownian motion process.

they indicate that special treatment of the discretization at the borders of the state space might
be necessary. This is the subject of current research.

3.3. Example 2: Ornstein–Uhlenbeck process with costs of control

Consider a controlled Ornstein–Uhlenbeck process. Ornstein–Uhlenbeck processes feature
a ‘mean-reverting’ drift that automatically pushes the process X back to its mean ν. The
strength of that push is determined by a coefficient ρ. The diffusion coefficient σ is constant.
As a cost criterion, we use the infinite horizon discounted criterion with c̃(x, u) = x2 + u2. In
contrast to Section 3.2, this introduces a cost for using the control, which in turn prevents the
optimal control from being of bang-bang type. This is because it balances the costs induced
by the position of X with the costs induced by using the control. The linear influence of the
control on both SDE and cost criterion implies that it is a ‘strict’ control a.e., meaning that it
assigns full mass on single points, as opposed to using the flexibility of a relaxed control. The
SDE and cost criterion J considered are

dXt = [ρ(ν − Xt) + ut] dt + σ dWt, X0 = x0; J ≡E

[ ∫ ∞

0
e−αs((Xs − ν)2 + u2

s ) ds

]
.

We have E = (−∞, ∞), and set U = [−1, 1]. The assumptions of our method, especially
in the light of Remark 1.5 (given the mean-reverting behavior of the model), are satisfied. The
configuration of the problem and the numerical solution are shown in Table 2. We have chosen
a rather high discounting factor α whose influence on the results will be visible. The proposed
method also works well with smaller discounting factors.

The approximations for the state space density p and the average control value x 
→∫
U η(u, x) du are displayed in Figures 3 and 4, respectively. p has its mode at the origin, which

it is pushed towards by both the mean-reverting drift and the control. The influence of the
discounting factor and the starting point x0 = 1.5 are clearly visible. As ‘earlier’ values of X
are weighted higher by the discounted expected occupation measure when considering a dis-
counted cost criterion, its state-space density p shows a feature at x0. Again, the average control
value shows numerical artifacts at the boundary of the state space.
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TABLE 2. Configuration of problem and discretization parameters for an Ornstein–Uhlenbeck process
with costs of control.

x0 α ρ ν σ K q1 q2 m km Ĵ

1.5 0.2 0.1 0
√

2/2 4 12 10 10 10 0.393 46

FIGURE 3. Density of state-space marginal, Ornstein–Uhlenbeck process with costs of control.

FIGURE 4. Average of optimal relaxed control, Ornstein–Uhlenbeck process with costs of control.

3.4. Example 3: Ornstein–Uhlenbeck process with control budget constraint

Again consider a controlled Ornstein–Uhlenbeck process. In contrast to Section 3.3, we
will use the absolute value of the deviation of X from ν as the cost function with the long-term
average cost criterion and introduce a constraint in the style of (1.8) to the problem:
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TABLE 3. Configuration of problem, discretization parameters, and approximate cost criterion value for
an Ornstein–Uhlenbeck process with a control budget.

x0 ρ ν σ D1 K q1 q2 m km Ĵc Ĵu

0 0.1 0
√

2/2 0.15 5 14 13 13 5 0.632 62 0.238 83

FIGURE 5. Density of state-space marginal, Ornstein–Uhlenbeck process with control budget.

dXt = [ρ(ν − Xt) + ut] dt + σ dWt, X0 = x0;

lim sup
t→∞

1

t
E

[ ∫ t

0
|us| ds

]
≤ D1;

J ≡ lim sup
t→∞

1

t
E

[ ∫ t

0
|Xs − ν| ds

]
.

(3.2)

In this setting, the constraint in (3.2) can be interpreted in such a way that there are costs
associated with using the control (given by the absolute value of the control), and these costs
must not exceed a certain budget stream of D1 per unit of time in the long-term average. The
assumptions of our method are satisfied, in particular as U is compact and the cost criterion will
therefore be finite. To show the influence of the additional constraint on the optimal solution,
we compare the solution for this problem to the same problem without this constraint, i.e.
where (3.2) is not present.

As in Section 3.4, we have E = (−∞, ∞) and set U = [−1, 1]. The configuration of the
problem and the numerical solution are shown in Table 3. Ĵc denotes the approximate solution
to the constrained problem, while Ĵu denotes the approximate solution to the unconstrained
problem. In order to attain a smooth solution, q1 and q2 must be larger than in the previous
examples. To make up for the additional memory needed by this discretization, we choose a
smaller value of 5 for km, which is nevertheless large enough to allow the solver to consider
non-bang-bang controls. We thereby avoid an implicit assumption on the form of the optimal
control.

The approximation for p (with the budget constraint present) is shown in Figure 5. Figure 6
shows the average control value x 
→ ∫

U η(u, x) du for the case where the budget constraint is
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FIGURE 6. Average of optimal relaxed control, Ornstein–Uhlenbeck process with control budget.

present, in black, and for the case when it is not present, in gray. With regard to the optimal
control value, we can see that due to the limited budget available, the solver chooses not to act
when the process X is rather close to the origin, accruing lower costs, but acts at ‘full force’
once the process is more than 1.075 units away from ν. Again, we see some numerical artifacts
towards the borders of the computed state space. If the budget constraint is not present, the
control acts at ‘full force’ at any position of the state space, as expected. As a result of the
specific behavior of the control, the associated state space density is rather ‘flat’ in the interval
where the control is not acting, and rather steep outside it. The numerical values of Ĵc and Ĵu
show the expected behavior. Due to the limited control usage when the budget constraint is
present, Ĵc is larger than its counterpart Ĵu.

4. Proofs

4.1. Addressing the unboundedness of the state space

This section discusses the proof of Proposition 2.1. We begin by considering weakly
convergent sequences of measures {μK}K∈N that lie in Ṁ∞,K for each K ∈N.

Lemma 4.1. Let {μK}K∈N satisfy μK ∈ Ṁ∞,K for all K ∈N. Assume that μK ⇒ μ̂ for some
μ̂ ∈P(E × U) as K → ∞. Then μ̂ ∈ M∞.

Proof. Take f ∈ D∞(E). Then there is a K0 ∈N such that supp(f ) ⊂ (−K, K) for all K ≥ K0.
Also, the function (x, u) 
→ Af (x, u) lies in Cu

b(E × U), given the form of A, cf. (1.6), and since
f , f ′, and f ′′ have compact support. By the weak convergence of measures,

∫
E×U Af dμ̂ =

limK→∞
∫

E×U Af dμK = limK→∞ Rf = Rf . �

Remark 4.1. If constraints in the form of (1.8) are present, Lemma 4.1 still holds since g1 is
non-negative and continuous (hence bounded over any compact interval), and

∫
E×U

g1 dμ = lim
L→∞

∫
[−L,L]×U

g1 dμ = lim
L→∞ lim

K→∞

∫
[−L,L]×U

g1 dμK ≤ D1

holds by monotone convergence and, again, the weak convergence of measures. The same
arguments hold for the equality constraint of (1.8).
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A crucial part of the convergence analysis is to consider, given a sequence of measures
{μK}K∈N, how the sequence of values given by {J(μK)}K∈N evolves. This is discussed next.
Note that we use the notation J(μ) = ∫

E×U c dμ interchangeably.

Lemma 4.2. Let {μK}K∈N satisfy μK ∈ Ṁ∞,K for all K ∈N. Assume that μK ⇒ μ̂ for some
μ̂ ∈ M∞ as K → ∞. Let μ ∈ M∞ be another measure, and assume that, for some ε > 0,
J(μ̂) > J(μ) + ε holds. Then, there is a K0 ∈N large enough such that, for all K ≥ K0, J(μK) >

J(μ) + ε.

Proof. By monotone convergence, there exists an L1 large enough such that, for all L2, L3 ≥
L1, ∫

E×U
c dμ̂ ≥

∫
[−L2,L3]×U

c dμ̂ >

∫
E×U

c dμ + ε

is true. Find L2, L3 ≥ L1 such that c(x, u) > c(−L2, u) for all x < −L2 and c(x, u) > c(L3, u) for
all x > L3, which is possible since c is increasing in |x|; cf. Assumption 1.1(iii). Define

c̄(x) =

⎧⎪⎨
⎪⎩

c(−L2, u) if x < −L2,

c(x, u) if x ∈ [−L2, L3],

c(L3, u) if x > L3.

Observe that c̄ is uniformly continuous and bounded, but also∫
E×U

c dμ̂ >

∫
E×U

c̄ dμ̂ ≥
∫

[−L2,L3]×U
c dμ̂ >

∫
E×U

c dμ + ε. (4.1)

Clearly, for any K ∈N we have
∫

E×U c dμK ≥ ∫
E×U c̄ dμK . On the other hand, by weak con-

vergence,
∫

E×U c̄ dμK → ∫
E×U c̄ dμ̂ as K → ∞, and with (4.1) there is a K0 large enough such

that, for all K ≥ K0,∫
E×U

c dμK ≥
∫

E×U
c̄ dμK >

∫
E×U

c dμ + ε. �

We turn to weakly convergent sequences which are ε-optimal for some arbitrary ε > 0.
In other words, we consider {με

K}K∈N, with με
K ∈ Ṁ∞,K for all K ∈N, and, for each K ∈N,

J(με
K) < J(μK) + ε holding for any μK ∈ Ṁ∞,K , in accordance with Definition 2.1. Note that,

due to Assumption 1.1(iv) and the fact that J(μ) ≥ 0 for any μ, we can assume the existence
of an ε-optimal solution in M∞ with finite cost. Since M∞ ⊂ Ṁ∞,K , the existence of an ε-
optimal solution in Ṁ∞,K follows, and it is valid to consider sequences of measures with the
properties described. The following argument considers the tightness of such sequences. As U
is a bounded set, our analysis solely focuses on the state-space behavior of the measures.

Lemma 4.3. For each K ∈N, assume that με
K ∈ Ṁ∞,K and that με

K is an ε-optimal solution.
Then, {με

K}K∈N is tight.

Proof. Assume the opposite. Then there exists a δ > 0 such that, for all L ∈N, there exists
a K ∈N with με

K([−L, L]∼ × U) ≥ δ. Using that c is increasing in |x|, choose L large enough
such that c(x, u) >

( ∫
E×U c dμ + ε

) · (1/δ) for all x ∈ [−L, L]∼, uniformly in u, where μ is a

measure in Ṁ∞,K with finite costs. By the hypotheses, με
K([−L, L]∼ × U) ≥ δ for some K ∈N,

and hence
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∫
E×U

c dμε
K ≥

∫
[−L,L]∼×U

c dμε
K > δ ·

( ∫
E×U

c dμ + ε

)
· 1

δ
=

∫
E×U

c dμ + ε,

which is a contradiction to με
K being ε-optimal. �

By Theorem 1.3, a tight sequence of measures contains a convergent subsequence. The limit
of a convergent sequence of ε-optimal measures is ε-optimal itself.

Lemma 4.4. For each K ∈N, assume that με
K ∈ Ṁ∞,K and that με

K is an ε-optimal solution
in Ṁ∞,K. Assume that με

K ⇒ μ̂ for some μ̂ ∈P(E × U). Then μ̂ is ε-optimal in M∞.

Proof. Assume that μ̂ is not ε-optimal. Then there exists a μ ∈ M∞ such that
∫

E×U c dμ̂ >∫
E×U c dμ + ε. By Lemma 4.2, there exists a K ∈N such that

∫
E×U c dμε

K >
∫

E×U c dμ + ε,

which contradicts the assumption that με
K is ε-optimal, as μ ∈ Ṁ∞,K for all K. �

In general, weak convergence cannot be assumed. The following result investigates how
sequences of ε-optimal measures behave without such an assumption.

Lemma 4.5. For each K ∈N, assume that με
K ∈ Ṁ∞,K and that με

K is an ε-optimal solution
in Ṁ∞,K. Then, for any δ > 0, there is a z ∈R and a K0(δ) ∈N such that J(με

K) ∈ (z − ε/2 −
δ, z + ε/2 + δ) for all K ≥ K0(δ).

Proof. Consider two convergent subsequences of {με
K}K∈N, denoted {με

kj
}j∈N and {με

lj
}j∈N.

Let μ̂ and μ̃ be their respective limits, and assume that μ̂ �= μ̃. Assume that
∫

E×U c dμ̂ >∫
E×U c dμ̃ + ε. By Lemma 4.2, there exists an N ∈N large enough such that, for all j ≥ N,∫
E×U c dμkj >

∫
E×U c dμ̃ + ε, contradicting that {με

kj
}j∈N is a sequence of ε-optimal measures.

Hence,
∫

E×U c dμ̂ ≤ ∫
E×U c dμ̃ + ε has to be true. Applying the same argument to {με

lj
}j∈N and

μ̂, we can readily conclude that
∫

E×U c dμ̃ ≤ ∫
E×U c dμ̂ + ε. Both results put together reveal

that
∣∣ ∫

E×U c dμ̂ − ∫
E×U c dμ̃

∣∣≤ ε, and hence there is a z ∈R such that J(μ) ∈ [z − ε/2, z +
ε/2] for any limit μ of a convergent subsequence of {με

K}K∈N.
Fix δ > 0, and assume there is a non-convergent subsequence {με

mj
}j∈N of {με

K}K∈N such

that, for any N, there is a j ≥ N with
∫

E×U c dμmj /∈ (z − ε/2 − δ, z + ε/2 + δ). Then, there
exists a sub-subsequence {με

m′
j
}j∈N with

∫
E×U c dμm′

j
/∈ (z − ε/2 − δ, z + ε/2 + δ) for all j ∈

N. This sub-subsequence, however, remains a sequence of ε-optimal measures, as it is a subse-
quence of {με

K}K∈N, and hence is tight by Lemma 4.3. Theorem 1.3 implies the existence of a
convergent ‘sub-sub’-subsequence {με

m′′
j
}j∈N, for which limj→∞ J(μm′′

j
) ∈ [z − ε/2, z + ε/2],

contradicting the existence of {με
mj

}j∈N, and proving the claim. �

Lemma 4.5 not only reveals the location of limiting values when considering ε-optimal
sequences, it also lets us form a conclusion about the optimal value for J.

Lemma 4.6. Set J∗ = inf{J(μ) : μ ∈ M∞}, and consider the sequence {με
K}K∈N of ε-optimal

measures, as well as z ∈E, from Lemma 4.5. Then z − 3ε/2 ≤ J∗ ≤ z + ε/2.

Proof. Let μ̂ be the limit of a convergent subsequence of {με
K}K∈N. As seen in the proof

of Lemma 4.6, J(μ̂) ∈ [z − ε/2, z + ε/2], and thereby J∗ ≤ J(μ̂) ≤ z + ε/2. But on the other
hand, μ̂ is ε-optimal by Lemma 4.4, and thereby

J∗ + ε ≥ J(μ̂) ≥ z − ε/2 ⇐⇒ J∗ ≥ z − 3ε/2. �
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Proposition 4.1. For each K ∈N, assume that με
K ∈ Ṁ∞,[−K,K] and that με

K is an ε-optimal
solution in Ṁ∞,K. Then, for δ > 0, there exists a K0(δ) such that |J(με

K) − J∗| ≤ 2ε + δ for all
K ≥ K0(δ).

Proof. Fix δ > 0, and choose K0 large enough such that, for all K ≥ K0, J(μK) ∈ (z − ε/2 −
δ, z + ε/2 + δ) holds by Lemma 4.5. Using Lemma 4.6, we deduce that

z − ε

2
− δ −

(
z + ε

2

)
≤ J(μK) − J∗ ≤ z + ε

2
+ δ −

(
z − 3ε

2

)
. �

Proposition 4.1 reduces the problem of finding ε-optimal solutions in M∞ to finding opti-
mal solutions in Ṁ∞,K . While this is significant progress in terms of attaining a computable
formulation, the fact that measures in Ṁ∞,K are allowed to have mass anywhere in E still has
to be addressed. The following analysis relies on our assumption that c allows for compacti-
fication, cf. Assumption 1.1, and the existence of solutions for problems with bounded state
space, cf. Theorem 1.2.

Lemma 4.7. Let μK be a measure in Ṁ∞,K. There exists a measure μ̃K ∈ M∞,K with J(μ̃K) ≤
J(μK).

Proof. If μK([−K, K] × U) = 1, the statement is trivially true as μK ∈ M∞,K in this case.
So, assume that τ := μK([−K, K] × U) < 1, and let u− be a continuous function such that
sup{c(x, u−(x)) : x ∈ [−K, K]} ≤ inf{c(x, u) : x ∈ [−K, K]∼, u ∈ U}. By Theorem 1.2 we can
take a solution (μ̂0, μ̂1) to the constraints of the singular linear program with a bounded state
space E = [−K, K], cf. (1.10), with x0 = K and reflections at both ends of the state space
{−K} and {K}, under a control satisfying η0(u−(x), x) = 1. By Remark 2.2,

∫
AE×Uf dμ̂0 =

0 for all f ∈ D∞((−K, K)) ≡ C2
c ((−K, K)). Set μ̃A

K = (1 − τ )μ̂0 and, for F × V ∈B(E × U),
define μ̃K(F × V) = μK(F ∩ [−K, K] × V) + μ̃A

K(F × V). As μ̂0([−K, K] × U) = 1, we have
μ̃K([−K, K] × U) = 1. For f ∈ D∞((−K, K)),∫

E×U
Af dμ̃K =

∫
E×U

Af dμ̃A
K +

∫
E×U

Af dμ̂K = (1 − τ ) · 0 + Rf = Rf

follows, so μ̃K ∈ M∞,K . Note that c(x, u) = c(x, u−(x)) holds μ̃A
K-a.e. in [−K, K] as, by

construction, μ̃A
K(dx, ·) has full mass on {(x, u−(x)), x ∈ [−K, K]}. Therefore,∫

E×U
c dμ̃K =

∫
[−K,K]×U

c dμ̃A
K +

∫
[−K,K]×U

c dμK

≤
∫

[−K,K]×U
sup{c(x, u−(x)) : x ∈ [−K, K]} dμ̃A

K +
∫

[−K,K]×U
c dμK .

But c allows for compactification, proving that∫
[−K,K]×U

sup{c(x, u−(x)) : x ∈ [−K, K]} dμ̃A
K +

∫
[−K,K]×U

c dμK

≤ μ̃A
K([−K, K] × U) · inf{c(x, u) : x ∈ [−K, K]∼, u ∈ U} +

∫
[−K,K]×U

c dμK

≤ (1 − τ ) · inf{c(x, u) : x ∈ [−K, K]∼, u ∈ U} +
∫

[−K,K]×U
c dμK
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≤ μK([−K, K]∼ × U) · inf{c(x, u) : x ∈ [−K, K]∼, u ∈ U} +
∫

[−K,K]×U
c dμK

≤
∫

[−K,K]∼×U
c(x, u) dμK +

∫
[−K,K]×U

c dμK =
∫

E×U
c dμK . �

Using Lemma 4.7, we conclude that we can restrict ourselves to finding ε-optimal solutions
in M∞,K , as shown in the following result.

Proposition 4.2. An ε-optimal solution με
K for M∞,K is ε-optimal for Ṁ∞,K.

Proof. Assume the existence of μK ∈ Ṁ∞,[−K,K] with J(μK) < J(με
K) + ε. By Lemma 4.7,

there is a measure μ̃K ∈ M∞,K with J(μ̃K) ≤ J(μK), contradicting the ε-optimality of με
K . �

By combining Propositions 4.1 and 4.2, we conclude our effort in reducing the initial
problem of finding an ε-optimal solution in M∞ down to finding an ε-optimal solution in
M∞,K .

Proof of Proposition 2.1. According to Proposition 4.2, με
K is ε-optimal in Ṁ∞,K for all

K > 0. By Proposition 4.1, however, there is a K0(δ) such that, for all K ≥ K0(δ), με
K is (2ε +

δ)-optimal in Ṁ∞. �

4.2. Discretizing the constraint space

The analysis needed to prove Proposition 2.2 bears a strong resemblance to that needed
to prove Proposition 4.1. In both cases, we are considering ε-optimal solutions for a nested
structure of sets, M∞ ⊂ Ṁ∞,K , K ∈N, in the former case, and M∞,K ⊂ Mqn,K , n ∈N, in the
latter case. For that reason, we merely present the steps in which the proof differs, and refer to
Section 4.1 for the remaining steps.

Lemma 4.8. Let {μn}n∈N satisfy μn ∈ Mqn,K for all n ∈N. Assume that μn ⇒ μ̂ for some μ̂ ∈
P(E × U) as n → ∞. Then, μ̂ ∈ M∞,K.

Proof. Take f ∈ D∞((−K, K)). By Proposition 1.2, there is a sequence {gk}k∈N with gk ∈
Dqk ((−K, K)) for all k such that gk → f in D∞((−K, K)) as k → ∞. Following Remark 1.11,
we have

∫
E×U

Af dμ̂ = lim
k→∞

∫
E×U

Agk dμ̂ = lim
k→∞ lim

n→∞

∫
E×U

Agk dμn = lim
k→∞ Rgk = Rf . �

Lemma 4.9. Let {μn}n∈N satisfy μn ∈ Mqn,K for all n ∈N. Assume that μn ⇒ μ̂ for some μ̂ ∈
M∞,K as n → ∞. Let μ ∈ M∞,K be another measure, and assume that, for some ε > 0, J(μ̂) >

J(μ) + ε. Then there is an N0 ∈N large enough that, for all n ≥ N0, J(μn) > J(μ) + ε.

Proof. This is an easy consequence of the fact that c is continuous, and hence uniformly
continuous and bounded on the compact interval [−K, K]. �

By Remark 1.10, a sequence {μn}n∈N of measures with μn ∈ Mqn,K for all n ∈N is tight, as
[−K, K] is compact. From here on, the statements of Lemmas 4.4, 4.5, and 4.6 can be proven
for ε-optimal sequences {με

n}n∈N of measures in Mqn,K with few modifications. The same
holds for the final result of Proposition 4.1, which yields the proof of Proposition 2.2.
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4.3. Discretizing the expected occupation measure

The proof for Proposition 2.3 is given by a simplified version of the proofs for [27, Corollary
3.3], where discretized problems with bounded state space are treated. The following result
on the approximation quality of the discretizations introduced in (2.2) and (2.3) is its first
important part. It is equivalent to [27, Proposition 3.2].

Proposition 4.3. For every μ ∈ M(q1,q2),K and each ε > 0, there is an M0(ε) ∈N such that, for
all m ≥ M0, there exists a μ̂m ∈ M(q1,q2,m),K with |J(μ) − J(μ̂m)| < ε.

Proof. The reductions described in Sections 2.1, 2.2, and 2.3 were specifically designed to
obtain a problem structure that is akin to that of the discretized problem with bounded state
space. In particular, we have achieved that M(q1,q2,m),K features a finite number of constraints
and variables, and that both constraint functions and measures have their support contained in

the compact interval [−K, K]. Although we have introduced an altered set
{
h(q1) · s(q2)

k

}2q2−1
k=−3

of constraint functions, contrary to the usage of ‘plain’ B-spline basis functions in [27], these
functions remain twice continuously differentiable. Furthermore, c, b, and σ remain continuous
functions. This allows for the analysis presented in [27, Section 3.2], relying on arguments
of uniform bounds on continuous functions over a compact interval, to be carried out in an
identical manner. Any analysis dealing with the singular behavior of X can be disregarded. �

Continuing from this, we again need to consider a sequence of measures in M(q1,q2,m),K
that converges weakly. To prove the following result, we can again employ the technique of
the proofs of Lemmas 4.1 and 4.8.

Lemma 4.10. Let {μm}m∈N satisfy μm ∈ M(q1,q2,m),K for all m ∈N. Assume that μm ⇒ μ̂ for
some μ̂ ∈P(E × U) as m → ∞. Then μ̂ ∈ M(q1,q2),K.

The final proof of Proposition 2.3 is now identical to that of [27, Corollary 3.3]. The first
step is using Proposition 4.3 and Lemma 4.10 to show that if a sequence of optimal measures
{μ∗

m}m∈N with μ∗
m ∈ M(q1,q2,m),K for all m ∈N converges weakly to a measure μ∗ ∈ M(q1,q2),K ,

then J(μ∗) = J∗
(q1,q2),K . Then, we show that the real-valued sequence {J(μ∗

m)}m∈M converges.
Naturally, any of its subsequences converge to the same limit. As {μ∗

m}m∈N is a tight sequence
of measures, weakly convergent subsequences {μ∗

mj
}j∈N exist, and limj→∞ J(μ∗

mj
) = J∗

(q1,q2),K .

5. Outlook

This paper introduced a discretization scheme for stochastic control problems with
unbounded state space, presented a convergence argument, and demonstrated its performance
on three examples. Research on this topic can be continued in several directions. More atten-
tion has to be given to the assumptions needed for the convergence argument, in particular
Assumption 1.3, where we required the state-space marginal of any solution considered to be
absolutely continuous with respect to Lebesgue measure. Research on problems with bounded
state space [28] has shown that Assumption 1.3 comes as a consequence of Assumption 1.2,
with the latter posing rather soft, albeit technical, restrictions. Such results could possibly be
extended to unbounded state spaces.

The behavior of the approximations to the relaxed control η at the boundaries of the com-
puted state space [−K, K] has to be investigated further, in order to remove the numerical
artifacts. A natural way of pursuing this would be by analyzing the basis functions spanning the
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discrete constraint space. In particular, the function h used to ensure that these basis functions
have compact support, cf. Definition 1.10, could be investigated further.

On top of that, the applicability of the proposed method to additional examples could be
explored. As also pointed out in [27], it would be of great interest to consider the behav-
ior of the proposed method when using higher-order approximations to the density p of μE;
cf. (2.2). Typically, analytic solutions feature piecewise-smooth densities p, which could be
hinting towards the possibility of better performance when using higher-order approximations.

Considering that this paper introduced a generalization to previous research in [27] by
allowing for unbounded state spaces, it would be natural to investigate whether the method
could also be generalized to unbounded control spaces. As a first step, we would have to estab-
lish conditions which guarantee the existence of optimal solutions. As can be deduced from
the form of the optimal solution in Section 3.2, which is a bang-bang control, an optimal solu-
tion does not exist if no costs of control are present. Indeed, these controls always take the
extreme values of the state space, and these extreme values do not exist in the unbounded
case. Contrarily, Section 3.3 indicates that optimal solutions could exist if costs of controls
are present. However, such an optimal solution could grow beyond any boundary, and would
hence need to be approximated by a control that takes values in a bounded set to make them
computationally accessible. Therefore, in a second step, the convergence of these approxima-
tions would have to be analyzed. Crucially, the existing convergence arguments might have to
be adapted to accommodate the fact that the solution space no longer necessarily includes the
optimal solution.
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