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As one of the most promising thin film solar cell materials, CdTe has achieved the current record solar 

cell efficiency of 19.6% [1]. However there is still a considerable gap to its theoretical limit of 32%. 

Defects such as dislocations, grain boundaries (GBs) and interfaces are usually considered to be major 

problems for high efficiency, as they are likely to be carrier recombination centers. However the 

photovoltaic behaviors of different defects are likely to be inhomogeneous, due to their diverse atomic 

configuration and bonding structure. Moreover, the defects may be passivated by chemical doping 

during the post-growth treatments. Particularly, after CdCl2 heat treatment, polycrystalline CdTe cells 

exceed single crystal cells in efficiency, which indicates that the GBs can play a positive role on the 

photovoltaic properties. In order to understand the electrical activity of individual defects, direct 

correlation from atomic and chemical structure to electronic property is critical. 
 
Analytical aberration-corrected scanning transmission electron microscopes (STEM) equipped with 

electron energy loss spectroscopy (EELS) or energy dispersive X-ray (EDX) have been employed to 

resolve both the atomic structure and elemental distribution. Combining with electron-beam-induced 

current (EBIC) and density-functional theory (DFT), a structure-property correlation has been achieved 

on several types of defects. The EBIC map in Fig. 1(a) reveals that after CdCl2 treatment, the efficiency 

of GBs has been significantly enhanced. The STEM Z-contrast image in Fig. 1(b) shows periodic Cd3Te 

dislocation cores along a Σ9 GB. The chemical distribution across the GB has been plotted with EELS 

in Fig. 1(c), showing that Cl has substituted for nearly half of the Te atoms within a confined range at 

the GB. The significant substitution of Cl for Te has been observed on basically all the GBs. DFT 

calculation confirms that the Cl segregation energy profile across the GB matches the narrow Cl EELS 

result. Moreover, it indicates that Cl doping removes the gap states and further dopes the GBs to n-type. 

This GB inversion creates p-n junctions between the grain interiors and the GBs (Fig. 1(d)), thereby 

separating electron-hole carriers into different conduction pathways and improving the efficiency. 
 
Surprisingly, the intra-grain partial dislocation pairs (Fig. 2(a)) require no passivation from post-growth 

treatments. They do not create gap states but instead cause energy band bending (Fig. 2(b)), which assists 

the separation of electron-hole carriers, therefore reducing recombination [2, 3]. At the CdTe/CdS 

interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors (Fig. 

3(a)). Meanwhile, long-range Te and S diffusion has also been detected along the GBs in CdS and CdTe, 

respectively. The Z-contrast image in Fig. 3(b) directly resolves S dopants in Te sites near the interface. A 

structure transformation from zinc-blend CdTe to wurtzite CdS has also been seen. STEM-EBIC indicates 

that the p-n junction is ~10 nm from the interface in CdTe, which is consistent with the S diffusion range 

in CdTe grains. The defects introduced by Cu treatment will also be discussed. [4] 
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Figure 1. (a) EBIC map shows that the efficiency of GBs in 

CdTe cells is higher than grain interiors after CdCl2 

treatment. (b) Z-contrast image shows periodic Cd3Te 

dislocation cores along a Σ9 GB. (c) EELS profiles across the 

Σ9 GB show that nearly a half of the Te atoms have been 

substituted by Cl within ~1.5 nm range at the GB. (d) DFT 

calculation indicates the GBs have been inverted to n-type by 

Cl doping, therefore creating p- n junctions between the grain 

interiors and the GBs. (C. Li et. al. submitted for publication)

Figure 2. (a) STEM Z-contrast image 

resolves single Cd and Te columns in the 

Shockley partial dislocation pairs at the 

ends of an intrinsic stacking fault. (b) DFT 

calculations indicate that the dislocation 

pairs induce band bending along the fault, 

which helps the carrier separation [3]. 

 

 
Figure 3. (a) EELS profiles across a CdTe/CdS 

interface show significant Te-S inter-diffusion 

within ~5 nm at grain interiors. (b) Z-contrast 

image directly resolves S dopants in Te sites. 

Cd-Te/S dumbbells form wurtzite structure near 

the interface. 
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