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ABS-TYPE METHODS FOR SOLVING FULL ROW RANK
LINEAR SYSTEMS USING A NEW RANK TWO UPDATE

K. AMINI, N. MAHDAVI-AMIRI AND M.R. PEYGHAMI

ABS mthods axe direct iteration methods for solving linear systems where the i-th
iterate satisfies the first i equations, and therefore a system of m equations is solved
in at most m ABS steps. In this paper, using a new rank two update of the Abaifian
matrix, we introduce a class of ABS-type methods for solving full row rank linear
equations, where the i-th iterate solves the first 1i equations. So, termination is
achieved in at most[(m + l)/2j steps. We also show how to decrease the dimension
of the Abaffian matrix by choosing appropriate parameters.

1. INTRODUCTION

The ABS methods, introduced by Abaffy, Broyden, and Spedicato [1, 2], are a
general class of algorithms for solving linear and nonlinear algebraic systems. The basic
algorithm works on a system of the form

(1.1) Ax = b,

where A = [au ..., am]T, a{ € Rn, 1 ^ i ^ m, x € R", b € Rm. The basic ABS methods
determine the solution of (1.1) or signify lack of its existence in at most m iterations. In
any iteration, one extra equation, if compatible, is satisfied.

Here we suggest an approach based on ABS methods, which in any iteration, two new
equations (if compatible) are satisfied. This uses a new update for the AbafRan matrix.
On m linearly independent equations, this approach provides a class of algorithms that
stop after at most [(m + l) /2j iterations. We have implemented a version of the new
algorithms along with the Huang, modified Huang and LU decomposition algorithms, and
tested the programs on various problems. Numerical results indicate the competitiveness
of the proposed algorithm.

Section 2 provides an overview of the ABS methods. There we discuss a new rank two
update and present a new algorithm for solving compatible systems. We also prove some
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results about the algorithm in this section. In Section 3, we describe a modified algorithm,
choosing certain parameters to compress the Abaffian appropriately. In Section 4, we
discuss computational and numerical results. The algoirthm proposed in Section 3 has
been implemented and tested on various problems. The results can be compared with
our implementations of the Huang, modified Huang, and LU algorithms.

2. THE ABS METHOD AND THE NEW RANK TWO UPDATE

The basic ABS algorithm starts with an intial vector xo 6 Rn (arbitrary) and a
nonsingular matrix HQ € i?n x n (Spedicato's parameter). Given that Xi is a solution of
the first i equations, the ABS algorithm computes xi+i as the solution of the first i + 1
equations by the folowing steps (see [1, 2] or [4]):

(1) Determine Z{ (Broyden's parameter) so that zfHtai ^ 0 and set

Pi = Hjzi.

(2) Update the solution by

• - o f t
T

a* Pi

where the step size at is given by

(3) Update the Abaffian matrix Hi by

where wt 6 Rn (Abaffy's parameter) is arbitrary, provided that

if 0.

It is easily observed that the ABS methods satify a new equation at each iteration. So,
at most m iterations are needed to determine a solution or signify the lack of it.

We now discuss an approach to satisfy two equations at a time (another approach,
different in its choice of parameters, can be seen in [3]). Here, we first motivate the idea
and then present a new algorithm in the subsequent section. We consider the system
(1.1) and we assume that rank(yl) = m, where m = 22 is even.

REMARK 1. Note that if m is odd, we can consider the augmented system
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that contains the same solution x as (1.1). Alternatively, one can use a rank one update
at the final iteration.

We shall see that if a solution exists, it is found in at most m/2 iterations. Let

A2i = [au...,a2i]
T,

b2i = [bu...,b2i}
T,

and

Tj(x) = ajx-bj, j = l,2,...,m.

Assume that we are the z-th step and Xj satisfies A2tx = b2'. We determine Ht €E i l n x n ,
Zi e Rn and 7< € R so that

(2.1) xi+1 = xt- nHjzi

is a solution of the first 2i + 2 equations of the system (1.1). That is,

(2.2) A2i+2xi+l = b2i+2,

or
r,(z i + i) = 0, j = l , . . . , 2 i + 2.

Thus for j — 2i + 1 and 2i + 2, we must have

i+l(xi - little) - b2i+l = 0,

= 0,

or

i = r2i+2(xi).

Suppose that r2i+i(xi) ^ 0 and r2i+2(xi) ^ 0. Then 7,- must be nonzero and (2.3) is
compatible if and only if we have

Note that there are several ways to satisfy the above relation. We consider the following.
First, we scale the equations 2i + 1 and 2i + 2 by the factors r2i+2(xi) and ^+1(2*),
respectively, and then replace the original corresponding equations. Thus, we let

,„ , I i2i+i = r2i+2(xi)a2iJri, b2i+l = r2i+2{xi)b2i+i,

I o.2i+2 — r2i+i(Xi)a2i+2, 621+2 = r2i+i(Xi)b2i+2.
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It is clear that the new residuals are equal; that is

(2.6) r2i+i{xi) = r2i+2(xi) = r2i+i(xi)r2i+2(xi).

Using (2.6), the relation (2.4) is written as:

(77) r2i+i{xi) = f2i+2{xj)

There are several ways to satisfy (2.7); for example,

(1) choose an appropriate update for Hi so that Hia2i+i = Hia2i+2 ^ 0, or

(2) choose a vector Zi from the space orthogonal to the vector

Hi{a2i+2 -

Here we use the first approach. Thus the matirx Hi must satisfy the following properties:

iUx = 0

(2.8) <
HiCL2i = 0,

Now we let

(2.9) «,-("•

[Oi-Oi-i, I > 1.

Using (2.9), the system (2.8) is written as:

(2.10) HiCj = 0 , j - 1 , . . . , 2i and j -2i + 2.

So, to compute Hi+l from Hi it will be sufficient that the relations (2.10) hold. Since two
new equations are considered in each step, we use a rank two update for the Abaffian
matrix. We proceed inductively. Suppose that the matrix Hi satisfies (2.10). We define

Hi+l =H{ + gidf + eJl,

where gi,di,ei, fc e Rn- We need to have

Hi+lCj = 0, j = 1 , . . . , 2i + 2 and j = 2i + 4,

or equivalently

{Hi + gidf + ei/f)cj = 0, j = 1, . . . , 2i + 2 and j = 2i + 4.
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So we must define gi,di,ei,fi € Rn in such a way that

(2.11) Hicj + {dJcj)gi + {ffci)ei = Q, j = l , . . . , 2 i + 2 and j = 2t + 4.

By defining

(2.12) * = Hjwu fi = HfuJi,

for some Wi,Wi 6 i?n, the conditions (2.11) are satisfied for j ^ 2i and j = 2i + 2, by the
induction hypothesis. Letting j = 2i + 1 and j = 2i + 4 in (2.11), we get

(2.13) {djc2i+i)9i + {ffc2i+i)ei = - H J

We consider the choices

(2.14)

with

(2.15)

which clearly satisfy (2.13). Now, to satisfy (2.15), W{ and uJ* may be defined as described
below by

[fH&i+i = 0, \WjHiC2i+4 = 1.

NOTES.

(1) HiC2i+i = Hi(a2i+i - a2i) = ^ a 2 i + i - Hia2i. Since ^ a 2 i = 0, then H

= Hi<i2i+i- So, in (2.16), H{C2i+\ may be replaced by i/ja2i+i.

(2) It is apparent that the system (2.16) has a solution if and only if the vectors
HiC2i+i — Hia2i+i and H&i+t — Hia2i+4 - Hia2i+3 are linearly independent. By Theorem
2 below, if the a{ are linearly independent then Hia2i+i and ^iC2 i + 4 will also be linearly
independent and (2.16) will have a solution for all i, and hence the H{ and the xt are well
defined for all i.

Therefore, the updating formula for Hi turns out to be

Hi+1 = Hi- Hi

(2.17) =Hi- Hi

where Wi and Wi can be any vectors satisfying (2.16). To complete the induction,
should be chosen so that

= i/o°2i
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or

(2.18) Hoc2 = 0.

Let Ho be an arbitrary nonsingular matrix. We obtain HQ from Ho by using a rank one
update. Let Ho = HQ - uvT, where u, v G /?" are chosen so that (2.18) is satisfied; that
is

H0c2 — (vTc2)u = 0.

This equation is satisfied if we set u — HQC2 and v = H^WQ, for some u>o € Rn which in
turn satisfies the condition

(2.19) v%Hoc2 = l.

It is easily seen that (2.19) can be made to hold with a proper choice of w0, whenever a0

and ai are linearly independent. So, we have

(2.20) H0 = H0- H0c2w%H0,

where w0 is an arbitrary vector satisfying (2.19). Therefore, we proved the following
theorem.

THEOREM 1 . Given m — 11 arbitrary linearly independent vectors a i , . . . , a m

6 Rn and an arbitrary nonsingular matrix Ho 6 -Rnxn, let Ho be generated by (2.20) and
the sequence of matrices Hi,..., i/;_i be generated by (2.17) with Wi and TUi satisfying
(2.16). Then the following properties hold, for i = 1 , . . . , I — 1:

(i) Hiaj = 0, J = 1 2t.

(ii) Hta2i+i = Hia2i+2.

(iii) HiCj = 0, j = l,...,2iandj = 2i + 2.

R E M A R K 2. Before we present the algorithm, we need to explain the definition of 7^
based on the value of the residuals of the two new equations being considered. We saw
that 7i must be nonzero when the corresponding residuals are nonzero. We use the
following strategy for the defintion of 7^. If one of the residual values is nonzero and the
other is zero, we replace the equation corresponding to the zero residual by the sum of
the two equations. Hence, without changing the solution of the original system, the new
equation will have the same nonzero residual value as the other equation. But, if both
residuals are zero, then 7J will be zero and xi+\ will be set to X{, as expected.

Now, we can present the steps of the new algorithm for solving full row rank (and

hence compatible) systems.

A L G O R I T H M 1. (Assume that Amxn has full row rank and m = 21.)

(0) Let x0 6 Rn be an arbitrary vector and choose HQ 6 Rnxn (an arbitrary non-
singular matrix). Set i = 1.
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(1) (a) Compute c*i = ri(i0) and ft = r2{x0).

(b) If (ai = 0 and ft ^ 0) then let

«i = ft, ai = ai + a2, bi =bi + b2.

If (ai ^ 0 and ft = 0) then let

ft = a.i, a2 = ai + a2, 62 — &i + &2-

If aift ^ 0 then let

a2 = ocia2

= fabi, | 62 =

(2) (a) Let c2 — a2 — 01.

(b) Select w0 € i f so that w^H0c2 = 1 and compute

HQ = HQ —

(c) Select ZQ = Rn so that z^Hodi ^ 0, and compute

gift
To =

(3) While {i < m/2) do (steps (4)-(8))

(4) Compute ai+i = r2i+i(xi) and ft+1 = r2i+2(xi).

(5) If (ai+i = 0 and 0i+l ^ 0) then let

ai+l — fii+1, O,2i+\ = O,2i+i + 021+2, &2i+l = ^2i

If (ai+i ^ 0 and ft+1 = 0) then let

ft+l = t*t+l, i2i+2 = fl2x+l + ^2i+2, b2i+2 = 621+

If ai + 1 /0 i + 1 ^ 0 then let

(6) Compute the vector C2i+2 = 2̂1+2

(7) Select Wi-i,Wi-i € R" so that

j_ j H^ 1 a2i_ 1 = 0,

J_iHi-iC2i+2 = 0, I wJ_iHi^ic2i+2 = 1.
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Compute

(8) Select zt € Rn so that zjHia2i+l ^ 0 and compute

_
z{ n

xi+i = Xi -

Set i = i + l.

Endwhile.

(9) S t o p (xi is a solution).

R E M A R K 3 . Note tha t the matices H{ are computed by (2.17) for i = 1 , . . . , / - 1, and

xt = x,_! - -yi-iHf^zt^

is a solution of the system of equations. To compute the general solution of the system,
we need a matrix H with the following properties

Haj = 0, j = l,...,m.

It can easily be verified that the matrix H can be computed by a final rank one update

as:

(2.21) H = Ht = H,.! - Huau-itfiLiHt-i,

where iu;_i is an arbitrary vector satisfying wf_lH[-ia2i-i — 1 (note that, the at being
linearly independent, //j_ia2(-i is a nonzero vector, and hence (2.21) is well defined with
a proper choice of wi_i). Hence the general solution of the system is given by

x = xi - HTs,

where s 6 Rn is arbitrary.

R E M A R K 4. Note that in step (2) of Algorithm 1, the setting of z0 and w0 as the vectors

Hoa,i and c2/(c^//0C2), respectively, are proper.

Now we establish some properties of the matrices Hit generated by Algorithm 1.

THEOREM 2 . Assume that o i , . . . , am are linearly independent vectors in Rn, Let

Ho € Rnxn be an arbitrary nonsingular matrix, Ho be defined as in (2.20), and for

i = l,...,l — 1, the sequence of matrices Hi be generated by (2.17). Then for any

i, 0 ^ i ^ / — 1, and j , 2i + 2 ^ j < m, the vectors HiO,j are nonzero and linearly

independent (or equivalently, Hia2i+i and i/jO;, 2i + 3 ^ j ^ m, are nonzero and linearly

independent).
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PROOF: We proceed by induction. For i = 0, the theorem is true, since if
m
Y^ ajHoa,j = 0 then

m

^aj(H0 - HoC2wlHo)aj = 0,
j=2

or

52otjH0a,j - (5Zai™l>Hoai )HQC2 — 0.
i=2 S=2 '

By taking fij = ajW^Hoaj, for 2 < j < m, we have

j j J2 j ) ( ) = 0,

or

+ (a2 - P)H0a2 + ^ ajHoa, = 0,
J=3

where /9 = ^3 Pj- Now, since o i , . . . , am are linearly independent and Ho is nonsingular,

then i?oaj, up to 1 ^ j < m, are linearly independent. Hence (5 = a 2 = • • • = oim = 0.

Therefore the vectors /foOj, for 2 ^ j- ^ m, are linearly independent.

Now we assume that the theorem is true u p t o f c , 0 ^ f c < i - l , and then we prove

it to be true for A; + 1. From (2.17), we have, for 2k + 4 < j < m,

(2.22) Hk+laj = Hka,j - {wlHkaj)Hkc2k+i - ^nlHkaj)Hkc2k+i.

We need to show that the relation
m

(2.23) ^2 o,-flJn-iOj = 0,
j=2fc+4

implies that ctj = 0, for 2k + 4 ^ j < m. Using (2.22) we can write (2.23) as follows:

J ^ a j jy f ca i - f 5 2 ajwjHkaj j Hkc2k+X - ( 5 2 a>'57* ^*aJ) •ff*c2*+4 = 0-
,7=24+4 \=2Jt+4 ' \=2fc+4 '

m m
By taking /?i = ^2 ^j^^-^fc^ a n d /?2 = Z) tXjwjHkCij, we have

j=2fc+4 j=2*+4
m

/ _ ajHka,j — 0iHk(a2k+i - 02*) — /32ifjt(a2fc+4 — 024+3) = 0.
i=2A+4

Since from Theorem 1 we have Hka2k = 0 and Hka2k+i = Hka2k+2, then

m

/ ^ ctjHkaj — 0iHka2k+2 + P2Hka2k+3 — P2Hka2k+i = 0,
=2fc+4j=2fc+4
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or
m

2^ ajHka,j - P\Hka2k+2 + fhHk<i2k+3 + (o2*+4 - PijHkaik+i = 0.
j=2*+5

Since, by the induction hypothesis, the vectors Hkaj, for 2k + 2 < j ^ m, are linearly
independent, we have 0i — /32 = «2*+4 = <*2*+5 = • • • = o m = 0. Hence, the vectors
Hk+ia,j, for 2k + 4 ^ j ^ m are linearly independent (the statement in the parenthesis
in Theorem 2 is now simply verified by the fact that Hia2i+\ = Hia2i+2). 0

COROLLARY 1 . For all i, i = 0,1,..., (m/2) — 1, if the vectors ai, a 2 , . . . , a2i+2
are linearly independent, then HiO2i+i = Hia2i+2 ^ 0, and there exists Zi € i?n suci that

zTHia2i+1 * 0.

From Note (2), the following corollary is now immediately at hand.

COROLLARY 2 . Ifai, a2,.. •, am are linearly independent, then the system (2.16)
has solution for every i, 0 ^ i ^ I — 2, and both Hi+i and Xi+i are well defined.

The proof of the following lemma is obvious.

LEMMA 1 . The vectors a\,..., am are linearly independent if and only if the vec-

tors c\,..., Cm are linearly independent.

We can now easily prove the following Theorem using Lemma 1.

THEOREM 3 . For the matrices Hi given by (2.17), (2.20) and (2.21), we iave

dim R(Hi) =n-2i~l, 0 ^ i ^ l - l ,

dim R{Hi) = n — m,

dim N(Hi) = m.

An interesting question of concern arises when ^<a2i+i = Hia2i+2 — 0. Theorem 4
below shows this to be equivalent to the vectors 0 1 , . . . , a2i+2 being linearly independent.

THEOREM 4 . Assume 0 1 , . . . , o2j are linearly independent. Assume Ht can be

defined from H^i according to (2.17) (that is (2.16) has a solution for the case of i / j_J.
Then Hia2i+i{— Hia2i+2) = 0, if and only ifai, • • • 1̂ 21+2 are linearly dependent.

PROOF: By Corollary 1, if Hia2i+i — 0 then the vectors ai,...,a2i+2 are linearly
dependent. To prove the converse, for i = 0, let 02 = aai , a ^ l (for a = 1, it is easily
verified that 02 — 0,1, which can not allow the definition of Ho). We know

0 = H0c2 = H0(a2 - ai) = H0(aai - ai) = (a - l)Hoa.i.

This implies that Hoai = HQa2 = 0. For i ^ 1, since 0 1 , . . . , a2j are linearly independent,

then the dependence of a\,..., 021+2 can happen in any one of the following nonexclusive

ways:
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(i) a2i+i of a2i+2 is linearly dependent o n o i , . . . , a 2 i , or

(ii) a2i+i and 02̂ +2 are linearly dependent.

In case (i), let us assume, without loss of generality, that

2i

Then, using the fact that HiCij — 0, j = 1 , . . . , 2i, we have

2t x 2»

In case (ii), let

0,21+2 = cm2i+i, a ^ 1.

(For a = 1, we have a2i+2 = a,2i+\ which implies that C2J+2 = 0 and hence Hi cannot be
defined from ifj_i, contradicting the assumption of the theorem.) Then, using the fact
that HiC2i+2 = 0, we have

0 = HiO,2i+2 - HiCL2i+\ = Hi(aa2i+i) — Hia2i+i — (a —

which shows Hia2i+2 = 0. D

REMARK 5. When i/ia2i+i = 0, it is clear that neither xi+i nor Hi+i can be defined.
In this case, one should identify the cause and propose alternative steps to define x i + 1

and Hi+i (of course one can always make use of the regular rank one ABS steps as
alternatives). We also note thet i/j+i fails to be defined if and only if the system (2.16)
lacks a solution, that is the vectors HiC2i+i = H^i+i and f/jCa+4 = Hia.2i+4 — //ja2i+3
are linearly dependent (the case i/iO2i+i = 0 is now a special case here). A similar
argument, as given in the proof for Theorem 4, shows that this can happen if and only if
a i , . . . , a2i+2, a,2i+3, o,2i+4 are linearly dependent.

So, we have the following result.

THEOREM 5 . Assume ai,...,a2i+2 are linearly independent. The system (2.16)
does not possess a solution if and only if the vectors a.\,..., a2i+4 are linearly dependent.

We emphasise again that if aj, 1 ^ i ^ m, are linearly independent then Theorems

4 and 5 will be irrelevant and the Ht and the x{ are well defined.

Next, we discuss how to economise on the space needed for the Abaffian matrix Hi,

and show the reduction of computation time in operations involving the Abaffian matrix.

3. COMPRESSION OF THE ABAFFIAN

Assume that the vectors ai, a2,. . •, am are linearly independent. According to Theo-
rem 3, we have dim N(Hi) = 2i + 1 and hence 2i + 1 rows of the matrix Ht are dependent
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on other rows of H{. Knowing this, we can define the Hi in such a way that exactly 2 i+1
rows of Hi are zero. Assume that the rows / i , . . . , / 2 i + i of Hi are zero. From (2.17),
it is clear that the same rows A , . . . , hi+i of Hi+1 are also zero. Now, we choose the
parameters Wi and uJ* so that two new rows of i/j+i will also become zero.

We note that the parameters Wi,Wi e I""2*"1 satisfy (2.16). Denoting e, = HiCj,

we then can write (2.16) as follows:

^ wfe2i+i - 0,

Now, letting

{ wf e2i+i = 0,

wfe2i+i = 1.

U = W{ = (Ui, . . . , W n _ 2 i - i ) T V = W{ = (Vi, . . . , U n _ 2 i - i ) T ,

e = e2j+i = (e i , . . . ,en_2i_i)r , e = e2i+i - {ex,..., en_2i_i)T,

we can write (2.17) as

Hi+1 = Hi- (HiC2i+1wf - HiC2i+4wf)Hi

= Hi- DHU

where
D = H&i+iwJ - HiC2i+iwT = e2i+1wf + e2i+iwj = (dy),

and

(3.2) dii = ejUi-¥eiVj.

S o , w e w o u l d l i k e t o h a v e i n d i c e s r a n d s s u c h t h a t r , s ^ I \ , . . . , I 2 i + i , r ^ s , a n d

( 3 . 3 )
[ d 0 forj^r, [dsj = 0, for jf^ s.

Let Uj = Vj — 0 for j ± r, s. Then using (3.1), we have

uTeT + uses = 1, I vrer + v,e, - 0,

uTeT + u,e3 = 0, | vrer + vae, = 1.

On the other hand, using (3.2), the system (3.3) is written as:

eTuT + eTvr = 1, J e,Uj + e,Vj = 0, for j £ s,

erUj + erVj = 0, for j / r, I c^ti, + eav5 = 1.
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Now, since Uj = Vj — 0, for j ^ r, s, (3.5) can be written as:

{ (erur + eTvT = 1, I e,ur + esvr - 0,

< _
eru3 + ervs = 0, I esus + eavs = 1,

It can be shown that the systems (3.4) and (3.6) are equivalent. So, we find r and s so
that the two systems (3.4) and (3.6) will have a solution. If we have
(3.7) eres - erea ^ 0,

then a unique solution exists for (3.4) and (3.6). One choice for r and s is:

\eres -eres\ = M = max.{\eiej - e ;e , | : i, j £ {1,2,... ,n}\{/ i , . . . ,hi+i}}•

Therefore, we have

and

GK(t)-
It is clear that the solutions (3.8) and (3.9) satisfy (3.4) and (3.6). It now remains

to show that indices r and s satisfying (3.7) exist. If such indices do not exist, then
it is easily deduced that the vectors e^i+x = HiC^i+i — Hia<n+\ — H{a,2i+2 and e2i+4 =
HiC2i+4 — Hi<i2i+4 - H^ns are linearly dependent. This, however, implies that the
vectors Hta2i+2, HiO,2i+z and Hia2i+4 are linearly dependent, contradicting Theorem 2.

The definitions of W{ and uJj make two new rows of Hi+\ the zero vector. Hence,
while updating Hi, we can omit these rows. So, we find r and s as above and set
Hi+i — Pr>3(Hi+i), where Pr<s is an operator denoting the deletion of rows r and s.

On the other hand, since dim(i/o) = n—l, we can delete the zero row of Hg as follows.
Since HQ is nonsingular and a,i,a,2 are linearly independent, then C2 — a.2 — ai ^ 0 and
hence e = Hoc2 •£ 0. So, an index j0 exists such that ej0 ^ 0. We define the vector
w0 € FT as:

| e i 0 | = m a x N ,

(3.10)

Now, this definition of w0 satisfies (2.19) and makes the row j0 of Ho in (2.20) the zero
vector. So, we can delete this row from Ho by an operator Pj0.

https://doi.org/10.1017/S0004972700035784 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035784


30 K. Amini, N. Mahdavi-Amiri and M.R. Peyghami [14]

From the above discussion we provide the following modified algorithm.

ALGORITHM 2. (Assume that Amxn has full row rank and m — 21.)

(0) Let x0 € Rn be arbitrary and choose Ho € Rnxn (an arbitrary nonsingular

matrix). Set i = 1.

(1) (a) Compute c*i — ri(x0) and ft = r2(x0).

(b) If («i = 0 and ft ^ 0) then let

ai = ft, oj = ai + a2, &i =61+62.

If (ai ^ 0 and ft = 0) then let

ft = Oti, a2 = Oi + (22) 62 = 61 + 62.

0 t h e n let

r

Ol = ftfll, J «2 = "102,

6l = ft6i

(2) (a) Let c<i — a2 — a\.

(b) Compute e = Hoc2 and choose the index j0 so that

\ i o \ \

(c) Define w0 € R" as (3.10).

(d) Compute d = HQC2, and

(PJ0 is an operator deleting the jo-th row of a matrix.)

(e) Select z0 E i?""1 so that zjHoai ^ 0, and compute

7 0 "

Xi=X0

(3) While (i < m/2) do (steps (4)-(9))

(4) Let ai+i = r2i+i(z,) and /3i + 1 =

(5) If (ai+i = 0 and pi+1 £ 0) then let

If (ai+1 ^ 0 and ft+i = 0) then let

A+l = Q«+li a2i+2 =
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If a,+i/?i+1 7̂  0 then let

O2i+2 = ai-\
k.

(6) Compute c2*+2 = a2i+2 — a2i+i,

e — Hi-ia2i-\,

(7) (a) Choose r and s so that

M = max| |e" ie J -~e^j\ • i, j G { 1 , . . . , n

(b) Define Wj_i and wt-i 6 i ? n ~ 2 l + 1 as below:

•Wi-l = ("li • • • i Un-2t+l) T , Wi

where,

= \eTes - e r e , |

'8) Compute

Ml

" M '

i

i

i

= r,

M'
0,

r,

s,

(PTiS is an operator deleting rows r and s of a matrix.)
(9) Select z{ e Rn-2i-x so that zjHia2i+i ^ 0 and compute

7i =

Set i = i + 1.
Endwhile.

(10) Stop (xi is a solution).

REMARK 6. According to step (7), we have

Wi~1 i - 1 "" M * ~ M r

- v hli-1] 4-
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Step
4

5

6

7

8
9

Number of multiplications
2n

2n + 2
2n{n - 2i + 1)

(n-2i+l)(n-2i)
4n + 2n(n — 2z — 1)

l + n + n(n-2i- 1)

Table 1: Numbers of multiplications required for steps (4)-(9) of Algorithm 2.

where h*~ is the j-th. row of Hi-\. Hence we can compute the matrix Hi from Hi-i, as
follows:

REMARK 7. To reduce the computation time in step (9), one can avoid the division by
choosing zt € Rn~2i~l so that zfHia2i+i = 1.

4. COMPUTATIONAL AND NUMERICAL RESULTS

Assume that Amxn(m = 21) is a full row rank matrix. We can compute the number of
multiplications as follows. The major work is performed in steps (4)-(9) in each iteration.
Notice that we need O(n2) multiplications only for the steps (1) and (2) of Algorithm 2.
For iteration i, the number of multiplications required for steps (4)-(9) are summarised
in Table 1 (the number of multiplications for steps (8) and (9) were considered using
Remarks 6 and 7).

Hence, the total number of multiplications for the I iteration is:

N = n - 2i - 1) + (n - 2i + l)(3n - 2i) + 9n + 3) + O(n2)

i - i

6n2 - 14m + 4i2) + O(n2) + O(l2) + O{nl)

= 6n2(Z - 1) - 7nl(l - 1) + \(l - 1)1(21 - 1) + O(nl) + O(l2) + 0{n2).

Since I = m/2, then the total number of multiplications for the case Amxn is:

3mn2 m2n + -m3 + 0{nm) + O(m2) + O(n2).
4 6

We note that the algorithm of Huang, when implemented with care, requires
(3/2)mn2 + O(mn) multiplications. Comparing this with our result we see that the
new class of algorithms requires less work than the Huang's method when m gets close
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to n. In fact, for square systems (m = n), the leading terms for Algorithm 2 amount to
(17/12)n3 as opposed to (3/2)n3 for the Huang's method. Of course, when m and n are
not too large, the lower order terms of the computation time will also affect the efficiency.

We should point out that step 7(a) of Algorithm 2 can be alternatively performed
more efficiently. The indices r and s need not to be chosen as the maximal row indices
specified by M; instead, we may choose r and s as row indices of two independent rows
in (ee). This can easily be done by a number of multiplications at most equal to

i-i

(n - 2») = O(nm) + O(m2),

and the total cost is hence reduced to:

^mn2 - ^m2n + O(nm) + O(m2) + 0{n2).

In this case, a comparison of the leading terms of Algorithm 2 and the Huang's algorithm
shows that Algorithm 2 needs less work when m > (4/5)n (for m = n, the leading term
for Algorithm 2 turns out to be (15/12)n3 in contrast to (3/2)n3 for the Huang's method).

Algorithm 2 documented in the previous section along with the Huang, modified
Huang, implicit LX and LU algorithms were coded in FORTRAN and tested on various
problems. The preliminary numerical results show the efficiency and reliability of Algo-
rithm 2 when m gets close to n. In solving n by n nonsingular systems, we have seen that,
while the computation time required for Algorithm 2 is less than the ones for the Huang
[2, 8], modified Huang [2, 5, 6], implicit LX ([2, 7]) and LU algorithms, Algorithm 2
also gives generally more accurate solutions, especially on ill-conditioned problems.

REFERENCES

[1] J. Abaffy, C.G. Broyden and E. Spedicato, 'A class of direct methods for linear systems',
Numer. Math. 45 (1984), 361-376.

[2] J. Abaffy and E. Spedicato, ABS projection algorithms, Mathematical techniques for
linear and nonlinear equations (Ellis Horwood, Chichester, 1989).

[3] M. Adib, N. Mahdavi-Amiri and E. Spedicato, ABS type methods for solving m linear
equations in mji steps, Report DMSIA 8/2000 (University of Bergamo, Bergamo, Italy,
2000), pp. 12.

[4] K. Amini and N. Mahdavi-Amiri, 'Solving rank one perturbed linear Diophantine systems
by the ABS methods', Optim. Methods Softw. (submitted).

[5] E. Spedicato, E. Bodon, A. Del Popolo and N. Mahdavi-Amiri, 'ABS methods and AB-
SPACK for linear systems and optimization: A review', 4OR 1 (2003), 51-66.

[6] E. Spedicato, E. Bodon, A. Del Popolo and Z. Xia, 'ABS algorithms for linear systems
and optimization: A review and a bibliography', Ricerca Operativa 29 (2000), 39-88.

[7] E. Spedicato, Z. Xia and L. Zhang, 'The implicit LX method of the ABS class', Optim.
Methods Softw. 8 (1997), 99-110.

https://doi.org/10.1017/S0004972700035784 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035784


34 K. Amini, N. Mahdavi-Amiri and M.R. Peyghami [18]

[8] E. Spedicato and M. Zhu, 'A generalization of the implicit LU algorithm to an arbitrary
initial matrix', Numer. Algorithms 20 (1999), 343-351.

Department of Mathematical Sciences
Sharif Univeristy of Technology
Tehran
Iran
e-mail: Amini@mehr.sharif.edu

Nezamm@sina.sharif.edu
Peyghami@mehr.sharif.edu

https://doi.org/10.1017/S0004972700035784 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035784

