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This paper is concerned with a nonlocal reaction–diffusion system with double free
boundaries and two time delays. The free boundary problem describes the evolution
of faecally–orally transmitted diseases. We first show the well-posedness of global
solution, and then establish the monotonicity and asymptotic property of basic
reproduction number for the epidemic model without delays, which is defined by
spectral radius of the next infection operator. By introducing the generalized
principal eigenvalue defined in general domain, we obtain an upper bound of the
limit value of basic reproduction number. We discuss the spreading and vanishing
phenomena in terms of the basic production number. By employing the perturbed
approximation method and monotone iteration method, we establish the existence,
uniqueness and monotonicity of solution to semi-wave problem. When spreading
occurs, we determine the asymptotic spreading speeds of free boundaries by
constructing suitable upper and lower solutions from the semi-wave solutions.
Moreover, spreading speeds for partially degenerate diffusion case are provided in a
similar way.
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1. Introduction

In this paper, to study the evolution of faecally–orally transmitted diseases, such
as hand, foot and mouth diseases, cholera and so on, we consider the following
nonlocal reaction–diffusion system with double free boundaries and two delays:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx − a1u+ h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)
,

t > 0, s1(t) < x < s2(t),

vt = d2vxx − a2v + g

(∫ +∞
−∞ J2(x− y)u(t− τ2, y)dy

)
,

t > 0, s1(t) < x < s2(t),
u(t, x) = v(t, x) = 0, t > 0, x � s1(t) or x � s2(t),
s′1(t) = −μ[ux(t, s1(t)) + ρvx(t, s1(t))], t > 0,
s′2(t) = −μ[ux(t, s2(t)) + ρvx(t, s2(t))], t > 0,
s1(0) = −s0, s2(0) = s0,

u(θ, x) = u0(θ, x), − τ2 � θ � 0, s1(θ) � x � s2(θ),
v(θ, x) = v0(θ, x), − τ1 � θ � 0, s1(θ) � x � s2(θ),

(1.1)

where u(t, x) and v(t, x) represent the density of bacteria in the environment and
infective human population, respectively; d1 and d2 are the diffusion coefficients; a1

and a2 are the natural death rate of the bacteria and the fatality rate of the infective
human population, respectively; the nonlocal term h(

∫ +∞
−∞ J1(x− y)v(t− τ1, y)dy)

is the contribution of the infective human population in a neighbourhood of x to
the density of bacteria, g(

∫ +∞
−∞ J2(x− y)u(t− τ2, y)dy) gives the ‘force of infection’

on human due to the concentration of bacteria, J1 and J2 are transfer kernels, τ1
and τ2 describe the delays-in-time of positive feedback interaction between the
bacteria and infective human; (s1(t), s2(t)) is the infected area at time t, and its
boundary fronts s1(t) and s2(t), depending on time t, are called free boundaries.
We assume that the expanding rate of the infected area is proportional to a linear
combination of the spatial gradients of bacteria and infective human population at
the fronts, i.e., s1(t) and s2(t) satisfy the Stefan conditions. All the parameters are
positive constants. Since the infected area may vary over time during the evolution
of faecally–orally transmitted diseases, the fixed boundary problem is not suitable
to be applied to understand how the bacteria spread spatially to larger area from
the initial infected area, which motivates us to consider the free boundary problem
(1.1).

The epidemic model in problem (1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ut = d1uxx − a1u+ h

(∫ +∞
−∞ J1(x− y)v(t− τ1, y)dy

)
,

vt = d2vxx − a2v + g

(∫ +∞
−∞ J2(x− y)u(t− τ2, y)dy

) (1.2)
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A delayed nonlocal epidemic model with free boundaries 3

was studied in [38]. The authors investigated the global attractivity of the equilibria,
the spreading speed of a general system without quasi-monotone conditions, and
travelling wave solutions for (1.2) in whole space. System (1.2) is a generalization
of the epidemic models proposed by Capasso-Maddalena [8, 9] (without delay),
Thieme-Zhao [27] (with a time delay) and Wu-Hsu [37] (with two time delays).
A basic feature in these models is the positive feedback interaction between the
infective human and the bacteria in the environment.

Some simplified forms of (1.1) without time delays, including the partially degen-
erate diffusion case (d2 = 0) [1, 19, 40] and non-degenerate diffusion case (d2 > 0)
[30], have been recently studied. Moreover, the corresponding nonlocal diffusion
models were considered in [17, 31, 32, 41]. The authors established the spread-
ing–vanishing dichotomy, discussed the influence of different parameters on the
spreading and vanishing, and determined the asymptotic spreading speeds of the
free boundaries. These results are extensions of the work of Du and Lin [15], in
which they proposed a free boundary problem for homogeneous logistic equation
to model the species invasion. Except the above-mentioned works, the results in
[15] have also been extended to other population models and epidemic models, for
example, time-periodic case [13, 28, 29], nonlocal case [6, 7, 14, 18] and general
nonlinearities case [16].

We mention in particular that, based on [15], free boundary problems for time-
delayed biological models have also been studied in very recent years, but still
quite few. To model the biological invasion of an age-structured species, Sun and
Fang [24] first derived a local free boundary problem for Fisher-KPP equation
with time delay. Tang et al. [25] subsequently extended some results of [24] to a
two-species weak competition model with time delays. By considering the diffusion
rate of the immature population, Du et al. [12] further derived a nonlocal free
boundary problem with time delay. For the epidemic model (1.2) with J1 = J2 = δ
(Dirac delta function), the corresponding free boundary problems with a time delay
(τ1 = d2 = 0, τ2 > 0) and two time delays (τ1, τ2, d2 > 0) were also considered in [10,
11], respectively.

The purpose of this paper is to establish the long-time dynamical behaviours
of (1.1), and determine the asymptotic spreading speeds when spreading happens.
Throughout this paper, we define

[a, b] × [s1, s2] :=

{
(t, x) : t ∈ [a, b], x ∈ [s1(t), s2(t)]

}
.

The sets (a, b] × [s1, s2], (a, b) × (s1, s2), etc., are defined similarly. We always
assume that the initial functions in (1.1) satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0(θ, x) ∈ C1,2([−τ2, 0] × [s1, s2]), v0(θ, x) ∈ C1,2([−τ1, 0] × [s1, s2]),

u0(θ, x)

{
> 0 for θ ∈ [−τ2, 0], x ∈ (s1(θ), s2(θ)),
≡ 0 for θ ∈ [−τ2, 0], x �∈ (s1(θ), s2(θ)),

v0(θ, x)

{
> 0 for θ ∈ [−τ1, 0], x ∈ (s1(θ), s2(θ)),
≡ 0 for θ ∈ [−τ1, 0], x �∈ (s1(θ), s2(θ)),

(1.3)
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4 Q. Chen, S. Tang, Z. Teng and F. Wang

as well as the compatible condition

[s1(θ), s2(θ)] ⊂ [−s0, s0] for θ ∈ [−max{τ1, τ2}, 0]. (1.4)

The kernel functions Ji(·) (i = 1, 2) and nonlinearities g(·), h(·) satisfy the following
assumptions:

(J): Ji ∈ C(R), Ji(0) > 0, Ji(−x) = Ji(x) � 0 for x ∈ R,
∫ +∞
−∞ Ji(y)dy = 1, and∫ +∞

−∞ Ji(y)e−λydy < +∞ for any λ > 0;
(H): h ∈ C2([0, +∞)), g ∈ (C2 ∩ L∞)([0, +∞)), h(0) = g(0) = 0, and h′(z),

g′(z) > 0 for any z ∈ [0, +∞), h′′(z) � 0, g′′(z) < 0 for all z > 0.

A typical example is Ji(x) = 1√
4π�

e−
x2
4� , h(x) = ax and g(x) = px

1+qx with some
�, a, p, q > 0.

For (1.1), the nonlocal reaction terms and time delays cause several difficul-
ties which require different treatment from earlier works. Firstly, for our nonlocal
epidemic model without delays, the basic reproduction number has no explicit
expression as in [22], and its monotonicity and asymptotic property with respect
to the domain are not easy to obtain. We define the basic reproduction number
by spectral radius of the next infection operator, and pay much effort to establish
its monotonicity and asymptotic property, especially provide an upper bound of
the limit value by introducing the generalized principal eigenvalue defined in gen-
eral domain. Secondly, to overcome the effects of nonlocal terms on spreading and
vanishing, we need to construct the upper and lower solutions from the principal
eigenfunctions of perturbed nonlocal eigenvalue problems, instead of the unper-
turbed ones as in [11, 30]. Thirdly, the delayed nonlocal semi-wave problem we
considered is different from the previous works. It is difficult to get the critical
value c∗τ of speed c for semi-wave by discussing the distribution of real roots of
transcendental equation as in [10, 11, 24]. Motivated by the works [14, 17] for
nonlocal diffusion models, we first study the corresponding perturbed semi-wave
problem, and apply the iteration monotone method to cope with the existence and
monotonicity of perturbed semi-wave solution. Then we build a dichotomy between
monotone travelling wave and monotone semi-wave, which ensures that the critical
values of their speeds are equal. Finally, we determine the spreading speeds for par-
tially degenerate diffusion case without delays, which was considered in [19]. The
upper bounds of spreading speeds were provided in [19], but their precise values
are still unknown due to the effect of nonlocal term. We give a complete answer to
the problem in this paper.

Let us now describe the results of this paper more precisely.
For the following epidemic model without delays⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φt = d1φxx − a1φ+ h′(0)
∫ l

−l
J1(x− y)ϕ(t, y)dy, t > 0, x ∈ (−l, l),

ϕt = d2ϕxx − a2ϕ+ g′(0)
∫ l

−l
J2(x− y)φ(t, y)dy, t > 0, x ∈ (−l, l),

(φ(t,±l), ϕ(t,±l)) = (0, 0), t > 0,
(φ(0, x), ϕ(0, x)) = (φ0(x), ϕ0(x)), x ∈ [−l, l],

(1.5)

we define the basic reproduction number Rl
0 by spectral radius of the next infection

operator.
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Theorem 1.1 Basic reproduction number. (i) Rl
0 − 1 has the same sign as λ1,

where λ1 is the principle eigenvalue of the following eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩
d1φxx − a1φ+ h′(0)

∫ l

−l
J1(x− y)ϕ(y)dy = λφ, x ∈ (−l, l),

d2ϕxx − a2ϕ+ g′(0)
∫ l

−l
J2(x− y)φ(y)dy = λϕ, x ∈ (−l, l),

(φ(±l), ϕ(±l)) = (0, 0).

(1.6)

(ii) Rl
0 = 1

μl0
, where μl

0 is the unique positive principle eigenvalue of the following
eigenvalue problem⎧⎪⎪⎨

⎪⎪⎩
−d1φxx + a1φ = μh′(0)

∫ l

−l
J1(x− y)ϕ(y)dy, x ∈ (−l, l),

−d2ϕxx + a2ϕ = μg′(0)
∫ l

−l
J2(x− y)φ(y)dy, x ∈ (−l, l),

(φ(±l), ϕ(±l)) = (0, 0)

(1.7)

with a positive eigenfunction Φl
μ0

(x) = (φl
μ0

(x), ϕl
μ0

(x)).
(iii) Rl

0 is increasing in l > 0, and

Rl
0 → R∗ � R0 :=

√
h′(0)g′(0)
a1a2

as l → +∞, where R0 is the basic reproduction number of the corresponding
ordinary differential equations.

Denote si,∞ = limt→+∞ si(t) for i = 1, 2. We call that the bacteria
are spreading if s2,∞ − s1,∞ = +∞ and lim supt→+∞(‖u(t, ·)‖C([s1(t),s2(t)]) +
‖v(t, ·)‖C([s1(t),s2(t)])) > 0, and the bacteria are vanishing if s2,∞ − s1,∞ < +∞ and
limt→+∞(‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0. In terms of the basic
reproduction number, we can discuss the spreading and vanishing phenomena.

Theorem 1.2 Spreading and vanishing. (i) If 0 < R0 � 1, then the solution of (1.1)
satisfies limt→+∞(‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0.

(ii) Assume that R∗ > 1. Then there exists μ∗ ∈ [0, +∞) such that s2,∞ − s1,∞ =
+∞ for μ > μ∗, and s2,∞ − s1,∞ < +∞ for 0 < μ � μ∗.

Assume that R∗ > 1, we consider the delayed nonlocal semi-wave problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − a1φ(ξ) + h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ > 0,

cϕ′(ξ) = d2ϕ
′′(ξ) − a2ϕ(ξ) + g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ > 0,

(φ(ξ), ϕ(ξ)) = (0, 0), ξ � 0,
(φ(+∞), ϕ(+∞)) = (u∗, v∗),

(1.8)

where (u∗, v∗) is the unique positive equilibrium of the equations, which is guar-
anteed by the condition R0 � R∗ > 1. By employing the perturbed approximation
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method and monotone iteration method, we can establish the (non)existence of
semi-wave solution to (1.8). The critical value of speed c for semi-wave is c∗τ .

Theorem 1.3 Semi-wave solution. The semi-wave problem (1.8) admits an increas-
ing solution for 0 < c < c∗τ , but has no increasing solution for c � c∗τ .

For any fixed μ, ρ > 0, it is shown that there exists a unique cτ = cμ,ρ
τ ∈ (0, c∗τ )

such that μ[(φcτ
τ )′+(0) + ρ(ϕcτ

τ )′+(0)] = cτ , where (φcτ
τ , ϕ

cτ
τ ) is the semi-wave solu-

tion of (1.8) with c = cτ . By constructing suitable upper and lower solutions from
the semi-wave, we can determine the asymptotic spreading speeds of free boundaries
when spreading happens.

Theorem 1.4 Spreading speed. Assume that R∗ > 1. If spreading happens to (1.1),
then − limt→+∞

s1(t)
t = limt→+∞

s2(t)
t = cτ .

In a similar way, we can provide the spreading speeds for partially degenerate
diffusion case in [19]. More details are provided in § 6.

The rest of this paper is organized as follows. In § 2, we first establish the well-
posedness of the solutions to (1.1) and two comparison principles, and then give the
proof of theorem 1.1 related to the basic reproduction number. In § 3, we discuss the
spreading and vanishing. The existence and monotonicity of solutions to a delayed
nonlocal semi-wave problem are investigated in § 4. The spreading speeds of free
boundaries in (1.1) and partially degenerate diffusion case are determined in §5
and 6, respectively. The results of generalized principal eigenvalue are presented in
Appendix.

2. Preliminaries

In this section, we first exhibit the well-posedness and comparison principles for
the free boundary problem (1.1), and then discuss the basic reproduction number
of (1.5).

2.1. Well-posedness

Theorem 2.1. (i) For any γ ∈ (0, 1), there exists a T > 0 such that problem
(1.1) with the initial date (u0(θ, x), v0(θ, x); s1(θ), s2(θ)) satisfying (1.3) and (1.4),
admits a unique solution (u(t, x), v(t, x); s1(t), s2(t)) with u, v ∈ C

1+γ
2 , 1+γ(DT ),

s1, s2 ∈ C1+ γ
2 ([0, T ]), where DT = [0, T ] × [s1, s2].

(ii) For the local solution (u, v; s1, s2) obtained in (i), there exist positive con-
stants M1,M2 and M3 independent of T , such that 0 < u(t, x) � M1, 0 < v(t, x) �
M2 and 0 < −s′1(t), s′2(t) � M3 for any 0 < t � T and s1(t) < x < s2(t).

(iii) The solution (u, v; s1, s2) of (1.1) exists and is unique for all t ∈ (0, +∞).

Proof. We only prove that u(t, x) � M1 and v(t, x) � M2 in (ii), since the remain-
ing part can be obtained by similar arguments as in the proof of Theorems 2.4–2.5
in [12] and Theorem 2.1 in [30].

For any z > 0, by Taylor’s formula and the concavity of h, we have h(z) = h(z) −
h(0) = h′(0)z + 1

2h
′′(ξ)z2 � h′(0)z for some ξ ∈ (0, z), which implies h(z)

z � h′(0).
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Since g is bounded, we can choose Mi (i = 1, 2) sufficiently large such that

M2 � ‖g‖L∞

a2
, M1 � h′(0)

M2

a1
.

It follows that g(M1)
M2

� ‖g‖L∞
M2

� a2,
h(M2)

M1
= h(M2)

M2
· M2

M1
� h′(0)M2

M1
� a1. We may

assume that

u0(θ, x) � M1 for (θ, x) ∈ [−τ2, 0] × [−s0, s0],
v0(θ, x) � M2 for (θ, x) ∈ [−τ1, 0] × [−s0, s0].

Define (U(t, x), V (t, x)) := e−kt(M1 − u(t, x), M2 − v(t, x)), where k > 0 is a
constant to be determined. Then, for t > 0 and s1(t) < x < s2(t), (U, V ) satisfies

Ut = d1Uxx − (a1 + k)U + e−kt

[
a1M1 − h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)]

= d1Uxx − (a1 + k)U + e−kt(a1M1 − h(M2))

+ e−kτ1h′(ξ)
∫ +∞

−∞
J1(x− y)V (t− τ1, y)dy

� d1Uxx − (a1 + k)U + e−kτ1h′(ξ)
∫ +∞

−∞
J1(x− y)V (t− τ1, y)dy,

Vt = d2Vxx − (a2 + k)V + e−kt

[
a2M2 − g

(∫ +∞

−∞
J2(x− y)u(t− τ2, y)dy

)]

= d2Vxx − (a2 + k)V + e−kt(a2M2 − g(M1))

+ e−kτ2g′(η)
∫ +∞

−∞
J2(x− y)U(t− τ2, y)dy

� d2Vxx − (a2 + k)V + e−kτ2g′(η)
∫ +∞

−∞
J2(x− y)U(t− τ2, y)dy, (2.1)

where ξ lies between M2 and
∫ +∞
−∞ J1(x− y)v(t− τ1, y)dy, η lies between M1 and∫ +∞

−∞ J2(x− y)u(t− τ2, y)dy.
We claim that U(t, x), V (t, x) � 0 in (0, +∞) × (s1, s2). Assume by contraction

that there exist some T0 > 0 and (t0, x0) ∈ (0, T0] × (s1, s2) such that

min{U(t0, x0), V (t0, x0)} = min
(t,x)∈[0,T0]×[s1,s2]

min{U(t, x), V (t, x)} < 0.

If U(t0, x0) = min{U(t0, x0), V (t0, x0)} < 0, then Ut(t0, x0) � 0 and Uxx(t0, x0) �
0. On the other hand, if t0 � τ1, then V (t0 − τ1, x) � 0 > U(t0, x0) for any x ∈ R; if
t0 > τ1, then V (t0 − τ1, x) � U(t0, x0) for x ∈ [s1(t0 − τ1), s2(t0 − τ1)] and V (t0 −
τ1, x) � 0 > U(t0, x0) for x ∈ R \ [s1(t0 − τ1), s2(t0 − τ1)]. Thus, V (t0 − τ1, x) �
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U(t0, x0) holds for all x ∈ R. It follows that

− (a1 + k)U(t0, x0) + e−kτ1h′(ξ)
∫ +∞

−∞
J1(x0 − y)V (t0 − τ1, y)dy

� −(a1 + k)U(t0, x0) + e−kτ1h′(ξ)
∫ +∞

−∞
J1(x0 − y)U(t0, x0)dy

= (−a1 − k + e−kτ1h′(ξ))U(t0, x0) � (−a1 − k + h′(ξ))U(t0, x0).

Choose

k = max

{
‖h′‖L∞([0,max{M2,K2}]), ‖g′‖L∞([0,max{M1,K1}])

}

with K1 = ‖u‖L∞([−τ2, T0−τ2]×[s1, s2]) and K2 = ‖v‖L∞([−τ1, T0−τ1]×[s1, s2]). Thus,

−(a1 + k)U(t0, x0) + e−kτ1h′(ξ)
∫ +∞

−∞
J1(x0 − y)V (t0 − τ1, y)dy > 0,

which contradicts with the first equation in (2.1). If V (t0, x0) = min{U(t0, x0),
V (t0, x0)} < 0, we can prove the claim in a similar way. This completes the proof.

�

We introduce two comparison principles for the free boundary problem (1.1),
which can be proved similarly as the proof of Lemma 2.5 in [1].

Lemma 2.2. Let T ∈ (0, +∞), s̄1, s̄2 ∈ C([−max{τ1, τ2}, T ]) ∩ C1((0, T ]), ū0

(θ, x) ∈ C1,2([−τ2, 0] × [s̄1, s̄2]), v̄0(θ, x) ∈ C1,2([−τ1, 0] × [s̄1, s̄2]), ū(t, x), v̄(t, x)
∈ C1,2((0, T ] × [s̄1, s̄2]), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt � d1ūxx − a1ū+ h

(∫ +∞
−∞ J1(x− y)v̄(t− τ1, y)dy

)
,

0 < t � T, s̄1(t) < x < s̄2(t),

v̄t � d2v̄xx − a2v̄ + g

(∫ +∞
−∞ J2(x− y)ū(t− τ2, y)dy

)
,

0 < t � T, s̄1(t) < x < s̄2(t),
ū(t, x) = v̄(t, x) = 0, 0 < t � T, x � s̄1(t) or x � s̄2(t),
s̄′1(t) � −μ[ūx(t, s̄1(t)) + ρv̄x(t, s̄1(t))], 0 < t � T,
s̄′2(t) � −μ[ūx(t, s̄2(t)) + ρv̄x(t, s̄2(t))], 0 < t � T,
ū(θ, x) = ū0(θ, x), − τ2 � θ � 0, s̄1(θ) � x � s̄2(θ),
v̄(θ, x) = v̄0(θ, x), − τ1 � θ � 0, s̄1(θ) � x � s̄2(θ).

If (u, v; s1, s2) is a solution of (1.1) with [s1(θ), s2(θ)] ⊂ [s̄1(θ), s̄2(θ)] for
θ ∈ [−max{τ1, τ2}, 0], u0(θ, x) � ū0(θ, x) for (θ, x) ∈ [−τ2, 0] × [s1, s2] and
v0(θ, x) � v̄0(θ, x) for (θ, x) ∈ [−τ1, 0] × [s1, s2], then [s1(t), s2(t)] ⊂ [s̄1(t), s̄2(t)]
and (u(t, x), v(t, x)) � (ū(t, x), v̄(t, x)) for t ∈ (0, T ], x ∈ (s1(t), s2(t)).

Lemma 2.3. Let T ∈ (0, +∞), s̄2 ∈ C([−max{τ1, τ2}, T ]) ∩ C1((0, T ]), ū0(θ, x) ∈
C([−τ2, 0] × (−∞, s̄2]) ∩ C1,2([−τ2, 0]×(0, s̄2]), v̄0(θ, x) ∈ C([−τ1, 0]×(−∞, s̄2])
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∩ C1,2([−τ1, 0] × (0, s̄2]), ū(t, x), v̄(t, x) ∈ C([0, T ] × (−∞, s̄2]) ∩ C1,2((0, T ] ×
(0, s̄2]), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt � d1ūxx − a1ū+ h

(∫ +∞
−∞ J1(x− y)v̄(t− τ1, y)dy

)
, 0 < t � T, 0 < x < s̄2(t),

v̄t � d2v̄xx − a2v̄ + g

(∫ +∞
−∞ J2(x− y)ū(t− τ2, y)dy

)
, 0 < t � T, 0 < x < s̄2(t),

ū(t, x) = v̄(t, x) = 0, 0 < t � T, x � s̄2(t),
ū(t, x) � u(t, x), v̄(t, x) � v(t, x), 0 < t � T, x � 0,
s̄′2(t) � −μ[ūx(t, s̄2(t)) + ρv̄x(t, s̄2(t))], 0 < t � T,

ū(θ, x) = ū0(θ, x), − τ2 � θ � 0, −∞ < x � s̄2(θ),
v̄(θ, x) = v̄0(θ, x), − τ1 � θ � 0, −∞ < x � s̄2(θ).

If the solution (u, v; s1, s2) of (1.1) satisfies that s2(θ) � s̄2(θ) for θ ∈
[−max{τ1, τ2}, 0], u0(θ, x) � ū0(θ, x) for (θ, x) ∈ [−τ2, 0] × (−∞, s2] and v0(θ, x)
� v̄0(θ, x) for (θ, x) ∈ [−τ1, 0] × (−∞, s2], then s2(t) � s̄2(t) and (u(t, x), v(t, x))
� (ū(t, x), v̄(t, x)) for t ∈ (0, T ], x ∈ (0, s2(t)).

Remark 2.4. (ū, v̄; s̄1, s̄2) in lemma 2.2 is called an upper solution of (1.1), and
(ū, v̄; s̄2) in lemma 2.3 is that of one-side case. Lower solutions of (1.1) can be
defined analogously by reversing all the inequalities.

2.2. Basic reproduction number

In epidemiology, the basic reproduction number is an important index of mea-
suring the transmission potential of a disease. In order to discuss the spreading and
vanishing phenomenon for the free boundary problem (1.1), we need to study the
basic reproduction number of the epidemic model without delays (1.5). In theorem
1.1, we establish the relationship between the basic reproduction number and prin-
ciple eigenvalues, and provide the monotonicity and asymptotic properties of the
basic reproduction number with respect to the domain.

In this section, we first introduce the definition of the basic reproduction number
of (1.5), and then give the proof of theorem 1.1.

For any l > 0, let Ti(t) be the solution semigroup on C0([−l, l], R) associated
with the following linear parabolic equation{

wt = diwxx − aiw, t > 0,−l < x < l,

w(t,±l) = 0, t > 0.

Let

T (t)Φ :=

(
T1(t)φ, T2(t)ϕ

)
, ∀Φ = (φ, ϕ) ∈ X := C0([−l, l],R2), t � 0.

It is clear that T (t) is a positive C0-semigroup on X. We further define a positive
linear operator G from X to Y := C([−l, l], R

2) by

G(Φ)(x) := (G1(Φ)(x),G2(Φ)(x)), ∀Φ = (φ, ϕ) ∈ X,
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where

G1(Φ)(x) = h′(0)
∫ l

−l
J1(x− y)ϕ(y)dy,

G2(Φ)(x) = g′(0)
∫ l

−l
J2(x− y)φ(y)dy.

Then the distribution of total new infection of human is∫ +∞

0

h′(0)
∫ l

−l

J1(x− y)(T2(t)ϕ)(y)dydt =
∫ +∞

0

G1(T1(t)φ, T2(t)ϕ)(x)dt,

and the distribution of total new infection of bacteria is∫ +∞

0

g′(0)
∫ l

−l

J2(x− y)(T1(t)φ)(y)dydt =
∫ +∞

0

G2(T1(t)φ, T2(t)ϕ)(x)dt.

It follows that

L(Φ) :=
∫ +∞

0

G(T (t)Φ)dt = G
∫ +∞

0

(T (t)Φ)dt

is the next infection operator, which maps the initial distribution Φ of infectious
bacteria and humans to the distribution of the total infective bacteria and humans
produced during the infection period.

We define the basic reproduction number of the epidemic model (1.5)

Rl
0 := r(L),

where r(L) is the spectral radius of L. Here, we use the notation Rl
0 to emphasis

the dependence of the basic reproduction number on the domain (−l, l).

Proof of theorem 1.1. (i) The corresponding linear evolution system (1.5) gen-
erates a compact, strongly positive semigroup on Z+ := Z ∩X+, where Z :=
C1

0 ([−l, l],R2), andX+ := C0([−l, l],R2
+) is the cone of nonnegative functions inX.

Therefore, by standard arguments in Theorem 6.1 of [23], we deduce that the elliptic
problem (1.6) has a principal eigenvalue λ1 with a strictly positive eigenvector.

Similar as the proof of Lemma 2.2 in [33], we can prove that Rl
0 − 1 has the same

sign as λ1. We also refer the readers to [20] (Theorem 3.7).
(ii) We first prove that (1.7) admits a unique positive principle eigenvalue with

a positive eigenvector.
Define Li = −di∂xx + ai, i = 1, 2, and let Li also denote the realization of Li in

C([−l, l],R) subject to Dirichlet boundary condition. Let

LΦ = (L1φ,L2ϕ) = (−d1∂xxφ+ a1φ,−d2∂xxϕ+ a2ϕ), ∀Φ = (φ, ϕ) ∈ dom(L) ⊂ Z.

The operator L : Z ⊃ dom(L) → Y := C([−l, l],R2) is invertible, with compact
inverse. It follows that the problem (1.7) is equivalent to the equation

Φ = μL−1G(Φ).

Define Aμ := μL−1G, and let r(Aμ) be its spectral radius. Note that G is a
bounded linear operator from Z to Y , and L−1 is a compact linear operator from
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Y to Z. Then for any fixed μ > 0, Aμ : Z → Z is a compact linear operator, and
strongly positive with respect to the solid cone Z+, i.e., Aμ(Z+ \ {0}) ⊂ Int Z+ �= ∅.
By the Krein–Rutman theorem (strong form), r(Aμ) > 0 and there exists Φμ ∈
Int Z+ such that AμΦμ = r(Aμ)Φμ. Moreover, r(Aμ) is a geometrically simple
eigenvalue.

By the Gelfand’s formula, r(Aμ) = limn→∞ ‖An
μ‖

1
n

Z = μ limn→∞ ‖(L−1G)n‖
1
n

Z =
μr(A1), ∀μ > 0. Since r(A1) > 0, there exists a unique μl

0 > 0 such that r(Aμl0
) = 1.

In fact, μl
0 = 1

r(A1)
. Then, we have Φμl0

= μl
0L

−1G(Φμl0
), which implies that (1.7)

admits a unique positive principle eigenvalue μl
0 with a positive eigenvector Φμl0

.
The equality Rl

0 = 1
μl0

can be proved by similar arguments as in the proof of
Theorem 3.2 in [34]. We also refer the readers to [20] (Theorem 3.8).

(iii) To stress the dependence of A1, L−1 and G on l, here we use the notations
Al

1, (Ll)−1 and Gl. Obviously, for any l2 > l1 > 0 and Φ = (φ, ϕ) ∈ Z+,

Gl2(Φ)(x) = (Gl2
1 (Φ)(x),Gl2

2 (Φ)(x))

=

(
h′(0)

∫ l2

−l2

J1(x− y)ϕ(y)dy, g′(0)
∫ l2

−l2

J2(x− y)φ(y)dy

)

�
(
h′(0)

∫ l1

−l1

J1(x− y)ϕ(y)dy, g′(0)
∫ l1

−l1

J2(x− y)φ(y)dy

)

= (Gl1
1 (Φ)(x),Gl1

2 (Φ)(x)) = Gl1(Φ)(x).

Moreover, by the maximum principle for elliptic equations, we know that

(Ll)−1(Φ2) � (Ll)−1(Φ1) for any l > 0 and Φ1,Φ2 ∈ Y+ with Φ2 � Φ1,

and

(Ll2)−1(Φ) � (Ll1)−1(Φ) for any l2 > l1 > 0 and Φ ∈ Ỹ+,

where Y+ := C([−l, l],R2
+) and Ỹ+ := C([−l2, l2],R2

+). Thus, for any l2 > l1 and
Φ ∈ Z+,

(Ll2)−1Gl2(Φ) � (Ll2)−1Gl1(Φ) � (Ll1)−1Gl1(Φ).

Since each (Ll)−1Gl is a positive and bounded linear operator on Z, by Theorem
1.1 in [5] we know that r(Al

1) = r((Ll)−1Gl) is an increasing function of l. It follows
that μl

0 = 1
r(Al1)

is decreasing in l, and Rl
0 = 1

μl0
(by (ii)) is increasing in l.

Note that (Ll
1)

−1(f)(x) =
∫ l

−l
G(x, ξ)f(ξ)dξ, where G(x, ξ) is the Green’s func-

tion defined as

G(x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(eλ(l−x) − e−λ(l−x))(eλ(l+ξ) − e−λ(l+ξ))
2d1λ(e2λl − e−2λl)

, −l � ξ � x,

(eλ(l+x) − e−λ(l+x))(eλ(l−ξ) − e−λ(l−ξ))
2d1λ(e2λl − e−2λl)

, x � ξ � l
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with λ =
√

a1
d1

. It is easy to check that G(x, ξ) > 0 and

0 <
∫ l

−l

G(x, ξ)dξ =
1

d1λ2
− (eλ(l−x) − e−λ(l−x)) + (eλ(l+x) − e−λ(l+x))

d1λ2(e2λl − e−2λl)

� 1
d1λ2

=
1
a1
.

Then, we have

‖(Ll
1)

−1(f)‖∞ =

∥∥∥∥∥
∫ l

−l

G(·, ξ)f(ξ)dξ

∥∥∥∥∥
∞

�
∥∥∥∥∥
∫ l

−l

G(·, ξ)dξ
∥∥∥∥∥
∞
‖f‖∞ � 1

a1
‖f‖∞.

(2.2)
Moreover,

∂xG(x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−λ(eλ(l−x) + e−λ(l−x))(eλ(l+ξ) − e−λ(l+ξ))
2d1λ(e2λl − e−2λl)

, −l � ξ < x,

λ(eλ(l+x) + e−λ(l+x))(eλ(l−ξ) − e−λ(l−ξ))
2d1λ(e2λl − e−2λl)

, x < ξ � l.

Direct calculations yield

0 <
∫ l

−l

|∂xG(x, ξ)|dξ =
1
d1λ

− e−λx(eλl − e−λx) + eλx(eλl − eλx)
d1λ(e2λl − e−2λl)

− e−λl(eλx−e−λl) + e−λl(e−λx−e−λl)
d1λ(e2λl − e−2λl)

� 1
d1λ

=
1√
a1d1

.

Then, we have

‖∇(Ll
1)

−1(f)‖∞ =

∥∥∥∥∥
∫ l

−l

∂xG(·, ξ)f(ξ)dξ

∥∥∥∥∥
∞

�
∥∥∥∥∥
∫ l

−l

|∂xG(·, ξ)|dξ
∥∥∥∥∥
∞
‖f‖∞ � 1√

a1d1

‖f‖∞,

which together with (2.2) imply

‖(Ll
1)

−1(f)‖∞ + ‖∇(Ll
1)

−1(f)‖∞ �
(

1
a1

+
1√
a1d1

)
‖f‖∞.

In a similar way, we can prove ‖(Ll
2)

−1(f)‖∞ + ‖∇(Ll
2)

−1(f)‖∞ � ( 1
a2

+
1√

a2d2
)‖f‖∞. Thus,

‖(Ll)−1‖Y →Z � 1
a1

+
1
a2

+
1√
a1d1

+
1√
a2d2

. (2.3)
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On the other hand,

‖Gl
1(Φ)‖∞ =

∥∥∥∥∥h′(0)
∫ l

−l

J1(·−y)ϕ(y)dy

∥∥∥∥∥
∞

� h′(0)

∥∥∥∥∥
∫ l

−l

J1(·−y)dy
∥∥∥∥∥
∞
‖ϕ‖∞ � h′(0)‖Φ‖∞.

Similarly, ‖Gl
2(Φ)‖∞ � g′(0)‖Φ‖∞. Thus,

‖Gl‖Z→Y � h′(0) + g′(0). (2.4)

By (2.3) and (2.4), we have

r(Al
1) � ‖Al

1‖Z = ‖(Ll)−1Gl‖Z � ‖(Ll)−1‖Y →Z‖Gl‖Z→Y

�
(

1
a1

+
1
a2

+
1√
a1d1

+
1√
a2d2

)
(h′(0) + g′(0)) =: M.

It follows that μl
0 has a positive lower bound independent of l, i.e.,

μl
0 =

1
r(Al

1)
� 1
M
, ∀l > 0,

which together with the fact that μl
0 = 1

r(Al1)
is decreasing in l imply that μ∗ :=

liml→+∞ μl
0 exists and satisfies μ∗ � 1

M > 0. Then R∗ := liml→+∞ 1
μl0

= 1
μ∗ is well-

defined and satisfies 0 < R∗ � M .
Now, we provide a more accurate upper bound of R∗, i.e., R∗ � R0 :=√
h′(0)g′(0)

a1a2
. It is sufficient to show that μ∗ �

√
a1a2

h′(0)g′(0) .

Recall that r(Al
μ) is a geometrically simple eigenvalue of Al

μ by the
Krein–Rutman theorem. We may assume that the corresponding positive eigen-
vector Φl

μl0
= (φl

μl0
, ϕl

μl0
) of (1.7) satisfies ‖Φl

μl0
‖∞ = 1. Thus, there exist a sequence

{ln} and positive function Φ∗ satisfying ‖Φ∗‖∞ = 1, such that Φln
μln0

→ Φ∗ in C2
loc(R)

as n→ ∞. Then, (μ∗,Φ∗) solves{
−d1φ

∗
xx + a1φ

∗ = μ∗h′(0)
∫ +∞
−∞ J1(x− y)ϕ∗(y)dy, x ∈ (−∞,+∞),

−d2ϕ
∗
xx + a2ϕ

∗ = μ∗g′(0)
∫ +∞
−∞ J2(x− y)φ∗(y)dy, x ∈ (−∞,+∞).

(2.5)

As in [3, 4], we define the generalized principal eigenvalue in a (possibly
unbounded) domain Ω ⊂ R as follows

μ1(Ω) := supEΩ

:= sup

{
μ ∈ R : ∃(φ, ϕ) ∈ C2(Ω,R2) ∩ C1

loc(Ω,R
2), (φ, ϕ) > 0 in Ω,

and − d1φxx + a1φ � μh′(0)
∫
Ω
J1(x− y)ϕ(y)dy,

−d2ϕxx + a2ϕ � μg′(0)
∫
Ω
J2(x− y)φ(y)dy for x ∈ Ω

}
.

(2.6)
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Here, C1
loc(Ω, R

2) denotes the set of functions (φ, ϕ) ∈ C1(Ω, R
2) for which (φ, ϕ)

and (φx, ϕx) can be extended by continuity on ∂Ω, but which are not necessarily
bounded. From (ii) and (2.5), we know E(−l,l), ER �= ∅ for any l > 0. We claim that
(i) μ1((−l, l)) = μl

0 for any l > 0, where μl
0 is the principal eigenvalue of (1.7); (ii)

μ1((−l, l)) → μ1(R) as l → +∞, and then μ∗ = μ1(R). The claim can be proved by
similar arguments as in the proofs of Proposition 4.4 and Theorem 2.2 in [2]. For
the convenience of the reader, we provide the details in proposition A of Appendix.

Assume that (μ̃, Φ̃(x)) = (μ̃, c1, c2) is a solution of (2.5) with ‖Φ̃‖∞ = 1, where
c1, c2 are positive constants. Due to

∫ +∞
−∞ Ji(x)dx = 1, i = 1, 2, we have

⎧⎪⎨
⎪⎩
a1c1 = μ̃h′(0)c2,
a2c2 = μ̃g′(0)c1,
c1 + c2 = 1.

By simple calculations,

(μ̃, c1, c1) =

(√
a1a2

h′(0)g′(0)
, 1 − a1

a1 + h′(0)
√

a1a2
h′(0)g′(0)

,
a1

a1 + h′(0)
√

a1a2
h′(0)g′(0)

)
.

Then μ̃ =
√

a1a2
h′(0)g′(0) ∈ ER, which implies that μ1(R) � μ̃ =

√
a1a2

h′(0)g′(0) . It follows

that R∗ = 1
μ∗ = 1

μ1(R) � R0 :=
√

h′(0)g′(0)
a1a2

, which completes the proof. �

Remark 2.5. (1) We remark that R∗ may be not equal to R0. Here, we give two
cases to illustrate the result R∗ � R0.

Case I. If J1 = J2 = δ (Dirac delta function), then

Rl
0 =

√
h′(0)g′(0)

[d1( π
2l )

2 + a1][d2( π
2l )

2 + a2]
.

As l → ∞, we have Rl
0 →

√
h′(0)g′(0)

a1a2
. Therefore R∗ = R0. More details can be seen

in [22].

Case II. If di = d, ai = a, Ji = J (i = 1, 2) and h = g, then, by taking ψ = φ+ ϕ,
(1.7) reduces to the following single equation

{
−dψxx + aψ = μh′(0)

∫ l

−l
J(x− y)ψ(y)dy, x ∈ (−l, l),

ψ(±l) = 0.

From the variational characterization of the principal eigenvalue, we have

μl
0 = inf

ψ∈H1
0((−l,l))

‖ψ‖
L2=1

{ ∫ l

−l
d|∇ψ|2dx+ a

h′(0)
∫ l

−l

∫ l

−l
J(x− y)ψ(y)ψ(x)dxdy

}
,
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and then

Rl
0 = sup

ψ∈H1
0((−l,l))

‖ψ‖
L2=1

{
h′(0)

∫ l

−l

∫ l

−l
J(x− y)ψ(y)ψ(x)dxdy∫ l

−l
d|∇ψ|2dx+ a

}
.

Thus,

R∗ � h′(0)
a

sup
ψ∈H1(R)
‖ψ‖

L2=1

{∫ +∞

−∞

∫ +∞

−∞
J(x− y)ψ(y)ψ(x)dxdy

}
.

Note that∫ +∞

−∞

∫ +∞

−∞
J(x− y)ψ(y)ψ(x)dxdy �

∫ +∞

−∞

∫ +∞

−∞
J(x− y)

ψ(y)2 + ψ(x)2

2
dxdy = 1,

and the first equality holds if and only if ψ is a constant function, which contradicts
with ψ ∈ H1(R). Therefore R∗ < h′(0)

a = R0.

(2) If the interval (−l, l) is replaced by (a, b) with −∞ < a < 0 < b < +∞, then
the conclusions in theorem 1.1 are still valid.

3. Spreading and vanishing

In this section, we discuss the spreading and vanishing phenomenon of the bacteria
in terms of the basic reproduction number, and then provide the sharp criteria for
spreading and vanishing.

Denote s1,∞ = limt→+∞ s1(t) and s2,∞ = limt→+∞ s2(t). Then, we have the
following results.

Lemma 3.1. (i) If s2,∞ − s1,∞ = +∞, then s2,∞ = −s1,∞ = +∞.
(ii) If s2,∞ − s1,∞ < +∞, then s0 < −s1,∞, s2,∞ < +∞, and

lim
t→+∞

(
‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])

)
= 0.

(iii) If R∗ > 1 and s2,∞ − s1,∞ = +∞, then limt→+∞(u(t, x), v(t, x)) = (u∗, v∗)
locally uniformly for x ∈ R, where (u∗, v∗) is the unique equilibrium of (1.1).

Proof. All the conclusions can be proved by similar arguments as Lemmas 3.1–3.2
and Theorem 4.5 in [1] with minor modifications (see also Theorem 2.3 in [11]),
here we omit the details. We remark that the condition R∗ > 1 in (iii) is assumed
for applying theorem 1.1 in the proof. �

Theorem 3.2. If 0 < R0 � 1, then the solution (u, v; s1, s2) of (1.1) satisfies

lim
t→+∞

(
‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])

)
= 0.
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Proof. Let (w1(t), w2(t)) be the unique solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′
1 = −a1w1 + h(w2(t− τ1)), t > 0,

w′
2 = −a2w2 + g(w1(t− τ2)), t > 0,

w1(θ) = ‖u0‖C([−τ2,0]×[s1,s2]), θ ∈ [−τ2, 0],
w2(θ) = ‖v0‖C([−τ1,0]×[s1,s2]), θ ∈ [−τ1, 0].

(3.1)

From the comparison principle, we know that (u(t, x), v(t, x)) � (w1(t), w2(t)) in
[0,+∞) × [s1, s2].

Since h′′(z) � 0, g′′(z) < 0 for all z > 0, we have

h(λz)
λz

=
h(λz) − h(0)

λz
� h(z) − h(0)

z
=
h(z)
z

,

g(λz)
λz

=
g(λz) − g(0)

λz
>
g(z) − g(0)

z
=
g(z)
z

for z > 0 and λ ∈ (0, 1). That is, h, g are subhomogeneous. From Theorem
3.2 in [42], we know that (0, 0) is globally asymptotically stable for
(3.1). That is, (w1, w2) satisfies limt→+∞(w1(t), w2(t)) = (0, 0), which implies
limt→+∞(‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0. More details can be
seen in [10, 11]. �

Remark 3.3. Due to the effects of delays, we can not show s2,∞ − s1,∞ < +∞ as
in [1], even for the local, partially degenerate case with one delay considered in
[10]. We leave it for further consideration.

Next, we discuss the spreading and vanishing phenomenon of (1.1) for R∗ > 1 in
terms of Rs0

0 . The selected forms of upper and lower solutions in the proof of next
two theorems have been used in many related works. However, to overcome the
effects of nonlocal terms, in this paper we construct upper and lower solutions from
the principle eigenfunctions of perturbed eigenvalue problems. This idea is inspired
by the work of Huang and Wang [18].

Theorem 3.4. If Rs0
0 � 1, then s2,∞ − s1,∞ = +∞.

Proof. By theorem 1.1 (iii), we know that the basic reproduction number is strictly
increasing with respect to the domain. Note that (−s0, s0) ⊂ (s1(t0), s2(t0)) for any
fixed t0 > 0. If Rs0

0 = 1, then the basic reproduction number of (1.5) with (−l, l)
replaced by (s1(t0), s2(t0)) is larger than 1. In such a case, we can choose some
t0 > 0 as initial time. Therefore it suffices to consider the case Rs0

0 > 1.
From theorem 1.1 (i), we have sign (Rs0

0 − 1) = sign λ1 > 0. Then there exists a
constant 0 < δ∗ � 1 such that λδ

1 > 0 for all 0 < δ < δ∗, where λδ
1 is the principle

eigenvalue of the following perturbed eigenvalue problem⎧⎪⎨
⎪⎩
d1φxx − a1φ+ (h′(0) − δ)

∫ s0

−s0
J1(x− y)ϕ(y)dy = λφ, x ∈ (−s0, s0),

d2ϕxx − a2ϕ+ (g′(0) − δ)
∫ s0

−s0
J2(x− y)φ(y)dy = λϕ, x ∈ (−s0, s0),

(φ(±s0), ϕ(±s0)) = (0, 0).

(3.2)
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Let Φδ(x) = (φδ(x), ϕδ(x)) be the positive eigenfunction of (3.2) associated with
λδ

1.
Define u(t, x) = εφδ(x), v(t, x) = εϕδ(x) for (t, x) ∈ [max{τ1, τ2}, +∞) ×

[−s0, s0], where ε is a small positive constant to be determined. Direct calculations
yield

ut − d1uxx + a1u− h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)

= −ελδ
1φ

δ + ε(h′(0) − δ)
∫ s0

−s0

J1(x− y)ϕδ(y)dy − h

(∫ s0

−s0

εJ1(x− y)ϕδ(y)dy

)

= −ε
[
λδ

1φ
δ +

(
δ + h′(ηε

1(x)) − h′(0)

)∫ s0

−s0

J1(x− y)ϕδ(y)dy

]

and

vt − d2vxx + a2v − g

(∫ +∞

−∞
J2(x− y)u(t− τ2, y)dy

)

= −ε
[
λδ

1ϕ
δ +

(
δ + g′(ηε

2(x)) − g′(0)

)∫ s0

−s0

J2(x− y)φδ(y)dy

]
,

where ηε
1(x) ∈ (0, ε

∫ s0

−s0
J1(x− y)ϕδ(y)dy) and ηε

2(x) ∈ (0, ε
∫ s0

−s0
J2(x− y)φδ(y)dy).

Note that ηε
1(x), η

ε
2(x) → 0 as ε→ 0. We can choose ε > 0 sufficiently small such

that δ + h′(ηε
1(x)) − h′(0) > 0 and δ + g′(ηε

2(x)) − g′(0) > 0, which imply that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − d1uxx + a1u− h

(∫ +∞
−∞ J1(x− y)v(t− τ1, y)dy

)
� 0,

vt − d2vxx + a2v − g

(∫ +∞
−∞ J2(x− y)u(t− τ2, y)dy

)
� 0,

for any t > max{τ1, τ2} and −s0 < x < s0. We can also assume ε > 0 small such
that

u(θ, x) = εφδ(x) � u(θ, x), max{τ1, τ2} − τ2 � θ � max{τ1, τ2},−s0 � x � s0,
v(θ, x) = εϕδ(x) � v(θ, x), max{τ1, τ2} − τ1 � θ � max{τ1, τ2},−s0 � x � s0.

Moreover, it is easy to deduce that

u(t, x) = v(t, x) = 0, t � max{τ1, τ2}, x � −s0 or x � s0,
0 = s′0 � −μ[ux(t, s0) + ρvx(t, s0)], t > max{τ1, τ2},
0 = −s′0 � −μ[ux(t,−s0) + ρvx(t,−s0)], t > max{τ1, τ2},
[−s0, s0] ⊆ [s1(θ), s2(θ)], t > max{τ1, τ2}.

Therefore, (u, v;−s0, s0) is a lower solution of (1.1). By the comparison principle,

lim inf
t→+∞

(
‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])

)
� ε(φδ(0) + ϕδ(0)) > 0,
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which implies s2,∞ − s1,∞ = +∞. �

Theorem 3.5. If Rs0
0 < 1, then s2,∞ − s1,∞ < +∞ provided that μ is sufficiently

small.

Proof. From theorem 1.1 (i), we have sign (Rs0
0 − 1) = sign λ1 < 0. Then there

exists a constant 0 < δ∗ � 1 such that λδ
1 < 0 for all 0 < δ < δ∗, where λδ

1 is the
principle eigenvalue of the following perturbed eigenvalue problem⎧⎪⎨
⎪⎩
d1φxx − a1φ+ (h′(0) + δ)

∫ s0

−s0
J1(x− y)ϕ(y)dy = λφ, x ∈ (−s0, s0),

d2ϕxx − a2ϕ+ (g′(0) + δ)
∫ s0

−s0
J2(x− y)φ(y)dy = λϕ, x ∈ (−s0, s0),

(φ(±s0), ϕ(±s0)) = (0, 0).

(3.3)

Let Φδ(x) = (φδ(x), ϕδ(x)) be the positive eigenfunction of (3.3) associated with
λδ

1.
We define

k(t) = s0(1 + σ − σ

2
e−σt), t > 0,

ū(t, x) = αe−σtφδ

(
s0x

k(t)

)
, t > 0, x ∈ [−k(t), k(t)],

v̄(t, x) = αe−σtϕδ

(
s0x

k(t)

)
, t > 0, x ∈ [−k(t), k(t)],

k(θ) ≡ k(0) = s0(1 +
σ

2
), θ ∈ [−max{τ1, τ2}, 0],

ū(θ, x) = ū(0, x) = αφδ

(
2x

2 + σ

)
, θ ∈ [−τ2, 0], x ∈ [−k(θ), k(θ)],

v̄(θ, x) = v̄(0, x) = αϕδ

(
2x

2 + σ

)
, θ ∈ [−τ1, 0], x ∈ [−k(θ), k(θ)]

and extend ū(t, x) (resp. v̄(t, x)) by 0 for t ∈ [−τ2, +∞), x ∈ (−∞, −k(t)) ∪
(k(t), +∞) (resp. t ∈ [−τ1, +∞), x ∈ (−∞, −k(t)) ∪ (k(t), +∞)).

Direct calculations show that

ūt − d1ūxx + a1ū− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= −σū− s0xk
′(t)

k2(t)
αe−σt(φδ)′

(
s0x

k(t)

)
− d1αe

−σt

(
s0
k(t)

)2

(φδ)′′
(
s0x

k(t)

)

+ a1ū− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

� −σū− s0xk
′(t)

k2(t)
αe−σt(φδ)′

(
s0x

k(t)

)
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− αe−σt

(
s0
k(t)

)2[
(a1 + λδ

1)φ
δ

(
s0x

k(t)

)

− (h′(0) + δ)
∫ s0

−s0

J1

(
s0x

k(t)
− y

)
ϕδ(y)dy

]

+ a1ū− h′(0)
∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

= −ασ
2e−2σts0
2k(t)

z(φδ)′(z) +

[
a1 − σ − (a1 + λδ

1)

(
s0
k(t)

)2]
αe−σtφδ(z)

+

[
α(h′(0) + δ)e−σt

(
s0
k(t)

)2 ∫ s0

−s0

J1(z − y)ϕδ(y)dy

− h′(0)
∫ +∞

−∞
J1

(
k(t)z
s0

− y

)
v̄(t− τ1, y)

)
dy

]

=: I + II + III,

where z := s0x
k(t) ∈ (−s0, s0).

Since −z(φδ)′(z)|z=±s0 > 0 by the Hopf boundary lemma, we have (I +
II)|z=±s0 > 0. By the continuity, we know that I + II > 0 in some neighbourhood
O ⊆ [−s0, s0] of z = ±s0. For z ∈ [−s0, s0] \ O, φδ(z) � c with some positive con-
stant c, and then II → −αλδ

1φ
δ(z) � −αλδ

1c > 0 as σ → 0. Note that limσ→0 I = 0.
We can choose σ sufficiently small such that I + II > 0 on [−s0, s0] \ O. Therefore,
I + II is positive on [−s0, s0] for small σ.

Now we consider the third term. Since J1 is a nonnegative, continuous function
satisfying J1(0) > 0, we have

∫ s0

−s0
J1(z − y)ϕδ(y)dy > 0 for any z ∈ [−s0, s0]. As

σ → 0,

III→ αδ
∫ s0

−s0
J1(z − y)ϕδ(y)dy

� αδminz∈[−s0,s0]

∫ s0

−s0
J1(z − y)ϕδ(y)dy =: αδc1 > 0.

By choosing σ sufficiently small, we can get III > 0.
In summary, for (t, x) ∈ (0, +∞) × (−k, k),

ūt − d1ūxx + a1ū− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)
� 0.

In a similar way, we can prove that

v̄t − d2v̄xx + a2v̄ − g

(∫ +∞

−∞
J2(x− y)ū(t− τ2, y)dy

)
� 0.

Moreover, choose α large enough such that

ū0(θ, x) = αφδ

(
2x

2 + σ

)
� ‖u0‖L∞([−τ2,0]×[s1,s2]) � u0(θ, x)
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for (θ, x) ∈ [−τ2, 0] × [s1, s2], and

v̄0(θ, x) = αϕδ

(
2x

2 + σ

)
� ‖v0‖L∞([−τ1,0]×[s1,s2]) � v0(θ, x)

for (θ, x) ∈ [−τ1, 0] × [s1, s2]. Then take μ > 0 sufficiently small such that, for t > 0,

k′(t) = s0
σ2

2
e−σt � −μ[ūx(t, k(t)) + ρv̄x(t, k(t))],

−k′(t) = −s0
σ2

2
e−σt � −μ[ūx(t,−k(t)) + ρv̄x(t,−k(t))].

Besides, it is easy to check that

[−k(θ), k(θ)] =

[
−s0

(
1 +

σ

2

)
, s0

(
1 +

σ

2

)]
⊃ [−s0, s0] ⊃ [s1(θ), s2(θ)]

for θ ∈ [−max{τ1, τ2}, 0].
Therefore, (ū, v̄;−k(t), k(t)) is an upper solution of (1.1) and we have

−s1,∞, s2,∞ � lim
t→+∞ k(t) = s0(1 + σ),

which completes the proof. �

By using similar arguments as the proof of Theorem 4.4 in [26], we can obtain
the following result for the case Rs0

0 < 1 < R∗ with large μ.

Theorem 3.6. If Rs0
0 < 1 < R∗, then s2,∞ − s1,∞ = +∞ provided that μ is suffi-

ciently large.

In what follows, we exhibit the sharp criteria of (1.1). The proof relies on the
conclusions of theorems 3.4–3.6. More details can be seen in the proofs of Theorem
3.9 in [15] and Theorem 4.5 in [26], here we omit the details.

Theorem 3.7. Assume that R∗ > 1. Then there exists μ∗ ∈ [0, +∞) such that
s2,∞ − s1,∞ = +∞ for μ > μ∗, and s2,∞ − s1,∞ < +∞ for 0 < μ � μ∗.

Remark 3.8. In theorems 3.2 and 3.7, we discuss the long-time behaviour of solu-
tion for R0 � 1 and R∗ > 1, respectively. However, the case R∗ � 1 < R0 is still
unknown.

4. Nonlocal semi-wave problem with delays

In this section, we consider the delayed nonlocal semi-wave problem (1.8). The
semi-wave solution of (1.8) will play an important role in determining the precise
asymptotic spreading speed of (1.1) when spreading occurs. We always assume
R∗ > 1 in this section.
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4.1. Perturbed semi-wave problem

To establish the existence of semi-wave solutions to (1.8), we first consider the
corresponding perturbed problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − a1φ(ξ) + h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ > 0,

cϕ′(ξ) = d2ϕ
′′(ξ) − a2ϕ(ξ) + g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ > 0,

(φ(ξ), ϕ(ξ)) = (δu∗, δv∗), ξ � 0,
(φ(+∞), ϕ(+∞)) = (u∗, v∗),

(4.1)

where δ ∈ (0, 1
2 ) is a small parameter. Then the desired semi-wave solution

(φ(ξ), ϕ(ξ)) of (1.8) can be obtained from the solutions (φδ(ξ), ϕδ(ξ)) of (4.1) by
taking δ → 0.

For convenient, we denote βi1 = c−√
c2+4aidi
2di

, βi2 = c+
√

c2+4aidi
2di

, i = 1, 2. Let
Φ = (φ, ϕ), we define the operators (F1,F2) : C(R, R

2) → C(R,R2) by

F1(Φ)(ξ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δu∗eβ11ξ +
1

d1(β12 − β11)

[ ∫ ξ

0
(eβ11(ξ−s) − eβ11ξ−β12s)

×h
(∫ +∞

−∞ J1(y)ϕ(s− y − cτ1)dy

)
ds

+
∫ +∞

ξ
(eβ12(ξ−s) − eβ11ξ−β12s)

×h
(∫ +∞

−∞ J1(y)ϕ(s− y − cτ1)dy

)
ds

]
, ξ > 0,

δu∗, ξ � 0,

and

F2(Φ)(ξ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δv∗eβ21ξ +
1

d2(β22 − β21)

[ ∫ ξ

0
(eβ21(ξ−s) − eβ21ξ−β22s)

×g
(∫ +∞

−∞ J2(y)φ(s− y − cτ2)dy

)
ds

+
∫ +∞

ξ
(eβ22(ξ−s) − eβ21ξ−β22s)

×g
(∫ +∞

−∞ J2(y)φ(s− y − cτ2)dy

)
ds

]
, ξ > 0,

δv∗, ξ � 0.
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It is easy to show that the operators Fi (i = 1, 2) are well-defined and satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(F1(Φ))′(ξ) = d1(F1(Φ))′′(ξ) − a1F1(Φ)(ξ)

+h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ > 0,

c(F2(Φ))′(ξ) = d2(F2(Φ)′′(ξ) − a2F2(Φ)(ξ)

+ g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ > 0,

(F1(Φ)(ξ),F2(Φ)(ξ)) = (δu∗, δv∗), ξ � 0.

Thus, (φ, ϕ) is a fixed point of (F1,F2) in C(R,R2) if and only if it is a solution of
(4.1) in C(R,R2).

We define the set Γ as follows:

Γ =

{
(φ, ϕ) ∈ C(R,R2) : (i) φ(ξ), ϕ(ξ) are increasing in ξ ∈ R+,

(ii) (φ(ξ), ϕ(ξ)) = (δu∗, δv∗) for ξ � 0, (iii) (φ(+∞), ϕ(+∞)) = (u∗, v∗)

}
.

Lemma 4.1. For any Φ = (φ, ϕ) ∈ Γ, we have

(i) (F1(Φ)(ξ),F2(Φ)(ξ)) � (0, 0) for any ξ ∈ R;

(ii) (F1(Φ)(ξ),F2(Φ)(ξ)) are increasing in ξ ∈ R;

(iii) if Φi = (φi, ϕi) ∈ Γ (i = 1, 2) satisfy Φ1 � Φ2, then Fi(Φ1)(ξ) � Fi(Φ2)(ξ)
for any ξ ∈ R.

Proof. Since βi2 > βi1 (i = 1, 2), we can easily check that (i) and (iii) hold. Now
we prove (ii).

By the definitions of Fi, it is sufficient to consider the case ξ > 0. Note that
β11 < 0 and ϕ is a positive increasing function. For ξ > 0, we have

(F1(Φ))′(ξ) = δu∗β11e
β11ξ +

1
d1(β12 − β11)

×
[
β11

∫ ξ

0

(eβ11(ξ−s) − eβ11ξ−β12s)h

(∫ +∞

−∞
J1(y)ϕ(s− y − cτ1)dy

)
ds

+
∫ +∞

ξ

(β12e
β12(ξ−s) − β11e

β11ξ−β12s)h

(∫ +∞

−∞
J1(y)ϕ(s− y − cτ1)dy

)
ds

]
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� δu∗β11e
β11ξ +

1
d1(β12 − β11)

h

(∫ +∞

−∞
J1(y)ϕ(ξ − y − cτ1)dy

)

×
[
β11

∫ ξ

0

(eβ11(ξ−s) − eβ11ξ−β12s)ds+
∫ +∞

ξ

(β12e
β12(ξ−s) − β11e

β11ξ−β12s)ds

]

= δu∗β11e
β11ξ +

eβ11ξ

d1β12
h

(∫ +∞

−∞
J1(y)ϕ(ξ − y − cτ1)dy

)

� δu∗β11e
β11ξ +

eβ11ξ

d1β12
h

(∫ +∞

−∞
δv∗J1(y)dy

)
.

In view of
∫ +∞
−∞ J1(y)dy = 1 and h is subhomogeneous (see the proof of theorem

3.2),

(F1(Φ))′(ξ) = δu∗β11e
β11ξ +

h(δv∗)eβ11ξ

d1β12
� δu∗β11e

β11ξ +
δh(v∗)eβ11ξ

d1β12

= δu∗β11e
β11ξ +

δa1u
∗eβ11ξ

d1β12
� 0.

Similarly, we can deduce that (F2(Φ))′(ξ) � 0 for ξ > 0. �

Next, we give the definitions of upper and lower solutions for (4.1).

Definition 4.2. Assume that (φ̄, ϕ̄), (φ, ϕ) are continuous function pairs from R

into [δu∗, u∗] × [δv∗, v∗]. We call that (φ̄, ϕ̄), (φ, ϕ) are respectively an upper solu-
tion and a lower solution of (4.1), if φ̄, φ are twice continuously differentiable on
R+ \ {ξi}m

i=1, ϕ̄, ϕ are twice continuously differentiable on R+ \ {ηj}k
j=1, and they

satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ̄′(ξ)�d1φ̄
′′(ξ)−a1φ̄(ξ)+h

(∫ +∞
−∞ J1(y)ϕ̄(ξ − y − cτ1)dy

)
, ξ > 0, ξ /∈ {ξi}m

i=1,

cϕ̄′(ξ)�d2ϕ̄
′′(ξ)−a2ϕ̄(ξ)+g

(∫ +∞
−∞ J2(y)φ̄(ξ − y − cτ2)dy

)
, ξ > 0, ξ /∈ {ηj}k

j=1,

φ̄′+(ξi) � φ̄′−(ξi), i = 1, · · · ,m,
ϕ̄′

+(ηj) � ϕ̄′
−(ηj), j = 1, · · · , k,

(φ̄(ξ), ϕ̄(ξ)) = (δu∗, δv∗), ξ � 0,

(φ̄(+∞), ϕ̄(+∞)) = (u∗, v∗)
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and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ)�d1φ
′′(ξ)−a1φ(ξ)+h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ > 0, ξ /∈ {ξi}m

i=1,

cϕ′(ξ)�d2ϕ
′′(ξ)−a2ϕ(ξ)+g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ > 0, ξ /∈ {ηj}k

j=1,

φ′
+
(ξi) � φ′−(ξi), i = 1, · · · ,m,

ϕ′
+
(ηj) � ϕ′

−(ηj), j = 1, · · · , k,
(φ(ξ), ϕ(ξ)) = (δu∗, δv∗), ξ � 0,

(φ(+∞), ϕ(+∞)) � (u∗, v∗).

Now we establish the existence of solution to the perturbed semi-wave problem
(4.1) by applying monotone iteration method, which is an efficient method for
travelling wave solutions, see [36].

Theorem 4.3. If there exist an upper solution (φ̄, ϕ̄) ∈ Γ and a lower solution
(φ, ϕ) (which is not necessary in Γ) of (4.1), satisfying (δu∗, δv∗) � (φ(ξ), ϕ(ξ)) �
(φ̄(ξ), ϕ̄(ξ)) � (u∗, v∗) for ξ ∈ R+, then the perturbed problem (4.1) admits an
increasing solution.

Proof. The proof is divided into the following three steps.

Step 1: For n = 1, 2, · · · , we consider the following iteration scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′n(ξ) = d1φ
′′
n(ξ) − a1φn(ξ) + h

(∫ +∞
−∞ J1(y)ϕn−1(ξ − y − cτ1)dy

)
, ξ > 0,

cϕ′
n(ξ) = d2ϕ

′′
n(ξ) − a2ϕn(ξ) + g

(∫ +∞
−∞ J2(y)φn−1(ξ − y − cτ2)dy

)
, ξ > 0,

(φn(ξ), ϕn(ξ)) = (δu∗, δv∗), ξ � 0,
(φ0, ϕ0) = (φ̄, ϕ̄).

Let Φn(ξ) = (φn(ξ), ϕn(ξ)), we have

φn(ξ) = F1(Φn−1)(ξ), ϕn(ξ) = F2(Φn−1)(ξ). (4.2)

Step 2: We claim that, for each n = 1, 2, · · · , (i) (φn, ϕn) ∈ Γ; (ii) (φ(ξ), ϕ(ξ)) �
(φn(ξ), ϕn(ξ)) � (φn−1(ξ), ϕn−1(ξ)) � (φ̄(ξ), ϕ̄(ξ)) on R.

(i) Since (φ̄, ϕ̄) ∈ Γ, (φ̄, ϕ̄) is increasing in ξ ∈ R. From lemma 4.1 (ii), (φ1, ϕ1) =
(F1(φ̄)(ξ),F2(ϕ̄)(ξ)) is also increasing in ξ. By repeating this process, we know that
(φn, ϕn) is increasing in ξ for each n � 1.
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Next, we prove (φn(+∞), ϕn(+∞)) = (u∗, v∗). Note that β11 < 0 and β12 > 0.
By the L’Hôpital’s rule,

lim
ξ→+∞

φ1(ξ)

= lim
ξ→+∞

δu∗eβ11ξ +
1

d1(β12 − β11)

× lim
ξ→+∞

[∫ ξ

0
e−β11sh

(∫ +∞
−∞ J1(y)ϕ̄(s− y − cτ1)dy

)
ds

e−β11ξ

+

∫ +∞
ξ

e−β12sh

(∫ +∞
−∞ J1(y)ϕ̄(s− y − cτ1)dy

)
ds

e−β12ξ

− eβ11ξ

∫ +∞

0

e−β12sh

(∫ +∞

−∞
J1(y)ϕ̄(s− y − cτ1)dy

)
ds

]

= − 1
d1(β12 − β11)

(
1
β11

− 1
β12

)
lim

ξ→+∞
h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)

= − 1
d1β11β12

h

(
v∗
∫ +∞

−∞
J1(y)dy

)

= − h(v∗)
d1β11β12

=
h(v∗)
a1

= u∗.

Similarly, we can show limξ→+∞ ϕ1(ξ) = v∗.
By repeating the above process, we can obtain limξ→+∞(φn(ξ), ϕn(ξ)) = (u∗, v∗)

for each n = 2, 3, · · · . Thus, (φn, ϕn) ∈ Γ.
(ii) We first prove (φ1(ξ), ϕ1(ξ)) � (φ̄(ξ), ϕ̄(ξ)).
Let ξ0 = 0 and ξm+1 = +∞. Assume that ξ ∈ (ξi, ξi+1) for some i ∈

{0, 1, · · · , m}, we have

φ1(ξ)

= δu∗eβ11ξ +
1

d1(β12 − β11)

[∫ ξ

0

(eβ11(ξ−s) − eβ11ξ−β12s)

× h

(∫ +∞

−∞
J1(y)ϕ̄(s− y − cτ1)dy

)
ds

+
∫ +∞

ξ

(eβ12(ξ−s) − eβ11ξ−β12s)h

(∫ +∞

−∞
J1(y)ϕ̄(s− y − cτ1)dy

)
ds

]
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� δu∗eβ11ξ +
1

d1(β12 − β11)

[∫ ξ

0

(eβ11(ξ−s) − eβ11ξ−β12s)

×
(
cφ̄′(s) − d1φ̄

′′(s) + a1φ̄(s)

)
ds

+
∫ +∞

ξ

(eβ12(ξ−s) − eβ11ξ−β12s)

(
cφ̄′(s) − d1φ̄

′′(s) + a1φ̄(s)

)
ds

]

= δu∗eβ11ξ − eβ11ξφ̄(0) + φ̄(ξ)

+
1

β12 − β11

[
i∑

k=1

(eβ11(ξ−ξk) − eβ11ξ−β12ξk)(φ̄′+(ξk) − φ̄′−(ξk))

+
m∑

k=i+1

(eβ12(ξ−ξk) − eβ11ξ−β12ξk)(φ̄′+(ξk) − φ̄′−(ξk))

]

� φ̄(ξ).

By the continuity, we can get the same result for the endpoints ξi (i = 1, · · · , m).
In a similar way, we can prove ϕ1(ξ) � ϕ̄(ξ).

By lemma 4.1 (iii), we can deduce that (φn(ξ), ϕn(ξ)) is decreasing with respect
to n. It follows that

(φn(ξ), ϕn(ξ)) � (φn−1(ξ), ϕn−1(ξ)) � · · · � (φ1(ξ), ϕ1(ξ)) � (φ̄(ξ), ϕ̄(ξ))

for each n � 2. Moreover, it is easy to check that (φn(ξ), ϕn(ξ)) � (φ(ξ), ϕ(ξ)) for
each n � 1.

Step 3: We claim that (4.1) has an increasing solution (φ, ϕ).
According to Step 2 (ii), (φ(ξ), ϕ(ξ)) = limn→+∞(φn(ξ), ϕn(ξ)) exists for ξ ∈ R,

and satisfies (φ(ξ), ϕ(ξ)) � (φ(ξ), ϕ(ξ)) � (φ̄(ξ), ϕ̄(ξ)). Moreover, (φ(ξ), ϕ(ξ)) is
increasing in ξ ∈ R, (φ(ξ), ϕ(ξ)) = (δu∗, δv∗) for ξ � 0, and (φ(+∞), ϕ(+∞)) =
(u∗, v∗).

Direct calculations yield that (φ(ξ), ϕ(ξ)) = limn→+∞(φn(ξ), ϕn(ξ)) satisfies the
equations in (4.1), which completes the proof. �

Next, we construct a pair of upper and lower solutions of (4.1).
For any fixed c > 0, we choose m > 0 sufficiently large such that

0 <
1
m
< min

{
c

a1
,
c

a2
, cτ1, cτ2

}
.
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Define

φ̄(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
δu∗, ξ � 0,

u∗ + u∗(δ − 1)(mξ − 1)2, 0 < ξ � 1
m
,

u∗, ξ >
1
m
,

(4.3)

ϕ̄(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
δv∗, ξ � 0,

v∗ + v∗(δ − 1)(mξ − 1)2, 0 < ξ � 1
m
,

v∗, ξ >
1
m
,

(4.4)

and

(φ(ξ), ϕ(ξ)) = (δu∗, δv∗), ξ ∈ R.

Lemma 4.4. (φ̄(ξ), ϕ̄(ξ)) and (φ(ξ), ϕ(ξ)) as defined above are respectively an upper
solution and a lower solution of (4.1). Moreover, (φ̄, ϕ̄) ∈ Γ.

Proof. It is easy to check that (φ̄, ϕ̄) ∈ Γ.
(i) For 0 < ξ < 1

m , we have δv∗ � ϕ̄(ξ) � v∗, ξ ∈ R. By simple calculations,

cφ̄′(ξ) − d1φ̄
′′(ξ) + a1φ̄(ξ) − h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)

= u∗(1 − δ)

[
−2mc(mξ − 1) + 2d1m

2 − a1(mξ − 1)2
]

+ a1u
∗

− h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)

� u∗(1 − δ)

[
−2mc(mξ − 1) + 2d1m

2 − a1(mξ − 1)2
]

+ a1u
∗ − h

(∫ +∞

−∞
J1(y)v∗dy

)

= u∗(1 − δ)

[
−2mc(mξ − 1) + 2d1m

2 − a1(mξ − 1)2
]

+ a1u
∗ − h(v∗)

= u∗m2(1 − δ)

[
−2c

(
ξ − 1

m

)
+ 2d1 − a1(ξ −

1
m

)2
]
.

Due to − c
a1

� − 1
m � s− 1

m < 0, we have

−2c
(
ξ − 1

m

)
+ 2d1 − a1

(
ξ − 1

m

)2

> 0.
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It follows that

cφ̄′(ξ) − d1φ̄
′′(ξ) + a1φ̄(ξ) − h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)
� 0.

(ii) For ξ > 1
m , we have φ̄(ξ) = u∗ and δv∗ � ϕ̄(ξ) � v∗ for ξ ∈ R+. Then

cφ̄′(ξ) − d1φ̄
′′(ξ) + a1φ̄(ξ) − h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)

� a1u
∗ − h

(∫ +∞

−∞
J1(y)v∗dy

)
= a1u

∗ − h(v∗) = 0.

In summary,

cφ̄′(ξ) − d1φ̄
′′(ξ) + a1φ̄(ξ) − h

(∫ +∞

−∞
J1(y)ϕ̄(ξ − y − cτ1)dy

)
� 0,

∀ξ ∈ R+\
{

1
m

}
.

Similarly, we can prove that

cϕ̄′(ξ) − d2ϕ̄
′′(ξ) + a2ϕ̄(ξ) − g

(∫ +∞

−∞
J2(y)φ̄(ξ − y − cτ2)dy

)
� 0,

∀ξ ∈ R+\
{

1
m

}
.

Moreover, φ̄′+( 1
m ) = φ̄′−( 1

m ) = 0 and ϕ̄′
+( 1

m ) = ϕ̄′
−( 1

m ) = 0. Thus, (φ̄, ϕ̄) ∈ Γ is an
upper solution of (4.1).

Next, we prove that (φ(ξ), ϕ(ξ)) = (δu∗, δv∗), ξ ∈ R is a lower solution of (4.1).
Obviously, for ξ > 0,

cφ′(ξ) − d1φ
′′(ξ) + a1φ(ξ) − h

(∫ +∞

−∞
J1(y)ϕ(ξ − y − cτ1)dy

)

= a1δu
∗ − h

(∫ +∞

−∞
J1(y)ϕ(ξ − y − cτ1)dy

)

= a1δu
∗ − h

(∫ +∞

−∞
J1(y)δv∗dy

)
� a1δu

∗ − δh(v∗) = 0.

Similarly, we can obtain

cϕ′(ξ) − d2ϕ
′′(ξ) + a2ϕ(ξ) − g

(∫ +∞

−∞
J2(y)φ(ξ − y − cτ2)dy

)
� 0 for ξ > 0,

which means that (φ, ϕ) is a lower solution of (4.1). �
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Theorem 4.5. For all δ ∈ (0, 1
2 ), the perturbed semi-wave problem (4.1) admits an

increasing solution (φδ(ξ), ϕδ(ξ)). Moreover, (φδ(ξ), ϕδ(ξ)) obtained in this way is
increasing with respect to δ ∈ (0, 1

2 ).

Proof. From theorem 4.3 and lemma 4.4, we can establish the existence of increasing
solution to (4.1).

Assume that 0 < δ1 < δ2 <
1
2 . In view of the definitions of (φ̄, ϕ̄) in (4.3)–(4.4),

we have (φ̄δ2 , ϕ̄δ2) > (φ̄δ1 , ϕ̄δ1). Applying the iteration scheme (4.2) and lemma 4.1
(iii), we get

(φδ2
1 , ϕ

δ2
1 ) = (F1(φ̄δ2 , ϕ̄δ2)(ξ),F2(φ̄δ2 , ϕ̄δ2)(ξ))

� (F1(φ̄δ1 , ϕ̄δ1)(ξ),F2(φ̄δ1 , ϕ̄δ1)(ξ)) = (φδ1
1 , ϕ

δ1
1 ).

By repeating the above process, we can obtain (φδ2
n , ϕ

δ2
n ) � (φδ1

n , ϕ
δ1
n ) for each n � 1.

It follows that the two limit solutions satisfy (φδ2 , ϕδ2) � (φδ1 , ϕδ1), which completes
the proof. �

We remark that, for the perturbed semi-wave problem (4.1), the iteration mono-
tone method is more efficient than the Schauder’s fixed point method applied in [10,
11, 35], especially in proving the monotonicity of semi-wave solution with respect
to the parameter δ.

4.2. Original semi-wave problem

Theorem 4.6. For any fixed c > 0, either the semi-wave problem (1.8) or the
following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − a1φ(ξ) + h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ ∈ R,

cϕ′(ξ) = d2ϕ
′′(ξ) − a2ϕ(ξ) + g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ ∈ R,

(φ(−∞), ϕ(−∞)) = (0, 0), (φ(+∞), ϕ(+∞)) = (u∗, v∗)

(4.5)

has an increasing solution (φ, ϕ), but they can not occur simultaneously.

Proof. (i) Assume that {δn}∞n=1 is a sequence satisfying δn ∈ (0, 1
2 ) and δn ↘ 0 as

n→ ∞. By theorem 4.5, the perturbed problem (4.1) with δ = δn has an increasing
solution (φδn , ϕδn). Define ξn := max{ξ : φδn(ξ) = 1

2u
∗}. From theorem 4.5, we can

deduce that ξn is increasing with respect to n, and then ξ0 := limn→∞ ξn ∈ (0, +∞]
is well-defined.
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Define (φ̃n(ξ), ϕ̃n(ξ)) := (φδn(ξ + ξn), ϕδn(ξ + ξn)), ∀ξ ∈ R. Then φ̃n(0) = 1
2u

∗

and (φ̃n(ξ), ϕ̃n(ξ)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ̃′n(ξ) = d1φ̃
′′
n(ξ) − a1φ̃n(ξ) + h

(∫ +∞
−∞ J1(y)ϕ̃n(ξ − y − cτ1)dy

)
, ξ > −ξn,

cϕ̃′
n(ξ) = d2ϕ̃

′′
n(ξ) − a2ϕ̃n(ξ) + g

(∫ +∞
−∞ J2(y)φ̃n(ξ − y − cτ2)dy

)
, ξ > −ξn,

(φ̃n(ξ), ϕ̃n(ξ)) = (δnu∗, δnv∗), ξ � −ξn,
(φ̃n(+∞), ϕ̃n(+∞)) = (u∗, v∗).

Note that 0 � (φδn , ϕδn) � (u∗, v∗), i.e., (φδn , ϕδn) are uniformly bounded with
respect to n. From the integration presentations of solution (φδn , ϕδn) =
(F1(φδn , ϕδn),F2(φδn , ϕδn)), we can easily deduce that (φδn , ϕδn) are uniformly
bounded in C2(R+) with respect to n. By the Arzela–Ascoli theorem, there is a sub-
sequence of (φ̃n, ϕ̃n), which converges to (φ̃, ϕ̃) in C2

loc(R). Obviously, (φ̃(ξ), ϕ̃(ξ))
is increasing in ξ and satisfies φ̃(0) = 1

2u
∗.

Case I: ξ0 = +∞. In such a case, (φ̃(ξ), ϕ̃(ξ)) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
cφ̃′(ξ) = d1φ̃

′′(ξ) − a1φ̃(ξ) + h

(∫ +∞
−∞ J1(y)ϕ̃(ξ − y − cτ1)dy

)
, ξ ∈ R,

cϕ̃′(ξ) = d2ϕ̃
′′(ξ) − a2ϕ̃(ξ) + g

(∫ +∞
−∞ J2(y)φ̃(ξ − y − cτ2)dy

)
, ξ ∈ R.

Since (φ̃(ξ), ϕ̃(ξ)) is increasing and uniformly continuous on R+, by lemma 2.3
in [36] we can deduce that limξ→∞ φ̃′(ξ) = limξ→∞ φ̃′′(ξ) = 0 and limξ→∞ ϕ̃′(ξ) =
limξ→∞ ϕ̃′′(ξ) = 0, which imply that (φ̃(±∞), ϕ̃(±∞)) = (0, 0) or (u∗, v∗). In view
of φ̃(0) = 1

2u
∗, we know that (φ̃(−∞), ϕ̃(−∞)) = (0, 0) and (φ̃(+∞), ϕ̃(+∞)) =

(u∗, v∗).
Case II: ξ0 ∈ (0, +∞). In such a case, (φ̃(ξ), ϕ̃(ξ)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cφ̃′(ξ) = d1φ̃
′′(ξ) − a1φ̃(ξ) + h

(∫ +∞
−∞ J1(y)ϕ̃(ξ − y − cτ1)dy

)
, ξ > −ξ0,

cϕ̃′(ξ) = d2ϕ̃
′′(ξ) − a2ϕ̃(ξ) + g

(∫ +∞
−∞ J2(y)φ̃(ξ − y − cτ2)dy

)
, ξ > −ξ0,

(φ̃(ξ), ϕ̃(ξ)) = (0, 0), ξ � −ξ0.

Let (φ(ξ), ϕ(ξ)) = (φ̃(ξ − ξ0), ϕ̃(ξ − ξ0)), we can also prove (φ(+∞), ϕ(+∞)) =
(u∗, v∗). Obviously, (φ(ξ), ϕ(ξ)) = (0, 0) for ξ � 0. This completes the proof of the
first part.

(ii) We prove that the two cases can not happen simultaneously for any fixed
c > 0.

Suppose, to the contrary, that there exists some c0 > 0 such that (4.5) and (1.8)
have two increasing solutions Φ1(ξ) = (φ1(ξ), ϕ1(ξ)) and Φ2(ξ) = (φ2(ξ), ϕ2(ξ)),
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respectively. Similar as in the proof of lemma 2.10 in [17], for any θ ∈ R and some
fixed k ∈ (0, 1), we define

Φθ
1(ξ) = (φθ

1(ξ), ϕ
θ
1(ξ)) = (φ1(ξ + θ), ϕ1(ξ + θ)),

Φ̃2(ξ) = (φ̃2(ξ), ϕ̃2(ξ)) = (kφ2(ξ), kϕ2(ξ)) = kΦ2(ξ),

Φ̂θ(ξ) = (φ̂θ(ξ), ϕ̂θ(ξ)) = (φθ
1(ξ) − φ̃2(ξ), ϕθ

1(ξ) − ϕ̃2(ξ)) = Φθ
1(ξ) − Φ̃2(ξ).

Obviously, Φ̂θ is increasing in θ, and then (σ1(θ), σ2(θ)) := (infξ�0 φ̂
θ(ξ), infξ�0 ϕ̂

θ(ξ))
is increasing, continuous in θ.

Note that Φ̂θ(ξ) = Φθ
1(ξ) − Φ̃2(ξ) � Φθ

1(0) − Φ̃2(+∞) = Φ1(θ) − k(u∗, v∗) for any
ξ � 0. Since limθ→+∞ Φ1(θ) = (u∗, v∗), we have limθ→+∞ Φ̂θ(ξ) � (1 − k)(u∗, v∗)
uniformly on [0, +∞). Then there exists sufficiently large θ̄ � 1 (independent of ξ)
such that

Φ̂θ(ξ) >
1
2
(1 − k)(u∗, v∗) > 0 (4.6)

on [0, +∞) for all θ > θ̄. Moreover, as θ → −∞,

Φ̂θ(1) = Φθ
1(1) − Φ̃2(1) = Φ1(1 + θ) − kΦ2(1) → −kΦ2(1) < 0. (4.7)

Since (σ1(θ), σ2(θ)) is increasing, continuous in θ, by (4.6) and (4.7), there exist
θ1, θ2 ∈ R such that σ1(θ) > 0 for θ > θ1, σ1(θ1) = 0, and σ2(θ) > 0 for θ > θ2,
σ2(θ2) = 0.

We may assume that θ1 � θ2. It follows that Φ̂θ1 � 0 for ξ � 0. It is easy
to check that (φ̂θ1(+∞), ϕ̂θ2(+∞)) = (1 − k)(u∗, v∗) > 0, and (φ̂θ1(0), ϕ̂θ2(0)) =
(φθ1

1 (0), ϕθ2
1 (0)) > 0. Then σ1(θ1) = infξ�0 φ̂

θ1(ξ) = 0 is attainable at some ξ1 ∈
(0, +∞), i.e., φ̂θ1(ξ1) = 0.

Since k ∈ (0, 1) and h, g are subhomogeneous, we have

h

(∫ +∞

−∞
J1(y)ϕ1(ξ + θ1 − y − c0τ1)dy

)
− kh

(∫ +∞

−∞
J1(y)ϕ2(ξ − y − c0τ1)dy

)

� h

(∫ +∞

−∞
J1(y)ϕ1(ξ + θ1 − y − c0τ1)dy

)

− h

(∫ +∞

−∞
J1(y)kϕ2(ξ − y − c0τ1)dy

)

= h′(ϑ)
∫ +∞

−∞
J1(y)ϕ̂θ1(ξ − y − c0τ1)dy � 0.

Similarly, we can get

g

(∫ +∞

−∞
J2(y)φ1(ξ + θ1−y − c0τ2)dy

)
−kg

(∫ +∞

−∞
J2(y)φ2(ξ−y−c0τ2)dy

)
�0.
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Thus, Φ̂θ1 satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0(φ̂θ1)′(ξ) − d1(φ̂θ1)′′(ξ) + a1φ̂
θ1(ξ) = h

(∫ +∞
−∞ J1(y)ϕ1(ξ + θ1 − y − c0τ1)dy

)

−kh
(∫ +∞

−∞ J1(y)ϕ2(ξ − y − c0τ1)dy

)
� 0, ξ > 0,

c0(ϕ̂θ1)′(ξ) − d2(ϕ̂θ1)′′(ξ) + a2ϕ̂
θ1(ξ) = g

(∫ +∞
−∞ J2(y)φ1(ξ + θ1 − y − c0τ2)dy

)

−kg
(∫ +∞

−∞ J2(y)φ2(ξ − y − c0τ2)dy

)
� 0, ξ > 0,

(φ̂θ1(+∞), ϕ̂θ2(+∞)) = (1 − k)(u∗, v∗) > 0,

(φ̂θ1(ξ), ϕ̂θ2(ξ)) � 0, ξ � 0.

By the maximum principle for single equation, we have (φ̂θ1(ξ), ϕ̂θ2(ξ)) > 0 on
(0, +∞), which contradicts with φ̂θ1(ξ1) = 0. This completes the proof. �

Remark 4.7. Problem (4.5) with fixed c > 0 has an increasing solution (φ, ϕ) is
equivalent to the evolution system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∂tu = d1∂xxu− a1u+ h

(∫ +∞
−∞ J1(x− y)v(t− τ1, y)dy

)
, t > 0, x ∈ R,

∂tv = d2∂xxv − a2v + g

(∫ +∞
−∞ J2(x− y)u(t− τ2, y)dy

)
, t > 0, x ∈ R

(4.8)

admits an increasing travelling wave solution (u(t, x), v(t, x)) := (φ(x+ ct), ϕ(x+
ct)).

Define

c∗τ = inf
λ>0

χτ (λ)
λ

,

where χτ (λ) is a real root of

P (χ) := χ2 − [(d1λ
2 − a1) + (d2λ

2 − a2)]χ+ (d1λ
2 − a1)(d2λ

2 − a2)

− h′(0)g′(0)e−χ(τ1+τ2)

∫ +∞

−∞
J1(y)e−λydy

∫ +∞

−∞
J2(y)e−λydy

= 0,

(4.9)

and χτ (λ) is greater than the real parts of all other roots.
Note that limχ→+∞ P (χ) = +∞ and P (d1λ

2 − a1), P (d2λ
2 − a2) < 0. Then

χτ (λ) > max{d1λ
2 − a1, d2λ

2 − a2},

which implies that limλ→+∞
χτ (λ)

λ = +∞. Similarly, since R0 � R∗ > 1, we can
deduce χτ (0) > 0, and then limλ→0+

χτ (λ)
λ = +∞. Thus, infλ>0

χτ (λ)
λ is attainable
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at some λ∗ ∈ (0, +∞), i.e.,

c∗τ = inf
λ>0

χτ (λ)
λ

=
χτ (λ∗)
λ∗

.

Let c = χ(λ)
λ , we have dc

dλ |λ=λ∗=0. Define

Δ(λ, c) := (d1λ
2 − cλ− a1)(d2λ

2 − cλ− a2)

− h′(0)g′(0)e−cλ(τ1+τ2)

∫ +∞

−∞
J1(y)e−λydy

∫ +∞

−∞
J2(y)e−λydy.

Then (c∗τ , λ
∗) can be determined as the positive solution to the system

Δ(λ, c) = 0,
∂Δ(λ, c)
∂λ

= 0.

Theorem 4.8. The semi-wave problem (1.8) admits an increasing solution for 0 <
c < c∗τ , but has no increasing solution for c � c∗τ .

Proof. By the theory of monotone semiflows developed in [21], there exists c0 > 0
such that c0 is the asymptotic spreading speed. Moreover, the asymptotic spreading
speed c0 coincides with the minimal wave speed, that is, (4.8) has an increasing
travelling wave solution for c � c0, but no such a solution for 0 < c < c0. If c0 = c∗τ ,
then we can get the desired result by applying remark 4.7 and theorem 4.6.

Now it is sufficient to prove c0 = c∗τ . Set C = C([−τ2, 0] × R,R) × C([−τ1, 0] ×
R,R), C̄ = C([−τ2, 0],R) × C([−τ1, 0],R). Let Mt = (Mu

t ,M
v
t ) : C → C be the

solution map at time t of the following linear equations{
∂tu = d1∂xxu− a1u+ h′(0)J1 ∗ vt,

∂tv = d2∂xxv − a2v + g′(0)J2 ∗ ut.

For λ � 0, we define the linear map Bt = (Bu
t , B

v
t ) : C̄ → C̄ by

Bu
t [(ϕ1, ϕ2)](θ) = Mu

t [(ϕ1, ϕ2)e−λx](θ, 0), ∀θ ∈ [−τ2, 0],

Bv
t [(ϕ1, ϕ2)](θ) = Mv

t [(ϕ1, ϕ2)e−λx](θ, 0), ∀θ ∈ [−τ1, 0].

Then Bt = (Bu
t , B

v
t ) : C̄ → C̄ is the solution map of the following equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
u′(t) = d1λ

2u(t) − a1u(t) + h′(0)

(∫ +∞
−∞ J1(y)e−λydy

)
vt,

v′(t) = d2λ
2v(t) − a2v(t) + g′(0)

(∫ +∞
−∞ J2(y)e−λydy

)
ut.

(4.10)

Let

A(χ) =

(
d1λ

2 − a1 h′(0)e−χτ1
∫ +∞
−∞ J1(y)e−λydy

g′(0)e−χτ2
∫ +∞
−∞ J2(y)e−λydy d2λ

2 − a2

)
.
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Since (4.10) is a cooperative and irreducible delay equations, it follows that

det(χI −A(χ)) = 0,

i.e.,

P (χ) = χ2 − [(d1λ
2 − a1) + (d2λ

2 − a2)]χ+ (d1λ
2 − a1)(d2λ

2 − a2)
−h′(0)g′(0)e−χ(τ1+τ2)

∫ +∞
−∞ J1(y)e−λydy

∫ +∞
−∞ J2(y)e−λydy = 0,

admits a real root χτ (λ) which is greater than the real parts of all other ones (see
Theorem 5.5.1 in [23]).

By Theorem 3.10 in [21], we know that the spreading speed c0 = infλ>0
χτ (λ)

λ .
Thus, c0 = c∗τ , which completes the proof. �

Theorem 4.9. For any c ∈ (0, c∗τ ), the solution of (1.8) obtained in theorem 4.8 is
unique and strictly increasing on R+.

Proof. (i) (Strict monotonicity) For any θ > 0, we have

φ(ξ + θ)

=
1

d1(β12 − β11)

[∫ ξ+θ

0

(eβ11(ξ+θ−s) − eβ11(ξ+θ)−β12s)

× h

(∫ +∞

−∞
J1(y)ϕ(s− y − cτ1)dy

)
ds

+
∫ +∞

ξ+θ

(eβ12(ξ+θ−s) − eβ11(ξ+θ)−β12s)h

(∫ +∞

−∞
J1(y)ϕ(s− y − cτ1)dy

)
ds

]

=
1

d1(β12 − β11)

[∫ ξ

−θ

(eβ11(ξ−s̃) − eβ11(ξ+θ)−β12(s̃+θ))×

h

(∫ +∞

−∞
J1(y)ϕ(s̃+ θ − y − cτ1)dy

)
ds̃+

∫ +∞

ξ

(eβ12(ξ−s̃) − eβ11(ξ+θ)−β12(s̃+θ))

× h

(∫ +∞

−∞
J1(y)ϕ(s̃+ θ − y − cτ1)dy

)
ds̃

]

>
1

d1(β12 − β11)

[∫ ξ

0

(eβ11(ξ−s̃) − eβ11ξ−β12s̃)h

(∫ +∞

−∞
J1(y)ϕ(s̃− y − cτ1)dy

)
ds̃

+
∫ +∞

ξ

(eβ12(ξ−s̃) − eβ11ξ−β12s̃)h

(∫ +∞

−∞
J1(y)ϕ(s̃− y − cτ1)dy

)
ds̃

]
= φ(ξ).

In a similar way, we can obtain ϕ(ξ + θ) > ϕ(ξ) for ξ ∈ R+.
(ii) (uniqueness) Fix c ∈ (0, c∗τ ), suppose that (φ1, ϕ1) and (φ2, ϕ2) are two

strictly increasing solutions of (1.8). Then, for i = 1, 2, (0, 0) < (φi(ξ), ϕi(ξ)) <
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(u∗, v∗) for ξ > 0 and (φi(+∞), ϕi(+∞)) = (u∗, v∗). Moreover, by the Hopf’s
boundary lemma, we have (φi)′+(0) > 0, (ϕi)′+(0) > 0 for i = 1, 2.

We define

ρ1 := inf{ρ � 1 : ρφ1(ξ) > φ2(ξ),∀ξ > 0},
ρ2 := inf{ρ � 1 : ρϕ1(ξ) > ϕ2(ξ),∀ξ > 0},

and ρ∗ := max{ρ1, ρ2}.
We will show that ρ∗ = 1. Otherwise, ρ∗ > 1. Denote φ̃ = ρ∗φ1 − φ2 and ϕ̃ =

ρ∗ϕ1 − ϕ2. Obviously, φ̃(ξ) � 0, ϕ̃(ξ) � 0 for ξ � 0, φ̃(0) = ϕ̃(0) = 0, φ̃(+∞) =
(ρ∗ − 1)u∗ and ϕ̃(+∞) = (ρ∗ − 1)v∗. Since h is subhomogeneous, we obtain, for
ξ > 0,

cφ̃′(ξ) − d1φ̃
′′(ξ) + a1φ̃(ξ)

= ρ∗h

(∫ +∞

−∞
J1(y)ϕ1(ξ−y−cτ1)dy

)
− h

(∫ +∞

−∞
J1(y)ϕ2(ξ − y − cτ1)dy

)

= ρ∗h

(
1
ρ∗

∫ +∞

−∞
J1(y)ρ∗ϕ1(ξ − y − cτ1)dy

)

− h

(∫ +∞

−∞
J1(y)ϕ2(ξ − y − cτ1)dy

)

� h

(∫ +∞

−∞
J1(y)ρ∗ϕ1(ξ−y−cτ1)dy

)
− h

(∫ +∞

−∞
J1(y)ϕ2(ξ − y − cτ1)dy

)

� 0.

Similarly, we can deduce that cϕ̃′(ξ) − d2ϕ̃
′′(ξ) + a2ϕ̃(ξ) � 0 for ξ > 0. By the

Hopf’s boundary lemma, we have φ̃′+(0) > 0 and ϕ̃′
+(0) > 0.

In view of the L’Hôpital’s rule, limξ→0+
φ̃(ξ)
φ2(ξ)

= φ̃′
+(0)

(φ2)′+(0) > 0 and limξ→0+
ϕ̃(ξ)
ϕ2(ξ)

=
ϕ̃′

+(0)

(ϕ2)′+(0) > 0. Note that limξ→+∞
φ̃(ξ)
φ2(ξ)

= (ρ∗−1)u∗

u∗ > 0, limξ→+∞
ϕ̃(ξ)
ϕ2(ξ)

= (ρ∗−1)v∗

v∗ >

0. Thus, there exist constants ε1, ε2 > 0 such that φ̃
φ2
> ε1 and ϕ̃

ϕ2
> ε2 for ξ > 0.

It follows that

ρ∗

1 + ε1
φ1(ξ) � φ2(ξ),

ρ∗

1 + ε2
ϕ1(ξ) � ϕ2(ξ) for ξ > 0,

which contradicts the definition of ρ∗. Thus, ρ∗ = 1, which implies that
(φ1(ξ), ϕ1(ξ)) � (φ2(ξ), ϕ2(ξ)) for ξ � 0. Clearly, the same method can be used
to prove (φ1(ξ), ϕ1(ξ)) � (φ2(ξ), ϕ2(ξ)) for ξ � 0. Hence, we get the uniqueness of
solution. �

In what follows, we exhibit some properties of the strictly increasing solution of
(1.8).
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Lemma 4.10. For any fixed c ∈ (0, c∗τ ), let (φc
τ , ϕ

c
τ ) be the unique strictly increasing

solution of (1.8).

(i) For 0 < c1 < c2 < c∗τ , then ((φc1
τ )′+(0), (ϕc1

τ )′+(0)) > ((φc2
τ )′+(0), (ϕc2

τ )′+(0)),
and (φc1

τ (ξ), ϕc1
τ (ξ)) > (φc2

τ (ξ), ϕc2
τ (ξ)) for ξ > 0.

(ii) For any fixed μ, ρ > 0, there exists a unique cτ = cμ,ρ
τ ∈ (0, c∗τ ) such that

μ[(φcτ
τ )′+(0) + ρ(ϕcτ

τ )′+(0)] = cτ .

(iii) If (τ1, τ2) � (τ̃1, τ̃2), then c∗τ̃ � c∗τ , cτ̃ � cτ with τ̃ = τ̃1 + τ̃2 and τ = τ1 + τ2.

Proof. Similarly as the proof of Theorem 4.6 in [30], we can prove (i) and (ii), here
we omit the details.

Next we prove (iii). Recall that in (4.9), χτ (λ) can be seen as an intersection of
two curves:

f1(χ) = χ2 − [(d1λ
2 − a1) + (d2λ

2 − a2)]χ+ (d1λ
2 − a1)(d2λ

2 − a2),

f2(χ) = h′(0)g′(0)e−χτ

∫ +∞

−∞
J1(y)e−λydy

∫ +∞

−∞
J2(y)e−λydy.

The function f1 is independent of τ , and f2 is decreasing in τ . If τ � τ̃ , then the
two intersections satisfy χτ (λ) � χτ̃ (λ), which implies

c∗τ = inf
λ>0

χτ (λ)
λ

� inf
λ>0

χτ̃ (λ)
λ

= c∗τ̃ .

Now we prove cτ � cτ̃ . Note that cτ̃ ∈ (0, c∗τ̃ ) and cτ ∈ (0, c∗τ ). If cτ � c∗τ̃ , then we
have cτ � c∗τ̃ > cτ̃ , which completes the proof.

Next, we assume cτ < c∗τ̃ . In such a case, cτ , cτ̃ ∈ (0, c∗τ̃ ). In view of (ii),
to get the desired result, we only need to prove that ((φc

τ )′+(0), (ϕc
τ )′+(0)) �

((φc
τ̃ )′+(0), (ϕc

τ̃ )′+(0)) for any c ∈ (0, c∗τ̃ ).
Since (φc

τ̃ (ξ), ϕc
τ̃ (ξ)) is increasing on R, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(φc
τ̃ )′(ξ) − d1(φc

τ̃ )′′(ξ) + a1φ
c
τ̃ (ξ) = h

(∫ +∞
−∞ J1(y)ϕc

τ̃ (ξ − y − cτ̃1)dy

)

� h

(∫ +∞
−∞ J1(y)ϕc

τ̃ (ξ − y − cτ1)dy

)
, ξ > 0,

c(ϕc
τ̃ )′(ξ) − d2(ϕc

τ̃ )′′(ξ) + a2ϕ
c
τ̃ (ξ) = g

(∫ +∞
−∞ J2(y)φc

τ̃ (ξ − y − cτ̃2)dy

)

� g

(∫ +∞
−∞ J2(y)φc

τ̃ (ξ − y − cτ2)dy

)
, ξ > 0,

φc
τ̃ (ξ) = ϕc

τ̃ (ξ) = 0, ξ � 0,
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which implies that (φc
τ̃ (ξ), ϕc

τ̃ (ξ)) is a lower solution of the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt = d1φξξ − cφξ − a1φ+ h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, t > 0, ξ > 0,

ϕt = d1ϕξξ − cϕξ − a1ϕ+ h

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, t > 0, ξ > 0,

φ(t, ξ) = ϕ(t, ξ) = 0, t > 0, ξ � 0,
(φ(0, ξ), ϕ(0, ξ)) = (φc

τ̃ (ξ), ϕc
τ̃ (ξ)).

(4.11)
By the maximum principle, the solution (φ(t, ξ), ϕ(t, ξ)) of (4.11) is increasing in
t � 0 and satisfies limt→+∞(φ(t, ξ), ϕ(t, ξ)) = (φ∗(ξ), ϕ∗(ξ)), where (φ∗(ξ), ϕ∗(ξ))
is a solution of (1.8). Clearly, the uniqueness of the solution to (1.8) ensures that
(φ∗(ξ), ϕ∗(ξ)) = (φc

τ (ξ), ϕc
τ (ξ)). Thus, for all ξ > 0, we have

(φc
τ̃ (ξ), ϕc

τ̃ (ξ)) = (φ(0, ξ), ϕ(0, ξ)) � (φ(t, ξ), ϕ(t, ξ))

� (φ(+∞, ξ), ϕ(+∞, ξ)) = (φc
τ (ξ), ϕc

τ (ξ)).

Let φ̂(ξ) = φc
τ (ξ) − φc

τ̃ (ξ) and ϕ̂(ξ) = ϕc
τ (ξ) − ϕc

τ̃ (ξ), then (φ̂, ϕ̂) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ̂′(ξ) − d1φ̂
′′(ξ) + a1φ̂(ξ) = h

(∫ +∞
−∞ J1(y)ϕc

τ (ξ − y − cτ1)dy

)

−h
(∫ +∞

−∞ J1(y)ϕc
τ̃ (ξ − y − cτ̃1)dy

)
� 0, ξ > 0,

cϕ̂′(ξ) − d2ϕ̂
′′(ξ) + a2ϕ̂(ξ) = g

(∫ +∞
−∞ J2(y)φc

τ (ξ − y − cτ2)dy

)

−g
(∫ +∞

−∞ J2(y)φc
τ̃ (ξ − y − cτ̃2)dy

)
� 0, ξ > 0,

φ̂(0) = 0, ϕ̂(0) = 0.

The Hopf boundary lemma yields φ̂′(0) > 0 and ϕ̂′(0) > 0, that is, (φc
τ )′+(0) >

(φc
τ̃ )′+(0) and (ϕc

τ )′+(0) > (ϕc
τ̃ )′+(0). This completes the proof. �

5. Asymptotic spreading speed

In this section, by employing the semi-wave solutions, we determine the asymptotic
spreading speeds of free boundaries when spreading occurs.

Proof of theorem 1.4. We divide the proof into the following two steps.

Step 1. We prove lim inft→+∞
s1(t)

t � −cτ and lim supt→+∞
s2(t)

t � cτ .
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Consider the following auxiliary semi-wave problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − (a1 − 2ε)φ(ξ) + h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy

)
, ξ > 0,

cϕ′(ξ) = d2ϕ
′′(ξ) − (a2 − 2ε)ϕ(ξ) + g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy

)
, ξ > 0,

(φ(ξ), ϕ(ξ)) = (0, 0), ξ � 0,
(φ(+∞), ϕ(+∞)) = (u∗2ε, v

∗
2ε),

(5.1)
where ε > 0 is a small constant, and (u∗2ε, v

∗
2ε) is the unique positive equilibrium for

the first two equations of (5.1). By theorem 4.10 (ii), there exists a unique cτ,2ε > 0
such that

μ[(φcτ,2ε
2ε )′+(0) + ρ(ϕcτ,2ε

2ε )′+(0)] = cτ,2ε, lim
ε→0+

cτ,2ε = cτ ,

where (φcτ,2ε
2ε , ϕ

cτ,2ε
2ε ) is the unique strictly increasing solution of (5.1) with c =

cτ,2ε.
Let (ū(t), v̄(t)) be the solution of (3.1). Since R0 � R∗ > 1, from Theorem 3.2

in [42], we can show that limt→∞(ū(t), v̄(t)) = (u∗, v∗). The comparison princi-
ple implies (u(t, x), v(t, x)) � (ū(t), v̄(t)) for t > 0, x ∈ (s1(t), s2(t)). Note that
(u∗, v∗) < (u∗ε, v

∗
ε ). Thus, there exists sufficiently large T0 > 0 such that

u(t, x) � u∗ε, ∀t � T0, x ∈ [s1(t), s2(t)],

v(t, x) � v∗ε , ∀t � T0, x ∈ [s1(t), s2(t)].

Since (φcτ,2ε
2ε (+∞), ϕcτ,2ε

2ε (+∞)) = (u∗2ε, v
∗
2ε) > (u∗ε, v

∗
ε ), there exists ξ0 > s2(T0 +

max{τ1, τ2}) such that

(
φ

cτ,2ε
2ε (ξ0−s2(T0+max{τ1, τ2})), ϕ

cτ,2ε
2ε (ξ0 − s2(T0 + max{τ1, τ2}))

)
> (u∗ε, v

∗
ε ).

Define

s̄2(t) = cτ,2ε(t− T0) + ξ0, t � T0,

ū(t, x) =

{
φ

cτ,2ε
2ε (s̄2(t) + x), t � T0, x ∈ [−s̄2(t), 0],
φ

cτ,2ε
2ε (s̄2(t) − x), t � T0, x ∈ [0, s̄2(t)],

and

v̄(t, x) =

{
ϕ

cτ,2ε
2ε (s̄2(t) + x), t � T0, x ∈ [−s̄2(t), 0],

ϕ
cτ,2ε
2ε (s̄2(t) − x), t � T0, x ∈ [0, s̄2(t)].
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For t � T0 + max{τ1, τ2} and x ∈ [0, s̄2(t)), by the symmetry of J1 and the
monotonicity of ϕcτ,2ε

2ε and h, we have

h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)
= h

(∫ +∞

−∞
J1(y)v̄(t− τ1, x+ y)dy

)

= h

(∫ −x

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t− τ1) + x+ y)dy

+
∫ +∞

−x

J1(y)ϕ
cτ,2ε
2ε (s̄2(t− τ1) − x− y)dy

)

� h

(∫ −x

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t− τ1) − x− y)dy

+
∫ +∞

−x

J1(y)ϕ
cτ,2ε
2ε (s̄2(t− τ1) − x− y)dy

)

= h

(∫ +∞

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t− τ1) − x− y)dy

)
,

and then

ūt − d1ūxx + a1ū− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= cτ,2ε(φ
cτ,2ε
2ε )′(s̄2(t) − x) − d1(φ

cτ,2ε
2ε )′′(s̄2(t) − x) + a1φ

cτ,2ε
2ε (s̄2(t) − x)

− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= 2εφcτ,2ε
2ε (s̄2(t) − x) + h

(∫ +∞

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t) − x− y − cτ,2ετ1)dy

)

− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= 2εφcτ,2ε
2ε (s̄2(t) − x) + h

(∫ +∞

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t− τ1) − x− y)dy

)

− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

� 0.
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For t � T0 + max{τ1, τ2} and x ∈ (−s̄2(t), 0), we also have

ūt − d1ūxx + a1ū− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= cτ,2ε(φ
cτ,2ε
2ε )′(s̄2(t) + x) − d1(φ

cτ,2ε
2ε )′′(s̄2(t) + x) + a1φ

cτ,2ε
2ε (s̄2(t) + x)

− h

(∫ +∞

−∞
J1(x− y)v̄(t− τ1, y)dy

)

= 2εφcτ,2ε
2ε (s̄2(t) + x) + h

(∫ +∞

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t) + x− y − cτ,2ετ1)dy

)

− h

(∫ +∞

−∞
J1(y)v̄(t− τ1, x− y)dy

)

= 2εφcτ,2ε
2ε (s̄2(t) + x) + h

(∫ +∞

−∞
J1(y)ϕ

cτ,2ε
2ε (s̄2(t− τ1) + x− y)dy

)

− h

(∫ +∞

−∞
J1(y)v̄(t− τ1, x− y)dy

)

� 0.

The inequality satisfied by v̄ can be proved similarly. In terms of the choices of T0

and ξ0, we can check that (ū(t, x), v̄(t, x);−s̄2(t), s̄2(t)) is an upper solution of (1.1)
with t > 0 in lemma 2.2 replaced by t � T0 + max{τ1, τ2}. Applying the comparison
principle, we have s1(t) � −s̄2(t) and s2(t) � s̄2(t) for t � T0 + max{τ1, τ2}, and
then

lim inf
t→+∞

s1(t)
t

� lim inf
t→+∞

−s̄2(t)
t

� −cτ,2ε,

lim sup
t→+∞

s2(t)
t

� lim sup
t→+∞

s̄2(t)
t

� cτ,2ε.

Taking ε→ 0+, we can get the desired result.

Step 2. We show lim supt→+∞
s1(t)

t � −cτ and lim inft→+∞
s2(t)

t � cτ .
We consider another auxiliary semi-wave problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − a1φ(ξ) + h

(∫ +∞
−∞ J1(y)ϕ(ξ − y − cτ1)dy − ζ

)
, ξ > 0,

cϕ′(ξ) = d2ϕ
′′(ξ) − a2ϕ(ξ) + g

(∫ +∞
−∞ J2(y)φ(ξ − y − cτ2)dy − ζ

)
, ξ > 0,

(φ(ξ), ϕ(ξ)) = (0, 0), ξ � 0,
(φ(+∞), ϕ(+∞)) = (u∗ζ , v

∗
ζ ),

(5.2)
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where ζ > 0 is a small constant, and (u∗ζ , v
∗
ζ ) is the unique positive equilibrium for

the first two equations of (5.2). By theorem 4.10 (ii), there exists a unique cτ,ζ > 0
such that

μ[(φcτ,ζ
ζ )′+(0) + ρ(ϕcτ,ζ

ζ )′+(0)] = cτ,ζ , lim
ζ→0+

cτ,ζ = cτ ,

where (φcτ,ζ
ζ , ϕ

cτ,ζ
ζ ) is the unique strictly increasing solution of (5.2) with c = cτ,ζ .

From lemma 3.1, we know that limt→+∞(u(t, x), v(t, x)) = (u∗, v∗) locally uni-
formly for x ∈ R. Note that (u∗, v∗) > (u∗ζ , v

∗
ζ ). Then for any L0 > 0, there exists

sufficiently large T0 > 0 such that s2(T0) > L0 and (u(t, x), v(t, x)) � (u∗ζ , v
∗
ζ ) for

any (t, x) ∈ [T0, +∞) × [−3L0, L0].
We define

s2(t) = cτ,ζ(t− T0) + L0, t � T0,

u(t, x) = φ
cτ,ζ
ζ (s2(t) − x), t � T0, x ∈ [−L0, s2(t)],

v(t, x) = ϕ
cτ,ζ
ζ (s2(t) − x), t � T0, x ∈ [−L0, s2(t)],

and continuously extend u(t, x), v(t, x) to be functions defined on [T0,+∞) ×
(−∞, s2(t)] such that u(t, x) ≡ 0, v(t, x) ≡ 0 on [T0,+∞) × (−∞,−3L0], and

(φcτ,ζ
ζ (s2(t) − x), ϕcτ,ζ

ζ (s2(t) − x)) � (u(t, x), v(t, x)) � (u∗ζ , v
∗
ζ )

on [T0,+∞) × [−2L0, −L0]. The graph of v(t, x) is plotted in Fig. 1. It follows that∫ +∞

−L0

J1(x− y)v(t− τ1, y)dy =
∫ +∞

−L0

J1(x− y)ϕcτ,ζ
ζ (s2(t− τ1) − y)dy,

∫ −L0

−2L0

J1(x− y)v(t− τ1, y)dy �
∫ −L0

−2L0

J1(x− y)ϕcτ,ζ
ζ (s2(t− τ1) − y)dy

(5.3)

for any t � T0 + max{τ1, τ2} and x ∈ [−L0, s2(t)].
Choose L0 sufficiently large such that

v∗
∫ −L0

−∞
J1(z)dz < ζ, u∗

∫ −L0

−∞
J2(z)dz < ζ,

which imply∫ −2L0

−∞
J1(x− y)ϕcτ,ζ

ζ (s2(t− τ1) − y)dy � v∗
∫ −2L0

−∞
J1(x− y)dy

= v∗
∫ −2L0−x

−∞
J1(z)dz � v∗

∫ −L0

−∞
J1(z)dz < ζ

(5.4)

and ∫ −2L0

−∞
J2(x− y)φcτ,ζ

ζ (s2(t− τ2) − y)dy � u∗
∫ −L0

−∞
J2(z)dz < ζ

for t � T0 + max{τ1, τ2} and x ∈ [−L0, s2(t)].

https://doi.org/10.1017/prm.2023.100 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.100


42 Q. Chen, S. Tang, Z. Teng and F. Wang

Figure 1. Lower solution v(t, x).

For t � T0 + max{τ1, τ2} and x ∈ [−L0, s2(t)], we can deduce

ut − d1uxx + a1u− h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)

= cτ,ζ(φ
cτ,ζ
ζ )′(s2(t) − x) − d1(φ

cτ,ζ
ζ )′′(s2(t) − x) + a1φ

cτ,ζ
ζ (s2(t) − x)

− h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)

= h

(∫ +∞

−∞
J1(y)ϕ

cτ,ζ
ζ (s2(t) − x− y − cτ,ζτ1)dy − ζ

)

− h

(∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)

= h′(η)

(∫ +∞

−∞
J1(x− y)ϕcτ,ζ

ζ (s2(t− τ1) − y)dy

− ζ −
∫ +∞

−∞
J1(x− y)v(t− τ1, y)dy

)

� 0 with some η > 0,

where the last inequality uses (5.3) and (5.4). The inequality satisfied by v can
be proved similarly. In terms of the choices of T0 and L0, we can check that
(u(t, x), v(t, x); s2(t)) is a lower solution of one-side case with t > 0, 0 < x < s̄2(t)
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in lemma 2.3 replaced by t > T0 + max{τ1, τ2},−L0 < x < s2(t). Therefore, by the
comparison principle we have s2(t) � s2(t) for t � T0 + max{τ1, τ2}, which implies

lim inf
t→+∞

s2(t)
t

� lim inf
t→+∞

s2(t)
t

� cτ,ζ .

By taking ζ → 0+, we get the desired result. The limit superior of s1(t)
t can be

proved similarly. This completes the proof. �

6. Partially degenerate diffusion case without delays

In this section, we aim to determine the asymptotic spreading speeds of free bound-
aries for the partially degenerate diffusion case considered in [19]. The upper bounds
of spreading speeds were provided in [19], but their precise values are still unknown.
Here we give a complete answer to the problem. More precisely, we consider the
following free boundary model introduced in [19]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, x) = d1uxx − a1u(t, x) +
∫ +∞
−∞ J1(x− y)v(t, y)dy, t > 0, s1(t) < x < s2(t),

vt(t, x) = −a2v(t, x) + g(u(t, x)), t > 0, s1(t) < x < s2(t),
u(t, s1(t)) = u(t, s2(t)) = 0, v(t, s1(t)) = v(t, s2(t)) = 0, t > 0,
s′1(t) = −μux(t, s1(t)), s′2(t) = −μux(t, s2(t)), t > 0,
s1(0) = −s0, s2(0) = s0, t > 0,
u(0, x) = u0(x), v(0, x) = v0(x), − s0 < x < s0,

(6.1)
which is a special case of (1.1).

As in § 4, we consider the corresponding perturbed semi-wave problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ′(ξ) = d1φ
′′(ξ) − a1φ(ξ) +

∫ +∞
−∞ J1(y)ϕ(ξ − y)dy, ξ > 0,

cϕ′(ξ) = −a2ϕ(ξ) + g(φ(ξ)), ξ > 0,
(φ(ξ), ϕ(ξ)) = (δu∗, δv∗), ξ � 0,
(φ(+∞), ϕ(+∞)) = (u∗, v∗).

(6.2)

Define F1(Φ)(ξ) similarly as in § 4.1, and

F2(Φ)(ξ) =
{
δv∗e−

a2
c ξ + 1

c

∫ ξ

0
e
a2
c (s−ξ)g(φ(s))ds, ξ > 0,

δv∗, ξ � 0.

By applying the monotone iteration method, we can also establish the existence of
solutions to the perturbed semi-wave problem (6.2).

Similar as theorem 4.6, there is a dichotomy between increasing semi-wave solu-
tion and increasing travelling wave solution (u(t, x), v(t, x)) = (φ(x+ ct), ϕ(x+
ct)) of{

∂tu = d1∂xxu− a1u+
∫ +∞
−∞ J1(x− y)v(t, y)dy, t > 0, x ∈ R,

∂tv = −a2v + g(u(t, x)), t > 0, x ∈ R.
(6.3)

In [39], Xu and Zhao proved that there exists c∗ > 0 such that (6.3) has an
increasing travelling wave solution for c � c∗, but no such a solution for 0 < c < c∗.
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Therefore, we can establish the (non-)existence of semi-wave solution. The critical
value of speed c for semi-wave is also c∗.

Similarly as the proof of Lemma 2.13 in [40] and Lemma 2.10 in [10], we can
prove that there exists a unique c∗μ ∈ (0, c∗) such that μ(φc∗μ)′+(0) = c∗μ for any
given μ > 0, where (φc∗μ , ϕc∗μ) is the semi-wave solution with c = c∗μ. Moreover,
limμ→+∞ c∗μ = c∗.

As in § 5, by constructing a pair of upper and lower solutions from semi-wave
solutions, we can get the asymptotic spreading speeds for (6.1) as follows

− lim
t→+∞

s1(t)
t

= lim
t→+∞

s2(t)
t

= c∗μ.

Remark 6.1. We remark that the method in this paper can also be applied to
determine the asymptotic speeds for the partially degenerate diffusion case with
time delays, i.e., d2 = ρ = 0, J2 = δ (Dirac delta function).
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Appendix A.

Proposition A
For the generalized principal eigenvalue μ1(Ω) defined in (2.6), we have (i)

μ1((−l, l)) = μl
0 for any l > 0, where μl

0 is the principal eigenvalue of (1.7); (ii)
μ1((−l, l)) → μ1(R) as l → +∞.

Proof. (i) From theorem 1.1 (ii), we know μl
0 ∈ E(−l,l), where E(−l,l) is defined in

(2.6). Then μ1((−l, l)) = supE(−l,l) � μl
0. Now we prove the equality holds.

Assume by contradiction that μ1((−l, l)) > μl
0, we can choose μ̃ ∈ (μl

0, μ1((−l, l)))
and (φ̃, ϕ̃) ∈ C2((−l, l)) ∩ C1([−l, l]) such that (φ̃, ϕ̃) > 0 in (−l, l) and satisfies

− d1φ̃xx + a1φ̃ � μ̃h′(0)
∫ l

−l

J1(x− y)ϕ̃(y)dy,

− d2ϕ̃xx + a2ϕ̃ � μ̃g′(0)
∫ l

−l

J2(x− y)φ̃(y)dy

for x ∈ (−l, l).
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We claim that there exists ε > 0 such that (φ̃, ϕ̃) � ε(φl
μ0
, ϕl

μ0
) on (−l, l). Indeed,

since (φ̃, ϕ̃), (φl
μ0
, ϕl

μ0
) are positive continuous functions in (−l, l), we only need to

prove the inequality near the endpoints x = ±l. If φ̃(−l) > 0, due to φl
μ0

(−l) = 0,
we know that φ̃ � εφl

μ0
on (−l, −l + ε) with some ε, ε > 0. If φ̃(−l) = 0, by the

Hopf boundary lemma, we have (φ̃)′+(−l) > 0. It follows that limx→−l
φ̃(x)

φlμ0
(x)

=
(φ̃)′+(−l)

(φlμ0
)′+(−l)

. Let ε = 1
2

(φ̃)′+(−l)

(φlμ0
)′+(−l)

, we can also prove that φ̃ � εφl
μ0

on (−l, −l + ε) for
some ε > 0. The other cases can be similarly proved. Thus, the claim holds true.

Let ε∗ be the largest ε > 0 such that (φ̃, ϕ̃) � ε(φl
μ0
, ϕl

μ0
) on (−l, l). We define

(φ̂, ϕ̂) = (φ̃− ε∗φl
μ0
, ϕ̃− ε∗ϕl

μ0
). Then (φ̂, ϕ̂) � 0 on (−l, l) and there exists at least

one x0 ∈ (−l, l) such that φ̂(x0) = 0 or ϕ̂(x0) = 0. Since μ̃ > μl
0, we know φ̂, ϕ̂ �≡ 0

on (−l, l). We may assume that φ̂(x1) > 0 and ϕ̂(x2) > 0 for some x1, x2 ∈ (−l, l).
By the strong maximum principle, we have φ̂, ϕ̂ > 0 on (−l, l), which contradicts
with φ̂(x0) = 0 or ϕ̂(x0) = 0. Thus, μ1((−l, l)) = μl

0.
(ii) By the definition of ER in (2.6), for any μ̂ ∈ ER, there exists (φ1, ϕ1) ∈ C2(R)

such that (φ1, ϕ1) > 0 in R and satisfies

− d1φ1,xx + a1φ1 � μ̂h′(0)
∫ +∞

−∞
J1(x− y)ϕ1(y)dy,

− d2ϕ1,xx + a2ϕ1 � μ̂g′(0)
∫ +∞

−∞
J2(x− y)φ1(y)dy

for x ∈ R. Using (φ1, ϕ1) as ‘test function’ for μ1((−l, l)), we have μ̂ � μ1((−l, l)) =
μl

0 for any l > 0. Taking l → +∞, we get μ̂ � μ∗, and then μ1(R) = supER � μ∗.
Moreover, from (2.5), we know μ∗ ∈ ER. Thus, μ1(R) � μ∗. In summary, μ1(R) =
μ∗, which completes the proof. �
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