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         Introduction 
 Materials informatics is the application of informatics (the study 

of the structure and properties from scientifi c information) to 

materials science and engineering to aid in the understand-

ing, development, and discovery of materials. Much of the 

initial emphasis in materials informatics has been placed on 

parametric fi rst-principles exploration of lattice structures of 

stable multicomponent compounds and phases, or small-to-

moderate-scale molecular structures that may deliver desired 

functionality.  1 , 2   Typically, this involves scripting workfl ows to 

systematically explore a range of material compositions and 

resulting energy-minimized structures using density func-

tional theory, molecular statics, or some other scheme built 

upon ground-state stability. Another approach, consistent with 

bioinformatics applications, is to introduce high-throughput 

synthesis of structure, followed by rapid and approximate 

property assessment in experimental assays. With such machin-

ery in place, regardless of the blend of computation and experi-

ments, an essential prong to this strategy is the application of 

data science to explore, screen, and select potential materials 

systems to meet application requirements. These methods con-

stitute what may be regarded as the discovery thrust of materi-

als informatics. 

 For example, consider the use of informatics in materials 

discovery through the prediction of phase stability in alloys as 

a function of their constituents. Electronic-structure calcu-

lations are being used to calculate the energetics of alloyed 

systems using computational combinatorics.  3 , 4   From these 

data sets, one can determine optimal confi gurations and 

the properties specifi c to those structures, including elas-

tic constants.  5   The Materials Project at Lawrence Berkeley 

National Laboratory provides results of such calculations 

as a web service.  6 

 Most practical materials systems, however, consist of 

interfaces that demarcate grain or phase boundaries, which 

infl uence thermal, mechanical, and physical properties at the 

mesoscale. For example, structural materials have a rich his-

tory of reliance on structure hierarchy well above the scale 

of the elementary unit cell of the lattice to achieve superior 

performance. The scales of structure in alloys range from sev-

eral nanometers for optimal precipitate strengthening, to tens 

of nanometers for multilayers and nanotwins, to hundreds of 

nanometers for distributed coherent precipitates and second 

phases, to tens of micrometers for grain-size distributions. 

Figure 1 7 , 8   shows an example of scales of material structure 

hierarchy that control properties of precipitate-strengthened 
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Ni-base superalloys for aircraft gas-turbine engine hot section 

components, such as the disks, which turn under the infl uence 

of the hot gases leaving the combustor. Composite materials 

derive their outstanding properties from the scale hierarchy 

associated with spatial distribution of phases with strong prop-

erty contrast, in addition to interphase regions that modify phase 

interactions. Properties of structural materials are mediated by 

point, line, and surface defects, with the latter two types having 

extended character and both short- and long-range structure.     

 The application of data science and informatics methods 

to microstructures has not been strongly emphasized in the 

solid-state physics, chemistry, and materials science com-

munities until recently. There are many challenges in apply-

ing informatics methods to microstructures that arise from the 

complexity of their hierarchical structures. The benefi ts of 

applying these methods to microstructures, however, are great, 

given their common characteristic of metastability and their 

important role in determining structure–property relations. 

The situation is further complicated by the presence of phase 

and structural transitions, which may yield disruptive advances 

in available properties. For example, transformation tough-

ening confers both workability and toughness. 

 Metastability of structural materials is a natural byproduct 

of nonequilibrium thermomechanical processing and associ-

ated structure evolution, which gives rise to novel, tailored 

microstructures. Achieving such hierarchical structures has 

historically been more art than science, as the ability to apply pre-

dictive computational models has been limited in this regard. 

Recent advances in phase-fi eld modeling and 

other related methods  9 , 10   offer promise in that 

they (1) clearly distinguish nucleation and 

growth phenomena; and (2) consider thermo-

dynamics in terms of stable phases, interfaces, 

and driving forces for kinetics. These are 

essential elements of a strategy for modeling 

process–structure relations for hierarchical 

microstructures, since the time scales for equil-

ibration at a given temperature vary according 

to the scale of each structure. The ability to 

computationally predict the emergent, collec-

tive properties/responses of interest for these 

hierarchical structures has been elusive, result-

ing in an emphasis on experimental protocols. 

 Multiscale modeling methods meanwhile 

are steadily advancing, in conjunction with 

experimental measurements, with fi delity 

appropriate to various levels of hierarchy to 

confi rm mechanisms and validate models.  11 , 12   

They have received investment now for nearly 

20 years. Still, it seems clear that the pathway to 

truly predictive multiscale models for process–

structure and structure–property relations is a 

long and winding one. Much of the behavior 

of materials is complicated by the presence of 

complex hierarchical structures that manifest 

themselves in physical responses over a wide range of length 

and time scales,  13   as indicated in  Figure 1 . Structure–property 

relations for metal alloys, for example, while fundamentally 

governed by the crystal structure, are highly dependent on the 

distributions of defects at the mesoscale. These defects can 

include grain boundaries in a polycrystalline material, dislo-

cations whose generation, annihilation, interactions, and 

motion govern yield and work hardening, point defects critical 

to solid-solution strengthening, and diffusion. This collection 

of structures over a range of hierarchical scales is generally 

referred to as a material’s microstructure. 

 The role of data science and informatics combined with 

digital representation of structure hierarchy is not only scien-

tifi cally interesting, but also practically compelling as a means 

to bridge these gaps in a reasonable timeframe to complement 

multiscale modeling and high-throughput experimental meth-

ods. This leads to an operative defi nition of the theme topic of 

this issue, Microstructure Informatics, as a branch of materials 

data science and informatics concerned with the identifi cation 

and quantifi cation of dominant scales of hierarchy of structure 

that can be characterized, digitally rendered, and systemati-

cally explored in terms of correlations that govern process–

structure and structure–property relations.   

 Why is microstructure informatics important? 
 Major current technology thrusts, such as the Materials 

Genome Initiative  14   and Integrated Computational Materials 

Engineering,  15   have made the persuasive argument that the 

  

 Figure 1.      Illustration of the role of microstructure hierarchy in Ni-base superalloys, 

ranging from lattice structures (fi rst principles), to defect mediation at matrix–precipitate 

interfaces (atomistics), to mesoscale many-body interactions of dislocations with precipitates 

(discrete dislocation and phase-fi eld simulations), to polycrystalline structures (continuum 

fi nite element or fi nite difference methods). Achieving greater concurrency of top-down 

design of engineering systems with materials development through this hierarchy of 

structure is an important objective, effectively supplanting materials selection as the 

dominant interface to materials research and development. Adapted with permission 

from References  7  and  8 . © 2010 Springer and 2010 Oxford University Press, respectively. 

Note: TEM, transmission electron microscopy; SEM, scanning electron microscopy; 

MEMS, microelectromechanical systems.    
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sequence of stages to develop and certify a new material are 

consistently too long ( ∼ 20 years) to achieve concurrency with 

the systems design process, alluded to in  Figure 1 . We have 

already mentioned the long-term prospect of realizing predic-

tive multiscale methods for process–structure and structure–

property relations of materials with hierarchical structure 

to support materials design and development. Although well 

established in certain fi elds, such as biology, weather fore-

casting, and climate change, methods rooted in data science 

have witnessed considerably less application in addressing 

process–structure–property (PSP) relations of materials. 

By taking advantage of prospects for enhanced decision 

support from computational modeling and simulation tools, 

higher resolution and more rapid characterization instru-

ments and methods, and incorporating modern data science 

tools and methods, researchers have increasingly focused 

on the goal of accelerating the insertion of new or improved 

structural materials into next-generation transportation vehicles 

and propulsion systems. 

 Early demonstration projects such as the Defense Advanced 

Research Projects Agency Accelerated Insertion of Materials 

(AIM) Program  16   from 2000 to 2003 provided a basis for 

optimism in this regard. The AIM program was focused on 

metallic systems (Ni-base superalloys for gas-turbine engine 

disks) and composite airframe materials. In AIM, various 

experimental and computational aspects of material process–

structure and structure–property relations were consolidated 

into a designer knowledge base  17   to provide a means to mini-

mize necessary iterations in the presence of uncertainty and 

converge on designed materials for specifi c components and 

performance requirements.  18   

 There are many ways to describe the microstructure of a 

material. These include standard metrics, such as the crys-

tal structure, the mean grain size and shape, the orientation 

of the grains (the texture), and grain-boundary character 

distribution. We also include parameters that describe other 

defect distributions, including the structure of multiphase 

materials, porosity, and dislocation substructures. Each of these 

structures may infl uence the material properties. The goal 

of materials informatics is to use data to identify these effects 

and examine whether correlations exist between the various 

microstructural parameters and a material property of interest, 

including the degree of potential cross-coupling of these param-

eters in determining such a property (i.e., if two types of struc-

tures act in combination or can be considered as independent). 

 There are several challenges to quantifying microstructure. 

First, microstructures are typically quantifi ed by assessing 

digital images from two-dimensional (2D) sections, which 

cannot appropriately capture the three-dimensional (3D) char-

acter of the structure. Second, hierarchical structures over a 

vast spatial range from a few nanometers to several hundred 

micrometers require different measurement resolutions and 

associated techniques, presenting challenges to combining 

information with proper spatiotemporal identifi cation. Third, 

most of the metrics previously described are typically used 

to correlate with mean properties; on the other hand, minimum 

properties among a statistical distribution of properties are 

often of interest and depend on the distribution of structures, 

such as the grain size, across a material. Examples include 

minimum fatigue strength or fatigue life, minimum fracture 

toughness, and minimum ductility. Fourth, microstructure 

evolves as a function of temperature and with external load-

ing stimuli, and the associated structures are metastable. 

In particular, point, line, and surface defects that are arranged 

to deliver desired performance in modern alloy systems evolve 

over time in service, greatly complicating the assessment of 

long-term durability and suitability for applications. This also 

fundamentally limits existing technologies for screening alloys 

based only on fi rst-principles calculations, as alluded to in the 

foregoing. 

 Recently, much progress has been made in the 3D char-

acterization of microstructures, as described in a series of 

recent articles.  19   One promising approach employs serial 

sectioning combined with optical microscopy and electron 

backscatter diffraction to yield 3D microstructures rep-

resented with voxels.  20 , 21   Advances in using synchrotron 

radiation have enabled nondestructive characterization of 

3D microstructures and hint at multiresolution techniques 

to augment optical microscopy (see the June 2016  MRS 

Bulletin  issue: “Synchrotron radiation research in materials 

science”).  22   From these data, one can quantify the distribution 

of structures across a fully 3D microstructure, from which 

various statistics, such as mean, standard deviation, and even 

higher-order statistical moments of the spatial distribution, 

can be determined.   

 Microstructure informatics approaches 
 While offering substantial improvement relative to that 

available from simple 2D data sets, employing brute-force 

statistical analyses of 3D structures to identify spatial cor-

relations between various elements of a microstructure is 

challenging. A new monograph on microstructure informatics 

by Kalidindi  23   focuses on developing mathematical corre-

lations between microstructural features and properties or 

responses of interest. In their article in this issue, Kalidindi 

et al. discuss the need for an e-collaboration infrastructure 

in which distributed team members with different tools and 

expertise can share data, capabilities, ideas, and intermediate 

results to accelerate the identifi cation of the most effi cient and 

profi table “pathways” for data to fl ow and for models or data 

analytics to be executed to provide decision support in mate-

rials development. These pathways or “workfl ows” can then 

serve as templates for user interactions and schema to simi-

larly support various other analogous materials-development 

problems. 

 Problems of interest to microstructure informatics chiefl y 

focus on the relation of a hierarchy of material structure to 

properties or responses at various length and time scales. Two 

case studies are presented, one comprising a model-based 

study that relies on machine learning to pursue computational 
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design and development of Ni-base superalloys. The second 

case study focuses on a rigorous framework for the sto-

chastic quantifi cation of the material structure, based on well-

established concepts of  n -point spatial correlations (often 

simply referred to as  n -point statistics) that provide a set of 

measures organized by increasing amounts of information. 

This type of framework furnishes a fairly general description 

of the microstructure and is not limited to any specifi c length 

or time scale. It provides a number of advantages. One is its 

ability to represent the microstructure mathematically using 

two-point statistics, typically, or three-point and higher order 

as necessary. Building on the statistical continuum theory of 

Kröner,  24 , 25   it is then possible to describe correlations between 

microstructure distributions and material responses of interest 

at the scale of a representative volume element (RVE) by fi rst 

calibrating to simple microstructures and then extending to 

microstructures of arbitrary complexity composed of the same 

set of objects, for example, phases or defects. The RVE is the 

smallest volume that is statistically representative of the over-

all microstructure with regard to a given property or response. 

 In this way, a series expansion can be written to represent 

structure–property relationships, decomposing each term 

according to a microstructure function and an infl uence func-

tion for spatial correlations of structure-response functions of 

appropriate order (infl uence functions describe how changing 

one point of the sample affects an estimator [e.g., a correla-

tion function, as an approximation of a Green’s function]). 

These infl uence functions are calibrated either to experiments 

or more typically to high-fi delity RVE simulations. Principal 

component analysis can be exercised to identify a key, limited 

set of terms that contain most of the relevant correlations in 

structure–property relations, lending considerable effi ciency 

to exploration of the microstructure design space. 

 Another article in this issue describes a different, comple-

mentary approach to using informatics to link the process 

route with microstructure and microstructure with properties, 

achieving so-called PSP linkages. In their article, Wodo et al. 

point to the lack of a unifi ed mathematical formalism to seam-

lessly connect chemistry with thermodynamics and kinetics 

to inform PSP linkages via a predictive design strategy. To fi ll 

this gap, they introduce microstructure informatics as a means 

to capture the interaction between processing variables and 

their infl uence on chemistry–microstructure–property correla-

tions via use of manifold representations and data-compression 

methods to achieve substantial reduction of model order, 

facilitated by principal component analyses. The gist of this 

approach is to reduce the space of microstructure descriptors 

to a set of meaningful descriptors that manifest correlations. 

Examples are provided for establishing libraries of properties 

to support grain-boundary engineering and the design and 

optimal fabrication of organic solar cells. 

 They close with a discussion of the need for high-

performance computing to address the “big data” aspects of PSP 

linkages via microstructure informatics for problems involv-

ing complex PSP relations, for which the “phase space” to 

explore in correlations is high dimensional. Such problems 

are commonplace in designing engineering materials, which 

previously has been a largely empirical, iterative, and time-

consuming exercise. The authors point to the need for approaches 

that allow materials developers and design engineers to explore 

PSP relations without requiring high-level domain expertise in 

software engineering, fault tolerance, and high-performance 

computing, and advocate a cloud-computing paradigm. We add 

to their stipulations the need for uncertainty quantifi cation and 

the management of uncertainty margins in the entire enterprise of 

pursuing PSP linkages.   

 Multiscale modeling 
 One of the grand challenges for computational materials sci-

ence is the extreme range of length and time scales that gov-

ern material behavior, ranging from the angstrom length and 

sub-picosecond time scales of atomic-scale behavior to the 

respective length and time scales of meters and years for 

material behavior in engineering applications. At each scale 

of microstructure, there is a structural “unit” that dominates 

the physical processes at that scale. These units are the entities 

whose dynamics defi ne the physics of interest at each scale. 

Typically, a set of models of materials behavior is created for 

each of the various scales.  26   

 The coupling of microstructure informatics with multiscale 

modeling and simulation offers an opportunity to signifi cantly 

leverage multiscale modeling to provide decision support for 

materials development and to establish statistical confi dence 

in structure–property relations. Improved fi delity and accuracy 

of multiscale models to predict structure-dependent behavior 

can, in turn, cooperate and interplay with microstructure infor-

matics to improve overall confi dence levels for estimates 

of structure–property relations, thereby reducing the bur-

den on costly and time-consuming experimental protocols. 

The past few decades have witnessed important trends in 

multiscale modeling that cut across disciplines. In particular, 

fi rst principles, atomistics, and Monte Carlo methods that 

originated in computational physics and chemistry have now 

become commonplace in engineering curricula and research, 

with materials science and engineering serving as a bridge 

in the materials context.  26 , 27   Moreover, there is an increased 

interest in fi nite element methods, continuum mechanics, and 

constitutive modeling from the condensed-matter physics and 

chemistry/chemical engineering communities. There has been 

a remarkable transformation in engineering sciences and 

computational mechanics of materials to embrace lower scale 

phenomena and insert related information into higher scale 

models. 

 In the most common view of multiscale materials model-

ing, a hierarchy of models and simulations, each describing 

a specifi c scale and its associated phenomena, is linked to 

create a multiscale description of materials behavior with 

information (e.g., outputs from one model as inputs to the next) 

being passed sequentially from scale to scale, an approach 

that is often referred to as information passing or sequential, 
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hierarchical multiscale modeling.  28   Inherent in the information-

passing paradigm is the lack of corresponding inverse models 

that would allow us to predict the needed structures and prop-

erties at the small scale from desired properties or responses at 

a larger scale—information fl ows only in one direction, from 

small scales to large. 

 Another approach, which is often referred to as concurrent 

multiscale modeling,  27   links simulations at different length 

and time scales directly within a single integrated framework. 

Its development has been substantially more limited than that 

of hierarchical multiscale modeling. This approach has the 

advantage of enabling the fl ow of information between scales, 

both bottom-up and top-down. This can facilitate prediction 

of localization of damage and deformation at notches, for 

example, while simultaneously considering overall component-

level response.  29   –   31   As in sequential multiscale simulations, 

models must be developed and applied at multiple scales, with 

the added complication of determining appropriate interfaces 

between the models that enable them to be used concurrently. 

This also introduces new sources of uncertainty related to the 

idealizations and approximations in strong coupling of models 

at different length and time scales. 

 A form of concurrent multiscale modeling, termed domain 

decomposition, focuses on modeling material response at 

distinct resolutions in different spatial domains, for exam-

ple, using atomistic resolution near grain boundaries and 

continuum dislocation dynamics  32 , 33   or coarse-grained atomistic 

approaches  34   –   37   away from the these boundaries. The time scale 

of these domain decomposition methods is typically dictated 

by the most highly resolved description used in any region of 

the overall domain. 

 Methods for computational homogenization of microstruc-

tures have received considerable attention in the literature, in 

which a heterogeneous material is replaced by an equivalent 

homogeneous material at the RVE level, with the goal of com-

puting its effective properties. This fi eld has evolved consider-

ably in the past few decades relative to previous generations of 

approaches that involved considerable idealization of micro-

structure and interfaces. More recent approaches exploit high-

performance computing to consider realistic microstructures, 

interface behavior, and nonlinear and higher order responses 

of individual phases in solving nested initial boundary value 

problems at multiple scales. 

 The article by Geers and Yvonnet provides an overview of 

how the fi elds of computational materials science and mechan-

ics of materials have essentially merged in the past decade, 

with a common purpose of modeling responses and proper-

ties of microstructures at various scales. In particular, they 

provide examples for copper-rubber interface delamination in 

stretchable electronics and advanced dislocation-based plas-

ticity models. The fast Fourier transform method is discussed 

as a means to pursue much more effi cient computational 

homogenization for 3D microstructures, including multiphys-

ics problems. The article closes with a discussion of reducing 

computational costs in nonlinear coupled simulations at two 

scales (substructures and interfaces) in a composite material 

using parallel computing strategies, along with model-reduction 

techniques and approximate two-scale decoupling methods based 

on informatics learning strategies such as neural networks. 

 The homogenization strategies discussed by Geers and 

Yvonnet often seek to build “bottom-up” relations, most often 

using hierarchical and sometimes concurrent multiscale mod-

eling strategies. On the other hand, it is clear that informa-

tion must fl ow from top to bottom to pursue materials design 

to satisfy specifi ed performance requirements. Pursuit of 

inverse-design problems requires top-down invertibility of PSP 

relations; for example, the relations developed via microstruc-

ture informatics  23   are often amenable to inversion. McDowell 

et al.  8   extensively discuss a more general methodology to 

conduct materials design exploration that is informed using 

various scale-specifi c tools (experiments, models, metamod-

els, and informatics correlations), whether hierarchical or 

concurrent in nature, and exploits concepts in the multidis-

ciplinary design optimization community to evaluate PSP 

linkages as a multilevel design exercise in the presence of 

uncertainty. 

 A key goal of multiscale modeling is to provide decision 

support in multilevel design and development of materials in 

the presence of various sources of uncertainty, including ran-

domness of the microstructure, the structure of the models, 

and values of model parameters. This includes providing sup-

port for understanding coupling for phenomena across length 

and time scales such that structure can be designed and con-

trolled to manipulate properties/responses at a higher scale in 

an intended manner. It should be understood that multiscale 

modeling serves the purposes of multilevel design of materi-

als with microstructure, but does not constitute materials 

design in its own right.   

 Digital microstructure representation and 
uncertainty quantifi cation 
 The Michel and Meredig article focuses on how to digitally 

represent the vast amount of information necessary to express 

not only microstructure descriptors at length scales, but also 

all relevant information associated with PSP relations, ranging 

from atomic-scale structure, through various levels of hier-

archy of microstructure, and onto the component design 

level. They contend that this must be pursued in a machine-

readable, structured format to serve as input data for infor-

matics schemes. They introduce a hierarchical data structure 

called physical information fi le (PIF) as a fl exible schema to 

store process history, structure, properties, devices, and other 

subsystems of the physical system of interest in the coupled 

materials development and component design system. 

 However, databases that are too narrowly or rigidly struc-

tured cannot serve the necessary purposes of materials design 

via distributed collaboration because they are not suffi ciently 

fl exible for use by multiple developers, and hence do not 

incentivize widespread usage.  38   To this end, they provide 

simple examples to explain the fl exibility of their PIF approach, 
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including properties of LiNiO thermoelectrics and an ionic 

liquid. While these examples focus on structure at the atomic/

molecular scale, they argue for generalization to incorporate 

more complex mesoscopic structures at higher length scales 

via nesting of system and subsystem objects. To enhance 

buy-in of scientists and engineers, programmatic access to 

the schema needs to be provided via open-source tools. The 

decomposition of such fl exible structured data sets between 

open-source and proprietary (e.g., informatics companies) 

servers will undoubtedly be a matter of much discussion in 

the coming years as the materials R&D community deliber-

ates on how to construct federated databases to best serve 

the needs of microstructure informatics and materials design 

and development. 

 Uncertainty quantifi cation describes the assessment of 

the uncertainty in a simulation (or experiment). The basic idea 

is that any development and execution of a model generates 

error. For example, limiting the scope of the phenomena 

included in a model results in error. Use of experimentally 

determined parameters results in error. The limitations of even 

verifi ed numerical methods introduce errors. While it is chal-

lenging to quantify the errors at each scale, quantifying how 

those errors propagate across scales is an even more daunt-

ing task. This error analysis effectively comprises uncertainty 

quantifi cation. The science of uncertainty quantifi cation is 

relatively new and is the focus of considerable efforts in many 

communities, including materials.  39   –   41   

 A major focus of microstructure informatics is the quan-

tifi cation of uncertainty, which is dominated by the errors 

in the digital representations of the microstructures or asso-

ciated process–structure and structure–property relations 

(so-called epistemic or reducible uncertainty) and the statisti-

cal or random error associated with the variation in the actual 

microstructures (aleatoric or irreducible uncertainty). The 

latter error can be quantifi ed, as can the errors associated 

with representation of microstructure. While there have been 

some applications of uncertainty quantifi cation to informatics 

techniques,  42   this is still a growing area of research. Yet another 

type of uncertainty is that of model form or structure, since 

description of materials phenomena can be approached with 

several types of models. Management of uncertainty, propaga-

tion of uncertainty in multiscale model chains, consideration 

of uncertainty in model assumptions and forms in addition 

to parameters, and assignment of performance margins are 

major considerations. 

 To this end, a recent report  27   addresses many of the great-

est challenges and opportunities for multiscale modeling. 

It should be noted that several of the key recommendations 

relate to uncertainty, for example, to “address uncertainty 

quantification and propagation across multiple models 

describing a range of material length and time scales.” Other 

recommendations deal with the need for strong bidirec-

tional coupling methods across scales for evolving micro-

structure, consideration of rare events and extreme value 

microstructure distributions, multiresolution (or multiscale) 

multiphysics free-energy functions, and addressing the role of 

phase nucleation and interfacial properties. All of these areas 

offer considerable challenges to microstructure informatics 

and should be addressed by ensuring these approaches are 

suffi ciently well-grounded, linked to the underlying physics 

and chemistry to the greatest extent possible, sophisticated, 

and robust. This is one distinguishing feature of informatics 

applied to materials, especially materials with hierarchical 

microstructures.     
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