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Direct numerical simulations are performed in rotating turbulence for different regimes
at various Rossby and inertial Reynolds numbers (ReI). A new algorithm, adapted
from stratified turbulence (Lam et al., J. Fluid Mech., vol. 923, 2021, A31) to rotating
turbulence, permits to separate the three-dimensional velocity field into three parts: inertial
waves (IWs), eddies and a geostrophic mode (GM). It uses the space–time properties of
waves and their advection by the GM to filter the IWs from the rest of the motion. We
obtain balance equations for the separate energies of waves, eddies and the GM. Their
mutual interactions are evaluated and analysed via Sankey diagrams that provide a global
picture of energy exchanges. When the flow is forced at large scale, it mainly feeds the wave
part and the multiple interactions lead to energy dissipation in eddy and GM motion. We
also show that, in addition to the wave/wave interaction that feeds the GM, corresponding
to different mechanisms described in the literature, other non-documented interactions
feed it, as the eddy/wave interaction or the eddy/eddy interaction at moderate ReI . We
propose a scale-by-scale analysis of the transfer to the GM: we show that transfers from
wave or eddy occur at large scale, that they either inject or remove energy, and that this
occurs with or without direct cascade depending on the kind of interaction, wave/wave,
eddy/wave or eddy/eddy. The self-interaction of the GM is an inverse cascade for its
horizontal component, shaping it into a very large-scale flow.

Key words: rotating turbulence, wave-turbulence interactions, waves in rotating fluids

1. Introduction

Rotating turbulence is encountered in geophysical contexts such as in the atmosphere or the
ocean, but also in industrial flows in turbomachines for energy production or propulsion.
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A rotating flow can result in different kinds of motions, such as propagating inertial waves
(IWs), rotating eddies and what is commonly called a geostrophic mode noted GM (also
called slow mode or slow manifold in the literature, though the terminology of GM was
introduced by Greenspan 1969), which are entangled and interact together (Godeferd &
Moisy 2015). Inertial waves have been detected and characterized in rotating turbulence
experiments (e.g. Yarom & Sharon 2014; Campagne et al. 2015) and numerical simulations
(e.g. Di Leoni, Cobelli & Mininni 2015; Le Reun et al. 2017). Most studies show that,
compared with IWs or eddies, the GM is often a powerful large-scale vortex invariant
along the rotational axis, evolving slowly in time and characterized by an equilibrium
between the Coriolis force and horizontal pressure gradients (e.g. Godeferd & Moisy
2015; Sagaut & Cambon 2018). Such a large-scale structure has been observed in a wide
variety of rotating flow experiments as in Brunet, Gallet & Cortet (2020) with forcing by
oscillating cylinders, in Boury et al. (2021) with a trapezoidal domain forced by a wave
generator or in Le Reun, Favier & Le Bars (2019) where the flow is excited by the elliptical
instability. Moreover, the GM dominates other types of structures due to an inverse cascade
that can lead to the formation of a condensate in which energy concentrates at the largest
scale (Seshasayanan & Alexakis 2018). The GM influences the characteristics of the IWs
to the point of scattering the inertia-gravity waves that are created when both rotation and
stratification are present (Kafiabad, Savva & Vanneste 2019; Savva, Kafiabad & Vanneste
2021). Note that, even if ‘geostrophic states are not universal to rotating turbulence’ (Le
Reun, Favier & Le Bars 2021), its structure at large scales has an important influence on
the flow, and it is therefore essential to understand the mechanisms that feed and maintain
this structure.

Nevertheless, the formation of the GM is not fully understood. It is consistent with
the linear Taylor–Proudman theorem (Greenspan 1968), which states that in rapidly
rotating flows in which an external slow time scale is imposed (e.g. a towed sphere)
the flow is invariant along the vertical axis of rotation, i.e. its energy is concentrated in
spectral regions where the wavevector has a vertical component kz = 0 (Billant 2021).
This theorem does not tell whether the resulting two-dimensional (2-D) flow has two or
three velocity components in the general case. In addition, at moderate and small Rossby
numbers (Ro � 1), the nonlinear energy redistribution tends to concentrate energy in the
GM (i.e. kz → 0) as shown by DNS and by asymptotic theories (Cambon, Mansour &
Godeferd 1997), both for decaying or forced rotating turbulence (Sharma, Verma & Sagar
2019).

The following different mechanisms are proposed to understand the emergence of
the GM: (a) linear IW propagation as proposed by Davidson, Staplehurst & Dalziel
(2006) who considered a cloud of turbulence and extended the argument to homogeneous
turbulence in Staplehurst, Davidson & Dalziel (2008); (b) nonlinear mechanisms, for
instance, studied by Smith & Waleffe (1999) who showed that the transfer of energy is
driven by exactly resonant triadic interactions defined by

k + p + q = 0 and ω(k) + ω(p) + ω(q) = 0, (1.1)

where k, p, q are three-dimensional (3-D) wavevectors and ω(k) is the dispersion relation
of an IW with wavevector k. The wavenumber k is defined as the modulus of the
wavevector k. These resonant triads accumulate energy in the spectral region with low
ratio kz/k according to a statistical ‘instability assumption’ (Waleffe 1993), but they never
reach exactly the GM or the horizontal plane kz = 0 because the exact resonant interaction
never involves this plane (also known as slow manifold): when kz = 0, ω(k) = 0 with
ω(q) = −ω(p) and pz = −qz (Greenspan 1969; Waleffe 1993). Similarly, the asymptotic
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weak turbulence theory (Bellet et al. 2006) excludes the possibility of a GM at a large-time
limit at very low Rossby number Ro � 1. To reach kz = 0, two other mechanisms can
bypass Greenspan’s analysis and transfer energy to the GM (Newell 1969; Smith & Waleffe
1999).

The first mechanism is due to near resonant triad interactions p + q + k with pz = −qz,
kz = 0 and ω(p) + ω(q) + ω(k) ∼ 0. In Le Reun et al. (2020) an instability mechanism is
shown numerically and analytically to excite the GM by IWs. It is driven by near resonant
triadic interaction.

The second mechanism explained in Smith & Waleffe (1999) can be a quartetic
interaction mechanism. The resonant quartet occurs when two successive triad interactions
occur, leading to k + p + q = 0, ω(p) + ω(q) + ω(k) = 0 and p + r + s + t = 0 and
ω(p) + ω(r) + ω(s) + ω(t) = 0, where k, p, q, r, s are 3-D wavevectors and t is a 2-D
wavevector representing the GM (i.e. tz = 0). In Newell (1969) a quartetic mechanism
is also introduced so that a resonant quartet of Rossby waves can transfer energy to a
zonal flow. In Brunet et al. (2020) it is a quartetic secondary instability that is evoked to
be responsible for the emergence of the GM. Indeed, experiments seem to show that the
resonant quartets of IW can trigger an instability at the origin of the GM (Brunet et al.
2020) when rotating turbulence is dominated by IWs in the wave turbulence regime at low
Rossby number.

These different mechanisms concern the emergence of the GM due to wave/wave
interactions in the rotating fluid at low Reynolds number. In homogeneous rotating
turbulence where both direct and inverse cascades exist, Mininni, Alexakis & Pouquet
(2009) show the emergence of the GM alongside the presence of small eddies. van Kan &
Alexakis (2020) showed that the transition from a flow without inverse energy cascade to a
flow with an inverse energy cascade depends on the elongation of the domain. Buzzicotti,
Di Leoni & Biferale (2018b) found that the presence of the GM (‘slow’ manifold) is
essential for the formation of a stationary inverse cascade that feeds the GM. The 3-D
mode (‘fast’ manifolds) plays a non-trivial role in bringing energy to the larger scales
as well. In the work by Bourouiba, Straub & Waite (2012), the horizontal component of
the GM is driven by the interaction of two small-scale horizontal GM and small 3-D
components of fast manifolds. Buzzicotti et al. (2018a) found that the inverse cascade is
generated by homochiral interactions that couple the 3-D fast mode and the GM. In these
last two studies, a backward cascade is not a simple 2-D process but it is also due to
non-trivial 3-D interactions at different scales. However, these analysis are based on the
slow manifold (GM) and the rest of the flow is considered as the fast manifold. This part
of the flow motion is composed of waves and eddies that must be considered separately in
order to assess precisely their influence on and interaction with the GM. With this in mind,
one has to address the following questions pertaining to the dynamics of rotating strong
turbulence: in the presence of waves and eddies, what interactions transfer energy to the
GM? Among wave/wave, wave/eddy, eddy/eddy or self-interactions, which one mostly
drives the GM dynamics? At what scale do these interactions occur?

In order to answer these questions, we run direct numerical simulations (DNS) of
rotating homogeneous turbulence in which we extract separately eddies, IWs and the GM.
We adapt to rotating flows the separation technique of waves and eddies in stably stratified
flows presented in Lam, Delache & Godeferd (2020, 2021). There is however an important
difference between the rotating and stratified turbulent flows, because the spatial-based
wave/eddy decomposition proposed by Riley, Metcalfe & Weissman (1981) in the stratified
case does not exist in the rotating one.
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In what follows, we first present the governing equation and the numerical framework in
§ 2. In this section we also expose the method used to separate waves and eddies in rotating
turbulence and applied to 3-D fields coming from DNS. In § 3 we explore the different
regimes of rotating turbulence explored by DNS: from a regime where waves dominate
the flow to a regime where waves and eddies coexist. The energetics and energy fluxes in
the flow considered as a system are analysed in § 4 and typical scales of interactions are
discussed in § 5. Conclusions are drawn in § 6.

2. Extracting waves, eddies and GM in rotating turbulence

2.1. Governing equations
We consider an incompressible flow in a rotating frame, and by using the rotation
formulation of the momentum equation, the corresponding Navier–Stokes equations are

∂tu + ω × u = −∇p + ν∇2u − 2Ω × u + F − αug, (2.1)

∇ · u = 0, (2.2)

where u = (ux, uy, uz) is the velocity vector, ω = ∇ × u is the vorticity, p is the modified
pressure, ν is the kinematic viscosity and Ω = (0, 0, Ω) is the rotation rate along the
vertical axis. The flow can be set in motion via the body force F = (Fx, Fy, Fz), which is
a constant-power cylindrical forcing (see Maffioli, Delache & Godeferd 2020 and Maffioli
2017 for details). All equations and parameters are dimensionless by reference to a priori
chosen length and time scales. To control the growth of the GM and prevent the formation
of a condensate, a friction term −αug is added (Le Reun et al. 2017), where ug is the
GM field. The GM velocity is defined as a velocity invariant along the vertical axis. In
practice, it is computed from the inverse Fourier transform in space (noted F−1

x ) of the
spatial Fourier modes (noted �̂)

ug(x, t) = F−1
x [û(kh, kz = 0, t)] (2.3)

with coordinates of wavevector k = (kx, ky, kz) and horizontal wavevector kh = (kx, ky, 0).
The GM is considered here as a whole as in Buzzicotti et al. (2018b) and not as in
Buzzicotti et al. (2018a) and Bourouiba et al. (2012) where the GM is decomposed into
two parts, a horizontal GM component and a vertical GM component.

Our method for extracting the IWs is based on their wave nature and their dispersion
relation. Inertial waves are plane-wave solutions of the inviscid linearized Navier–Stokes
equations, obtained by removing the nonlinear terms of (2.1) and identifying their
dispersion relation

ωr(k) = 2Ω
kz

k
. (2.4)

The GM is also called slow mode or slow manifold because ωr(kx, ky, kz = 0) = 0 (see,
e.g. Smith & Waleffe (1999), Godeferd & Moisy (2015) or Buzzicotti et al. (2018b)). This
dispersion relation ωr(k) is modified in the presence of large-scale advection such as the
GM. The sweeping effect of an IW by large structures, assimilated to an advecting velocity
field c, can be modelled by the following linearized equations:

∂tuL + c · ∇uL = −∇pL + νL∇2uL − 2Ω × uL + F L, (2.5)

∇ · uL = 0 (2.6)

Here F L is the forcing and uL, νL, pL are the velocity, viscosity and pressure of this model
flow. In our modelling of the modification of IW’s characteristics by a large-scale velocity
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field, we do not take into account the refraction of waves by the GM (uL · ∇c term) since
it does not significantly modify the dispersion relation with respect to the sweeping effect
(c · ∇uL term), as shown by our preliminary numerical tests. Although c is expected to
act in the two terms uL · ∇c and c · ∇uL, the latter dominates when c is strong while the
former dominates when c is both strong and at small scale (Lam 2021). Since the GM is a
large-scale structure (see spectrum in figure 7), sweeping dominates over refraction and is
the only term retained here.

The characteristics of the modified IWs are obtained by solving equations (2.5) and (2.6)
and are used as a reference to extract the wave part from the full velocity obtained by (2.1)
and (2.2). The mathematical formulation of the solutions of (2.1) and (2.5) is simpler if one
uses polar-spherical coordinates, since, in Fourier space, incompressibility imposes that
the velocity vector be perpendicular to the associated wavevector: ∇ · u = 0 ⇔ ik · û = 0.
This reference frame is also called Craya–Herring frame (Herring 1974; Sagaut & Cambon
2018). Its unit vectors are (et, ep, ek) defined with respect to the rotation axis assumed to
be along z,

et = k × z
|k × z| , ep = k × (k × z)

|k × (k × z)| , ek = k/k. (2.7a–c)

On this basis, the Fourier-transformed velocity writes û(k, t) = ût(k, t)et + ûp(k, t)ep,
where ût and ûp are respectively the toroidal and poloidal velocities. By inverse Fourier
transform of this spectral velocity, the physical velocity vector is thus expressed with only
two independent components as u(x, t) = ut(x, t) + up(x, t) in the physical domain for
velocity field; this expression is used for both (2.1) and (2.5). This description is used in
the next § 2.2 to simply describe the IWs.

2.2. Method of extraction of IWs
As mentioned above, we adapt to rotating flows a decomposition technique previously
applied in the stratified case to separate internal gravity waves and eddies (see Lam et al.
2021 and Lam 2021 for details). The reader will find in Lam (2021) details about the
sweeping effect in the rotating case.

This technique consists of the following four steps.

(i) Direct numerical simulation of the nonlinear equations (2.1) and (2.2) to obtain the
velocity fields u(x, t) and extract the GM velocity field ug(x, t).

(ii) Direct numerical simulation of the linear equations (2.5) and (2.6) to obtain the IWs
characteristics modified by the sweeping due to the GM velocity field, by taking
c(x, t) = ug(x, t) obtained from step (i).

(iii) Building the ζ filter (defined in (2.9)) from the velocity field uL(x, t) obtained from
step (ii).

(iv) Filtering the velocity fields u(x, t) obtained by DNS in step (i) by using ζ obtained
in (iii) to separate the wave part uw(x, t) and the eddy part ue(x, t).

Steps (i) and (ii) concern physical fields in space and time, whereas steps (iii) and
(iv) operate in the four-dimensional (4-D) Fourier domain in space and time noted
(k, ω), which is composed of the 3-D Fourier space defined by wavevector k and the
one-dimensional frequency space ω. This last step takes into account the space–time
properties of waves and their transport by the advecting velocity c. The processing in
4-D space is computationally expensive, as explained in § 3.2. In the following, we explain
the details of steps (ii), (iii) and (iv).
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When c is homogeneous and constant, one can obtain all characteristics of IWs
by computing an exact analytical solution of the Green’s function associated with the
linearized equations (2.5) and (2.6). This is done by using a forcing composed of Dirac
functions in time and space FL = (0, 0, δ(x)δ(t)), and solving (2.5) in the 4-D Fourier
space in (k, ω), denoted �̃. The resulting analytical Green’s function of IWs contains
toroidal and poloidal components of velocity as(

ũt
L

ũp
L

)
=
(

1
2

{
[νLk2 + i(ω + c · k − ωr(k))]−1 + [νLk2 + i(ω + c · k + ωr(k)]−1}

i
2

{
[νLk2 + i(ω + c · k − ωr(k))]−1 − [νLk2 + i(ω + c · k + ωr(k)]−1}

)
,

(2.8)

where ωr(k) is the classical dispersion relation of IW ((2.4)). We observe from (2.8)
that a peak of energy arises at the poles of the function when ω → ±ωr − c · k. This
corresponds to the dispersion relation of IWs ±ωr modified by the sweeping effect c · k
(see Lam et al. 2020 for details about the sweeping effect acting on waves).

We extend this analysis to an inhomogeneous advecting velocity c(x, t) = ug(x, t) such
as the GM. Indeed, the search for the poles and, thus, the implicit dispersion relation
is often used for waves other than IWs, when they are advected by a non-homogeneous
mean flow and develop instabilities (see Huerre & Monkewitz 1990). This happens for
unstable waves developing in Rayleigh–Bénard-Poiseuille flows (Carriere & Monkewitz
1999) or in weakly non-parallel shear flows (Monkewitz, Huerre & Chomaz 1993). In
both cases, it is very difficult to obtain directly an analytical solution of the waves from
the linear equations due to the non-homogeneity of the mean field. Different strategies
are thus used such as the eigenfunction expansion method with a decoupling of the
vertical (direction of inhomogeneity) and horizontal (Carriere & Monkewitz 1999) or
the Wentzel–Kramers–Brillouin–Jeffreys method assuming a slow spatial variation of
the weak non-parallelism and, thus, of the dispersion relation (Monkewitz et al. 1993).
In both examples, it is possible to pass from ω frequencies to time t by the residuals
method (Huerre & Monkewitz 1990) taking into account appropriate integration contours
where only poles contribute to integration. These authors’ solutions reveal that the poles
and, thus, the dispersion relation are central to approximate an explicit solution of the
waves by using the residue theorem. In our case, the GM is slowly variable in time and
in the horizontal plane and homogeneous in the vertical direction. We are therefore in a
situation close to the above-mentioned flows. When passing from (k, ω) to (x, t) by the fast
Fourier transforms (FFTs), the presence of the poles dominates the FFT integrals. Since
we cannot perform analytical development and in accordance with the literature described
above, the poles should dominate the solutions in physical space as in the classical residue
calculation. Moreover, our tests on DNS of Green’s function have shown that the peak
selection of Green’s functions retains most of the energy compared with the total Green’s
function.

In order to filter out the wave part, we first solve the Green’s function numerically and
the solution for IWs of the linearized equations (2.5) and (2.6) with an inhomogeneous
velocity c(x, t) = ug(x, t) by forcing via superimposed random Dirac functions in time
and space. We force only the toroidal component of the flow by decomposing FL =
Ft

Let + Fp
Lep into toroidal and poloidal parts, and imposing Fp

L = 0 and Ft
L as a sum of

random Dirac functions (details in § 3.2). As the toroidal and poloidal components of
IWs exchange energy with one another (Sagaut & Cambon 2018; Lam 2021), one can
decide arbitrarily to force only the toroidal component of velocity, and let the linear system
respond to this solicitation as a poloidal component and, thus, form the components of
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a wave. Thus, we make sure to force only waves and not eddies that can have poloidal
and toroidal components that are not defined by IWs. We could also have forced only
the poloidal component. Secondly, in this new set of DNS, the wave part is defined from
spectral regions where energy peaks (by virtue of (2.8)), and the remaining flow motion is
assigned to the eddy part. Hence, the wave filter ζ(k, ω) is defined as

if |ũt
L(k, ω)|2 ≥ β−1 max

ω
|ũt

L(k, ω)|2 then ζ(k, ω) = 1 else ζ(k, ω) = 0, (2.9)

where β = 100 is arbitrarily chosen so that the peaks of energy are assigned to wave
motion (numerical details in § 3.2). Here ζ(k, ω) = 1 is therefore indicative of areas in the
(k, ω) space where kinetic energy is highly concentrated, corresponding to the wave part
of the flow, and ζ(k, ω) = 0 for the eddy part. Compared with the stratified case (Lam
et al. 2021), the forcing used to create the filter ζ(k, ω) stems from the toroidal term only,
and results in a filter applied on both toroidal and poloidal components due to the fact that
IWs are expected to be represented both in the toroidal and poloidal velocity components.

Thirdly, the filter ζ(k, ω) is applied to the data of the original DNS of (2.1). One obtains
the wave ũw, eddy ũe and GM ũg parts of the velocity field as

for kz /= 0: ũw(k, ω) = ζ(k, ω)(ũt(k, ω)et + ũp(k, ω)ep), (2.10)

for kz /= 0: ũe(k, ω) = (1 − ζ(k, ω))(ũt(k, ω)et + ũp(k, ω)ep), (2.11)

for kz = 0: ũg(k, ω) = ũ(kh, kz = 0, ω), (2.12)

for all k: ũ(k, ω) = ũg(k, ω) + ũw(k, ω) + ũe(k, ω). (2.13)

We finally apply the inverse 4-D Fourier transform from frequency space (k, ω) to physical
space (x, t) for each part: ul(x, t) = ∑

k,ω ũl(k, ω) e−ik · x−iωt, where l stands for w, e or
g. The velocity field u(x, t) is thus explicitly split in wave, eddy and GM parts as

u(x, t) = ug(x, t) + uw(x, t) + ue(x, t). (2.14)

Note that we use the term ‘eddy part’ for convenience, admitting that it is initially defined
by what it is not: they are not waves. It is possible to compare the spatial decomposition of
Buzzicotti et al. (2018a) with our spatiotemporal decomposition (2.14): their slow part is
identified with our GM part (g) and their fast part is identified with our wave part (w) and
our eddy part (e).

As done in Lam et al. (2021), this decomposition permits to define an orthogonal basis
and an inner product in vector function space, by using the complete set of unit vector
functions eik·x and eiωt.

Considering two functions f̂ and ĝ, one can define an inner product in terms of
wavevector k and time t, as

[ f̂ (k, t), ĝ(k′, t)] ≡ 1
T

∫
T

f̂ (k, t)ĝ(k′, t)δk−k′ dt, (2.15)

where T is the considered time span and � is the complex conjugate. Due to the
orthogonality of vector space functions and orthogonality of Fourier velocity with
wavevector space k from incompressibility, one shows the orthogonality between wave,
eddy and GM parts,

[ûi
m(k, t), û j

n(k
′, t)] /= 0 only if i = j and k = k′, (2.16)

where i, j stand for w, e or g, and m, n stand for space direction x, y or z. This provides a
way to calculate the overall energy content and the energy content in a sphere of radius K,
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defined respectively by

〈ûi, û j〉 =
∑

k
m=x,y,z

Re[ûi
m(k, t), û j

m(k, t)], (2.17)

〈ûi, û j〉K =
∑

|k|=K
m=x,y,z

Re[ûi
m(k, t), û j

m(k, t)]. (2.18)

3. Exploration of different flow regimes

3.1. Rotating turbulence regimes
Different regimes for rotating flows can be observed according to Godeferd & Moisy
(2015). In general, these regimes are usually defined by the Rossby number Rol =
U/(2Ωl) and the Reynolds number Rel = Ul/ν, where U is a velocity scale associated
with an integral scale l, ν is the kinematic viscosity and 2Ω is the rotation rate. At
Rol � 1 and Rel � 1 the flow is dominated by IWs. For Rol � 1 and Rel > 1, the flow
is dominated by IWs that interact weakly and lead to the wave turbulence regime. For
Rol < 1 and Rel � 1, quasi-2-D turbulence is observed. This calls for the definition of
the horizontal Reynolds number Reh = U4

h/εν, where Uh is defined hereafter. However,
in our numerical simulations we control the emergence of the GM and the flow is less
dominated by the 2-D flow at low Rossby number even if its importance increases as Ro
decreases, defined hereafter in (3.1). Yet, the flow is still dominated by the GM in terms of
kinetic energy, and therefore, its motion remains mostly horizontal, although not entirely
at all scales. We account for this by refining the description of the phenomenological
properties by introducing the inertial Reynolds number ReI (Marino et al. 2013) and
another horizontal Rossby number Ro using a horizontal velocity scale and the dissipation,
thus avoiding the introduction of a specific length scale among multiple possible ones. By
using the kinetic energy dissipation or energy injection rate ε as a control parameter in
turbulent state, it leads to the definition of the parameters ReI and Ro defined by

Ro = ε

2ΩU2
h

and ReI = ε

ν(2Ω)2 , (3.1a,b)

where Uh = uh − ug
h is the root mean square (r.m.s.) of the horizontal velocity field uh

without the r.m.s. of the GM horizontal velocity ug
h.

Using ε has the advantage that all non-dimensional numbers are linked to the turbulent
state without any indeterminacy linked to the choice of length scale in the turbulent case.
Nevertheless, the definition of these parameters can be rewritten by approximating the
kinetic energy dissipation. Indeed, ε represents the energy that is injected by forcing
directly the wave and eddy parts, avoiding the GM. When the rotation is strong, the imprint
of the GM is characterized by a maximum elongation in the vertical direction (kz = 0)
and a horizontal length separating the different tubes forming the GM. It influences
the structure of the flow, so that its characteristic scale becomes the horizontal length
Lf . Here Lf can also be estimated by the horizontal forcing scale (Lf = 2π/kh with
the horizontal forcing frequency kh ∼ 1 in our numerical simulations). Moreover, at
large scale, the horizontal velocity of fluctuation is larger than the vertical velocity as
shown in experiments by Campagne et al. (2015), the mean velocity is then associated
to horizontal velocity Uh from which the velocity of the GM has been removed. As in
stratified turbulence (Maffioli, Brethouwer & Lindborg 2016), we use ε ∼ U3

h/Lf and in
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Figure 1. (a) Parameters of the numerical simulations in the Rossby and inertial Reynolds plane.
Viscosity-affected rotating flow (VARF): regime where waves interact weakly and rotation strongly influences
all scales. Strongly rotating turbulence (SRT): regime where rotation strongly influences the large scales (up
to lΩ ) and weakly influences the small scales (from lΩ down to the dissipative scale η). (b) Relative amount
of the vertical GM energy u2

z (kz = 0) over the total GM energy u2(kz = 0). Open circles are for numerical
simulations with 5123 points and filled circles for 2563 points.

that case we find that Ro = Uh/(2ΩLf ), which is the horizontal Rossby number and ReI =
U3

h/((2Ω)2νLf ). As in stratified turbulence in which a buoyancy Reynolds number can be
defined from Froude and Reynolds numbers (Brethouwer et al. 2007), the non-dimensional
numbers in rotating flows are related by ReI = RehRo2, where Reh = U4

h/εν is the
horizontal Reynolds number that can be rewritten as Reh = UhLf /ν using ε ∼ U3

h/Lf .
Here ReI appears as the ratio of inertial forces to viscous and Coriolis forces, but can also
be defined as the ratio ReI = (lΩ/η)4/3 of the Kolmogorov length scale η = (ε/ν3)−1/4 –
the smallest scale in the turbulent flow – to the Zeman–Hopfinger scale lΩ =

√
ε/(2Ω)3

that separates large scales strongly influenced by the Coriolis force from smaller inertial
scales (Mory & Hopfinger 1985; Zeman 1994). Consequently, the introduction of ReI
instead of Rel opens the way to a refined phenomenological description. At large inertial
Reynolds numbers ReI � 1, IWs dominate the large scales until scale lΩ , and a classical
inertial sub-range can occur from scale lΩ to the dissipative scale η where isotropy is
restored. In contrast, at low ReI � 1, the Coriolis force dominates the flow and all scales
are dominated by the Coriolis force and the IWs up to lΩ , without lending space to a
classical inertial sub-range. This is the regime of wave turbulence where the dissipation is
carried out by waves and the scale of dissipation is no longer η. This phenomenology is
less clear when examined in view of Rel than on ReI , which permits us to assess regimes
wherein eddies or IWs are expected to dominate. Additional phenomenologies of rotating
flows can be conveyed by other non-dimensional parameters, such as the Ekman number
Ek = Ro/Reh (Mininni et al. 2009) for bounded flows, as in planetary cores (Le Bars 2016).

Our simulations explore the high rotation rate regime at Ro � 1 with different values of
ReI . They are focused on the transition from a regime called viscosity-affected rotating
flow (VARF) where waves interact weakly and rotation strongly influences all scales,
i.e. Ro � 1 and ReI � 1, to a regime called strongly rotating turbulence (SRT) where
rotation strongly influences large scales (up to lΩ ) and weakly influences small scales
(from lΩ to η), i.e. Ro � 1 and ReI � 1. These regimes are named in a manner similar
to the regimes observed in stratified turbulence by Brethouwer et al. (2007). We illustrate
the transition between these two regimes in figure 1(a). According to Godeferd & Moisy
(2015), the VARF regime includes the wave turbulence regime and IW regime since all
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waves dominate the regime. On the other hand, the SRT regime includes the quasi-2-D
turbulence.

In order to quantify the effect of rotation versus inertia on the GM, we introduce a
specific Rossby number based on the GM: Rog = ug/(Lg2Ω). Here ug is the r.m.s. velocity
of the GM and the characteristic length of the GM is Lg = 2π because the GM is defined as
invariant vertically (kz = 0) and the size of the box of the different numerical simulations
is 2π.

3.2. Numerical setting and parameters
We solve the Navier–Stokes equations (2.1)–(2.2) using a standard pseudo-spectral
algorithm in a 2π-periodic 3-D spatial domain. A phase-shifting method is used to treat
aliasing in the nonlinear term (see Lam et al. 2020 for details). Eight numerical simulations
have been run with the parameters shown in table 1 at resolutions of 2563 and 5123 points.
The exploration of parameters is mainly based on 2563 points, the higher resolution of
5123 points is used to confirm the trends at increasing resolution. As shown in figure 1(a),
by changing the resolution, it is possible to explore a small variation of one parameter by
keeping the other constant to evaluate variation tendencies. For instance, for 2Ω = 80,
Ro  0.007 and ReI change from 0.4 to 1 when the resolution changes from 2563 to 5123

points.
The Taylor-length-based Reynolds number is Reλ = urmsλ/ν, with λ the Taylor scale

and urms the r.m.s. velocity as shown in table 1. The global Rossby numbers Ro and Rog are
much smaller than 1, which indicates that the rotation effects are important both globally
and for the GM.

In numerical simulations, when energy condensates at large scales, a linear frictional
damping is added as in classical 2-D turbulence (Boffetta & Ecke 2012). Le Reun et al.
(2017) and Buzzicotti et al. (2018a) use this technique in rotating fluid to mimic the
interaction of the GM with boundaries and control its growth. Furthermore, adding
something to dissipate the GM has also been done in experiment, for instance, by Monsalve
et al. (2020) with a honeycomb grid installed at the top and bottom of a rotating tank in
order to ‘fully suppress spontaneous energy transfers to GMs’. In our DNS, the value of
α in the friction term −αug is set to α = 0.5. It stabilizes the GM in rotating turbulence
and the ratio of GM energy over total energy Eg/Et shown in table 1, where Eg(t) =∫

ug(x, t)2 dx3 and Et(t) = ∫
u(x, t)2 dx3, has the same order of magnitude (between

6.8 % and 15 % despite the difficulty of predicting this percentage before carrying out the
simulation). For α = 0.5, the added dissipation on the GM is strong and the GM accounts
only for about 10 % of the total energy in the flow.

The forcing F is localized on a cylindrical spectral surface of horizontal wavenumber
kh = 1 and range of vertical wavenumber 2 ≤ kz ≤ 4, away from the GM. This is similar to
Maffioli et al. (2020) and Lam et al. (2021) where the forcing is set in stratified turbulence
to avoid the shear mode that plays a role similar to the GM in rotating flows. The injected
power P = ∫

F · u dv is constant during time to reach a statistically stationary state but
varies for each case (see table 1). The value of kinematic dissipation ε (defined in § 4.3) is
not equal to the value of P in table 1 because ε does not include the added viscosity. Hence,
our largest Reynolds number DNS require us to adjust P in order to retain maximum ε

while maintaining kmaxη � 1, where kmax is the maximum wavenumber in the DNS.
The side DNS that solve the linear equations (2.5) and (2.6) can be run with parameters

different than the main DNS for nonlinear equations (2.1) and (2.2). For instance, their
viscosity is chosen negligible (ν = 10−8) so that energy peaks are sharper (see (2.8)) and,
consequently, the wave filter selectivity is more accurate. The toroidal forcing Ft

L in the
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side linear DNS is

Ft
L(x, t) =

{
δ(x(t)) if t ≤ 100�t,
0 otherwise,

(3.2)

where �t is the time step of the linear DNS, δ(x(t)) is the Dirac function in space and
x(t) is randomly defined at each time step �t. In the full DNS, we use a small time step
�t to match the Courant–Friedrichs–Lewy constraint, but the time step �t′ for the 4-D
Fourier transform can be larger (�t′ > �t). The 4-D algorithm is applied to 1000 3-D
fields at successive time steps �t′. Although data are obtained for 1000 time steps, the
different statistics are only taken over a duration of 600�t′, in order to avoid the cutoff
oscillations at the edges of the time interval (Lam et al. 2020). The time step �t′ imposes
the minimum and maximum resolved pulsation ωmax = π/�t′ and ωmin = 2π/(1000�t′),
which are respectively the largest and smallest pulsations in the 4-D method (see values
in table 1). The maximum frequency ωmax takes into account the sweeping effect on
the smallest scale η (or largest wavenumber kη = 1/η), i.e. ωmax � 2Ω + crms(kz = 0)kη,
where crms(kz = 0) is the average value of the r.m.s. velocity of the GM.

Note that the advecting velocity c is also updated every �t′. No windowing technique
is used during the process except for the definition of the filter ζ . Not using windowing
prevents a change of the energy of wave and eddy parts, as well as the modification of the
overall energetic content.

For identifying the spectral peaks in the Green’s function, the same value of the cutoff
parameter β = 100 is used for all simulation of Green’s function (2.5). This choice of β

has already been detailed in Lam et al. (2021) where it ensures that most of the energy in
(2.9) is considered as waves (around 90 %) and most peaks in (2.8) are also considered as
waves. This value comes from several previous attempts, and is a tradeoff between lower β

that would lead to wrongly selecting waves as eddies, and larger beta where eddies would
wrongly be selected as waves.

In practice, the cost of the present two-stage separation technique is rather large because
it requires us to run two DNS, in addition to the 4-D Fourier transform. It also requires
storage of a large number of 3-D fields. This currently limits the approach to relatively
moderate resolutions, although it permits us to obtain significantly original results in the
following. It is also possible to apply the separation algorithm directly to the velocities
in the Cartesian frame. The accuracy is expected to be similar, but the computational
cost would be larger since the filtering would be applied on three components (ux, uy, uz)
instead of two (ut, up).

Figure 1(a) shows the different regimes of our DNS in the (Ro,ReI) parameter plane.
With respect to 2563 simulations, 5123 numerical simulations permit us to slightly increase
Ro while keeping ReI constant, or to slightly decrease ReI while keeping Ro constant. The
figure also shows that we explore the transition between the VARF and the SRT regimes.

Moreover, we deal in this paper with a non-elongated domain height H compared with
the energy injection lin at large scale in our DNS (i.e. h = H/lin ∼ 1). The Rossby number
is chosen small (Ro � 1, see table 1) and, according to van Kan & Alexakis (2020) (their
figure 11), our simulations are in a split cascade domain. This means that our simulations
contain both an inverse and a forward energy cascade, even if we force the large scale (see
Buzzicotti et al. 2018a run B).

Table 2 shows the different time scales of waves Tw = 2π/(2Ω), eddies Te = Le/ue and
GM Tg = Lg/ug with Lg = 2π as the GM is invariant in the vertical axis (kz = 0) and ug is
the r.m.s. velocity of the GM. The time scale of eddies is computed from the integral length
scale Le (eddies are assumed to be three dimensional) and the r.m.s velocity of eddies ue.
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2563 points, ν = 1/250 5123 points, ν = 1/700

2Ω Tw Te Tg Tw Te Tg

5 1.257 0.0944 5.581 — — —
15 0.419 0.0847 4.385 0.419 0.0946 4.805
30 0.209 0.0879 3.588 — — —
80 0.0785 0.1027 2.077 0.0785 0.1002 2.071
300 0.0209 0.0827 1.793 0.0209 0.0843 1.484

Table 2. Time scale of the wave (Tw), eddy (Te) and GM (Tg) part of the flow.

We observe that even if the GM is a result of the spatial filter of the flow (i.e. kz = 0),
its time scale is different than that of the waves and eddies: we always have Tg � Te, Tw

and the time scale of the GM is always the slowest. Moreover, the time scale of eddies is
roughly constant for all simulations Te ∼ 0.1. The time scale of wave Tw could be larger
or smaller than Te because Tw evolves as a function of the rotating rate 2Ω . Note that, by
using our method, the eddy and wave parts are separated both spatially and temporally:
some wave and eddy terms can share a similar spatial scale but not the same frequency, or
a similar temporal scale but not the same wavevector.

Movies of the time-evolving vertical velocity of total, wave and eddy fields for the 5123

points numerical simulation and 2Ω = 80 or 2Ω = 15 can be seen in supplementary
materials available at https://doi.org/10.1017/jfm.2023.644. We have chosen to visualize
our flow by animations because it is difficult to see large-scale waves with a snapshot. The
wave part of our decomposition shows waves with large-scale oscillations, which is the
signature of the waves that dominate the large scale and the mark of the GMs that have
stable positions. In contrast, the eddy part of our decomposition shows small scales and
eddies oscillating around the GM.

4. Energy and flux for waves, eddies and GM

4.1. Energies
The above orthogonal decomposition of velocity permits us to decompose the total energy
ET = 〈û, û〉/2 into energies assigned to the wave, eddy and GM parts: ET = Ew + Ee +
Eg, with El = 〈ûl, ûl〉/2 for l = w, e, g.

The velocity of the GM defined in (2.3) is a priori three component, but its vertical
component ûg

z varies most with the physical parameters. This is illustrated in figure 1(b)
that shows the ratio of GM vertical energy 〈ûg

z , ûg
z 〉 over its horizontal energy 〈ûg

x, ûg
x〉 +

〈ûg
y, ûg

y〉. The vertical energy can reach 60 % of the total energy at Ro  0.07, but it
decreases quickly with Ro. Overall, the GM has to be considered as a 3-D flow.

Figure 2 shows Eg/ET , the amount of GM energy in percentage of the total energy
depending on the inertial Reynolds number ReI (figure 2a) and the Rossby number Ro
(figure 2b). The figure shows that Eg varies between 7 % and 16 % of the total energy (data
also in table 1). It also shows that the percentage of GM energy increases when either ReI
or Ro decreases.

Figure 2 also compares the wave energy Ew and eddy energy Ee against their sum
(also ET − Eg), i.e. the flow energy regardless of GM energy. In this way we assess
the wave/eddy energy partition independently of the importance of the GM. The figure
indicates that the energy is mainly stored in the wave part. When Ro or ReI increases, the
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Figure 2. Evolution of the percentage energy El/(ET − Eg) for waves (l = w) and eddies (l = e) and evolution
of the percentage of GM energy (Eg/ET ) against (a) ReI , (b) Ro. Numerical simulations with 5123 points are
shown with open symbols and solid lines, and numerical simulations with 2563 points are shown with filled
symbols and dotted lines.

wave energy decreases from 90 % to 70 % of (ET − Eg), and the eddy energy increases
by the same amount.

4.2. Balance of energy and flux
The evolution of total energy in rotating turbulence is driven by the flux of energy in
the equation dET/dt = P − εT , where εT is the total dissipation including the added
dissipation term on the GM. During the statistically stationary regime when dET/dt ∼ 0,
the production P is in equilibrium with the total dissipation P ∼ εT . We propose hereafter
to use the wave/eddy decomposition to address the question about how do wave-, eddy-
and GM-related fluxes evolve with rotation?

To do this, we compute a Lin-type equation for the two-point space correlation of waves,
eddies and GM velocities. This is achieved by projecting the Fourier-transformed equation
(̂2.1) on the velocity ûl(k, t) of the l = w, e, g part, using the inner product [(̂2.1), ûl(k, t)].
We then symmetrize by adding the complex conjugate, before computing the energy
density within a sphere of radius K, which is 〈(̂2.1), ûl(k, t)〉K . Due to the orthogonality
property (2.16) between parts, we obtain the separate energy balance equations for each of
the waves, eddies and GM, depending on the wavenumber K, as

∂tew(K) =
∑

i=w,e,g

twiw(K) + twie(K) + twig(K) − 2νK2ew(K) + pw(K), (4.1)

∂tee(K) =
∑

i=w,e,g

teiw(K) + teie(K) + teig(K) − 2νK2ee(K) + pe(K), (4.2)

∂teg(K) =
∑

i=w,e,g

tgiw(K) + tgie(K) + tgig(K) − 2νK2eg(K) − 2αeg(K), (4.3)
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where, for each part l, el(K) = 〈û, ûl〉K is its kinetic energy density, pl(K) = 〈F̂ , ûl〉K

is the forcing and tlij(K) = −〈 ̂ωi × u j, ûl〉K represents the energy transfers on part l due
to an interaction with part j involving part i. Indeed, the triadic structure of quadratic
nonlinearity can be expressed fundamentally in terms of a collection of triadic interactions
such that k + p + q = 0 where each triad checks

(ω̂i(q) × û j(p)) · ûl(k) = −(ω̂i(q) × ûl(k)) · û j(p), (4.4)

interpreting as a mode-to-mode energy transfer rates where the wavevector q of part i is
the mediator mode that promotes the exchange of energy between wavevectors p of part j
and k of part l, much like a catalyst (see Verma 2019 for details and (A9) in Appendix A
for demonstration (4.4).). Note that the rotation formulation of the momentum equation
(2.1) shows that ω has two roles: the rotation rate due to velocity for each point in physical
space and the mediator mode for each scale in Fourier space.

This nonlinear term yields nine different interactions (i, j) ∈ {ww, we, ew, ee,
wg, gw, eg, ge, gg} for each of the three parts of the energy l = w, e, g, i.e. a priori a
total of 27 transfers tlij. Yet, all of these transfers are not physically possible. For instance,
the interaction of two GMs cannot produce an eddy or wave: since the GM corresponds to
kz = 0, the interaction of two GMs can only create another GM, due to the triadic condition
−k = p + q.

The corresponding transfers are therefore tegg = twgg = 0. For the same reason, the
interaction of a GM with a wave or eddy cannot produce a GM, since a wave or eddy
component has a non-zero vertical wavenumber, and tgwg = tggw = tgeg = tgge = 0. Finally,
there remains only 21 physically possible transfers: five of them take or give energy to the
GM, eight transfers take or give to the wave part and eight to the eddy part. Summing over
all wavenumbers K in (4.1)–(4.3), we obtain the energy balance equation for each part, i.e.

dEw/dt = Tw
ee + Tw

we + Tw
wg + Tw

ge + Tw
eg + εw + Pw, (4.5)

dEe/dt = Te
ww + Te

ew + Te
wg + Te

gw + Te
eg + εe + Pe, (4.6)

dEg/dt = Tg
ee + Tg

we + Tg
ww + Tg

ew + εg, (4.7)

where El = ∑
K el(K) = 〈ul, ul〉, l = w, e, g. The kinetic energy dissipations of waves

and eddies are εl = ν〈k2ûl
, ûl〉. The dissipation of the GM is the sum of the turbulent

dissipation and the dissipation due to the added viscosity α: εg = εν,g + εα,g, with
εν,g = ν〈k2ûg

, ûg〉 and εα,g = α〈ûg
, ûg〉. The transfer terms are Tl

ij = ∑
K tlij(K) =

−〈 ̂ωi × u j, ûl〉.
Again, the integrated energy transfer Tl

ij over all triads taking into account (4.4) implies
that the i part is a catalyst for the energy exchange between the j and l parts.

Following Verma (2019) and our mode-to-mode energy transfer (4.4), the summed
triadic transfers are such that Tl

ij = −T j
il (see Appendix A), and are also exchange terms

between the different parts. Doing so, the mediator has gone from being a mediator
between the scales to a mediator between the different parts j and l.

Moreover, this equality implies that T j
ij = 0 and then, in the 21 transfer terms, seven

conservative transfer terms are such that namely Tg
gg = Tw

ww = Te
ee = Te

ge = Te
we = Tw

gw =
Tw

ew = 0. The conservative terms T j
ij = 0 are thus similar to convection terms for a passive

scalar, since they convey the modification of part j helped by part i that acts onto part j.
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For instance, twew can be phenomenologically interpreted as waves propagating at the
periphery of a vortex, as illustrated in a rotating and stratified fluid (Moulin & Flór 2006).
Another instance is twee that can be considered as a source of wave emission due to the
mutual interaction of eddies. The tlij terms assess the importance of the interaction even
though it is not yet identified as a given particular physical process (e.g. vortex stretching
by large structures). To make this link would require us to analyse further the dynamical
context of separate processes, but this is beyond the scope of this paper.

Finally, the other 14 transfer terms convey net energy exchanges such that Tl
ij /= 0.

Whereas conservative transfer terms such that T j
ij = 0 modify the self-interaction of j part

with help of i part, only net transfer terms Tl
ij are able to bring the energy from j part to l

part.
In § 4.3, we investigate further the net transfers where all conservative terms disappear,

whereas in § 5 we discuss specifically the characteristics of the GM cascade when all terms
remain, as in (4.3), which is the main aim of this paper.

4.3. A global description of net transfer
Due to their number, the 14 terms of net transfer Tl

ij render the analysis of (4.5)–(4.7)
difficult. We choose to analyse them via a flow diagram, also called Sankey diagram in
which transfers are represented by arrows of width proportional to their intensity. This
permits us to identify the most important transfers or fluxes in the dynamical system.

Figure 3 shows Sankey diagrams representing the three balance equations for the three
higher resolution simulations. The Sankey diagram can be understood as a hydraulic line.
The input of the hydraulic line is the forcing power P = Pw + Pe and the equivalent of
the output of the hydraulic line are the different dissipative terms εw, εe and εg. The
transfer terms Tl

ij take or bring energy to one of the parts of our flow decomposition
and can be associated to different pipes in a hydraulic line. This diagram helps us to
visualize quantitatively (4.5)–(4.7) and the energy fluxes from the injection P to the
three dissipations εw, εe and εg either directly or indirectly by exchange terms Tl

ij. Of
course, although the diagram does not show them explicitly, scales can be associated to
the different terms: injection mostly concerns large scales and dissipation small ones.

The width of each band is proportional to the importance of each flux it represents.
Red, blue and green indicate respectively the wave, eddy and GM parts. The colour of the
exchange part between the terms Tl

ij and T j
il = −Tl

ij has the mixed colour of parts l and
j. For each part l = w, e, g, white boxes Bl indicate the sum of positive transfers Tl

ij > 0
(input) to the left of the box and negative transfers Tl

ij < 0 (output) to the right of the
box. The forcing Pl feeds directly the input balance of energy Bl and all the dissipation εl

dissipates the energy from the output balance of energy Bl. Since no forcing goes to the
GM, boxes Bg help us to find the origin of the transfer from the GM to eddies or to waves.
Since our simulations are almost, but not exactly, in a statistically stationary state, a small
flux remains that represents the residual dEl/dt terms. The unsteady terms appear almost
negligible except the wave part dEw/dt, especially at smallest Ro = 0.0011 and ReI =
0.074, which means a regime dominated by waves. These small unsteady terms indicate
that the wave tank is emptying. These terms could come from the period of waves at ω ∼ 0
that is too large to be taken into account in the expensive post processing. Nevertheless, it is
reasonable to assume that these terms will not change the trends that are largely captured.
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Figure 3. Sankey diagrams representing the different terms in (4.5)–(4.7) for the three numerical simulations
at resolution 5123 points. The three DNS correspond to the indicated Rossby and inertial Reynolds numbers.
The boxes Bl (with l = w, e, g) represent the input/output balance of energy for any part l. Colours indicate
input energy P (black), waves (red), eddies (blue), GM (green), transfer between waves and the GM (magenta),
eddies and the GM (cyan) and waves and eddies (yellow).
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Figure 4. Ratio of forcing Pl/P and ratio of dissipation against the total dissipation without the GM εl/(εT −
εg) for waves (l = w) and eddies (l = e). Ratio of dissipation of the GM due to the added viscosity term on the
GM (εα,g/εT ) and the kinetic dissipation εν,g/εT against total dissipation. Results are shown against (a) ReI ,
(b) Ro. Open symbols and solid lines are DNS with 5123 points, filled symbols and dotted lines are DNS with
2563 points.

For the sake of clarity, we analyse, for example, the case of the Sankey diagram with
Ro = 0.06 and ReI = 28. First we note that all terms have their relative importance shown
by the size of the bar. We start from the forcing input P (in black). This represents the
amount of energy that is inserted in the flow. This energy is then distributed in a wave part
(forcing on waves Pw, in red) and an eddy part (forcing on eddies Pe, in blue). This energy
can then be directly associated to the white coloured boxes Bl (which represent the balance
of input/output of energy). Then, transfers (Tl

ij) occur: energy is taken from one balance
of energy Bl to another balance of energy B j. For example, Tw

ee pumps energy from waves
(the box Bw) and gives it to eddies (Be) through the transfer Te

ew. This can be explained as
we have Tw

ee = −Te
ew. Finally the energy is dissipated by waves (εw), eddies (εe) and the

GM (εg). Hence, from this Sankey diagram, one can observe all transfers occurring from
one component of the flow to another one, and its relative importance. For example, in
that case, the transfers Te

ww, Te
gw and Te

eg are negligible compared with other transfers. The
most important transfers are Tw

ew, Tg
ww and Tg

ew.
We now discuss the flow dynamics depending on the regime characterized by the inertial

Reynolds and the Rossby numbers. We use Sankey diagrams (figure 3) to better understand
the multiple interactions between different flow parts, along with curves showing the
evolution of production and dissipation with respect to these two non-dimensional
numbers (figure 4). Figure 4 shows the dependence with ReI and Ro of the percent
amount of forcing into waves Pw/P and eddies Pe/P – where the total injected power
is P = Pw + Pe – and of the dissipations εw,e/(εT − εg)), εα,g/εT and εν,g/εT , where
εg = εν,g + εα,g is the total dissipation of the GM and εT = εw + εe + εg is the total
dissipation. As noted above for the energies, the figure shows that most of the forcing
goes into waves (Pw/P > 80 %) whereas little forcing goes into eddies (Pe/P < 20 %).
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Figure 5. Evolution of the global transfer from waves to eddies divided by forcing P against (a) ReI , (b) Ro.
Open symbols and solid lines are DNS with 5123 points, filled symbols and dotted lines are DNS with 2563

points.

However, figure 4 shows that the different dissipations εw, εe and εg are not distributed in
the same proportions as the different forcing terms Pw, Pe. This attests that interactions
between each part redistribute the energies: since the GM does not directly receive power
from the forcing, the two parts of the GM dissipation εν,g, εα,g are divided by the total
dissipation εT , to estimate their relative amounts. Note that the total kinetic energy
dissipation used to define the Rossby and inertial Reynolds numbers in (3.1) is defined
without added viscosity, i.e. ε = εw + εe + εν,g. It appears that most of the dissipation due
to the GM is due to the added viscous term α since εν,g < εα,g. Moreover, when increasing
ReI at constant Ro or when decreasing Ro at constant ReI , the kinetic energy dissipation
εν,g and the added dissipation εα,g of the GM decreases. At the same time, the two other
dissipations for the wave and eddy εw, εe share the remaining part of the dissipation
εr = εT − εg: at low Ro and ReI , εw  60 % εr > εe  40 % εr and at higher Ro and
ReI , εe  55 % εr > εw  45 % εr. This evolution of dissipation from a wave-dominated
regime to a more eddy-dominated regime is expected. However, although the input power
is mainly into waves, the high levels of dissipation of the eddy part and of the GM suggest
that a net transfer from the wave part occurs. For the sake of simplicity, in the following,
we will focus on the transfers from waves to eddies or to the GM.

We consider the balance equation (4.6) for Ee, in which the three net transfers from
waves to eddies are Te

ww, Te
ew and Te

gw. These transfers are plotted in figure 5 and illustrated
on the Sankey diagram in figure 3. Since different numerical simulations correspond to
a different forcing power P and different relative values of Tl

ij, we rather represent the
transfers as a fraction of P. The figure shows that the net transfer from an eddy/wave
interaction Te

ew is always strong for all cases and increases with ReI . The other transfers
Te

gw and Te
ww fluctuate, with no clear trend. The transfer from a wave/wave interaction Te

ww
is larger at low ReI and Ro, and decreases with ReI and Ro. The physical mechanism that
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Figure 6. Evolution of the transfers from waves or eddies to the GM divided by forcing P against (a) ReI ,
(b) Ro. Numerical simulations with 5123 points are shown with open symbols and solid lines, and numerical
simulations with 2563 points are shown with filled symbols and dotted lines.

produces such a transfer may be linked to a wave breaking mechanism (Moulin & Flór
2005).

In the balance equation (4.7) for Eg, Tg
ew and Tg

ww are net transfers from waves (w) to the
GM (g) helped by eddies (e) and waves (w) respectively. Tg

ee and Tg
we are net transfers from

eddies to the GM helped by eddies and waves, respectively. Their evolutions with ReI and
Ro are plotted in figure 6. A significant amount of energy is transferred from the wave part
to the GM by the wave/wave interaction term Tg

ww that dominates all net transfers. This
wave/wave interaction Tg

ww is consistent with mechanisms found by Brunet et al. (2020) or
Le Reun et al. (2020) in the wave turbulence regime. In our simulations it seems to still be
present in a turbulent regime at higher ReI . Surprisingly, the eddy/wave interaction Tg

ew and
eddy/eddy interaction Tg

ee can still play an important role in the transfer of energy to the
GM from waves and from eddies. In particular, at highest ReI or lowest ReI , the eddy/wave
interaction Tg

ew is of the same order of magnitude as the wave/wave interaction Tg
ww. This

is illustrated on the Sankey diagrams in figures 3(a) at ReI = 28 and 3(c) at ReI = 0.074.
At ReI  1 (figure 3b), the eddy/wave interaction Tg

ew pumps energy from the GM whereas
the eddy/eddy interaction Tg

ee and the wave/eddy interaction Tg
we give energy to the GM

from an eddy component.

5. Scale-by-scale analysis of supply process of GM

5.1. Characterisation of GM transfers
In this section we focus on the scale-by-scale characterization of the GM and, more
specifically, on the typical scales at which interactions with the GM occur. The kinetic
energy of the GM at wavenumber K is eg(K) = 〈û, ûg〉K and is shown in figure 7(a) for
the different numerical simulations at resolution 5123 points. One observes that the inertial
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Figure 7. (a) Energy spectra of the GM for various runs at the specified Rossby and inertial Reynolds numbers.
Typical power laws are indicated for reference. (b) An idealized transfer reduced in four variables T+, T−,
k+, k−.

ranges of these eg(K) spectra can be fitted with different power laws depending on the
regime, ranging from K−5 to K−5/2 when ReI or Ro increase. The GM energy spectra
computed by Buzzicotti et al. (2018a) were found to scale as K−3. No such power law
appears exactly in our simulations, but it is in between the scalings obtained at Ro = 0.06,
ReI = 28 and Ro = 0.007, ReI = 1. This is consistent with our observation that the GM
power law decreases when the flow is more turbulent and has less waves.

Using simplifications detailed in § 4.2, (4.3) for the GM energy spectrum can be written
as

∂teg(K) = tgee(K) + tgwe(K) + tgww(K) + tgew(K) + tggg(K) − 2(K2ν + α)eg(K). (5.1)

Summing over all K, one obtains again the equation for net transfer (4.7). In (5.1), tggg is
a conservative term reflecting self-interactions of the GM, whereas other terms are net
transfer terms with the wave or eddy. By comparison, Bourouiba et al. (2012) obtain a
similar equation for spectral energy budgets for the horizontal component of the GM and
vertical component of the GM but they only take into account the interaction with the
3-D modes or fast manifold, without decomposition into wave and eddy contents. The
interaction that feeds the GM is thus reduced to two interactions: a self-interaction of the
GM and an interaction of the GM with fast manifolds. A similar decomposition is applied
in Buzzicotti et al. (2018a) for the total energy. The wave/eddy decomposition exhibits five
interactions for the GM and expresses all the possible kinds of interactions. In particular,
the terms tgww, tgew represent the exchange of energy between the wave and GM helped
respectively by wave and eddy parts, whereas tgwe and tgee represent the exchange of energy
between the eddy and GM helped respectively by wave and eddy parts.

We now analyse the evolution of the GM and related net transfers or conservative
transfers with reference to a typical transfer schematically represented in figure 7(b). Such
a transfer can be characterized with the following four quantities:

(i) T+,g
ij = ∑

k,tgij(k)>0 tgij(k), the total value of transfer given to g by the interaction with

j and helped by i;
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(ii) T−,g
ij = ∑

k,tgij(k)<0 tgij(k), the total value of transfer pumped from g by the interaction

with j and helped by i;
(iii) k+,g

ij = ∑
k,tgij(k)>0(k tgij(k)/T+,g

ij ), the weighted average scale of transfer given to g

by the interaction with j and helped by i;
(iv) k−,g

ij = ∑
k,tgij(k)<0(k tgij(k)/T−,g

ij ), the weighted average scale of transfer pumped
from g by the interaction with j and helped by i.

Our proposed representation is simplified and leads to the cancellation of some terms for
different wavevectors k sharing the same wavenumber k. Despite this simplification, the
proposed representation can help us understand global trends (direct or inverse cascade,
importance of the transfer. . . ). A different choice of scale could be made, for example, by
looking for the scale that maximizes the subgrid cross-field transfer based on the subgrid
tensor and by using a filtering approach as in large-eddy simulations (Eyink & Aluie 2009).
This could permit us to characterize precisely the scale of the cascade process that is a local
interaction. Note that the local or non-local nature of the interactions is not explored here,
although it would be interesting to perform this analysis on the interaction terms.

Each interaction verifies that Tg
ij = T+,g

ij + T−,g
ij and T+,g

gg = −T−,g
gg for the particular

case of a conservative term Tg
gg = 0. The difference between values of T+,g

ij and T−,g
ij

indicates the strength of the interaction, whereas the values of k+,g
ij and k−,g

ij indicate the
typical scales of this interaction.

When T+,g
ij � 0 and T−,g

ij ∼ 0, energy is given to the GM by part j at a given scale k+,g
ij ;

when T−,g
ij � 0 and T+,g

ij ∼ 0, energy is pumped from the GM by part j at a given scale

k−,g
ij . When T+,g

ij � 0 and T−,g
ij � 0, a refined analysis is called for: if k+,g

ij > k−,g
ij , energy

is pumped at large scale and given at smaller scale; if k−,g
ij < k+,g

ij , energy is pumped at
small scale and given at larger scale. This observation is usually associated with a direct
or inverse cascade of the conservative transfer due to the fact that T+,g

gg = −T−,g
gg � 0. For

the net transfer term, we extend this phenomenology and we refer to a direct or inverse
net transfer between the g part (GM) and j part. The difference |k+,g

ij − k−,g
ij | accounts for

the strength of that cascade: the larger the difference, the stronger the direct or inverse
cascade.

5.2. Transfer from waves to GM

The net transfer terms from waves to the GM are T+,g
ww , T−,g

ww , T+,g
ew , T−,g

ew associated
respectively with characteristic scales k+,g

ww , k−,g
ww , k+,g

ew , k−,g
ew . They are plotted in figure 8

against ReI .
In § 4.3 we showed that the wave/wave interaction is the dominant interaction for

supplying the GM. At all ReI , figure 8 shows that T+,g
ww � |T−,g

ww | ∼ 0 with a quasi constant
scale k+,g

ij  5 − 6. This means that wave/wave interactions give energy from waves to the
GM at relatively large scale.

Regarding the eddy/wave interaction, a net transfer occurs from waves to the GM helped
by eddies. According to figure 8, we confirm the results of § 4.3: at small and high ReI , the
eddy/wave interaction amplitudes are of the same order of magnitude as the wave/wave
interaction, and the energy is pumped from waves w to the GM g helped by eddies e.

971 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.644


Geostrophic mode supply mechanisms in rotating turbulence

0

10

20
kww

+,g

kew
+,g

0

10

20
kww

–,g

kew
–,g

–10

0

10

20

30 Tww
+,g

Tew
+,g

Tww
–,g

Tew
–,g

R
at

io
s 

T iw±,
g /P

 in
 p

er
ce

n
t

10–1 100 101 102

10–1 100 101 102

10–1 100 101 102

ReI

k ew
, 
k w

w
+

,g
+

,g
k ew

, 
k w

w
–
,g

–
,g

(b)

(a)

(c)

Figure 8. Evolution of the detailed transfer from waves to the GM against ReI . Transfer amplitude divided by
forcing P is in (a), the average positive scale of transfer is in (b) and the average negative scale of transfer is
in (c). Numerical simulations with 5123 points are shown with open symbols and solid lines, and numerical
simulations with 2563 points are shown with filled symbols and dotted lines.

This eddy/wave interaction occurs at large scale, since T+,g
ew � |T−,g

ew | ∼ 0 and k+,g
ew 

5 − 6. Furthermore, at a moderate inertial Reynolds number ReI ∼ 1, we confirm that
the eddy/wave interaction pumps the energy from the GM to waves helped by eddies,
the latter being relatively large-scale ones (T−,g

ew < 0 and k−,g
ew ∼ 5 − 9). Nevertheless, a

difference appears between ReI  1 and ReI  3.5 (5123 and 2563 points): whereas at
ReI  1, no energy is given (i.e. T+,g

ew  0), for ReI  3.5, a significant part of energy is
given from wave to GM at small scale associated to a direct net transfer (i.e. T+,g

ew  |T−,g
ew |

and k+,g
ew  10 > k−,g

ew  2).
These results are consistent with those of Le Reun et al. (2020) and Brunet et al.

(2020) where the physical processes that bring energy to the GM are based on wave/wave
interactions. Yet, none of these studies assumes that an eddy/wave interaction can play a
key role in the transfer of energy to the GM.

5.3. Transfer from eddies to GM

The net transfer terms from eddies to the GM are described by T+,g
we , T−,g

we , T+,g
ee , T−,g

ee

associated respectively with scales k+,g
we , k−,g

we , k+,g
ee , k−,g

ee . They are plotted against ReI in
figure 9.

The eddy/eddy interaction, i.e. the transfer of energy from eddies to the GM helped
by eddies, depends on ReI . Confirming the results of § 4.3, at small ReI , the eddies give
energy to the GM, and this is done at large scale since T+,g

ee � |T−,g
ee | ∼ 0 and k+,g

ee  9.
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Figure 9. Evolution of the detailed transfer from eddies to the GM against ReI . Transfer amplitude divided by
forcing P is in (a), the average positive scale of transfer is in (b) and the average negative scale of transfer is
in (c). Numerical simulations with 5123 points are shown with open symbols and solid lines, and numerical
simulations with 2563 points are shown with filled symbols and dotted lines.

For high ReI , the eddies take energy from the GM at large scale (T+,g
ee ∼ 0 � |T−,g

ee | and
k−,g

ee  5).
The wave/eddy interaction, i.e. the transfer of energy from eddies to the GM helped

by waves, is more subtle. The results of § 4.3 show that the behaviour of the wave/eddy
interaction follows the behaviour of the eddy/eddy interaction. However, a scale analysis,
that amounts to studying the inertial Reynolds number dependence, provides additional
information. At small ReI , and at 5123 resolution, the wave/eddy interaction is a net direct
transfer that pumps energy from eddies to the GM, since T+,g

we > |T−,g
we | /= 0 and k+,g

we 
10 − 15 > k−,g

we  5. At large ReI , the wave/eddy interaction is a transfer that pumps
energy from the GM to eddies at large scale, since |T−,g

we | � T+,g
we ∼ 0 and k−,g

we  4. At
moderate ReI ∼ 1, the positive and negative transfers seem to be dependent on resolution,
but when the negative transfer is not zero |T−,g

we | /= 0, it seems that the interaction occurs
at large scale, as indicated by k+,g

we  5 − 8 and k−,g
we  2.

5.4. Self-interaction of GM
The previous section shows that energy transfers to the GM occur mainly at large scale
with ww, ew, we and ee interactions that vary with Ro: globally, the transfers to the GM
are stronger at low Ro than high Ro. Furthermore, the self-interaction of the GM also
redistributes energy between the scales of the GM. The interaction of the GM with itself
is analysed here.

The self-interaction of the GM is associated to the conservative terms T+,g
gg and T−,g

gg at
typical scales k+,g

gg and k−,g
gg . Figure 10(a) shows only T+,g

gg against ReI and T−,g
gg = −T+,g

gg .
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Figure 10. Evolution of the detailed cascade of energy involving only the GM against ReI . Transfer amplitude
divided by forcing P is in (a), the average positive scale of transfer is in (b) and the average negative scale of
transfer is in (c). Numerical simulations with 5123 points are shown with open symbols and solid lines, and
numerical simulations with 2563 points are shown with filled symbols and dotted lines.

We first observe on the figure that the self-interaction amplitude is smaller than that of
the wave/wave interaction: T+,g

gg decrease from 5 % to 1 % of the total forcing P with ReI ,
whereas T+,g

ww decrease from 25 % to 10 % with ReI . This is consistent with the results of
Buzzicotti et al. (2018a) who also observe that the self-interaction of the 2-D horizontal
part of the GM is small compared with other interactions. Our result is also in agreement
with the results of Bourouiba et al. (2012) who note that the GM energy grows via coupling
interactions between the ‘fast’ and ‘slow’ modes. Nevertheless, the typical scales are such
that k+,g

gg > k−,g
gg with values decreasing as ReI increases, and a separation that is roughly

constant: k+,g
gg − k−,g

gg  7–10. This is a signature of a direct cascade for the GM.
However, we considered the GM as a 3-D field. It necessarily includes a vertical

component, whose amplitude is larger than its 2-D horizontal component at large Ro (see
figure 1b). Furthermore, Buzzicotti et al. (2018a) and Bourouiba et al. (2012) have shown
that the inverse cascade occurs for the 2-D horizontal velocity of the GM whereas the
vertical velocity is considered as a passive scalar with the forward cascade of energy (see
Buzzicotti et al. 2018a). So, we evaluate the self-interaction T+,g,2D

gg with typical scale
k+,g,2D

gg and k−,g,2D
gg from the two horizontal components of velocity of the GM. The results

are plotted in figure 10(a,c), showing that k+,g,2D
gg < k−,g,2D

gg with a difference between the
two roughly constant: k−,g,2D

gg − k+,g,2D
gg  3 − 4. This means an inverse cascade occurs

for the 2-D horizontal part of the GM.
Globally, the self-interaction of the GM increases when Ro decreases for both the 2-D

horizontal and vertical components.
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6. Conclusion

We have proposed a technique to separate IWs from eddies and the GM in rotating
turbulence. This computationally and memory intensive separation method has been
applied to results of DNS with large-scale forcing, for regimes dominated by rotation
(Ro � 1) ranging from VARFs (ReI � 1) to strongly rotating flows (ReI � 1). The energy
balance equations for IWs, eddies and the GM are established, and their different net
transfer terms are computed from the DNS. The forcing mainly feeds the wave part of
the flow, but, surprisingly, the injected energy is redistributed to also feed the eddy and
GM parts via net transfer terms and conservative terms. We obtain a global picture of
the complex set of all net transfers via Sankey diagrams. It appears that eddies are fed by
wave/wave, eddy/wave and GM/wave interactions depending on Ro or ReI . Moreover, in
rotating turbulence, the GM is supplied by a wave/wave interaction at large scale. This
is in agreement with results of the literature for a rotating fluid (Brunet et al. 2020; Le
Reun et al. 2020). However, the eddy/wave interaction appears to also feed the GM at
large scale. Other transfers involving the GM can be important such as the wave/eddy
interaction or eddy/eddy interaction (both occurring at large scale) that can take energy
from the GM depending on the values of Ro and ReI . These interactions are referred to as
fast/fast interactions in the literature (Bourouiba et al. 2012; Buzzicotti et al. 2018a), but in
the present work we were able to provide a more specific analysis according to wave and
eddy parts.

These net transfers do not fully account for the scale dependence of the GM and
the rearrangement due to the different types of cascade. We therefore construct a
scale-dependent GM evolution equation by including these net transfers and a conservative
term. We find that this net transfer term tends to interact at large scale with the GM
by providing or taking energy. The conservative term associated to a self-interaction of
the GM is weaker than the other terms, showing a direct cascade for the 3-D GM but
a reverse cascade for the 2-D GM that feeds the large scales, in agreement with the
available literature. Globally, the net transfers and self-interaction are stronger at low Ro
than high Ro.

The present study provides a rather detailed understanding of the fluxes and energy
transfers occurring in rotating flows, but further analyses may still be proposed. First,
our forcing is mostly done on the wave part and at large scale, resulting in a split cascade.
A more balanced forcing between wave and eddy parts, at different scales, would permit to
better understand the transfers between them. Secondly, as often with numerical simulation
of turbulence, this separation technique ought to be applied to data at a larger inertial
Reynolds number ReI and lower Rossby number Ro, thus requiring higher resolution
and an even stronger computational effort. This would permit us to reach a regime of
different cascades and interactions closer to the one that appears in actual geophysical
and industrial flows. Thirdly, we focused on the supply process that powers the GM.
This should be extended to waves and eddies. In particular, the wave/wave, eddy/eddy,
eddy/wave, wave/eddy interactions are solely described in terms of scale from the GM
point of view, but what are the scales of these interactions from the wave and eddy
point of view? Finally, the presented net transfer and conservative terms are quantities
averaged over several kinds of triadic interactions, so there is probably room for an analysis
of finer-grained mechanisms. Through the study of the structure of nonlinearities, we
have identified the wave/wave interaction that we have associated with triadic instability
mechanisms as the most studied in the literature, notably because of the importance of
the GM. In order to establish an unequivocal link, an in-depth study should be carried
out to derive an extension of the formalism introduced in Waleffe (1993) to triadic

971 A10-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.644


Geostrophic mode supply mechanisms in rotating turbulence

interactions involving three fields (wave, eddy and GM), in the same spirit as that carried
out in magnetohydrodynamics by Linkmann et al. (2016). Furthermore, the physics of
these interactions has not been detailed here. It can be understood on a case-by-case
basis, either by studying model flows or from physical processes already known. For
example, by adding the vorticity equation (2.1), it is possible to understand how eddies
are stretched, by the large scale (GM) or by waves. By using the Q criterion (Hunt, Wray
& Moin 1988), it is also possible to interpret the interactions in terms of strain-dominated
regions or vorticity-dominated regions. On the other hand, the local or non-local nature
of the interactions, which has not been explored here, could be studied in order to better
understand the typical scales that come into play in the interactions, as in Eyink & Aluie
(2009). More generally, it would be necessary to enhance the comprehension of these
interaction mechanisms (eddy/eddy, eddy/wave. . . ) whose importance has been shown in
this paper.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.644
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Appendix A

In this appendix, inspired by the demonstration of Verma (2019), we detail the analytical
proof for Tl

ij = −T j
il with Tl

ij = −〈 ̂ωi × u j, ûl〉. The Fourier transform of the nonlinear
term can be rewritten as

̂ωi × u j(k) =
∑

p

∑
k=p+q

ω̂i(q) × û j(p)

=
∑

p

∑
k−p−q=0

ω̂i(q) × û j(p)

=
∑

p

∑
k−p−q=0

ω̂i(−q) × û j(−p) by using hermitian symmetry

=
∑
−P

∑
k+P+Q=0

ω̂i(Q) × û j(P) with P = −p, Q = −q

=
∑

P

∑
k+P+Q=0

ω̂i(Q) × û j(P) with P independent of k

=
∑

p

∑
k+p+q=0

ω̂i(q) × û j(p) by dropping the upper case, (A1)

where is the complex conjuguate.
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By applying the identity (A × B) × C = (C · A)B − (C · B)A then

ω̂i(q) × û j(p) = (iq × ûi(q)) × û j(p) (A2)

= (û j(p) · iq)ûi(q) − (û j(p) · ûi(q))iq (A3)

ω̂i(q) × ûl(k) = (ûl(k) · iq)ûi(q) − (ûl(k) · ûi(q))iq, (A4)

which means that

Sijl(k|p|q) = (ω̂i(q) × û j(p)) · ûl(k) (A5)

= (û j(p) · iq)(ûi(q) · ûl(k)) − (û j(p) · ûi(q))(iq · ûl(k)) (A6)

Silj(p|k|q) = (ω̂i(q) × ûl(k)) · û j(p) (A7)

= (ûl(k) · iq)(ûi(q).û j(p)) − (ûl(k) · ûi(q))(iq.û j(p)) (A8)

⇒ Sijl(k|p|q) = −Silj(p|k|q). (A9)

With (A9) and (A1) we obtain

∑
k

̂ωi × u j(k) · ûl(k) =
∑

k

∑
p

∑
k+p+q=0

ω̂i(q) × û j(p) · ûl(k)

=
∑

k

∑
p

∑
k+p+q=0

Sijl(k|p|q)

=
∑

k

∑
p

∑
k+p+q=0

−Silj(p|k|q) using (A9)

= −
∑

k

∑
p

∑
k+p+q=0

ω̂i(q) × ûl(k) · û j(p)

= −
∑

p

∑
k

∑
k+p+q=0

ω̂i(q) × ûl(k) · û j(p) since k, p independent

= −
∑

k

∑
p

∑
k+p+q=0

ω̂i(q) × ûl(p) · û j(k) by changing name k ↔ p

= −
∑

k

̂ωi × ul(k) · û j(k).
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Using this equality and the definition for 〈 〉 and [ ] given in § 2.2, we finally show that

Tl
ij = −〈 ̂ωi × u j, ûl〉 =

∑
k

Re[ ̂ωi × u j(k, t), ûl(k, t)]

=
∑

k

Re
(

1
T

∫
T

̂ωi × u j(k) · ûl(k) dt
)

= Re

(
1
T

∫
T

∑
k

̂ωi × u j(k) · ûl(k) dt

)

= Re

(
1
T

∫
T

−
∑

k

̂ωi × ul(k) · û j(k) dt

)

= −
∑

k

Re[ ̂ωi × ul(k, t), û j
(k, t)] = −T j

il.

Since Tl
ij = −T j

il then T j
ij = 0.
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